Goal: decomposition of a normal (in the complex case) or self-adjoint (in the real case) linear operator as a linear combination of orthogonal projections.

If $V = W_1 \oplus W_2$, then we can define the projection T on W_1 along W_2. Note that $R(T) = W_1$ and $N(T) = W_2$.

T is a projection if and only if $T^2 = T$.

A projection is not uniquely determined by its range. Example: let $W_1 = x$-axis; $W_2 = y$-axis; $W_3 = \text{the line } y = x$. Then $W_1 \oplus W_2 = W_1 \oplus W_3$.

Orthogonal projection: projection such that $N(T)^\perp = R(T)$ and $R(T)^\perp = N(T)$.

T orthogonal projection iff $T = T^2 = T^*$.

Orthogonal projection: projection such that $N(T)^\perp = R(T)$ and $R(T)^\perp = N(T)$.

Matrix representation of a projection; matrix representation of an orthogonal projection.

Complex spectral theorem: Assume T is normal. Then V is a direct sum of eigenspaces W_i with $W_i^\perp = \bigoplus_{j \neq i} W_j$ and T can be written as a linear combination of orthogonal projections where the coefficients of the linear combination are given by the eigenvalues.

Real spectral theorem: Assume T is self-adjoint. Then the same statement holds.

Example: shift on \mathbb{C}^n, takes (z_1, \ldots, z_n) to (z_2, \ldots, z_n, z_1). Know the eigenvalues have to be of modulus 1 and nth power equals 1: roots of unity.

Definitions: spectrum (set of eigenvalues); resolution of the identity (the sum of the orthogonal projections onto each eigenspace); spectral decomposition of T.

Matrix representation of T; powers of T.

Corollary: if V is a complex inner product space and T is a normal linear operator, then $T^* = p(T)$ for some polynomial $p \in \mathbb{C}[x]$.

Corollary: if V is a complex inner product space, T is unitary iff T is normal and every eigenvalue is of modulus 1.

Corollary: if V is a complex inner product space and T is normal, then T is self-adjoint iff every eigenvalue is real.

Corollary: if T has a spectral decomposition as in the spectral theorem, then each orthogonal projection onto an eigenspace is a polynomial of the operator T.