How to find a TU cooperative strategy

Andy Parrish

May 24, 2011

Consider the bimatrix we looked at in class:

$$
\left(\begin{array}{cc}
(3,6) & (4,-2) \\
(7,1) & (0,3)
\end{array}\right)
$$

We may write Player I's payoff matrix as

$$
A=\left(\begin{array}{ll}
3 & 4 \\
7 & 0
\end{array}\right)
$$

and Player II's payoff matrix as

$$
B=\left(\begin{array}{cc}
6 & -2 \\
1 & 3
\end{array}\right)
$$

We know the optimal cooperative strategy is to pick the entry with maximum sum. This means Player I uses row 1, and Player II uses column 1. This maximizes total utility: $\sigma=3+6=9$. We still need to determine the actual payoff (and the side payment to acheive that).

To do this, we find the threat point (or disagreement point). Each player will choose a strategy to show that they deserve more than the other player. This means each player will try to choose a strategy to maximize their gain over the other player. This becomes a zero-sum game - if Player I has two more than Player II, then Player II has two less than Player I. This leads us to the difference matrix:

$$
D=A-B=\left(\begin{array}{cc}
-3 & 6 \\
6 & -3
\end{array}\right)
$$

We now solve this as a zero-sum game. The solution in this case is

$$
\mathbf{p}=(1 / 2,1 / 2) \quad \mathbf{q}=(1 / 2,1 / 2)
$$

The game value is $\mathbf{p}^{T} D \mathbf{q}=\frac{3}{2}$. The threat point is $\left(\mathbf{p}^{T} A \mathbf{q}, \mathbf{p}^{T} B \mathbf{q}\right)=(7 / 2,2)$ - the payout if both players use their threat strategies. This determines that Player I should receive $\frac{7}{2}-2=\frac{3}{2}$ (the value of the game D) more than Player II does.

This gives the final payoff of

$$
\left(\frac{\sigma}{2}+\frac{3 / 2}{2}, \frac{\sigma}{2}-\frac{3 / 2}{2}\right)=(5.25,3.75),
$$

which you may check is the only way to have two numbers add to 9 with a difference of $\frac{3}{2}$.

Since the payoff from the original game is $(3,6)$, Player II must make a sidepayment of 2.25 to Player I. Equivalently, Player I makes a sidepayment of -2.25 to Player II.

