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Math 150B Homework Problems: Winter 2020

Problems are our text book, “Differential Forms,” by Guillemin and Haine
or from the lecture notes as indicated. The problems from the lecture notes are
restated here, however there may be broken references. If this is the case, please
find the corresponding problem in the lecture notes for the proper references
and for more context of the problem.

1.0 Homework 0, Due Wednesday, January 8, 2020 (Not
to be collected)

• Lecture note Exercises: 2.1, 2.2, 2.3, 2.4, and 2.5.

1.1 Homework 1. Due Thursday, January 16, 2020

• Lecture note Exercises: 2.6, 2.7, 2.8, 2.11
• Book Exercises: 1.2.vi.

1.2 Homework 2. Due Thursday, January 23, 2020

• Lecture note Exercises: 2.9, 2.10, 2.12, 2.13, 2.14, 2.15, 2.16
• Book Exercises: 1.3.iii., 1.3.v., 1.3.vii, 1.4ix

1.3 Homework 3. Due Thursday, January 30, 2020

• Lecture note Exercises: 2.20, 2.21, 2.24, 2.25, 2.26, 2.27, 2.28
• Look at (but don’t hand in) Exercises 2.22, 2.23 and the Book Exercises:

1.7.iv., 1.8vi.

1.4 Homework 4. Due Thursday, February 6, 2020

These problems are part of your midterm and are to be worked on by your-self.
These are due at the start of the in-class portion of the midterm which is in
class on Thursday February 6, 2020.

• Lecture note Exercises: 2.17, 2.18, 2.19, 2.29, 2.30

1.5 Homework 5. Due Thursday, February 13, 2020

• Lecture note Exercises: 2.31, 2.32, 2.33, 2.34, 2.35, 2.36
• Book Exercises: 2.3.ii., 2.3.iii., 2.4.i

1.6 Homework 6. Due Thursday, February 20, 2020

• Book Exercises: 2.1vii, 2.1viii, 2.4.ii, 2.4iii, 2.4iv. 2.6i, 2.6ii, 2.6iii (Refer to
exercise 2.1.vii not 2.2viii), 3.2.i, 3.2viii

• Have a look at Reyer Sjamaar’s notes: Manifolds and Differential Forms –
especially see Chapter 6 starting on page 75 for the notions of a manifold,
tangent spaces, and lots of pictures!

http://pi.math.cornell.edu/~sjamaar/manifolds/manifold.pdf
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Lecture Note Problems

Exercise 2.1. Find the value of the following integral;

I :=

∫ 9

1

dy

∫ 3

√
y

dx xey.

Hint: use Tonelli’s theorem to change the order of integrations.

Exercise 2.2. Write the following iterated integral

I :=

∫ 1

0

dx

∫ 1

y=x2/3

dy xey
4

.

as a multiple integral and use this to change the order of integrations and then
compute I.

Exercise 2.3. Suppose that d = 2, show m2 (B (0, r)) = πr2.

Exercise 2.4. Suppose that d = 3, show m3 (B (0, r)) = 4π
3 r

3.

Exercise 2.5. Let Vd (r) := md (B (0, r)) . Show for d ≥ 1 that

Vd+1 (r) =

∫ r

−r
dz · Vd

(√
r2 − z2

)
= r

∫ π/2

−π/2
Vd (r cos θ) cos θdθ.

Exercise 2.6 (Change of variables for elementary matrices). Let f :
Rd → R be a continuous function with compact support. Show by direct calcu-
lation that;

|detT |
∫
Rd

f (T (x)) dx =

∫
Rd

f (y) dy (2.1)

for each of the following linear transformations;

1. Suppose that i < k and

T (x1, x2 . . . , xd) = (x1, . . . , xi−1, xk, xi+1 . . . , xk−1, xi, xk+1, . . . xd),

i.e. T swaps the i and k coordinates of x. [In matrix notation T is the
identity matrix with the i and k column interchanged.]

2. T (x1, . . . xk, . . . , xd) = (x1, . . . , cxk, . . . xd) where c ∈ R \ {0} . [In matrix
notation, T = [e1| . . . |ek−1|cek|ek+1| . . . |ed] .]

3. T (x1, x2 . . . , xd) = (x1, . . . ,
i’th spot
xi + cxk, . . . xk, . . . xd) where c ∈ R. [In matrix

notation T = [e1| . . . |ei| . . . |ek + cei|ek+1| . . . |ed].

Hint: you should use Fubini’s theorem along with the one dimensional
change of variables theorem.

[To be more concrete here are examples of each of the T appearing above
in the special case d = 4,

1. If i = 2 and k = 3 then T =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

2. If k = 3 then T =


1 0 0 0
0 1 0 0
0 0 c 0
0 0 0 1

 ,
3. If i = 2 and k = 4 then

T


x1
x2
x3
x4

 =


x1

x2 + cx4
x3
x4

 =


1 0 0 0
0 1 0 c
0 0 1 0
0 0 0 1



x1
x2
x3
x4


while if i = 4 and k = 2,

T


x1
x2
x3
x4

 =


x1
x2
x3

x4 + cx2

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 c 0 1



x1
x2
x3
x4

 .

Exercise 2.7. Let V = Rn and β = {uj}nj=1 be a basis for Rn. Recall that

every ` ∈ (Rn)
∗

is of the form `a (x) = a · x for some a ∈ Rn. Thus the dual
basis, β∗, to β can be written as

{
u∗j = `aj

}n
j=1

for some {aj}nj=1 ⊂ Rn. In this

problem you are asked to show how to find the {aj}nj=1 by the following steps.

1. Show that for j ∈ [n] , aj must solve the following k-linear equations;

δj,k = `aj (uk) = aj · uk = utrk aj for k ∈ [n] . (2.2)
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2. Let U := [u1| . . . |un] (i.e. the columns of U are the vectors from β). Show
that the equations in (2.2) may be written in matrix form as, U traj = ej ,
where {ej}nj=1 is the standard basis for Rn.

3. Conclude that aj = [U tr]
−1
ej or equivalently;

[a1| . . . |an] =
[
U tr
]−1

Exercise 2.8. Let V = R2 and β = {u1, u2} , where

u1 =

[
1
3

]
and u2 =

[
−1
1

]
.

Find a1, a2 ∈ R2 explicitly so that explicitly the dual basis β∗ :=
{u∗1 = `a1 , u

∗
2 = `a2} is the dual basis to β. Please explicitly verify your

answer is correct by showing u∗j (uk) = δjk.

Exercise 2.9. Let V = Rn, {aj}kj=1 ⊂ V, and `j (x) = aj · x for x ∈ Rn

and j ∈ [k] . Show {`j}kj=1 ⊂ V ∗ is a linearly independent set if and only if

{aj}kj=1 ⊂ V is a linearly independent set.

Exercise 2.10. Let V = Rn, {aj}kj=1 ⊂ V, and `j (x) = aj · x for x ∈ Rn

and j ∈ [k] . If {`j}kj=1 ⊂ V ∗ is a linearly independent set, show there exists

{uj}kj=1 ⊂ V so that `i (uj) = δij for i, j ∈ [k] . Here is a possible outline.

1. Using Exercise 2.9 and citing a basic fact from Linear algebra, you may
choose {aj}nj=k+1 ⊂ V so that {aj}nj=1 is a basis for V.

2. Argue that it suffices to find uj ∈ V so that

ai · uj = δij for all i, j ∈ [n] . (2.3)

3. Let {ej}nj=1 be the standard basis for Rn and A := [a1| . . . |an] be the n×n
matrix with columns given by that {aj}nj=1 . Show that the Eqs. (2.3) may
be written as

Atruj = ej for j ∈ [n] . (2.4)

4. Cite basic facts from linear algebra to explain why A := [a1| . . . |an] and Atr

are both invertible n× n matrices.
5. Argue that Eq. (2.4) has a unique solution, uj ∈ Rn, for each j.

Exercise 2.11. In this problem, let

v =

 v1v2
v3

 and w =

w1

w2

w3

 .
Which of the following functions formulas for T define a 2-tensors on R3. Please
justify your answers.

1. T (v, w) = v1w3 + v1w2 + v2w1 + 7v1w1.
2. T (v, w) = v1 + 7v1 + v2.
3. T (v, w) = v21w3 + v2w1,
4. T (v, w) = sin (v1w3 + v1w2 + v2w1 + 7v1w1) .

Exercise 2.12. If T ∈ Λk (V ∗) , show T (v1, . . . , vk) = 0 whenever {vi}ki=1 ⊂ V
are linearly dependent.

Exercise 2.13. Let V,W, and Z be three finite dimensional vector spaces and

suppose that V
T→ W

S→ Z are linear transformations. Noting that V
ST→ Z,

show (ST )
∗

= T ∗S∗.

Exercise 2.14. If ψ ∈ Λn (V ∗) \ {0} , show ψ (v1, . . . , vn) 6= 0 whenever
{vi}ni=1 ⊂ V are linearly independent. [Coupled with Exercise 2.12, it follows
that ψ (v1, . . . , vn) 6= 0 iff {vi}ni=1 ⊂ V are linearly independent.]

Exercise 2.15. Let {ei}4i=1 be the standard basis for R4 and {εi = e∗i }
4
i=1 be

the associated dual basis (i.e. εi (v) = vi for all v ∈ R4.) Compute;

1. ε3 ∧ ε2 ∧ ε4




1
2
3
4

 ,


0
1
−1
1

 ,


1
0
3
2


 ,

2. ε3 ∧ ε2




1
2
3
4

 ,


0
1
−1
1


 ,

3. ε1 ∧ ε2




1
2
3
4

 ,


0
1
−1
1


 ,

4. (ε1 + ε3) ∧ ε2




1
2
3
4

 ,


0
1
−1
1


 , and

5. ε4 ∧ ε3 ∧ ε2 ∧ ε1 (e1, e2, e3, e4) .

Exercise 2.16. Show, using basic knowledge of determinants, that for
`0, `1, `2, `3 ∈ V ∗, that

(`0 + `1) ∧ `2 ∧ `3 = `0 ∧ `2 ∧ `3 + `1 ∧ `2 ∧ `3.

Exercise 2.17. Suppose {`j}kj=1 ⊂ [Rn]
∗
.
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1. Explaining why `1 ∧ · · · ∧ `k = 0 if `i = `j for some i 6= j.

2. Show `1 ∧ · · · ∧ `k = 0 if {`j}kj=1 are linear dependent. [You may assume

that `1 =
∑k
j=2 aj`j for some aj ∈ R.]

Exercise 2.18. If {`j}kj=1 ⊂ [Rn]
∗

are linearly independent, show

`1 ∧ · · · ∧ `k 6= 0.

Hint: make use of Exercise 2.10.

Exercise 2.19. Let {εj}3j=1 be the standard dual basis and v = (1, 2, 3)
tr ∈ R3,

find a1, a2, a3 ∈ R so that

iv (ε1 ∧ ε2 ∧ ε3) = a1ε2 ∧ ε3 + a2ε1 ∧ ε3 + a3ε1 ∧ ε2.

Exercise 2.20 (Cross I). For a ∈ R3, let `a (v) = a · v = atrv, so that `a ∈(
R3
)∗
. In particular we have εi = `ei for i ∈ [3] is the dual basis to the standard

basis {ei}3i=1 . Show for a, b ∈ R3,

`a ∧ `b = ia×b [ε1 ∧ ε2 ∧ ε3] (2.5)

Hints: 1) write `a =
∑3
i=1 aiεi and 2) make use of Eq. (??)

Exercise 2.21 (Cross II). Use Exercise 2.20 to prove the standard vector
calculus identity;

(a× b) · (x× y) = (a · x) (b · y)− (b · x) (a · y)

which is valid for all a, b, x, y ∈ R3.Hint: evaluate Eq. (2.5) at (x, y) while using
Lemma ??.

Exercise 2.22 (Surface Integrals). In this exercise, let ω ∈ A3

(
R3
)

be the
standard volume form, ω (v1, v2, v3) := det [v1|v2|v3] , suppose D is an open
subset of R2, and Σ : D → S ⊂ R3 is a “parametrized surface,” refer to Figure
2.1. If F : R3 → R3 is a vector field on R3, then from your vector calculus class,∫∫

S

F ·NdA = ε ·
∫∫

D

F (Σ (u, v)) · [Σu (u, v)×Σv (u, v)] dudv (2.6)

where ε = 1 (ε = −1) if N (Σ (u, v)) points in the same (opposite) direction as
Σu (u, v)×Σv (u, v) . We assume that ε is independent of (u, v) ∈ D.

Show the formula in Eq. (2.6) may be rewritten as∫∫
S

F ·NdA = ε

∫∫
D

(
iF (Σ(u,v))ω

)
(Σu (u, v) , Σv (u, v)) dudv (2.7)

Fig. 2.1. In this figure N is a smoothly varying normal to S, n is a normal to
the boundary of S, and T is a tangential vector to the boundary of S. Moreover,
D 3 (u, v)→ Σ (u, v) ∈ S is a parametrization of S where D ⊂ R2.

where

ε := sgn(ω (N ◦Σ,Σu, Σv)) =

{
1 if ω (N ◦Σ,Σu, Σv) > 0
−1 if ω (N ◦Σ,Σu, Σv) < 0.

Remarks: Once we introduce the proper notation, we will be able to write
Eq. (2.7) more succinctly as∫∫

S

F ·NdA =

∫∫
S

iFω := ε

∫∫
D

Σ∗ (iFω) .

Exercise 2.23 (Boundary Orientation). Referring to the set up in Exercise
2.22, the tangent vector T has been chosen by using the “right-hand” rule in
order to determine the orientation on the boundary, ∂S, of S so that Stoke’s
theorem holds, i.e. ∫∫

S

[∇× F ] ·NdA =

∫
∂S

F · Tds. (2.8)

Show by using the “right hand rule” that T = c ·N × n with c > 0 and then
also show

c = ω (N,n, T ) = (iniNω) (T ) .

Also note by Exercise 2.22, that Eq. (2.8) may be written as∫∫
S

i∇×Fω =

∫
∂S

F · Tds (2.9)

Remark: We will introduce the “one form”, F ·dx and an “exterior deriva-
tive” operator, d, so that

d [F · dx] = i∇×Fω
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and Eq. (2.9) may be written in the pleasant form,∫∫
S

d [F · dx] =

∫
∂S

F · dx.

Exercise 2.24. Let

f

(
r
θ

)
=

[
r cos θ
r sin θ

]
for

(
r
θ

)
∈ R2.

Find;

f ′
(
r
θ

)
and det

[
f ′
(
r
θ

)]
.

Exercise 2.25. Let

f

 r
θ
ϕ

 =

 r sinϕ · cos θ
r sinϕ · sin θ
r cosϕ

 for

 r
θ
ϕ

 ∈ R3.

Find;

f ′

 r
θ
ϕ

 and det

f ′
 r
θ
ϕ

 .
Exercise 2.26. Let

A =


A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

. . .
...

An1 An2 . . . Ann

 = [a1| . . . |an]

be an n× n matrix with ith-column

ai =


A1i

A2i

...
Ani

 .
Given another n× n matrix B with analogous notation, show

(∂B det) (A) =

n∑
j=1

det [a1| . . . |aj−1|bj |aj+1| . . . |bn] . (2.10)

For example if n = 3, this formula reads,

(∂B det) (A) = det [b1|a2|a3] + det [a1|b2|a3] + det [a1|a2|b3] .

Suggestions; by definition,

(∂B det) (A) :=
d

dt
|0 det (A+ tB) =

d

dt
|0 det [a1 + tb1| . . . |an + tbn] .

Now apply Lemma ?? with

f (x1, . . . , xn) = det [a1 + x1b1| . . . |an + xnbn] .

Exercise 2.27 (Exercise 2.26 continued). Continuing the notation and re-
sults from Exercise 2.26, show;

1. If A = I is the n× n identity matrix in Eq. (2.10), then

(∂B det) (I) = tr (B) =

n∑
j=1

Bj,j .

2. If A is an n× n invertible matrix, shows

(∂B det) (A) = det (A) · tr
(
A−1B

)
.

Hint: Verify the identity,

det (A+ tB) = det (A) · det
(
I + tA−1B

)
which you should then use along with first item of this exercise.

Exercise 2.28. Using Proposition ??, find df when

f (x1, x2, x3) = x21 sin (ex2) + cos (x3) .

Exercise 2.29. Let g1, g2, . . . , gn ∈ C1 (U,R) , f ∈ C1 (Rn,R) , and u =
f (g1, . . . , gn) , i.e.

u (p) = f (g1 (p) , . . . , gn (p)) for all p ∈ U.

Show

du =

n∑
j=1

(∂jf) (g1, . . . , gn) dgj

which is to be interpreted to mean,

du (vp) =

n∑
j=1

(∂jf) (g1 (p) , . . . , gn (p)) dgj (vp) for all vp ∈ TU.

Hint: For vp ∈ TU, let σ (t) = (g1 (p+ tv) , . . . , gn (p+ tv)) and then make use
of the chain rule (see Eq. (??)) to compute du (vp) .
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Exercise 2.30 (Chain Rule for Maps). Suppose that f : U → V and g :
V →W are C1-functions where U, V, and W are open subsets of Rn, Rm, and
Rp respectively and let g ◦ f : U →W be the composition map,

g ◦ f : U
f−→ V

g−→W.

Show
(g ◦ f)

′
(p) = g′ (f (p)) f ′ (p) for all p ∈ U. (2.11)

Hint: Let v ∈ Rn and σ (t) := f (p+ tv) – a differentiable curve in V. Then use
the chain rule in Theorem ?? twice in order to compute,

(g ◦ f)
′
(p) v =

d

dt
|0g (f (p+ tv)) =

d

dt
|0g (σ (t)) .

Exercise 2.31. Suppose that {xj}4j=1 are the standard coordinates on R4, p =

(1,−1, 2, 3)
tr ∈ R4, v1 = (1, 2, 3, 4)

tr
, v2 = (0, 1,−1, 1)

tr
, v3 = (1, 0, 3, 2) ,

α = x4 (dx1 + dx2) , β = x1x2 (dx3 + dx4) , and ω =
(
x21 + x23

)
dx3∧dx2∧dx4.

Compute the following quantities;

1. α
(
v1p
)
,

2. α ∧ α
(
v1p, v

2
p

)
,

3. α ∧ β
(
v1p, v

2
p

)
,

4. ω
(
v1p, v

2
p, v

3
p

)
.

Exercise 2.32. Let {xi}6i=1 be the standard coordinates on R6 and let

ω = dx1 ∧ dx2 + dx3 ∧ dx4 + dx5 ∧ dx6 ∈ Ω2
(
R6
)
.

Show
ω ∧ ω ∧ ω = cdx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ dx5 ∧ dx6,

for some c ∈ R which you should find.

Exercise 2.33. Let α = xdx − ydy, β = zdx ∧ dy + xdy ∧ dz and γ = zdy on
R3, calculate,

α ∧ β, α ∧ β ∧ γ, dα, dβ, dγ.

Exercise 2.34. Let (x, y) be the standard coordinates on R2, and define,

α :=
(
x2 + y2

)−1 · (xdy − ydx) ∈ Ω1
(
R2 \ {0}

)
.

Show α is closed. [We will eventually see that this form is not exact.]

Exercise 2.35 (Divergence Formula). Let f = (f1, f2, f3, . . . , fn) and ω =
dx1 ∧ · · · ∧ dxn. By Example ?? with k = n we have

ifω = iFω =
n∑
j=1

(−1)
j−1

fjdx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn.

Show

d [iFω] = (∇ · f)ω where ∇ · f =

n∑
i=1

∂ifi,

i.e. ∇ · f is the divergence of f from your vector calculus course.

Exercise 2.36 (Curl Formula). Let f = (f1, f2, f3) ∈ C∞
(
R3,R3

)
,

ω = dx1 ∧ dx2 ∧ dx3, and

α = f · (dx1, dx2, dx3) := f1dx1 + f2dx2 + f3dx3.

Show dα = i∇×fω where ∇ × f is the usual vector calculus curl of f , see Eq.
(??) of Definition ?? with F replaced by f = (f1, f2, f3) .
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