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Homework Problems






0

Math 150B Homework Problems: Winter 2020

Problems are our text book, “Differential Forms,” by Guillemin and Haine
or from the lecture notes as indicated. The problems from the lecture notes are
restated here.

0.1 Homework 0, Due Wednesday, January 8, 2020 (Not
to be collected)

e Lecture note Exercises: and

0.2 Homework 1. Due Thursday, January 16, 2020

e Lecture note Exercises:

e Book Exercises: 1.2.vi.

0.3 Homework 2. Due Thursday, January 23, 2020

Lecture note Exercises: @ @, @ @]7 @ [@7 [@

Book Exercises: 1.3.iii., 1.3.v., 1.3.vii, 1.4ix






Part 1

Background Material
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Introduction

This class is devoted to understanding, proving, and exploring the multi-
dimensional and “manifold” analogues of the classic one dimensional funda-
mental theorem of calculus and change of variables theorem. These theorems
take on the following form;

b
/dw:/ w /g’(m)dx=g(w)lfi and (1.1)
M oM a
f(o)

| ro=de) [w /abg(f(x))f’(x)dz/f(a)g(y)dy-
(1.2)

In meeting our goals we will need to understand all the ingredients in the above
formula including;

M is a manifold.

OM is the boundary of M.

w is a differential form an dw is its differential.

f*w is the pull back of w by a “smooth map” f: M — N.

deg (f) € Z is the degree of f.

There is also a hidden notion of orientation needed to make sense of the
above integrals.

AN o

Remark 1.1. We will see that Eq. (1.1) encodes (all wrapped into one neat
formula) the key integration formulas from 20E: Green’s theorem, Divergence
theorem, and Stoke’s theorem.
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Permutations Basics

The following proposition should be verified by the reader. or equivalently,

Proposition 2.1 (Permutation Groups). Let A be a set and

1 2 3 4 5 6
Y (A):={o: A — A| o is bijective} . M ><
j ; ; iti ; 1 2 3 4 5 6

If we equip G with the binary operation of function composition, then G is a
group. The identity element in G is the identity function, €, and the inverse,

_ . . ) and hence
o~L, to o € G is the inverse function to o. ’

123456

1 _

Definition 2.2 (Finite permutation groups). For n € Zi, let [n] = c = (4 1326 5) '
{1,2,...,n}, and X, := X ([n]) be the group described in Proposition [2.1 We
will identify elements, o € X, with the following 2 X n array,

1 9 1 2 3 4 5 6
<g(1)a(2)...g(n))' l l l J l J
(Notice that | X,| = n! since there are n choices for o (1), n—1 for o (2), n—2 1 2 3 4 5 6
foro(3), ..., 1 foro(n).)

For examples, suppose that n = 6 and let

Of course the identity in this graphical picture is simply given by

Now let 5 € Sg be given by

5_(123456
_ (123456 . ) = (5116358 )
€= (123456> the identity, and
123456 or in pictures;
(243165) . ) ; . . .

We identify o with the following picture, X W
1 2 3 4 5 6. 1 2 3 4 5 6
% >< We can now compose the two permutations 8 o o graphically to find,
1 2 3 4 5 6

The inverse to ¢ is gotten pictorially by reversing all of the arrows above to
find,
1>><T< Y
- X W
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which after erasing the intermediate arrows gives, 5 6
1 2 3 4 5 6. l l
l 5 6
1 9 3 4 5 6 In terms of these pictures it is easy to recognize transpositions and adjacent
transpositions.
In terms of our array notation we have,
Boo = 123456 . 123456
7= \214635 243165
(123456
- \164253)/°
Remark 2.3 (Optional). Tt is interesting to observe that § splits into a product
of two permutations,
3= 123456 . 123456
~\213456 124635
(123456 o 123456
~\124635 213456 )’
corresponding to the non-crossing parts in the graphical picture for 8. Each of
these permutations is called a “cycle.”
Definition 2.4 (Transpositions). A permutation, o € Xy, is a transposi-
tion if
#{lelkl:o()) £} =2.
We further say that o is an adjacent transposition if
{lelk]l:a(l) 1} ={i,i+ 1}
for some 1 < i < k.
Example 2.5. If
(123456 dr— 123456
7= \153426) ™77 124356
then o is a transposition and 7 is an adjacent transposition. Here are the pic-
torial representation of o and 7;
1 2 3 4 5 6
1 2 3 4 5 6
Page: 10 job: 150BNotes macro: svmonob.cls date/time: 17-Jan-2020/13:17



3

Integration Theory Outline

In this course we are going to be considering integrals over open subsets
of R? and more generally over “manifolds.” As the prerequisites for this class
do not include real analysis, I will begin by summarizing a reasonable working
knowledge of integration theory over R?. We will thus be neglecting some tech-
nical details involving measures and o — algebras. The knowledgeable reader
should be able to fill in the missing hypothesis while the less knowledgeable
readers should not be too harmed by the omissions to follow.

Definition 3.1. The indicator function of a subset, A C R?, is defined by

_JlifxzeA
La (@) '{0ifx¢A.

Remark 3.2 (Optional). Every function, f : R — R, may be approximated by
a linear combination of indicator functions as follows. If € > 0 is given we let

fe = Z ne - 1{n5§f<(n+1)s}a (31)
neN

where {ne < f < (n+ 1)e} is shorthand for the set,
{zreR:ne< f(z)<(n+1)e}.
We now summarize “modern” Lebesgue integration theory over R?.

1. For each d, there is a uniquely determined volume measure, my on alﬂ
subsets of R? (subsets of R? ) with the following properties;
a) mq(A) €[0,00] for all A C R? with mg () = 0.
b) mg (AU B) = mg (A)+mgy (B) is ANB = (. More generally, if A,, C R?
for all n with A, N A,, = 0 for m # n we have

ma (Ui An) = Y ma(An).
n=1

c) mg(z+ A) =myg(A) for all A C R? and = € RY, where

r+A={z+yeRt:yec A}.

! This is a lie! Nevertheless, for our purposes it will be reasonably safe to ignore this
lie.

d) ma ([0, 1]d) =1
[The reader is supposed to view mg (A) as the d-dimensional volume of
a subset, A C R4\

2. Associated to this volume measure is an integral which takes (not all) func-
tions, f : R* — R, and assigns to them a number denoted by

/ fdmg = / f(x)dmg (z) € R.

Rd Rd

This integral has the following properties;

a) When d = 1 and f is continuous function with compact support,
fR fdm; is the ordinary integral you studied in your first few calcu-

lus courses.
b) The integral is defined for “all” f > 0 and in this case

fdmg € [0,00] and / Ladmg = mg (A) for all A C RY.

R4 R4

¢) The integral is “positive” linear, i.e. if f,g > 0 and ¢ € [0, 00), then

/Rd (f—i—cg)dmd:/Rd fdmd—i—c/]Rdgdmd, (3.2)

d) The integral is monotonic, i.e. if 0 < f < g, then
fdmg < / gdmg. (3.3)
R? R?

e) Let L' (mg) denote those functions f : R? — R such that [,, |f| dmq <
0o. Then for f € L' (mg) we define

/ fdmd ::/ f+dmd7/ f_dmd
R4 R4 R4
where

ft () =max(£f (x),0) and so that f (z) = f4 () — f- (x).
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f) The integral, L' (mg) 5 f — [ga fdmg is linear, i.e. Eq. (3.2) holds for
all f,g € L' (my) and ¢ € R.
g) If f,g € L' (my) and f < g then Eq. still holds.
3. The integral enjoys the following continuity properties.

a) MCT: the monotone convergence theorem holds; if 0 < f, 1 f
then

n—oo

1T lim fndmd = / fdmg (with co allowed as a possible value).
R4

Example 1: If {4, }77 | is a sequence of subsets of R? such that A,, T A
(i.e. Ay C Apyq for allm and A = U521 A,,), then

mg (An) = /Rd 1a,dmg T ladmg =mg(A) asn — oo

Rd

Example 2: If g, : R? — [0, 0] for n € N then

oo N N
= 1. = 1.
o0

=ngan/ gnznzl/wgn.

b) DCT: the dominated convergence theorem holds, if f, : R — R
are functions dominating by a function G € L' (my) is the sense
that |f, (¥)] < G (x) for all # € R? Then assuming that f () =
lim,, 00 fr (z) exists for a.e. x € R?, we may conclude that

lim fndmd:/ lim f,dmg = fdmg.
R R R

n— 00 4 N—00

Example: If {g,} -, is a sequence of real valued random variables

such that
o0 o0
[ 300l =3 [ laal <.
Re n=1 n=1 R4

then; 1) G = Y02 |lgn] < oo ae. and hence > 7 g, =
limpy 00 ZnN:1 gn exist a.e., 2) ’25:1 gn| < G and [, G < oo,
and so 3) by DCT,

0o N
= 1 == 1'
Lo Angngn [, o
00
:ngnooz/ gn:z:l/Rdgn-
n=

Page: 12 job: 150BNotes

¢) Fatou’s Lemma (*Optional): if 0 < f,, < oo, then

/ {hm inf fn < lim inf / fndmg.
Rd

n— oo n—oo

This may be proved as an application of MCT.
4. Tonmelli’s theorem; if f : R? — [0, 0], then for any i € [d],

/ fdmd—/ fdmg_, where
d—1
fxy,..., 2 /f Tiyeney Xy Tq) da;.

5. Fubini’s theorem; if f € L' (mg) then the previous formula still hold.

6. For our purposes, by repeated use of use of items 4. and 5. we may compute
fRd fdmyg in terms of iterated integrals in any order we prefer. In more detail
if 0 € X is any permutation of [d], then

fdde/d%u) -~/d$a(d)f(3317~-~7wd)
R R

R4

provided either that f > 0 or

/d%m.../ dzo ) |f @1, 24)| :/ fldma < oo,
R R R4

This fact coupled with item 2a. will basically allow us to understand most
integrals appearing in this course.

Notation 3.3 For A C R?, we let

/A fdmg = /R Laf dmg

Also when d =1 and —oo < s <t < 00, we write

t
/ fdm1 = fdm1 = / l(s,t)fdml
s (s,t) R

and (as usual in Riemann integration theory)

/ts fdmy = —/: fdmy.

macro: svmonob.cls date/time: 17-Jan-2020/13:17



Ezxample 3.4. Here is a MCT example,

< 1 Rl 1

oo 1 noq
MET Jim 1 (1) dt = lim / ——at

n—oo | _ 1+ t2 n—oo [__ 1+ t2
T 1 _ —1/ _rT_ _[) _
—nh_{glo [tan™" (n) — tan™" (—n)] 5 ( 5 .

Example 3.5. Similarly for any = > 0,

/O e_t”’dt:/ lim 1pg, (£) e dt €7 lim Ljony (£) et dt

oo P00 n—oo J_
: " —tz . -1 —tz|n 1

= lim e dt = lim —e |, = —. (3.4)
n—o0 Jq n—oo I T

Ezxample 3.6. Here is a DCT example,

> 1 > 1
lim sin t dt = / lim sin t dt = / 0dm =0
n—o00 700]_—|—t2 n 700n—>ool+t2 n R

since

lim #sin t =0forallteR
n—oo 1 + t2 n

and ) ) )
t
——sin | — || £ —— with / ——dt < .
1+ ¢2 n 1+ ¢2 r 1+ t2
Ezxample 3.7. In this example we will show

M gin g

lim
M—o00 0 x

de =m/2 (3.5)

Let us first note that ‘%’ <1 for all z and hence by DCT,

dr = lim dz.

M ginz M ginz
0 xT elo J xT

Moreover making use of Eq. (3.4), if 0 < £ < M < oo, then by Fubini’s theorem,
DCT, and FTC (Fundamental Theorem of Calculus) that

Page: 13 job: 150BNotes
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M M N
/ ST e = / [ lim / e sinw dt] dx (DCT)
e € € N—oo Jg

M N
= lim / dx/ dte " sinz  (DCT)
€ 0

N—o0

N M
= lim dt/ dre " sinz  (Fubini)
0 €

N—o0
N 1 x=M
= lim dt |—— (—cosz — tsinz) e ™" (FTC)
N—oo 0 1 + t2 r—c
oo 1 =M
= /O dt [HtQ (—cosx — tsinx) em] - (DCT)
Since
1 v=M 1
[1+t2(—cos:r:—tsinac)e_mL_s %masMTooandaio,

1

we may again apply DCT with G (¢t) = being the dominating function in

T+
order to show
M - M . o) x=M

sin x sin x 1

/ dx = lim/ dx = lim/ dt | —— (—cosz —tsinz) e

0 x elo J, T cl0 /g 1+t w—e
per % 1 e
= / dt | —— (—cosz —tsinz)e™ "
0 L+t @=0

pcr [T 1 T
— ——dt = —.
M — o0 0 1+t2 2

Theorem 3.8 (Linear Change of Variables Theorem). If T € GL(d,R) =
GL(R?) — the space of d x d invertible matrices, then the change of variables
formula,

/ fdmg = |det T|/ foT dmyg, (3.6)
Rd Rd
holds for all Riemann integrable functions f : R — R.

Proof. From Exercise below, we know that Eq. is valid whenever T
is an elementary matrix. From the elementary theory of row reduction in linear
algebra, every matrix T € GL(R?) may be expressed as a finite product of the
“elementary matrices”, i.e. T'=Ty o Ts o --- o T, where the T; are elementary
matrices. From these assertions we may conclude that

1

m fOT10T20~ . ’OTn—l dmd.
n Rd

foT dmgy = foToTyo0---0T, dmg =
R R

macro: svmonob.cls date/time: 17-Jan-2020/13:17



14 3 Integration Theory Outline

Repeating this procedure n — 1 more times (i.e. by induction), we find,

1
T dmg =
Lot dma = e T A T

f dmd.

Finally we use,

|det T, ... |det Ty | = |det T), ... det Ty | = |det (ThT% ... Ty,)| = |det T

in order to complete the proof. ]

3.1 Exercises

Exercise 3.1. Find the value of the following integral;

9 3
1 ::/ dy/ dz xeY.
1 v

Hint: use Tonelli’s theorem to change the order of integrations.

Exercise 3.2. Write the following iterated integral

1 1 X
1 ::/ dac/ dy xe¥ .
0 y212/3

as a multiple integral and use this to change the order of integrations and then
compute I.

For the next three exercises let

B(0,r):={zcR: ||z|| =

d
E 2 <r
i=1

be the d — dimensional ball of radius r and let
Vi (r) :==mq(B(0,r)) = /d Ip(o,rydma
R

be its volume. For example,

Vi(r)=my ((—r,1)) = /T do = 2r.

-

Exercise 3.3. Suppose that d = 2, show ma (B (0,7)) = mr?.
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Exercise 3.4. Suppose that d = 3, show mg (B (0,7)) = 4¢3,

Exercise 3.5. Let V(1) := my

r /2
Vaa (r) = dz - Vy (\/ r2 — z2) = T/ Vi (r cos ) cos 0d6.

—r —m/2

(B (0,r)). Show for d > 1 that

Remark 3.9. Using Exercise [3.5| we may deduce again that
Vi(r)=mq ((—r,7)) = 2r,

/2
‘/2(7”)27“/ 2r cos 6 cos 0df = w12,
—m/2

v = [ e (Ve )= [eaeo =

. o 3

In principle we may now compute the volume of balls in all dimensions induc-
tively this way.

Exercise 3.6 (Change of variables for elementary matrices). Let f :
R? — R be a continuous function with compact support. Show by direct calcu-
lation that;

dee7| [ f@)de= [ f)dy (37)
Rd Rd
for each of the following linear transformations;
1. Suppose that ¢ < k and
T(w1,22...,0q) = (T1, -+, i1y Thy Tig1 - -+ Th1, Ti, Tht 1, - - - Td),

i.e. T swaps the ¢ and k coordinates of z. [In matrix notation T is the
identity matrix with the ¢ and &k column interchanged.]

2. T(x1,.. . Ty yxg) = (T1,...,CTk, ... 24) where ¢ € R\ {0}. [In matrix
notation, T = [eq] ... |ex—1|cer|erti]---|ed] ]
i’th spot
3. T(x1,29...,2q) = (T1,...,2T; + Tk, ... Xk, ... xq) where ¢ € R. [In matrix
notation T' = [e1]...|ei| ... |ex + ce;lexti] - - |ed]-

Hint: you should use Fubini’s theorem along with the one dimensional
change of variables theorem.
[To be more concrete here are examples of each of the T appearing above
in the special case d = 4,
1000
0010
0100
0001

1.Ifi=2and k=3 then T =

macro: svmonob.cls date/time: 17-Jan-2020/13:17



1000
0100
2. If k=3 then T = 00col"
0001
3.If i =2 and k = 4 then
T1 T 1000 T
T T2 | | x2t+cra|  [010c¢c T2
T3 B X3 o 0010 I3
Ty Ty 0001 Ty

while if i =4 and k = 2,

T T 1000 T
T i) _ X9 _ 0100 To
T3 T3 0010 T3
T4 T4 + CT2 0cO1 T4

3.2 *Appendix: Another approach to the linear change of
variables theorem

Let (x,y) or x - y denote the standard dot product on R?, i.e

d
(wy)=z-y=> z;
j=1

Recall that if A is a d x d real matrix then the transpose matrix, A", may be
characterized as the unique real d x d matrix such that

(Az,y) = (x,A"y) for all z,y € RY.

Definition 3.10. A d x d real matriz, S, is orthogonal iff S**S = I or equiva-
lently stated S = S—1.

Here are a few basic facts about orthogonal matrices.

1. A d x d real matrix, S, is orthogonal iff (Sz, Sy) = (x,y) for all z,y € R,
2. If {uj}d is any orthonormal basis for R? and S is the d x d matrix deter-

mined by Se; = u; for 1 < j < d, then S is orthogonalﬂ Here is a proof for
your convenience; if x,y € R?, then

2 This is a standard result from linear algebra often stated as a matrix, S, is orthog-
onal iff the columns of S form an orthonormal basis.

Page: 15 job: 150BNotes

3.2 *Appendix: Another approach to the linear change of variables theorem 15

(x,S"y) = (Sz,y) = g (x,e;) (Sej, y) E (z,ej) (uj,y
Jj=1 Jj=1

d
Z (2,8~ uj uj,y>:<x,571y>

Jj=1

from which it follows that S = S~1.
3. If S is orthogonal, then 1 = det I = det (S**S) = det S* - det § = (det S)?
and hence det §' = £1.

The following lemma is a special case the well known singular value de-
composition or SVD for short..

Lemma 3.11 (SVD). If T is a real d x d matriz, then there exists D =
diag (A1, ..., q) with Ay > Ay > -+ > Ny > 0 and two orthogonal matrices
R and S such that T = RDS. Further observe that |detT| = det D = Ay ... \q.

Proof. Since T%T is symmetric, by the spectral theorem there exists an
orthonormal basis {uj};l:l of R and A\y > Xy > -+ > Az > 0 such that

T"Tu; = )\?uj for all j. In particular we have
(Tuj, Tug) = (T"Tuj,up) = N0 V 1 < j, k < d.

Case where det T # 0. In this case A;...\g = det T"T = (det T)?
d
and so Aq > 0. It then follows that {Uj = %Tuj} is an orthonormal basis
3 j=1

for R9. Let us further let D = diag (\1,...,Aq) (i.e. Dej = Aje; for 1 < j < d)
and R and S be the orthogonal matrices defined by

Rej; =v; and Strej = Silej =u; forall 1 <j <d.
Combining these definitions with the identity, Tu; = A;v;, implies
TS~ 'e; = A\jRe; = R\jej = RDe;j for all 1 < j < d,

i.e. TS~ = RD or equivalently T = RDS.

Case where detT = 0. In this case there exists 1 < k < d such that
A > A > > A > 0= Agp1 = -+ = Ag. The only modification needed
for the above proof is to define v; := /\%Tuj for 7 < k and then extend choose

Vkt1,---,vq € R? so that {v; };1:1 is an orthonormal basis for RY. We still have
Tu; = Ajvu; for all j and so the proof in the first case goes through without
change. [

In the next theorem we will make use the characterization of my that it is
the unique measure on (Rd) which is translation invariant assigns unit measure

to [0,1]%.
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Theorem 3.12. If T is a real d x d matriz, then mgoT = |det T| myq.

Proof. Recall that we know mqT = § (T') mq for some 6 (T') € (0,00) and
so we must show ¢ (T') = |det T'| . We first consider two special cases.

1. If T'= R is orthogonal and B is the unit ball in Rdﬂ then § (R) my (B) =
mg (RB) = mgq (B) from which it follows § (R) =1 = |det R].

2. If T = D = diag (\y,...,\g) with A; > 0, then D[0,1]% = [0, Ay] X --- x
[0, Ag] so that

§ (D) = 6 (D) my ([07 1]d) = my (D 0, 1]d) = 1. Mg = det D.

3. For the general case we use singular value decomposition (Lemma [3.11)) to
write T'= RDS and then find

5(T)=6(R)S(D)5(S)=1-detD-1=|detT]|.

*B={zeR":|z|| <1}.



Part 11

Multi-Linear Algebra
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Properties of Volumes

The goal of this short chapter is to show how computing volumes naturally
gives rise to the idea of the key objects of this book, namely differential forms,
i.e. alternating tensors. The point is that these objects are intimately related
to computing areas and volumes.

Let Q" :={x € R":0<+¢; <1V j}=10,1]" be the unit cube in R" which
we I think all agree should have volume equal to 1. For n-vectors, ay,...,a, €
R™, let

P(ay,...,an) =la1]...an] Q =Y tja;:0<t; <1V j

j=1
be the parallelepiped spanned by (a1, ...,a,) and let
0(ay,...,a,) = “signed” Vol (P (vy,...,v5)).

be the signed volume of the parallelepiped. To find the properties of this
volume, let us fix {ai}?:_ll and consider the function, F (a,) = ¢ (a1,...,a,).
This is easily computed using the formula of a slant cylinder, see Figure [4.1] as

F(a,)=0(a1,...,a,) =+ (Area of base ) -n-a, (4.1)
where n is a unit vector orthogonal to {ai,...,a,—1}.

Ezample 4.1. When n = 2, let us first verify Eq. (4.1) in this case by considering

b2 b2
0 (ae1,b) = / [slice width], dh = / adh =a(b-es).
0 0

The sign in Eq. (4.1) is positive if (a1,...,an—1,n) is “positively ori-
ented,” think of the right hand rule in dimensions 2 and 3. This show a,, —
d(aty...,an_1,ay) is a linear function. A similar argument shows

aj—>5(a1,...,aj,...,an)

is linear as well. That is § is a “multi-linear function” of its arguments. We
further have that § (a1, ..., a,) = 0if a; = a; for any i # j as the parallelepiped
generated by (ay,...,a,) is degenerate and zero volume. We summarize these

Fig. 4.1. The volume of a slant cylinder is it’s height, n - a,,.

two properties by saying J is an alternating multi-linear n-function on R”.
Lastly as P (eq,...e,) = @ we further have that

d(er,...,en) =1 (4.2)

Fact 4.2 We are going to show there is precisely one alternating multi-linear
n-function, 6, on R™ such that Eq. holds. This function is in fact the
function you know and the determinant.

Ezample 4.3 (n =1 Det). When n = 1 we must have § ([a]) = ta, we choose a
by convention.

Example 4.4 (n = 2 Det). When n = 2, we find
6 (a,b) =6 (arer + azeq, b) = aid (e1,b) + azd (e2,b)
=q10 (61, bie; + bgez) + asd (62, bie; + bgeg)
= a1b25 (61, 62) + a2b1(5 (627 61) = a1b2 — G,le

= det [alb] .

We now proceed to develop the theory of alternating multilinear functions
in general.
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Multi-linear Functions (Tensors)

For the rest of these notes, V' will denote a real vector space. Typically we
will assume that n = dimV < oo.

Example 5.1. V= R"™, subspaces of R", polynomials of degree < n. The most
general overarching vector space is typically

V = F (X,R) = {all functions from X to R}.
An interesting subspace is the space of finitely supported functions,

Fr(X,R) ={f e F(X,R) : # ({f # 0}) < o0},

where

{f#0 ={zeX:f(z)#0},

5.1 Basis and Dual Basis

Definition 5.2. Let V* denote the dual space of V, i.e. the vector space of all
linear functions, £ :V — R.

Ezxample 5.3. Here are some examples;

1.If V. =R", then ¢ (v) = w-v =w"v for w € V is in V*.

2. V = polynomials of deg < n is a vector space and ¢y (p) = p (0) or £ (p) =
f_llp (z) dx given £ € V*.

3. For {aj}?zl C R and {xj}’;:l C X, let £(f) = Z?:l a;f (z;), then £ €
F(X,R)".

Notation 5.4 Let §:= {e;};_, be a basis for V and B* := {e;}_, be its dual

basis, i.e.
n
£; <Z aiei> = a; for all j.
i=1

The book denote €; as e;. In case, V. =R" and {ej}?:1 is the standard basis,

we may write dz; for ; = €.

Ezample 5.5.1f V. = R™ and 3 = {¢;}]_, is the standard basis for R", then
gi (v) =e;-v=elv for 1 <i < n is the dual basis to 3.

Ezample 5.6. If V denotes polynomials of degree < n, with basis e; (z) = 27 for
0<j<n,theneg;(p) = %p(j) (0) is the associated dual basis.

Ezample 5.7. For z € X, let 6, € Fy (X,R) be defined by

lify =
0z (y) = 1y (y)_{oif:ly/;éi'

One may easily show that {d,},.y is a basis for F;(X,R) and for f €
Fr(X,R),
f= Z f (@) ba.
@i f (2)#0
The dual basis ideas are complicated in this case when X is an infinite set

as Vaki mentioned in section. We will not consider such “infinite dimensional”
problems in these notes.

Proposition 5.8. Continuing the notation above, then

M=

gj(v)e; forallveV, and (5.1)
1

<.
I

l(ej)e; foralll e V™. (5.2)

<
Il
i

-

Moreover, 5*, is indeed a basis for V*.

Proof. Because {e;} is a basis, we know that v = Z?:1 aje;. Applying ey
to this formula shows

er (v) = Zajsk (ej) = ax

and hence Eq. ((5.1) holds. Now apply ¢ to Eq. (5.1]) to find,
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)= e ) lle;) =Y Llej)e; () =D tlej)es | (v)
j=1 j=1 j=1

which proves Eq. 1) From Eq. 1) we know that {¢; }?:1 spans V*. More-

over if N N
0= Zajej = 0=0(e) = Zajaj (ex) = ax
j=1 j=1

which shows {e;}"_, is linearly independent. [

Exercise 5.1. Let V = R™ and § = {uj}?zl be a basis for R™. Recall that

every £ € (R™)" is of the form ¢, (z) = a -z for some a € R™. Thus the dual
basis, 8*, to 8 can be written as {u;‘ = La, };;1 for some {aj}?zl C R™. In this

problem you are asked to show how to find the {a; }?:1 by the following steps.
1. Show that for j € [n], a; must solve the following k-linear equations;
8ik = Lo, (u) = aj -up, = ujla; for k € [n]. (5.3)

2. Let U := [uq]...|uy] (i.e. the columns of U are the vectors from j3). Show
that the equations in (5.3) may be written in matrix form as, U%a; = e;,
where {e;}7_, is the standard basis for R™.

3. Conclude that a; = [U“]_1 e;j or equivalently;
-1
[a1] ... |a,] = [U"]

Exercise 5.2. Let V = R? and 3 = {u1,uz2}, where

u = M and uy = {—11].

Find aj,as € R? explicitly so that explicitly the dual basis f* :=
{uy =Ly, ul =0,,} is the dual basis to (. Please explicitly verify your
answer is correct by showing u} (ux) = d;x.

Exercise 5.3. Let V = R", {aj}§:1 C V,and ¢ (z) = aj -z for z € R”
and j € [k]. Show {éj}?zl C V* is a linearly independent set if and only if
{a; }§:1 C V is a linearly independent set.

Exercise 5.4. Let V = R", {aj}le C V,and {j(z) = aj - x for z € R”
and j € [k]. If {éj}?zl C V* is a linearly independent set, show there exists
{u; }?:1 C V so that ¢; (u;) = &;; for 4, j € [k]. Here is a possible outline.
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. Using Exercise [5.3] and citing a basic fact from Linear algebra, you may

choose {a;}7_, ; CV so that {a;} _, is a basis for V.

2. Argue that it suffices to find u; € V' so that
a; -uj = 0;; for all 4,5 € [n]. (5.4)

3. Let {e; }?:1 be the standard basis for R™ and A := [aq] ... |a,] be the n x n

matrix with columns given by that {a; }?:1 . Show that the Egs. l) may
be written as
A%uj; =ej for j € [n]. (5.5)

4. Cite basic facts from linear algebra to explain why A := [ay]...|a,| and A"
are both invertible n x n matrices.
5. Argue that Eq. (5.5 has a unique solution, u; € R™, for each j.

5.2 Multi-linear Forms

Definition 5.9. A  function T : V¥ = R is multi-linear
(k-linear to be precise) if for each 1 < i < k, the map

VB’UZ'—>T(U1,...,Ui7...vk)ER

is linear. We denote the space of k-linear maps by L* (V) and element of this
space is a k-tensor on (in) V.

Lemma 5.10. Note that L* (V) is a vector subspace of all functions from
VE - R.

Example 5.11. 1 £y,... £y € V*, welet {1 ® -+ ® £, € LF (V) be defined

k
(1@ @) (vr,. o) = [ & (v)

j=1
for all (v1,...,v;) € VE.
Exercise 5.5. In this problem, let
U1 w1
v=|vy| and w= | we
VU3 ws

Which of the following functions formulas for T' define a 2-tensors on R3. Please
justify your answers.
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T (v, w) = viws + Viws + vowy + TvW1.

T (v,w) = vy + Tvy + va.

T (v,w) = viwz + vown,

T (v,w) = sin (v1ws + Viws + vowy + Tvrwy) .

Theorem 5.12. If {ej}?zl is a basis for V, then {e;, ® ---®¢j, : j; € [n]} s
a basis for L¥ (V) and moreover if T € L* (V), then
T= Z T(ejl?""ejk)'sjl®"'®5jk (5.6)
J15e-dk€ln]

and this decomposition is unique. [One might identify 2-tensors with matrices
via T — A;j :=T (e;,¢€5) ]

Proof. Given vq,...,v; € V, we know that
n
Ui = Z €4 (vl) €3
Jji=1
and hence

T(viy...,v) =T Zsjl (v1) e, .-, Zejk (k) €j,

Jji=1 Jr=1

— Z Z T(gj1 (vl)ejl,...,zfjk (Uk)ejk)

=1 je=1

= D T(ej--mrei)en (0) . g ()

J1yesdk€[N]
= Z T(ej17"'7€jk)5jl®"'®5jk('l)1,...7’l}k>.
Tlyeens Jk€[n]

This verifies that Eq. (5.6) holds and also that
{E.jl ®- - ®ej, 1 Ji € [n]} spans ck (V).

For linearly independence, if {a;, ... ;. } C R are such that

0= § : Ajy gy €5 @ @ Ejy,

J1se-s ik €[N

then evaluating this expression at (e;,,...e;, ) shows
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0=00(ei,...€;)= Z Gy, " Ej1 Q- Q €4y, (€iys..-€i)
J1seesdk €[N
= § : Ajy,.ji " € (eil) - E (elk)
J1se-dr €[N
= > g O Oy = iy,
JisesJk €[]
which shows a;, ... ;, = 0 for all indices and completes the proof. [ |

Corollary 5.13. dim £* (V) = nF.
Definition 5.14. If S € LP (V) and T € L1(V), then we define S® T €
LPTL(V) by,

ST (V1,...,Vp,W1,...,Wyq) =S (V1,...,0p) T (w1,...,wy4).

Definition 5.15. If A : V. — W s a linear transformation, and T € L* (W),
then we define the pull back A*T € LF (V) by

(A*T) (v1, ..., v5) = A(Tvy,..., Tog) .
Vx: - xV—Wx---xW — R
(vl,...,vk) — (A’Ul,...,A’Uk) — T(Avl,...,Avk).
It is called pull back since A* : LK (W) — L* (V) maps the opposite direction
of A.
Remark 5.16. As shown in the book the tensor product satisfies

(RS)®T=Ro(S®T),
TRWI1+852)=T®S+T®5S,,
(S1+52)T=5T+5T,

Remark 5.17. The definition of T} ® T3 and the associated “tensor algebra.”
[Typically the tensor symbol, ®, in mathematics is used to denote the product of
two functions which have distinct arguments. Thusif f: X - Randg:Y — R
are two functions on the sets X and Y respectively, then f®g: X xY — R is
defined by
(f@g)(@y) =[f(=)g(y).
In contrast, if Y = X we may also define the more familiar product, f-g: X —
R, by
(f-9)(x)=f(x)g ().

Incidentally, the relationship between these two products is

(f-9) (@) =(feg)(z).
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Lemma 5.18. The product, ®, defined in the previous remark is associative
and distributive over addition. We also have for A € R, that

Mog=fog) =1 fog. (5.7)

That is ® satisfies the rules we expect of a “product,” i.e. plays nicely with the
vector space operations.

Proof. If h : Z — R is another function, then

(feg)@h)(r,y,2) = (f@g)(x,y)-h(2) = (f(x)g(y)) h(z)
=f(@)(gWh(2)=(f@(@®hn))(z,y,2).

This shows in general that (f® ¢g)@h = f® (g ® h), i.e. ® is associative.
Similarly if Z =Y, then

(f@(g+h)(zy)=f(z)(g+h)(y) =f(z):
=f(@)-g(y)+f(x) hy)
=(f®g)(z,y) + (f@h)(z,y)
=(feg+foh)(zy)

(9(y) +h(y)

from which we conclude that
fe+th=fog+fah

Similarly one shows (f+h)® g = f®g+ h® g when Z = X. These are the
distributive rules. The easy proof of Eq. (5.7)) is left to the reader. [
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Alternating Multi-linear Functions

Definition 6.1. T € L* (V) is said to be alternating if T (v1,...,v;) =
=T (wy,...,w) whenever (wy,...,wg) is the list (v1,...,v) with any two en-
tries interchanged. We denote the subspac of alternating functions by A* (V)
or by A¥ (V*) with the convention that A° (V) = A° (V*) = R. An element,
T € A (V) = A% (V*) will be called a k-form.

Remark 6.2. If f (v,w) is a multi-linear function such that f (v,v) = 0 then for
all v,w € V, then

O:f(v+w,v+w) :f(v,v)+f(w,w)+f(v,w)+f(w,v)
:f(w,v)+f(v,w) = f(’U,’UJ) = —f(w,v).

Conversely, if f(v,w) = —f (w,v) for all v, and w, then f (v,v) = —f (v,v)
which shows f (v,v) = 0.

Lemma 6.3. If T € L* (V) then the following are equivalent;

1. T is alternating, i.e. T € A* (V*).
2.T (v1,...,v;) =0 whenever any two distinct entries are equal.
3. T (v1,...,v) =0 whenever any two consecutive entries are equal.

Proof. 1. = 2. If v; = v; for some i < j and T € A* (V*), then by
interchanging the i and j entries we learn that T (vy,...,vg) = =T (v1,...,vk)
which implies T (vy,...,v5) = 0.

2. = 3. This is obvious.

3. = 1. Applying Remark with

flo,w) =T (v1,...,9j-1,0,W, Vjt2,...,Vk)

shows that T (vi,...,vx) = =T (wi,...,wg) if (wy,...,wg) is the list
(v1,...,v;) with the j and j + 1 entries interchanged. If (ws,...,w;) is the
list (vy,...,v) with the ¢ < j entries interchanged, then (ws,...,wy) can be
transformed back to (v1,...,v;) by an odd number of nearest neighbor inter-
changes and therefore it follows by what we just proved that

T(vy,...,v8) = =T (wy,...,wg).

! The alternating conditions are linear equations that 7' € £¥ (V) must satisfy and
hence A* (V) is a subspace of £* (V).

For example, to transform
(Ula Vs, U3, V4, V2, Uﬁ) back to (vla V2, U3, V4, Vs, vﬁ) )

we transpose vs with its nearest neighbor to the right 2 times to arrive at the
list (v1,v3,v4,v5,v2,v6) . We then we transpose vy with its nearest neighbor to
the left 3 times to arrive (after a sum total of 5 adjacent transpositions) back
to the list (v1,ve,vs,v4,v5,v6) . For the general ¢ < j the number of adjacent
transposition needed needed is 2 (j — i) — 1 which is always odd. ]

Exercise 6.1. If T € A* (V*), show T (vy,...,v;) = 0 whenever {vi}le cVv
are linearly dependent.

A simple consequence of this exercise is the following basic lemma.

Lemma 6.4. If T € A* (V*) with k > dimV, then T = 0, i.e. A¥(V*) = {0}
for all k > dim V.

At this point we have not given any non-zero examples of alternating forms.
The next definition and proposition gives a mechanism for constructing many
(in fact a full basis of) alternating forms.

Definition 6.5. For £ € V* and o € A* (V*), let Ly be the multi-linear k + 1
— form on V' defined by

k
(L) (UQ,...,vk):Z(—l)iﬂ(vi)w(vo,...,f}i,...,vk).

for all (v, ..., vg) € VFHL
Proposition 6.6. If £ € V* and ¢ € A* (V*), then (Lyp) € AFHL(V*).

Proof. We must show Ly is alternating. According to Lemma/[6.3] it suffices
to show (L) (vo,...,v,) = 0 whenever v; = v,4; for some 0 < j < k. So
suppose that v; = v;41, then since ¢ is alternating
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k .
(Le) (Vo ok) = > (=D)L (vi) @ (v0, -, i -, vk)
=0
J+1 .
= (=1)" £ (vs) (Vo -y Diy e vy VR)
=Jj

i

Proposition 6.7. Let {e;}.—, be a basis for V and {e;}!"_, be its dual basis for
V*. Then .
@j=1Le,Le, ... Le, e, € A" 7T (V*)\ {0}

for all j € [n] and in particular, dim A¥ (V*) > 1 for all 0 < k < n. [We will
see in Theorem below that dim A* (V*) = (}) for all 0 < k < n.]

Proof. We will show that ¢; is not zero by showing that
@j(€j,...,en) =1forall j e n].
This is easily proved by (reverse induction) on j. Indeed, for j = n we have

©n (en) = €n(en) =1 and for 1 < j < n we have p; := L. ;.1 so that

n
k—j ~
0 (ejmven) =Y (=" ej(er) @1 (€jye s Chyenrn)

Pi+1 (é\j’ejJrlw-'aen) = Pji+1 (ej+17"'7en) =1

wherein we used the induction hypothesis for the last equality. This completes
the proof for j € [n]. Finally for k = 0, we have A° (V*) = R by convention
and hence dim A% (V*) = 1. [

Notation 6.8 Fiz a basis {e;};_, of V with dual basis, {e;}_, C V*, and then
let
pw=¢1 =L Le,... L., ,€n. (6.1)

Definition 6.9 (Signature of o). For o € X, let
(—=1)7 == @ (€r1y---1€on) ;s

where ¢ is as in Notation . We call (—1)° the sign of the permutation,
o.
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Lemma 6.10. If o € X, then (—=1)° may be computed as (—1)" where N is
the number of tmnspositionﬂ needed to bring (ol,...,on) back to (1,2,...,n)
and so (—1)° does not depend on the choices made in defining (—1)° . Moreover,
if {'Uj}?:1 C V, then
© (Vo1y -y Von) = (=1)7 @ (v1,...,v4) ¥V 0 € Xp.
Proof. Straightforward and left to the reader. [

Corollary 6.11. If o € X, is a transposition, then (—1)° = —1.

Proof. This has already been proved in the course of proving Lemma [6.3] m
Lemma 6.12. If 0.7 € Y, then (=1)77 = (=1)7 (=1)" and in particular it
follows that (-1)° = (-1)7.

Proof. Let v; := e,; for each j, then

(=177 := @ (eorts- s €orn) = @ (Vr1y -y Vrn)
(=) "¢ (i,...,va) = (=1)" @ (o1, -, €0d)
(=17 (=1)7.

Lemma 6.13. A multi-linear map, T € L£F(V), is alternating (i.e. T €
AR (V) = AR (V) iff
T (Vo1,---,00k) = (=1)7 T (v1,...,v) for all o € Zy.
Proof. (—1)7 = (—1)" where N is the number of transpositions need to
transform o to the identity permutation. For each of these transpositions pro-

duce an interchange of entries of the T function and hence introduce a (—1)
factor. Thus in total,

T (o1, o) = ()N T (ve,...,06) = (=1)7 T (v1,...,v5).

The converse direction follows from the simple fact that the sign of a transpo-
sition is —1. u

Notation 6.14 (Pull Backs) Let V and W be finite dimensional vector
spaces. To each linear transformation, T : V. — W, there is linear transfor-

mation, T* : AF (W*) — AF (V*) defined by
(T*p) (v1,...,v8) :=p (Tvy, ..., Tug)

for all o € A¥(W*) and (vy,...,v;) € VE. [We leave to the reader the easy
proof that T*p is indeed in A* (V*) ]

2 N is not unique but (—1) = (=1)7 is unique.

macro: svmonob.cls date/time: 17-Jan-2020/13:17



Exercise 6.2. Let V, W, and Z be three finite dimensional vector spaces and

suppose that V' L w 5 Z are linear transformations. Noting that V' 5T Z,
show (ST)* = T*S*.

6.1 Structure of A™ (V*) and Determinants

In what follows we will continue to use the notation introduced in Notation [6.8

Proposition 6.15 (Structure of A™(V*)). If v € A™(V*), then ¢ =
P (eq,...,en) e and in particular, dim A™ (V*) = 1. Moreover for any {v, }?:1 C
v,

@1 vn) = Y (1)1 (v1) ... Eqn (vn)

oeX,

=3 (1) e (v1) -0 (Von).

oceX,

The first equality may be rewritten as

Y= Z (_1)0501®"'®50n-
oeX,

Proof. Let {v;}’_, C V and recall that

n
v; = Z ex; (V) ex; -
2

=1
Using the fact that 1 is multi-linear and alternating we find,

n

w(vlv'“avn): Z Hgkj (vj) w(elﬂv"'aekn)

ki, kn=1 |j=1

= Z Hegj(vj) w(eﬂl""yean)
ceXx, _j:1 i

- Z He"j (vj) (71)01#(613"'3677,)
oeXy, _j:l |

while the same computation shows
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e ivn) = > ] )] (D)7 @ler,. .. en)

ceX, |j=1
=Y (1701 (v1) - Eon (vn) .-
oceX,

Lastly let us note that

n n "
HEUj (Uj) = Haacr*lj (Uaflj) = HEj ('Uo-—lj)
Jj=1 j=1 j=1

so that

> ﬁej (vo-1;) (=1)7

ceX, j=1

Z H&j (Ugflj) (—1)071

ceX, j=1

> Ileiwoi) (=17

ceX, j=1

o (v1,..., )

wherein we have used X, 3 ¢ — o~ ! € X, is a bijection for the last equality. m

Exercise 6.3. If v € A™(V*)\ {0}, show ¢ (v1,...,v,) # 0 whenever
{v;};; C V are linearly independent. [Coupled with Exercise it follows
that ¢ (v1,...,v,) # 0 iff {v;}]_, C V are linearly independent.|

Definition 6.16. Suppose that T : V. — V is a linear map between a finite
dimensional vector space, then we define detT € R by the relationship, T*¢ =
det T -1 where 1 is any non-zero element in A™ (V*). [The reader should verify
that det T' is independent of the choice of 9 € A™ (V*)\ {0}.]

The next lemma gives a slight variant of the definition of the determinant.

Lemma 6.17. If ¢ € A™ (V*)\ {0}, {ej}?zl is a basis for V, and T : V =V
is a linear transformation, then

Y (Tey,...,Tey,)
er,...,en)

Proof. Evaluation the identity, det T - ¢ = T*%, at (e, ..., e,) shows

detT - (e1,...,en) = (T*Y) (e1,...,en) =0 (Te1,...,Tey,)

detT =

(6.2)

from which the lemma directly follows. [ ]

macro: svmonob.cls date/time: 17-Jan-2020/13:17



28 6 Alternating Multi-linear Functions

Corollary 6.18. Let T be as in Deﬁnition and suppose {e; }?:1 s a basis
for'V and {6]'}?:1 is its dual basis, then

detT = Z (=1)%e1(Tex1) .. .en (Tegn)
ceX,

= 3 e () o ()

oceX,

Proof. We take ¢ € A™ (V*) so that ¢ (e1,...,e,) = 1. Since T*p € A™ (V*)
we have seen that T*p = Ay where

A= (Tp) (e1,...,en) = (Tey,...,Tey)
=Y (-1)7ep1 (Ter) .. .con (Ten)

oeX,

=Y (1) e (Teor) .. en (Tean).

oeX,

Corollary 6.19. Suppose that S, T : V — V are linear maps between a finite
dimensional vector space, V, then

det (ST) = det (S) - det (T) .
Proof. On one hand
(ST)" ¢ = det (ST .
On the other using Exercise we have
(ST) o =T*(S*p) =T*(det S - ) =det S - T* (p) = det S -detT - .

Comparing the last two equations completes the proof. [

6.2 Determinants of Matrices

In this section we will restrict our attention to linear transformations on V' = R"
which we identify with n x n matrices. Also, for the purposes of this section let
{e; }?:1 be the standard basis for R™. Finally recall that the i*" column of A is
v; = Ae; and so we may express A as

A=[v]...|Jv,] =[Ae1]...|Aey].
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Proposition 6.20. The function, A — det (A) is the unique alternating multi-
linear function of the columns of A such that det (I) = det [eq]...|e,] = 1.

Proof. Let ¢ € A™ (R™) \ {0} . Then by Lemma
Y (Aeq, ..., Aey)
Y(er,...,en)

which shows that det A is and alternating multi-linear function of the columns
of A. We have already seen in Proposition that there is only one such
function.

det A =

Theorem 6.21. If A is a nxXn matriz which we view as a linear transformation
on R™, then;

LdetA=3 5 (—1)7 @11 onn,

2.det A=3 v (1)’ a1,61---n,on, and

3. det A = det A",

4. The map A — det A is the unique alternating multilinear function of the
rows of A such that det I = 1.

Proof. We take {e;}.—, to be the standard basis for R™ and {&;}_, be its
dual basis. Then by Corollary [6.18]

det A = Z (—=1)7 &1 (Aep1) .. .en (Aesn)

oeX,

= Y (1) 01 (Aer) ... £0n (Aey)

o€,

which completes the proof of item 1. and 2. since ¢; (Ae;) = a; ;. For item 3 we
use item 1. with A replaced by A" to find,

tr o t t . o
det A = > (=1)7(A") (A7) = D (1) arer - non
oeX, oeXy,
This completes the proof item 3. since the latter expression is equality to det A

by item 2. Finally item 4. follows from item 3. and Proposition [6.20 [

Proposition 6.22. Suppose that n = ny +ng with n; € N and T is an X n
matriz which has the block form,
A B
T =
|:O’I'L2 Xni C:| ’
where A is a ny X nqy — matriz, C' is a no X ny — matriz and B is a ny X ny —

matrixz. Then
detT =det A-detC.

macro: svmonob.cls date/time: 17-Jan-2020/13:17



Proof. Fix B and C and consider § (A) := det [0 A g} . Then ¢ €
na Xni
A™ (R™) and hence
I B
(5(A)=5(I)~det(A)=det(A)-det[ }
0712 XNy C

By doing standard column operations it follows that

I B| I Onixna| %
det |:0n2><n1 C] = det [Onzxm C ] =:46(C).

Working as we did with § we conclude that 6 (C) = det[C] - § (I) = det C.
Putting this all together completes the proof. [
Next we want to prove the standard cofactor expansion of det A.

Notation 6.23 If A is a n x n matriz and 1 < i,j <n, let A(i,j) denotes A
with its it" row and ' — column being deleted.

Proposition 6.24 (Co-factor Expansion). If A is a n x n matriz and 1 <
j <mn, then

n

det (A) = (=1)"" a;; det [A (i, 5)] (6.3)

i=1

and similarly if 1 <1i <n, then
det (A) = (—1)"" a;; det [A (i, )] . (6.4)
j=1

We refer to Eq. as the cofactor expansion along the j"* — column
and FEq. as the cofactor expansion along the i'" — row.

Proof. Equation (6.4) follows from Eq. (6.3)) with that aid of item 3. of
Theorem To prove Eq. (6.3), let A = [v1]...|v,] and for b € R™ let
b .= b — be; and then write v; = Z?:l aije;. We then find,

Page: 29 job: 150BNotes

6.3 The structure of A* (V*) 29

n
det A = Zaij det[v1]...|vj_1]es|vjqa] ... |vn]
i=1

= Za” det {U£Z)| e |v§21\ei|v§21\ . |v£f)}
n
j—1 7 7 7 i
= ay (1 det [ei|u§>|...|v§jl\v§+>1|...w}
1 0

- iaij (=171 (=)' det [0 A (m‘)]

= Z (—1)i+j Qg5 det [A (Zv])]

@
Il
-

wherein we have used the determinant changes sign any time one interchanges
two columns or two rows. |

Example 6.25. Let us illustrate the above proof in the 3 x 3 case by expanding
along the second column. To shorten the notation we we write det A = |A|;

ai1 aiz ais ai1 1 ags ai1 0 a3 ai1 0 a3
a1 Q22 a23 | = @12 |a21 0 a3 | + aia|az1 1 ags | + aiz | az1 0 ao3
asy asz ass a31 0 aszs a31 0 ass az1 1 ass
where
ail 1 ai13 010 10 0 a a
21 @23
a1 0 asz| = |ag1 0 ass| = —|0aoq ass | = — = —det A (1, 2),
0 0 0 aszi ass
a1 0 ass az1 0 ass a1 ass
al 0 a3 a1 0 ai13 010 10 0
as1 1 ags | = 010 = —|ai 0 a1z | = 0 ai11 a13 | = det [A (2,2)] )
az1 0 azz a3 0 azz az1 0 azz 0 a3y ass
and
ai1 0 a3 0 a1 a3 0 a1 a3 10 0
any 0 agsz | = — 0 a91 A23 | = 10 0 =—1|0 a11 a1z | = — det [A (3, 1)] .
a31 1 aszs 10 0 0 az1 a3 0 a21 as3

6.3 The structure of A* (V*)

Definition 6.26. Letm € N and {Ej};n:l C V*, we define (4N - Ny, € A™ (V)
by
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30 6 Alternating Multi-linear Functions

(LL A Nly) (U1, ..., up,) = det

= > D)6 o) = D (1)l (061) -l (Vo) -

ocEX

m

Em &’Ul) . gm (.’UT,L)

i=1 ocX,

or alternatively using det A% = det A,

o€Xm,

01 (0m) €2 (Um) -+ Lo (0m)

~1)7 Hfgz' (vi) = Z (—=1)7 Loy (1)« g (

o€Xm,

which may be written as,

Exercise 6.4. Let {ei}le be the standard basis for R* and {e; = ez‘}?zl be
the associated dual basis (i.e. g; (v) = v; for all v € R*.) Compute;

Page: 30

0N

ANl = Y (1)1 @+ @ Lo
o€X

1 0 1
Ao A 1 0
€3 €2 €4 311 =113 )
4 1 2
1 0
A 2 1
€3 €2 31| =1 )
4 1
1 0
A 2 1
€1 €2 3| =1 )
4 1
11 [o
2 1
(e1+€3) Nea NEEIRE and
4| |1

eqaNeEgNEINEY (61762,63,64)-

job: 150BNotes

).

(6.9)

The next problem is a special case of Theorem below.

Exercise 6.5. Show,

using basic knowledge of determinants, that for

by, b1, 02,05 € V* that
(bo+ ) Nla Nlg = Lo Nla ANlg+ by Ay ALy,

Remark 6.27. Note that

lor Ao N = (1) g A Ay

for all 0 € X, and in particular if m = p 4+ ¢ with p,q € N, then

Theorem 6.28. For any fized ls, ...l € V*, the map,

is linear.

((61 + cél) A

Vsl =l A ANl € AR (V)

Proof. From Eq. we find,

L) (V1)

= 30 ()7 (el ) (vor) -+ b (v)

ceXy

Copgi Ao ANy NN Nl = (=1)PTly N Ay ANlpir A A .

= (=17l (vo1) - e (Vo) + € D (1) 41 (1) .- by, (Vo)

o€

oceXy

zfl/\---/\ék(vl,...,vk)+c-l71/\~-~/\€k(v1,...,vk)

:(fl/\--~/\£k+c-z71/\---/\12k) (V1,. .., 0k).

As this holds for all (vy,...,vx), it follows that

(€1+ct71)A~-~Mk:flA---MkJrc@lA---Mk

which is the desired linearity.

Remark 6.29. If W is another finite dimensional vector space and T : W — V
is a linear transformation, then 7% (¢1 A -+~ A ly,) = (T*) A --- AN (T*L,,) . To
see this is the case, let w; € W for ¢ € [m], then

macro:

T* (El/\~-~/\€m)(w1,...,wm)
:(51/\-~-/\£m)(TU}1,...,T’U}m)

>

ceX,,

—

(D)7 [Tt (Twe) = D (=1)°
=1

oc€X =1

— (T A+ AT ) (w1, . wp)
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Theorem 6.30. Let {ei}ij\il be a basis for V and {Ei}fil be its’ dual basis and

for
J={1<a1<az<---<a, <N} CI[N],

let with # (J) = p,
e = (€ays---r€a,), and ey :=cq, A+ Neg,. (6.10)
Then;

1.8, = {esj:J C[N] with# (J)=p} is a basis for AP (V*) and so
dim (47 (V*)) = (1), and
2. any A € AP (V*) admits the following expansions,

A=— Z A ejl,...,Ejp)é'jl/\"'/\Ejp (611)

= Z Ales)ey. (6.12)
N

Proof. We begin by proving Eqgs. (6.11) and (6.12). To this end let
v1,...,Vp € V and then compute using the multi-linear and alternating prop-
erties of A that

Avr,...,0p) = Z gj, (v1)...gj, (vp) A(ejy,... €5,) (6.13)

Jis--dp=1
N

> Z Ejor (V1) -+ €4, (V) A(€jrs -5 €5,,)

Ji,-- ajp—l .UEE

= Z Z 7 ey (Vg-11) .. .€5, (vo-1p) A(ejy,---,€5,)

J1,- s.]p*l . 0'62

1
:7‘ Z A(ejl,...,ejp)sjl/\-~-/\€jp(v1,...,vp),
L N

which is Eq. (6.11)). Alternatively we may write Eq. (6.13) as
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A(’Ul,...,’Up) = Z 1#({j1,4..,jp}):p5j1 (vl)...sjp (vp)A(ejl,...,ejp)

= Z Z €apy (V1) ... Eq,, (vp) A (eaalv""e%p)

1<a1<a2<--<ap,<NocX,

Z Aleays---,€a,) Z (-1)7 €a,, (v1) .. €a,, (vp)

1<ai<az<--<ap<N oeX,

= Z A(eal,...,e%)sal/\~~/\5ap(vl,...,vp)

1<ai<az<---<ap<N

= Z A(eJ)EJ(vl,...,vp).
JC[N]

which verifies Eq. (6.12) and hence item 2. is proved.
To prove item 1., since (by Eq. (6.12) we know that 5, spans AP (V*), it
suffices to show 3, is linearly independent. The key point is that for

J={1<a1<ar<---<a, <N} and
K:{1§b1<b2<"'<bpSN}

we have
€ay (ebl) <o Eay (ebp)
€as (€by) ... Eq, (€
ey (ex) = det QQ(. 2 . az(. ) =0JK-
€a, (€,) .-+ €a, (ebp)

Thus if ZJC[N] ajey =0, then

= Y aseslex) = Y asdix = ax
JCIN]

JCIN]

which shows that ax = 0 for all K as above. [ |
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7

Exterior/Wedge and Interior Products

The main goal of this chapter is to define a good notion of how to multiply
two alternating multi-linear forms. The multiplication will be referred to as
the “wedge product.” Here is the result we wish to prove whose proof will be
delayed until Section [7.4]

Theorem 7.1. Let V be a finite dimensional vector space, n = dim (V) , p,q €
[n], and let m = p+ q. Then there is a unique bilinear map,

M, : AP (VF) x AT (VF) — A™ (V)
such that for any {fi},_, C V* and {gj}?':1 Cc V*, we have,

Mpg(fiNANfp gt N ANgg) =Fi N ANfpAgr A= Agg. (7.1)

The notation, M, 4, in the previous theorem is a bit bulky and so we intro-
duce the following (also temporary) notation.

Notation 7.2 (Preliminary) For A € AP (V*) and B € A1 (V*), let us sim-
ply denote M, , (A, B) by A - BE|

Remark 7.8. 1f m = p+ q > n, then A™ (V*) = {0} and hence A- B =0.

7.1 Consequences of Theorem

Before going to the proof of Theorem (see Section let us work out some
of its consequences. By Theorem it is always possible to write A € AP (V*)
in the form

«

A= "aiff A NS (7.2)
i=1

for some a € N, {a;}, C R, and {fi:jelpl and i€ [o]} C V*. Similarly we
may write B € A9 (V*) in the form,

1 'We will see shortly that it is reasonable and more suggestive to write A A B rather
than A - B. We will make this change after it is justified, see Notation @ below.

B
B:ijg{/\~-~/\gg (7.3)
j=1

for some 8 € N, {bj}jyzl C R, and {g; :j€g) and j € [6]} C V*. Thus by
Theorem [Z.1] we must have

a B _ _
A-B = My (A, B) =33 aibiMyy (FiA- A figl A ng])

i=1j=1
=D abifin-Afingl A Agl. (7.4)
i=1 j=1
Proposition 7.4 (Associativity). If A € A?(V*), B € A2(V*), and C €
A" (V*) for some r € [n], then
(A-B)-C=A-(B-0). (7.5)
Proof. Let us express C' as
.
C=> ckhf A= AR
k=1
Then working as above we find with the aid of Eq. (7.4) that
a B
(A-B)-C=>_

i=1j

Y
> aibjerfin- NFEAGIN - Agh ABE A ABE.
1 k=1

A completely analogous computation then shows that A - (B - C) is also given
by the right side of the previously displayed equation and so Eq. ([7.5)) is proved.
]

Remark 7.5. Since our multiplication rule is associative it now makes sense to
simply write A - B - C rather than (A- B)-C or A-(B-C). More generally if
Aj € APi (V*) we may now simply write Ay --- - Ay,. For example by the above
associativity we may easily show,
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A-(B-(C-D))=(A-B)-(C-D)=((A-B)-C)-D

and so it makes sense to simply write A- B-C'- D for any one of these expressions.
Corollary 7.6. If {Ej}le C V*, then
ISREEEE gp:gl/\.../\gp.

Proof. For clarity of the argument let us suppose that p =5 in which case
we have

by ly Ly Ly U5 =l ( )
=0 (ly- (U3 - (54 As)))
=/ (fz <£3 ALy N £5))
=/ - (£2A£3A£4A€5)

=01 Nl Nl NLly N Es.

by - (03 (g~ C5)

]

Because of Corollary [7.6] there is no longer any danger in denoting A - B =

M, (A, B) by AN B. Moreover, this notation suggestively leads one to the
correct multiplication formulas.

Notation 7.7 (Wedge=Exterior Product) For A € AP (V*) and B €
AT (V*), we will from now on denote M, , (A, B) by AN B.

Although the wedge product is associative, one must be careful to observe
that the wedge product is not commutative, i.e. groupings do not matter but
order may matter.

Lemma 7.8 (Non-commutativity). For A € A? (V*) and B € A7 (V*) we

have
ANB=(-1)""BAA.
Proof. See Remark [6.27] [ ]

7.2 Interior product

There is yet one more product structure on A™ (V*) that we will used through-
out these notes given in the following definition.

Definition 7.9 (Interior product). Forv eV and T € A™ (V*), let i,T €
Am_l (V*) be deﬁned by Z,UT =T (’U, . ) .
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Lemma 7.10. If {{;}.", CV*, T =01 A+ ANy, and v € V, then

Gy (LL A - =Y (- Yo lL A NG A A L. (7.6)
j=1

Proof. Expanding the determinant along its first column we find,

£1 (Ul) £1 (Um)
£2 (’Ul) 52 (’Um)

T(Ulv yUm) =
Loy (V1) ool (Um)
Oy (v2) oo Ly (vm)
f (Uz) . 62 (Um)
= i(—l)f’% (v1) | -1 (v2) - EJ—I.(vm)
=1 Uit (v2) - L (vm)
by (V2) <o L (V)
=> (=17 ( )(zl/\ AL A /\zm)(vg, , Umn)
j=1
from which Eq. follows. [

Corollary 7.11. For A € A? (V*) and B € A1 (V*) and v € V, we have
iy [AANB] = (i,A) A B+ (=1)" AN (i,B).

Proof. It suffices to verify this identity on decomposable forms, A = £; A
+Alpand B =Ly 1 ANl sothat ANB =41 A--- Al and we have

iv (A A B)

DT @) A NG A Ny

.MS

<
Il
a

(=177 (W) A NG ALy Ny A Ay

Il
.M%

<
Il
—

+ Z W) Ly Ay Al Ao NG A Ay
Jj=p+1
ZZT1+T2
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where
p y ~
=3 (-1 @) A AGAL | AB=(i,A)AB
j=1
and
Ty=AN| > (=177 () lpgr A AL A Ay
Jj=p+1
=(—1)PAA Z (=17 D g ) by g A NN Ay
J=p+1

= (~1)" AN (i,B).

]
Lemma 7.12. If v,w € V, then i2 = 0 and iyiy = —iyiy-
Proof. Let T € A* (V*), then
i =T (w,v,—) =T (v, W,—) = Gyi,T.
]

Definition 7.13 (Cross product on R3). Fora,b € R3, let axb be the unique
vector in R3 so that

det [cla|b) = c- (a x b) for all c € R®.

Such a unique vector exists since we know that ¢ — det [c|a|b] is a linear func-
tional on R3 for each a,b € R3.

Lemma 7.14 (Cross product). The cross product in Definition agrees
with the “usual definition,

ik
axb= ay az as
by by bs

_.iagag _.CL1£L3 ai ag

T o b | b bs by by |’

where i = ey, j = ea, and k = e3 1s the standard basis for R3.
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Proof. Suppose that a x b is defined by the formula in the lemma, then for
all ¢ € R,

_ az az| ai as ay az
(axb)-c=c by by | 2 b1b3‘+c3 by b
C1 C2 C3
= |ay ag as | = det [c|a|b] ,
by b2 b3

wherein we have used the cofactor expansion along the top row for the second
equality and the fact that det A = det A*" for the last equality.
]

Remark 7.15 (Generalized Cross product). If a1, as ..., a,—1 € R™, let a1 X ag X
-+ X an_1 denote the unique vector in R™ such that

det [clat]az]| ... |an—1] =c a1 X az X -+ X ap_1 ¥V c € R".

This “multi-product” is the n > 3 analogue of the cross product in R3. I don’t
anticipate using this generalized cross product.

7.3 Exercises

Exercise 7.1 (Cross I). For a € R3, let ¢, (v) = a-v = a"v, so that £, €
(IR?’)* . In particular we have ¢; = /., for i € [3] is the dual basis to the standard

basis {e;}>_, . Show for a,b € R3,
Ly N4y Ziaxb[al/\é‘g/\&‘g] (7.7)
Hints: 1) write ¢, = Zle a;e; and 2) make use of Eq. |D

Exercise 7.2 (Cross II). Use Exercise to prove the standard vector cal-
culus identity;

(@xb)-(zxy)=(a-z)(b-y)—(b-z)(a-y)

which is valid for all a, b, 2,y € R3.Hint: evaluate Eq. (7.7) at (x,y) while using
Lemma [7.141

7.4 *Proof of Theorem [7.1]

[This section may safely be skipped if you are willing to believe the results as
stated!]
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If Theorem is going to be true we must have M, ,(A,B) =A-B =D
where, as written in Eq. (7.4]),

a P
D= "> "aibifin---NfiAgIN-Ngl. (7.8)
i=1 j=1

The problem with this presumed definition is that the formula for D in Eq.

(7.8) seems to depend on the expansions of A and B in Egs. (7.2)) and (7.3)
rather than on only A and B. [The expansions for A and B in Egs. (7.2)

and (7.3) are highly non-unique!] In order to see that D is independent of the
possible choices of expansions of A and B, we are going to show in Proposition

below that D (vy,...,vy) (with D as in Eq. (7.8)) may be expressed by a
formula which only involves A and B and not their expansions. Before getting
to this proposition we need some more notation and a preliminary lemma.

Notation 7.16 Let m = p + q be as in Theorem and let {v;};-, C V be
fized. For each J C [m] with #J = p write

J={1<a1 <ay<---<a, <m},
JO={1<b; <by<---<byg <m},

vy = (Vay, .-+ Va,), and vye := (Vp,,...,0p,)

Also for any o € X, and B € Xy, let

o . 1 p p+1l... m
Ja.B aql -+ Qap bﬁl bgq ’

When o and 8 are the identity permutations in X, and Xy respectively we will
simply denote 05458 by o, i.c.

1...pp+1l...m
gy = .
ai ... ap bl bq
The point of this notation is contained in the following lemma.

Lemma 7.17. Assuming Notation [7.10,

1. the map,
Pom X Xp x Xy 3 (J,a,8) = 0508 € X,

is a bijection, and

2. (=1)7 " = (=1)7 (=1)" (-1)”.

Proof. We leave proof of these assertions to the reader. [
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Lemma 7.18 (Wedge Product I). Let n = dimV, p,q € [n], m := p + g,
{fi¥ioy V¥ {gi}io, € V*, and {v;}]2, C V. then
(N ANfpANgr A Ngg) (V1,0 Um)

= Y DT AA AR @) A Agy) ). (79)

#J=p
Proof. In order to simplify notation in the proof let, ¢; = f; for 1 <i <p
and £j4, = g; for 1 < j < g so that
FIN - AfoAGIAAgg=L1 A Nl
Then by Definition of £1 A --- A, along with Lemma we find,

(LN Nly) (V1. Um)

m

= det [{ei (uj)};?jjzl} = 3 )[4 )

o€EXm i=1

= Z Z Z (=1)70e” 1:[61’ (vUJ,a,Bi)

J aEs, fEX,
= Z (_1)JJ Z Z (_l)oa Hél (UUJ,Q,N) (_1)05 H ¢ (UUJ,a,/Bi) :

J aceX, feX, i=1 i=p+1

Combining this with the following identity,

Yo > O (osass) CD7 T i (vosase)

acXd, feXy, i=1 i=p+1
P m
= > 0[]t @an) D =17 T 4 (w,,)
aEX, i=1 BEX, i=p+1

=l A N ) (vg) (Epgr A Al (vge)
=(finN-Afp)(vr) (g1 A Agg) (vge)

completes the proof. [

Proposition 7.19 (Wedge Product II). If A € AP (V*) and B € A9 (V*)
are written as in Egs. and and D € A™ (V*) is defined as in Eq.

(@, then

D(v1,-yvm) = Y (=) A(vy)B(vse) V {n}], CV. (7.10)
#J=p
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This shows defining A N B by FEq. is well defined and in fact could have
been defined intrinsically using the formula,

AANB (1. om) = Y (=17 A(vy) B (vse). (7.11)
#J=p

Proof. By Lemma|[7.18§

= > V(A A L) @) (gl A Ag)) ()

#J=p

and therefore,

D(vs,-. . vm)

i=1 j=1
a B )
=33ty 3 0T (A AL @) (g A A g]) (00
i=1 j=1 #J=p
a B .
= (=17 Zzai (Fin--Nf) (vg)- ij (g{ AR /\gg) (vge)
#J=p i=1j=1 j=1
= (=1)7" A(vy) B (ve)
#J=p
which proves Eq. and completes the proof of the proposition. [

With all of this preparation we are now in a position to complete the proof
of Theorem [T.T]

Proof of Theorem [7.1] As we have see we may define A A B by either
Eq. or by Eq. @ . Equation ensures A A B is well defined and
is multi-linear while Eq. ensures A A B € A™ (V*) and that Eq.
holds. This proves the existence assertion of the theorem. The uniqueness of
M, (A, B) = AN B follows by the necessity of defining A A B by Eq. . ]

Corollary 7.20. Suppose that {ej}?zl is a basis of V and {aj}?zl is its dual
basis of V*. Then for A € AP (V*) and B € A% (V*) we have

AANB=

n
p'-q' Z A(ej17"'7ejp)B(ejp+1a"'7ejm)5j1/\"""/\Ejm'
’ 'j1y~~~7jm:1

(7.12)
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7.4 *Proof of Theorem [7.1] 37
Proof. By Theorem we may write,

N
1
A= 2 Alegei)en Ao Aej, and

1y p=1
1 n
B:j Z B(ejp+17""ejm)€jp+1/\"""/\Ejm
D pt1seedm=1
and therefore Eq. (7.12)) holds by computing A A B as in Eq. (7.4]). ]
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