- Inner product: generalization of dot product on \mathbb{R}^n. (Heuristic/intuition: testing in a certain direction).
- Examples: \mathbb{R}^n; \mathbb{C}^n; standard inner product (dot product); weighted inner products; continuous functions on an interval with integration; matrix adjoint and Frobenius inner product.
- Inner product space; choice of inner product determines geometry.
- Continuous functions into the complex numbers; inner products for such functions.
- Properties of the inner product: sesquilinear; faithful.
- Inner product induces a notion of length (or norm).
- Properties of the norm: scaling; faithful; Cauchy-Schwarz.
- Applications of Cauchy-Schwarz inequality: triangle inequality; specific inequalities in \mathbb{R}^n (example: \(\frac{(a_1 + \cdots + a_n)^2}{n} \leq a_1^2 + \cdots + a_n^2 \)); in $M_{n\times n}(\mathbb{R})$ (example: let A_n be symmetric and positive definite, then \(a_{ij}^2 \leq a_{ii}a_{jj} \)); and integral inequalities (example: \((\int_0^1 f(x) \, dx)^2 \leq \int_0^1 f(x)^2 \, dx \)).
- Orthogonal vectors; orthogonal subsets; unit vectors; orthonormal vectors; normalizing an orthogonal set; Pythagorean theorem; example of \(f(x) = 1 \) and \(g(x) = x \) in $C([-1,1])$.
- Example of orthogonal functions $f_n(t) = e^{int}$ (look up Fourier transform if interested in motivation https://www.youtube.com/watch?v=spUNpyF58BY).
- Orthonormal basis; basis representation with respect to an orthogonal (orthonormal) basis; orthogonal sets that don’t contain the zero vector are linearly independent.