Bruce K. Driver

Math 150B Differential Geometry

January 31, 2020 File:150BNotes.tex

Contents

Part Homework Problems
0 Math 150B Homework Problems: Winter 2020 3
0.0 Homework 0, Due Wednesday, January 8, 2020 (Not to be collected) 3
0.1 Homework 1. Due Thursday, January 16, 2020 3
0.2 Homework 2. Due Thursday, January 23, 20203
0.3 Homework 3. Due Thursday, January 30, 2020 3
0.4 Homework 4. Due Thursday, February 6, 2020 3
Part I Background Material
1 Introduction 7
2 Permutations Basics 9
3 Integration Theory Outline 11
3.1 Exercises 14
3.2 *Appendix: Another approach to the linear change of variables theorem 15
Part II Multi-Linear Algebra
4 Properties of Volumes 19
5 Multi-linear Functions (Tensors) 21
5.1 Basis and Dual Basis 21
5.2 Multi-linear Forms. 22
6 Alternating Multi-linear Functions 25
6.1 Structure of $\Lambda^{n}\left(V^{*}\right)$ and Determinants. 27
6.2 Determinants of Matrices 28
6.3 The structure of $\Lambda^{k}\left(V^{*}\right)$ 29
$7 \quad$ Exterior/Wedge and Interior Products 33
7.1 Consequences of Theorem 7.1 33
7.2 Interior product 35
7.3 Exercises 36
$7.4{ }^{*}$ Proof of Theorem 7.1 37
Part III Differential Forms on $U \subset_{o} \mathbb{R}^{n}$
8 Derivatives, Tangent Spaces, and Differential Forms 41
8.1 Derivatives and Chain Rules 41
8.2 Tangent Spaces and More Chain Rules 43
8.3 Differential Forms 45
8.4 Exterior Differentiation 47

Math 150B Homework Problems: Winter 2020

Problems are our text book, "Differential Forms," by Guillemin and Haine or from the lecture notes as indicated. The problems from the lecture notes are restated here, however there may be broken references. If this is the case, please find the corresponding problem in the lecture notes for the proper references and for more context of the problem.
0.0 Homework 0, Due Wednesday, January 8, 2020 (Not to be collected)

- Lecture note Exercises: 3.1, 3.2, 3.3, 3.4, and 3.5,
0.1 Homework 1. Due Thursday, January 16, 2020
- Lecture note Exercises: 3.6, 5.1, 5.2, 5.5
- Book Exercises: 1.2.vi.
0.2 Homework 2. Due Thursday, January 23, 2020
- Lecture note Exercises: $5.3,5.4,6.1,6.2,6.3,6.4,6.5$
- Book Exercises: 1.3.iii., 1.3.v., 1.3.vii, 1.4ix

0.3 Homework 3. Due Thursday, January 30, 2020

- Lecture note Exercises: $7.2,7.3,8.1,8.2,8.3,8.4,8.5$
- Look at (but don't hand in) Exercises 7.4 7.5 and the Book Exercises: 1.7.iv., 1.8vi.

0.4 Homework 4. Due Thursday, February 6, 2020

These problems are part of your midterm and are to be worked on by your-self. These are due at the start of the in-class portion of the midterm which is in class on Thursday February 6, 2020.

- Lecture note Exercises: 6.6, 6.7, 7.1, 8.6, 8.7

Introduction

This class is devoted to understanding, proving, and exploring the multidimensional and "manifold" analogues of the classic one dimensional fundamental theorem of calculus and change of variables theorem. These theorems take on the following form;

$$
\begin{align*}
\int_{M} d \omega & =\int_{\partial M} \omega \tag{1.1}\\
\int_{M} f^{*} \omega & =\operatorname{deg}(f) \cdot \int_{a}^{b} g^{\prime}(x) d x=\left.g(x)\right|_{a} ^{b} \text { and } \tag{1.2}
\end{align*}
$$

In meeting our goals we will need to understand all the ingredients in the above formula including;

1. M is a manifold.
2. ∂M is the boundary of M.
3. ω is a differential form an $d \omega$ is its differential.
4. $f^{*} \omega$ is the pull back of ω by a "smooth map" $f: M \rightarrow N$.
5. $\operatorname{deg}(f) \in \mathbb{Z}$ is the degree of f.
6. There is also a hidden notion of orientation needed to make sense of the above integrals.

Remark 1.1. We will see that Eq. (1.1) encodes (all wrapped into one neat formula) the key integration formulas from 20E: Green's theorem, Divergence theorem, and Stoke's theorem.

Permutations Basics

The following proposition should be verified by the reader.
Proposition 2.1 (Permutation Groups). Let Λ be a set and

$$
\Sigma(\Lambda):=\{\sigma: \Lambda \rightarrow \Lambda \mid \sigma \text { is bijective }\} .
$$

If we equip G with the binary operation of function composition, then G is a group. The identity element in G is the identity function, ε, and the inverse, σ^{-1}, to $\sigma \in G$ is the inverse function to σ.

Definition 2.2 (Finite permutation groups). For $n \in \mathbb{Z}_{+}$, let $[n]:=$ $\{1,2, \ldots, n\}$, and $\Sigma_{n}:=\Sigma([n])$ be the group described in Proposition 2.1. We will identify elements, $\sigma \in \Sigma_{n}$, with the following $2 \times n$ array,

$$
\left(\begin{array}{cccc}
1 & 2 & \ldots & n \\
\sigma(1) & \sigma(2) & \ldots & \sigma(n)
\end{array}\right)
$$

(Notice that $\left|\Sigma_{n}\right|=n!$ since there are n choices for $\sigma(1), n-1$ for $\sigma(2), n-2$ for $\sigma(3), \ldots, 1$ for $\sigma(n)$.)

For examples, suppose that $n=6$ and let

$$
\left.\begin{array}{rl}
\varepsilon & =\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 2 & 3 & 4 & 5 & 6
\end{array}\right)-\text { the identity, and } \\
\sigma & =\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array}\right) \\
2 & 4
\end{array} 3 \times 1 \begin{array}{c}
6
\end{array}\right) . ~ l
$$

We identify σ with the following picture,

The inverse to σ is gotten pictorially by reversing all of the arrows above to find,

or equivalently,

and hence,

$$
\sigma^{-1}=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 1 & 3 & 2 & 6 & 5
\end{array}\right)
$$

Of course the identity in this graphical picture is simply given by

$$
\begin{array}{cccccc}
1 & { }^{2} & { }^{3} & & 4 & { }^{4} \\
1 & \downarrow & \downarrow & \downarrow & { }_{5}^{6} & { }_{6}^{6}
\end{array}
$$

Now let $\beta \in S_{6}$ be given by

$$
\beta=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 1 & 4 & 6 & 3 & 5
\end{array}\right)
$$

or in pictures;

We can now compose the two permutations $\beta \circ \sigma$ graphically to find,

which after erasing the intermediate arrows gives,

In terms of our array notation we have,

$$
\begin{aligned}
\beta \circ \sigma & =\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 1 & 4 & 6 & 3 & 5
\end{array}\right) \circ\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 4 & 3 & 1 & 6 & 5
\end{array}\right) \\
& =\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 6 & 4 & 2 & 5 & 3
\end{array}\right) .
\end{aligned}
$$

In terms of these pictures it is easy to recognize transpositions and adjacent transpositions.

Remark 2.3 (Optional). It is interesting to observe that β splits into a product of two permutations,

$$
\begin{aligned}
& \beta=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 1 & 3 & 4 & 5 & 6
\end{array}\right) \circ\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 2 & 4 & 6 & 3 & 5
\end{array}\right) \\
& =\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 2 & 4 & 6 & 3 & 5
\end{array}\right) \circ\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 1 & 3 & 4 & 5 & 6
\end{array}\right) \text {, }
\end{aligned}
$$

corresponding to the non-crossing parts in the graphical picture for β. Each of these permutations is called a "cycle."

Definition 2.4 (Transpositions). A permutation, $\sigma \in \Sigma_{k}$, is a transposition if

$$
\#\{l \in[k]: \sigma(l) \neq l\}=2
$$

We further say that σ is an adjacent transposition if

$$
\{l \in[k]: \sigma(l) \neq l\}=\{i, i+1\}
$$

for some $1 \leq i<k$.

Example 2.5. If

$$
\sigma=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 5 & 3 & 4 & 2 & 6
\end{array}\right) \text { and } \tau=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 2 & 4 & 3 & 5 & 6
\end{array}\right)
$$

then σ is a transposition and τ is an adjacent transposition. Here are the pictorial representation of σ and τ;

Integration Theory Outline

In this course we are going to be considering integrals over open subsets of \mathbb{R}^{d} and more generally over "manifolds." As the prerequisites for this class do not include real analysis, I will begin by summarizing a reasonable working knowledge of integration theory over \mathbb{R}^{d}. We will thus be neglecting some technical details involving measures and σ - algebras. The knowledgeable reader should be able to fill in the missing hypothesis while the less knowledgeable readers should not be too harmed by the omissions to follow.

Definition 3.1. The indicator function of a subset, $A \subset \mathbb{R}^{d}$, is defined by

$$
1_{A}(x):= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A .\end{cases}
$$

Remark 3.2 (Optional). Every function, $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, may be approximated by a linear combination of indicator functions as follows. If $\varepsilon>0$ is given we let

$$
\begin{equation*}
f_{\varepsilon}:=\sum_{n \in \mathbb{N}} n \varepsilon \cdot 1_{\{n \varepsilon \leq f<(n+1) \varepsilon\}}, \tag{3.1}
\end{equation*}
$$

where $\{n \varepsilon \leq f<(n+1) \varepsilon\}$ is shorthand for the set,

$$
\left\{x \in \mathbb{R}^{d}: n \varepsilon \leq f(x)<(n+1) \varepsilon\right\}
$$

We now summarize "modern" Lebesgue integration theory over \mathbb{R}^{d}.

1. For each d, there is a uniquely determined volume measure, m_{d} on all ${ }^{1}$ subsets of \mathbb{R}^{d} (subsets of \mathbb{R}^{d}) with the following properties;
a) $m_{d}(A) \in[0, \infty]$ for all $A \subset \mathbb{R}^{d}$ with $m_{d}(\emptyset)=0$.
b) $m_{d}(A \cup B)=m_{d}(A)+m_{d}(B)$ is $A \cap B=\emptyset$. More generally, if $A_{n} \subset \mathbb{R}^{d}$ for all n with $A_{n} \cap A_{m}=\emptyset$ for $m \neq n$ we have

$$
m_{d}\left(\cup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} m_{d}\left(A_{n}\right)
$$

c) $m_{d}(x+A)=m_{d}(A)$ for all $A \subset \mathbb{R}^{d}$ and $x \in \mathbb{R}^{d}$, where

$$
x+A:=\left\{x+y \in \mathbb{R}^{d}: y \in A\right\}
$$

[^0]d) $m_{d}\left([0,1]^{d}\right)=1$.
[The reader is supposed to view $m_{d}(A)$ as the d-dimensional volume of a subset, $A \subset \mathbb{R}^{d}$.]
2. Associated to this volume measure is an integral which takes (not all) functions, $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, and assigns to them a number denoted by
$$
\int_{\mathbb{R}^{d}} f d m_{d}=\int_{\mathbb{R}^{d}} f(x) d m_{d}(x) \in \mathbb{R}
$$

This integral has the following properties;
a) When $d=1$ and f is continuous function with compact support,
$\int_{\mathbb{R}} f d m_{1}$ is the ordinary integral you studied in your first few calculus courses.
b) The integral is defined for "all" $f \geq 0$ and in this case

$$
\int_{\mathbb{R}^{d}} f d m_{d} \in[0, \infty] \text { and } \int_{\mathbb{R}^{d}} 1_{A} d m_{d}=m_{d}(A) \text { for all } A \subset \mathbb{R}^{d}
$$

c) The integral is "positive" linear, i.e. if $f, g \geq 0$ and $c \in[0, \infty)$, then

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}(f+c g) d m_{d}=\int_{\mathbb{R}^{d}} f d m_{d}+c \int_{\mathbb{R}^{d}} g d m_{d} \tag{3.2}
\end{equation*}
$$

d) The integral is monotonic, i.e. if $0 \leq f \leq g$, then

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} f d m_{d} \leq \int_{\mathbb{R}^{d}} g d m_{d} \tag{3.3}
\end{equation*}
$$

e) Let $L^{1}\left(m_{d}\right)$ denote those functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that $\int_{\mathbb{R}^{d}}|f| d m_{d}<$ ∞. Then for $f \in L^{1}\left(m_{d}\right)$ we define

$$
\int_{\mathbb{R}^{d}} f d m_{d}:=\int_{\mathbb{R}^{d}} f_{+} d m_{d}-\int_{\mathbb{R}^{d}} f_{-} d m_{d}
$$

where

$$
f_{ \pm}(x)=\max (\pm f(x), 0) \text { and so that } f(x)=f_{+}(x)-f_{-}(x)
$$

f) The integral, $L^{1}\left(m_{d}\right) \ni f \rightarrow \int_{\mathbb{R}^{d}} f d m_{d}$ is linear, i.e. Eq. 3.2 holds for all $f, g \in L^{1}\left(m_{d}\right)$ and $c \in \mathbb{R}$.
g) If $f, g \in L^{1}\left(m_{d}\right)$ and $f \leq g$ then Eq. (3.3) still holds.
3. The integral enjoys the following continuity properties.
a) MCT: the monotone convergence theorem holds; if $0 \leq f_{n} \uparrow f$ then
$\uparrow \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{d}} f_{n} d m_{d}=\int_{\mathbb{R}^{d}} f d m_{d}$ (with ∞ allowed as a possible value).
Example 1: If $\left\{A_{n}\right\}_{n=1}^{\infty}$ is a sequence of subsets of \mathbb{R}^{d} such that $A_{n} \uparrow A$ (i.e. $A_{n} \subset A_{n+1}$ for all n and $A=\cup_{n=1}^{\infty} A_{n}$), then

$$
m_{d}\left(A_{n}\right)=\int_{\mathbb{R}^{d}} 1_{A_{n}} d m_{d} \uparrow \int_{\mathbb{R}^{d}} 1_{A} d m_{d}=m_{d}(A) \text { as } n \rightarrow \infty
$$

Example 2: If $g_{n}: \mathbb{R}^{d} \rightarrow[0, \infty]$ for $n \in \mathbb{N}$ then

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} \sum_{n=1}^{\infty} g_{n} & =\int_{\mathbb{R}^{d}} \lim _{N \rightarrow \infty} \sum_{n=1}^{N} g_{n}=\lim _{N \rightarrow \infty} \int_{\mathbb{R}^{d}} \sum_{n=1}^{N} g_{n} \\
& =\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \int_{\mathbb{R}^{d}} g_{n}=\sum_{n=1}^{\infty} \int_{\mathbb{R}^{d}} g_{n}
\end{aligned}
$$

b) DCT: the dominated convergence theorem holds, if $f_{n}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ are functions dominating by a function $G \in L^{1}\left(m_{d}\right)$ is the sense that $\left|f_{n}(x)\right| \leq G(x)$ for all $x \in \mathbb{R}^{d}$. Then assuming that $f(x)=$ $\lim _{n \rightarrow \infty} f_{n}(x)$ exists for a.e. $x \in \mathbb{R}^{d}$, we may conclude that

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{d}} f_{n} d m_{d}=\int_{\mathbb{R}^{d}} \lim _{n \rightarrow \infty} f_{n} d m_{d}=\int_{\mathbb{R}^{d}} f d m_{d}
$$

Example: If $\left\{g_{n}\right\}_{n=1}^{\infty}$ is a sequence of real valued random variables such that

$$
\int_{\mathbb{R}^{d}} \sum_{n=1}^{\infty}\left|g_{n}\right|=\sum_{n=1}^{\infty} \int_{\mathbb{R}^{d}}\left|g_{n}\right|<\infty
$$

then; 1) $G:=\sum_{n=1}^{\infty}\left|g_{n}\right|<\infty$ a.e. and hence $\sum_{n=1}^{\infty} g_{n}=$ $\lim _{N \rightarrow \infty} \sum_{n=1}^{N} g_{n}$ exist a.e., 2) $\left|\sum_{n=1}^{N} g_{n}\right| \leq G$ and $\int_{\mathbb{R}^{d}} G<\infty$, and so 3) by DCT,

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} \sum_{n=1}^{\infty} g_{n} & =\int_{\mathbb{R}^{d}} \lim _{N \rightarrow \infty} \sum_{n=1}^{N} g_{n}=\lim _{N \rightarrow \infty} \int_{\mathbb{R}^{d}} \sum_{n=1}^{N} g_{n} \\
& =\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \int_{\mathbb{R}^{d}} g_{n}=\sum_{n=1}^{\infty} \int_{\mathbb{R}^{d}} g_{n}
\end{aligned}
$$

c) Fatou's Lemma (*Optional): if $0 \leq f_{n} \leq \infty$, then

$$
\int_{\mathbb{R}^{d}}\left[\liminf _{n \rightarrow \infty} f_{n}\right] \leq \liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{d}} f_{n} d m_{d}
$$

This may be proved as an application of MCT.
4. Tonelli's theorem; if $f: \mathbb{R}^{d} \rightarrow[0, \infty]$, then for any $i \in[d]$,

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} f d m_{d} & =\int_{\mathbb{R}^{d-1}} \bar{f} d m_{d-1} \text { where } \\
\bar{f}\left(x_{1}, \ldots, \hat{x}_{i}, \ldots x_{d}\right) & :=\int_{\mathbb{R}} f\left(x_{1}, \ldots, x_{i}, \ldots x_{d}\right) d x_{i} .
\end{aligned}
$$

5. Fubini's theorem; if $f \in L^{1}\left(m_{d}\right)$ then the previous formula still hold.

6 . For our purposes, by repeated use of use of items 4. and 5 . we may compute $\int_{\mathbb{R}^{d}} f d m_{d}$ in terms of iterated integrals in any order we prefer. In more detail if $\sigma \in \Sigma_{d}$ is any permutation of $[d]$, then

$$
\int_{\mathbb{R}^{d}} f d m_{d}=\int_{\mathbb{R}} d x_{\sigma(1)} \cdots \int_{\mathbb{R}} d x_{\sigma(d)} f\left(x_{1}, \ldots, x_{d}\right)
$$

provided either that $f \geq 0$ or

$$
\int_{\mathbb{R}} d x_{\sigma(1)} \cdots \int_{\mathbb{R}} d x_{\sigma(d)}\left|f\left(x_{1}, \ldots, x_{d}\right)\right|=\int_{\mathbb{R}^{d}}|f| d m_{d}<\infty
$$

This fact coupled with item 2a. will basically allow us to understand most integrals appearing in this course.
Notation 3.3 For $A \subset \mathbb{R}^{d}$, we let

$$
\int_{A} f d m_{d}:=\int_{\mathbb{R}^{d}} 1_{A} f d m_{d}
$$

Also when $d=1$ and $-\infty \leq s<t \leq \infty$, we write

$$
\int_{s}^{t} f d m_{1}=\int_{(s, t)} f d m_{1}=\int_{\mathbb{R}} 1_{(s, t)} f d m_{1}
$$

and (as usual in Riemann integration theory)

$$
\int_{t}^{s} f d m_{1}:=-\int_{s}^{t} f d m_{1}
$$

Example 3.4. Here is a MCT example,

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{1}{1+t^{2}} d t=\int_{-\infty}^{\infty} \lim _{n \rightarrow \infty} 1_{[-n, n]}(t) \frac{1}{1+t^{2}} d t \\
& \stackrel{M C T}{=} \lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} 1_{[-n, n]}(t) \frac{1}{1+t^{2}} d t=\lim _{n \rightarrow \infty} \int_{-n}^{n} \frac{1}{1+t^{2}} d t \\
&=\lim _{n \rightarrow \infty}\left[\tan ^{-1}(n)-\tan ^{-1}(-n)\right]=\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)=\pi
\end{aligned}
$$

Example 3.5. Similarly for any $x>0$,

$$
\begin{align*}
\int_{0}^{\infty} e^{-t x} d t & =\int_{-\infty}^{\infty} \lim _{n \rightarrow \infty} 1_{[0, n]}(t) e^{-t x} d t \stackrel{M C T}{=} \lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} 1_{[0, n]}(t) e^{-t x} d t \\
& =\lim _{n \rightarrow \infty} \int_{0}^{n} e^{-t x} d t=\left.\lim _{n \rightarrow \infty} \frac{-1}{x} e^{-t x}\right|_{t=0} ^{n}=\frac{1}{x} \tag{3.4}
\end{align*}
$$

Example 3.6. Here is a DCT example,

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} \frac{1}{1+t^{2}} \sin \left(\frac{t}{n}\right) d t=\int_{-\infty}^{\infty} \lim _{n \rightarrow \infty} \frac{1}{1+t^{2}} \sin \left(\frac{t}{n}\right) d t=\int_{\mathbb{R}} 0 d m=0
$$

since

$$
\lim _{n \rightarrow \infty} \frac{1}{1+t^{2}} \sin \left(\frac{t}{n}\right)=0 \text { for all } t \in \mathbb{R}
$$

and

$$
\left|\frac{1}{1+t^{2}} \sin \left(\frac{t}{n}\right)\right| \leq \frac{1}{1+t^{2}} \text { with } \int_{\mathbb{R}} \frac{1}{1+t^{2}} d t<\infty
$$

Example 3.7. In this example we will show

$$
\begin{equation*}
\lim _{M \rightarrow \infty} \int_{0}^{M} \frac{\sin x}{x} d x=\pi / 2 \tag{3.5}
\end{equation*}
$$

Let us first note that $\left|\frac{\sin x}{x}\right| \leq 1$ for all x and hence by DCT,

$$
\int_{0}^{M} \frac{\sin x}{x} d x=\lim _{\varepsilon \downarrow 0} \int_{\varepsilon}^{M} \frac{\sin x}{x} d x
$$

Moreover making use of Eq. (3.4), if $0<\varepsilon<M<\infty$, then by Fubini's theorem, DCT, and FTC (Fundamental Theorem of Calculus) that

$$
\begin{align*}
\int_{\varepsilon}^{M} \frac{\sin x}{x} d x & =\int_{\varepsilon}^{M}\left[\lim _{N \rightarrow \infty} \int_{0}^{N} e^{-t x} \sin x d t\right] d x \quad(\mathrm{DCT}) \\
& =\lim _{N \rightarrow \infty} \int_{\varepsilon}^{M} d x \int_{0}^{N} d t e^{-t x} \sin x \quad(\mathrm{DCT}) \\
& =\lim _{N \rightarrow \infty} \int_{0}^{N} d t \int_{\varepsilon}^{M} d x e^{-t x} \sin x \quad(\text { Fubini }) \\
& =\lim _{N \rightarrow \infty} \int_{0}^{N} d t\left[\frac{1}{1+t^{2}}(-\cos x-t \sin x) e^{-t x}\right]_{x=\varepsilon}^{x=M} \tag{FTC}\\
& =\int_{0}^{\infty} d t\left[\frac{1}{1+t^{2}}(-\cos x-t \sin x) e^{-t x}\right]_{x=\varepsilon}^{x=M} \tag{DCT}
\end{align*}
$$

Since

$$
\left[\frac{1}{1+t^{2}}(-\cos x-t \sin x) e^{-t x}\right]_{x=\varepsilon}^{x=M} \rightarrow \frac{1}{1+t^{2}} \text { as } M \uparrow \infty \text { and } \varepsilon \downarrow 0
$$

we may again apply DCT with $G(t)=\frac{1}{1+t^{2}}$ being the dominating function in order to show

$$
\begin{aligned}
& \int_{0}^{M} \frac{\sin x}{x} d x=\lim _{\varepsilon \downarrow 0} \int_{\varepsilon}^{M} \frac{\sin x}{x} d x=\lim _{\varepsilon \downarrow 0} \int_{0}^{\infty} d t\left[\frac{1}{1+t^{2}}(-\cos x-t \sin x) e^{-t x}\right]_{x=\varepsilon}^{x=M} \\
& \quad \stackrel{D C T}{=} \int_{0}^{\infty} d t\left[\frac{1}{1+t^{2}}(-\cos x-t \sin x) e^{-t x}\right]_{x=0}^{x=M} \\
& \quad \stackrel{D C T}{M \rightarrow \infty} \int_{0}^{\infty} \frac{1}{1+t^{2}} d t=\frac{\pi}{2}
\end{aligned}
$$

Theorem 3.8 (Linear Change of Variables Theorem). If $T \in G L(d, \mathbb{R})=$ $G L\left(\mathbb{R}^{d}\right)$ - the space of $d \times d$ invertible matrices, then the change of variables formula,

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} f d m_{d}=|\operatorname{det} T| \int_{\mathbb{R}^{d}} f \circ T d m_{d} \tag{3.6}
\end{equation*}
$$

holds for all Riemann integrable functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.
Proof. From Exercise 3.6 below, we know that Eq. (3.6) is valid whenever T is an elementary matrix. From the elementary theory of row reduction in linear algebra, every matrix $T \in G L\left(\mathbb{R}^{d}\right)$ may be expressed as a finite product of the "elementary matrices", i.e. $T=T_{1} \circ T_{2} \circ \cdots \circ T_{n}$ where the T_{i} are elementary matrices. From these assertions we may conclude that
$\int_{\mathbb{R}^{d}} f \circ T d m_{d}=\int_{\mathbb{R}^{d}} f \circ T_{1} \circ T_{2} \circ \cdots \circ T_{n} d m_{d}=\frac{1}{\left|\operatorname{det} T_{n}\right|} \int_{\mathbb{R}^{d}} f \circ T_{1} \circ T_{2} \circ \cdots \circ T_{n-1} d m_{d}$.

Repeating this procedure $n-1$ more times (i.e. by induction), we find,

$$
\int_{\mathbb{R}^{d}} f \circ T d m_{d}=\frac{1}{\left|\operatorname{det} T_{n}\right| \ldots\left|\operatorname{det} T_{1}\right|} \int_{\mathbb{R}^{d}} f d m_{d}
$$

Finally we use,

$$
\left|\operatorname{det} T_{n}\right| \ldots\left|\operatorname{det} T_{1}\right|=\left|\operatorname{det} T_{n} \ldots \operatorname{det} T_{1}\right|=\left|\operatorname{det}\left(T_{1} T_{2} \ldots T_{n}\right)\right|=|\operatorname{det} T|
$$

in order to complete the proof.

3.1 Exercises

Exercise 3.1. Find the value of the following integral;

$$
I:=\int_{1}^{9} d y \int_{\sqrt{y}}^{3} d x x e^{y} .
$$

Hint: use Tonelli's theorem to change the order of integrations.
Exercise 3.2. Write the following iterated integral

$$
I:=\int_{0}^{1} d x \int_{y=x^{2 / 3}}^{1} d y x e^{y^{4}}
$$

as a multiple integral and use this to change the order of integrations and then compute I.

For the next three exercises let

$$
B(0, r):=\left\{x \in \mathbb{R}^{d}:\|x\|=\sqrt{\sum_{i=1}^{d} x_{i}^{2}}<r\right\}
$$

be the d-dimensional ball of radius r and let

$$
V_{d}(r):=m_{d}(B(0, r))=\int_{\mathbb{R}^{d}} 1_{B(0, r)} d m_{d}
$$

be its volume. For example,

$$
V_{1}(r)=m_{1}((-r, r))=\int_{-r}^{r} d x=2 r
$$

Exercise 3.3. Suppose that $d=2$, show $m_{2}(B(0, r))=\pi r^{2}$.

Exercise 3.4. Suppose that $d=3$, show $m_{3}(B(0, r))=\frac{4 \pi}{3} r^{3}$.
Exercise 3.5. Let $V_{d}(r):=m_{d}(B(0, r))$. Show for $d \geq 1$ that

$$
V_{d+1}(r)=\int_{-r}^{r} d z \cdot V_{d}\left(\sqrt{r^{2}-z^{2}}\right)=r \int_{-\pi / 2}^{\pi / 2} V_{d}(r \cos \theta) \cos \theta d \theta
$$

Remark 3.9. Using Exercise 3.5 we may deduce again that

$$
\begin{aligned}
& V_{1}(r)=m_{1}((-r, r))=2 r, \\
& V_{2}(r)=r \int_{-\pi / 2}^{\pi / 2} 2 r \cos \theta \cos \theta d \theta=\pi r^{2} \\
& V_{3}(r)=\int_{-r}^{r} d z \cdot V_{2}\left(\sqrt{r^{2}-z^{2}}\right)=\int_{-r}^{r} d z \cdot \pi\left(r^{2}-z^{2}\right)=\frac{4 \pi}{3} r^{3} .
\end{aligned}
$$

In principle we may now compute the volume of balls in all dimensions inductively this way.
Exercise 3.6 (Change of variables for elementary matrices). Let f : $\mathbb{R}^{d} \rightarrow \mathbb{R}$ be a continuous function with compact support. Show by direct calculation that;

$$
\begin{equation*}
|\operatorname{det} T| \int_{\mathbb{R}^{d}} f(T(x)) d x=\int_{\mathbb{R}^{d}} f(y) d y \tag{3.7}
\end{equation*}
$$

for each of the following linear transformations;

1. Suppose that $i<k$ and

$$
T\left(x_{1}, x_{2} \ldots, x_{d}\right)=\left(x_{1}, \ldots, x_{i-1}, x_{k}, x_{i+1} \ldots, x_{k-1}, x_{i}, x_{k+1}, \ldots x_{d}\right)
$$

i.e. T swaps the i and k coordinates of x. [In matrix notation T is the identity matrix with the i and k column interchanged.]
2. $T\left(x_{1}, \ldots x_{k}, \ldots, x_{d}\right)=\left(x_{1}, \ldots, c x_{k}, \ldots x_{d}\right)$ where $c \in \mathbb{R} \backslash\{0\}$. [In matrix notation, $T=\left[e_{1}|\ldots| e_{k-1}\left|c e_{k}\right| e_{k+1}|\ldots| e_{d}\right]$.]
3. $T\left(x_{1}, x_{2} \ldots, x_{d}\right)=\left(x_{1}, \ldots, x_{i}+c x_{k}, \ldots x_{k}, \ldots x_{d}\right)$ where $c \in \mathbb{R}$. [In matrix notation $T=\left[e_{1}|\ldots| e_{i}|\ldots| e_{k}+c e_{i}\left|e_{k+1}\right| \ldots \mid e_{d}\right]$.
Hint: you should use Fubini's theorem along with the one dimensional change of variables theorem.
[To be more concrete here are examples of each of the T appearing above in the special case $d=4$,

1. If $i=2$ and $k=3$ then $T=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.
2. If $k=3$ then $T=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$,
3. If $i=2$ and $k=4$ then

$$
T\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
x_{2}+c x_{4} \\
x_{3} \\
x_{4}
\end{array}\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & c \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)
$$

while if $i=4$ and $k=2$,

$$
T\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}+c x_{2}
\end{array}\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & c & 0 & 1
\end{array}\right]\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) .
$$

3.2 *Appendix: Another approach to the linear change of variables theorem

Let $\langle x, y\rangle$ or $x \cdot y$ denote the standard dot product on \mathbb{R}^{d}, i.e.

$$
\langle x, y\rangle=x \cdot y=\sum_{j=1}^{d} x_{j} y_{j}
$$

Recall that if A is a $d \times d$ real matrix then the transpose matrix, $A^{\text {tr }}$, may be characterized as the unique real $d \times d$ matrix such that

$$
\langle A x, y\rangle=\left\langle x, A^{\operatorname{tr}} y\right\rangle \text { for all } x, y \in \mathbb{R}^{d}
$$

Definition 3.10. A $d \times d$ real matrix, S, is orthogonal iff $S^{\operatorname{tr}} S=I$ or equivalently stated $S^{\operatorname{tr}}=S^{-1}$.

Here are a few basic facts about orthogonal matrices.

1. A $d \times d$ real matrix, S, is orthogonal iff $\langle S x, S y\rangle=\langle x, y\rangle$ for all $x, y \in \mathbb{R}^{d}$.
2. If $\left\{u_{j}\right\}_{j=1}^{d}$ is any orthonormal basis for \mathbb{R}^{d} and S is the $d \times d$ matrix determined by $S e_{j}=u_{j}$ for $1 \leq j \leq d$, then S is orthogonal ${ }^{2}$ Here is a proof for your convenience; if $x, y \in \mathbb{R}^{d}$, then

[^1]\[

$$
\begin{aligned}
\left\langle x, S^{\operatorname{tr}} y\right\rangle & =\langle S x, y\rangle=\sum_{j=1}^{d}\left\langle x, e_{j}\right\rangle\left\langle S e_{j}, y\right\rangle=\sum_{j=1}^{d}\left\langle x, e_{j}\right\rangle\left\langle u_{j}, y\right\rangle \\
& =\sum_{j=1}^{d}\left\langle x, S^{-1} u_{j}\right\rangle\left\langle u_{j}, y\right\rangle=\left\langle x, S^{-1} y\right\rangle
\end{aligned}
$$
\]

from which it follows that $S^{\operatorname{tr}}=S^{-1}$.
3. If S is orthogonal, then $1=\operatorname{det} I=\operatorname{det}\left(S^{\operatorname{tr}} S\right)=\operatorname{det} S^{\operatorname{tr}} \cdot \operatorname{det} S=(\operatorname{det} S)^{2}$ and hence $\operatorname{det} S= \pm 1$.

The following lemma is a special case the well known singular value decomposition or SVD for short..

Lemma 3.11 (SVD). If T is a real $d \times d$ matrix, then there exists $D=$ $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d} \geq 0$ and two orthogonal matrices R and S such that $T=R D S$. Further observe that $|\operatorname{det} T|=\operatorname{det} D=\lambda_{1} \ldots \lambda_{d}$.

Proof. Since $T^{\operatorname{tr}} T$ is symmetric, by the spectral theorem there exists an orthonormal basis $\left\{u_{j}\right\}_{j=1}^{d}$ of \mathbb{R}^{d} and $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d} \geq 0$ such that $T^{\operatorname{tr}} T u_{j}=\lambda_{j}^{2} u_{j}$ for all j. In particular we have

$$
\left\langle T u_{j}, T u_{k}\right\rangle=\left\langle T^{\operatorname{tr}} T u_{j}, u_{k}\right\rangle=\lambda_{j}^{2} \delta_{j k} \forall 1 \leq j, k \leq d
$$

Case where $\operatorname{det} T \neq 0$. In this case $\lambda_{1} \ldots \lambda_{d}=\operatorname{det} T^{\operatorname{tr}} T=(\operatorname{det} T)^{2}>0$ and so $\lambda_{d}>0$. It then follows that $\left\{v_{j}:=\frac{1}{\lambda_{j}} T u_{j}\right\}_{j=1}^{d}$ is an orthonormal basis for \mathbb{R}^{d}. Let us further let $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ (i.e. $D e_{j}=\lambda_{j} e_{j}$ for $1 \leq j \leq d$) and R and S be the orthogonal matrices defined by

$$
R e_{j}=v_{j} \text { and } S^{\operatorname{tr}} e_{j}=S^{-1} e_{j}=u_{j} \text { for all } 1 \leq j \leq d
$$

Combining these definitions with the identity, $T u_{j}=\lambda_{j} v_{j}$, implies

$$
T S^{-1} e_{j}=\lambda_{j} R e_{j}=R \lambda_{j} e_{j}=R D e_{j} \text { for all } 1 \leq j \leq d
$$

i.e. $T S^{-1}=R D$ or equivalently $T=R D S$.

Case where $\operatorname{det} T=0$. In this case there exists $1 \leq k<d$ such that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}>0=\lambda_{k+1}=\cdots=\lambda_{d}$. The only modification needed for the above proof is to define $v_{j}:=\frac{1}{\lambda_{j}} T u_{j}$ for $j \leq k$ and then extend choose $v_{k+1}, \ldots, v_{d} \in \mathbb{R}^{d}$ so that $\left\{v_{j}\right\}_{j=1}^{d}$ is an orthonormal basis for \mathbb{R}^{d}. We still have $T u_{j}=\lambda_{j} v_{j}$ for all j and so the proof in the first case goes through without change.

In the next theorem we will make use the characterization of m_{d} that it is the unique measure on $\left(\mathbb{R}^{d}\right)$ which is translation invariant assigns unit measure to $[0,1]^{d}$.

Theorem 3.12. If T is a real $d \times d$ matrix, then $m_{d} \circ T=|\operatorname{det} T| m_{d}$.

Proof. Recall that we know $m_{d} T=\delta(T) m_{d}$ for some $\delta(T) \in(0, \infty)$ and so we must show $\delta(T)=|\operatorname{det} T|$. We first consider two special cases.

1. If $T=R$ is orthogonal and B is the unit ball in $\mathbb{R}^{d}{ }^{3}$ then $\delta(R) m_{d}(B)=$ $m_{d}(R B)=m_{d}(B)$ from which it follows $\delta(R)=1=|\operatorname{det} R|$.
2. If $T=D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ with $\lambda_{i} \geq 0$, then $D[0,1]^{d}=\left[0, \lambda_{1}\right] \times \cdots \times$ $\left[0, \lambda_{d}\right]$ so that

$$
\delta(D)=\delta(D) m_{d}\left([0,1]^{d}\right)=m_{d}\left(D[0,1]^{d}\right)=\lambda_{1} \ldots \lambda_{d}=\operatorname{det} D
$$

3. For the general case we use singular value decomposition (Lemma 3.11) to write $T=R D S$ and then find

$$
\delta(T)=\delta(R) \delta(D) \delta(S)=1 \cdot \operatorname{det} D \cdot 1=|\operatorname{det} T|
$$

[^2]
Properties of Volumes

The goal of this short chapter is to show how computing volumes naturally gives rise to the idea of the key objects of this book, namely differential forms, i.e. alternating tensors. The point is that these objects are intimately related to computing areas and volumes.

Let $Q^{n}:=\left\{x \in \mathbb{R}^{n}: 0 \leq t_{j} \leq 1 \forall j\right\}=[0,1]^{n}$ be the unit cube in \mathbb{R}^{n} which we I think all agree should have volume equal to 1 . For n-vectors, $a_{1}, \ldots, a_{n} \in$ \mathbb{R}^{n}, let

$$
P\left(a_{1}, \ldots, a_{n}\right)=\left[a_{1}|\ldots| a_{n}\right] Q=\left\{\sum_{j=1}^{n} t_{j} a_{j}: 0 \leq t_{j} \leq 1 \forall j\right\}
$$

be the parallelepiped spanned by $\left(a_{1}, \ldots, a_{n}\right)$ and let

$$
\delta\left(a_{1}, \ldots, a_{n}\right)=" \text { signed" } \operatorname{Vol}\left(P\left(v_{1}, \ldots, v_{n}\right)\right)
$$

be the signed volume of the parallelepiped. To find the properties of this volume, let us fix $\left\{a_{i}\right\}_{i=1}^{n-1}$ and consider the function, $F\left(a_{n}\right)=\delta\left(a_{1}, \ldots, a_{n}\right)$. This is easily computed using the formula of a slant cylinder, see Figure 4.1, as

$$
\begin{equation*}
F\left(a_{n}\right)=\delta\left(a_{1}, \ldots, a_{n}\right)= \pm(\text { Area of base }) \cdot \mathbf{n} \cdot a_{n} \tag{4.1}
\end{equation*}
$$

where \mathbf{n} is a unit vector orthogonal to $\left\{a_{1}, \ldots, a_{n-1}\right\}$.
Example 4.1. When $n=2$, let us first verify Eq. 4.1) in this case by considering

$$
\delta\left(a e_{1}, b\right)=\int_{0}^{b_{2}}[\text { slice width }]_{h} d h=\int_{0}^{b_{2}} a d h=a\left(b \cdot e_{2}\right) .
$$

The sign in Eq. 4.1 is positive if $\left(a_{1}, \ldots, a_{n-1}, \mathbf{n}\right)$ is "positively oriented," think of the right hand rule in dimensions 2 and 3 . This show $a_{n} \rightarrow$ $\delta\left(a_{1}, \ldots, a_{n-1}, a_{n}\right)$ is a linear function. A similar argument shows

$$
a_{j} \rightarrow \delta\left(a_{1}, \ldots, a_{j}, \ldots, a_{n}\right)
$$

is linear as well. That is δ is a "multi-linear function" of its arguments. We further have that $\delta\left(a_{1}, \ldots, a_{n}\right)=0$ if $a_{i}=a_{j}$ for any $i \neq j$ as the parallelepiped generated by $\left(a_{1}, \ldots, a_{n}\right)$ is degenerate and zero volume. We summarize these

Fig. 4.1. The volume of a slant cylinder is it's height, $\mathbf{n} \cdot a_{n}$.
two properties by saying δ is an alternating multi-linear n-function on \mathbb{R}^{n}. Lastly as $P\left(e_{1}, \ldots e_{n}\right)=Q$ we further have that

$$
\begin{equation*}
\delta\left(e_{1}, \ldots, e_{n}\right)=1 \tag{4.2}
\end{equation*}
$$

Fact 4.2 We are going to show there is precisely one alternating multi-linear n-function, δ, on \mathbb{R}^{n} such that Eq. (4.2) holds. This function is in fact the function you know and the determinant.

Example 4.3 ($n=1$ Det). When $n=1$ we must have $\delta([a])= \pm a$, we choose a by convention.
Example 4.4 ($n=2$ Det). When $n=2$, we find

$$
\begin{aligned}
\delta(a, b) & =\delta\left(a_{1} e_{1}+a_{2} e_{2}, b\right)=a_{1} \delta\left(e_{1}, b\right)+a_{2} \delta\left(e_{2}, b\right) \\
& =a_{1} \delta\left(e_{1}, b_{1} e_{1}+b_{2} e_{2}\right)+a_{2} \delta\left(e_{2}, b_{1} e_{1}+b_{2} e_{2}\right) \\
& =a_{1} b_{2} \delta\left(e_{1}, e_{2}\right)+a_{2} b_{1} \delta\left(e_{2}, e_{1}\right)=a_{1} b_{2}-a_{2} b_{1} \\
& =\operatorname{det}[a \mid b] .
\end{aligned}
$$

We now proceed to develop the theory of alternating multilinear functions in general.

Multi-linear Functions (Tensors)

For the rest of these notes, V will denote a real vector space. Typically we will assume that $n=\operatorname{dim} V<\infty$.

Example 5.1. $V=\mathbb{R}^{n}$, subspaces of \mathbb{R}^{n}, polynomials of degree $<n$. The most general overarching vector space is typically

$$
V=\mathcal{F}(X, \mathbb{R})=\{\text { all functions from } X \text { to } \mathbb{R}\}
$$

An interesting subspace is the space of finitely supported functions,

$$
\mathcal{F}_{f}(X, \mathbb{R})=\{f \in \mathcal{F}(X, \mathbb{R}): \#(\{f \neq 0\})<\infty\}
$$

where

$$
\{f \neq 0\}=\{x \in X: f(x) \neq 0\}
$$

5.1 Basis and Dual Basis

Definition 5.2. Let V^{*} denote the dual space of V, i.e. the vector space of all linear functions, $\ell: V \rightarrow \mathbb{R}$.

Example 5.3. Here are some examples;

1. If $V=\mathbb{R}^{n}$, then $\ell(v)=w \cdot v=w^{\operatorname{tr}} v$ for $w \in V$ is in V^{*}.
2. $V=$ polynomials of $\operatorname{deg}<n$ is a vector space and $\ell_{0}(p)=p(0)$ or $\ell(p)=$ $\int_{-1}^{1} p(x) d x$ given $\ell \in V^{*}$.
3. For $\left\{a_{j}\right\}_{j=1}^{p} \subset \mathbb{R}$ and $\left\{x_{j}\right\}_{j=1}^{p} \subset X$, let $\ell(f)=\sum_{j=1}^{p} a_{j} f\left(x_{j}\right)$, then $\ell \in$ $\mathcal{F}(X, \mathbb{R})^{*}$ 。

Notation 5.4 Let $\beta:=\left\{e_{j}\right\}_{j=1}^{n}$ be a basis for V and $\beta^{*}:=\left\{\varepsilon_{j}\right\}_{j=1}^{n}$ be its dual basis, i.e.

$$
\varepsilon_{j}\left(\sum_{i=1}^{n} a_{i} e_{i}\right):=a_{j} \text { for all } j
$$

The book denotes ε_{j} as e_{j}^{*}. In case, $V=\mathbb{R}^{n}$ and $\left\{e_{j}\right\}_{j=1}^{n}$ is the standard basis, we will later write $d x_{j}$ for $\varepsilon_{j}=e_{j}^{*}$.

Example 5.5. If $V=\mathbb{R}^{n}$ and $\beta=\left\{e_{i}\right\}_{i=1}^{n}$ is the standard basis for \mathbb{R}^{n}, then $\varepsilon_{i}(v)=e_{i} \cdot v=e_{i}^{\operatorname{tr}} v$ for $1 \leq i \leq n$ is the dual basis to β.

Example 5.6. If V denotes polynomials of degree $<n$, with basis $e_{j}(x)=x^{j}$ for $0 \leq j<n$, then $\varepsilon_{j}(p):=\frac{1}{j!} p^{(j)}(0)$ is the associated dual basis.

Example 5.7. For $x \in X$, let $\delta_{x} \in \mathcal{F}_{f}(X, \mathbb{R})$ be defined by

$$
\delta_{x}(y)=1_{\{x\}}(y)=\left\{\begin{array}{l}
1 \text { if } y=x \\
0 \text { if } y \neq x
\end{array}\right.
$$

One may easily show that $\left\{\delta_{x}\right\}_{x \in X}$ is a basis for $\mathcal{F}_{f}(X, \mathbb{R})$ and for $f \in$ $\mathcal{F}_{f}(X, \mathbb{R})$,

$$
f=\sum_{x: f(x) \neq 0} f(x) \delta_{x}
$$

The dual basis ideas are complicated in this case when X is an infinite set as Vaki mentioned in section. We will not consider such "infinite dimensional" problems in these notes.

Proposition 5.8. Continuing the notation above, then

$$
\begin{align*}
v & =\sum_{j=1}^{n} \varepsilon_{j}(v) e_{j} \quad \text { for all } v \in V, \text { and } \tag{5.1}\\
\ell & =\sum_{j=1}^{n} \ell\left(e_{j}\right) \varepsilon_{j} \quad \text { for all } \ell \in V^{*} \tag{5.2}
\end{align*}
$$

Moreover, β^{*}, is indeed a basis for V^{*}.
Proof. Because $\left\{e_{j}\right\}$ is a basis, we know that $v=\sum_{j=1}^{n} a_{j} e_{j}$. Applying ε_{k} to this formula shows

$$
\varepsilon_{k}(v)=\sum_{j=1}^{n} a_{j} \varepsilon_{k}\left(e_{j}\right)=a_{k}
$$

and hence Eq. 5.1 holds. Now apply ℓ to Eq. 5.1) to find,

$$
\ell(v)=\sum_{j=1}^{n} \varepsilon_{j}(v) \ell\left(e_{j}\right)=\sum_{j=1}^{n} \ell\left(e_{j}\right) \varepsilon_{j}(v)=\left(\sum_{j=1}^{n} \ell\left(e_{j}\right) \varepsilon_{j}\right)(v)
$$

which proves Eq. 5.2 . From Eq. 5.2 we know that $\left\{\varepsilon_{j}\right\}_{j=1}^{n}$ spans V^{*}. Moreover if

$$
\mathbf{0}=\sum_{j=1}^{n} a_{j} \varepsilon_{j} \Longrightarrow 0=\mathbf{0}\left(e_{k}\right)=\sum_{j=1}^{n} a_{j} \varepsilon_{j}\left(e_{k}\right)=a_{k}
$$

which shows $\left\{\varepsilon_{j}\right\}_{j=1}^{n}$ is linearly independent.
Exercise 5.1. Let $V=\mathbb{R}^{n}$ and $\beta=\left\{u_{j}\right\}_{j=1}^{n}$ be a basis for \mathbb{R}^{n}. Recall that every $\ell \in\left(\mathbb{R}^{n}\right)^{*}$ is of the form $\ell_{a}(x)=a \cdot x$ for some $a \in \mathbb{R}^{n}$. Thus the dual basis, β^{*}, to β can be written as $\left\{u_{j}^{*}=\ell_{a_{j}}\right\}_{j=1}^{n}$ for some $\left\{a_{j}\right\}_{j=1}^{n} \subset \mathbb{R}^{n}$. In this problem you are asked to show how to find the $\left\{a_{j}\right\}_{j=1}^{n}$ by the following steps.

1. Show that for $j \in[n], a_{j}$ must solve the following k-linear equations;

$$
\begin{equation*}
\delta_{j, k}=\ell_{a_{j}}\left(u_{k}\right)=a_{j} \cdot u_{k}=u_{k}^{\operatorname{tr}} a_{j} \text { for } k \in[n] . \tag{5.3}
\end{equation*}
$$

2. Let $U:=\left[u_{1}|\ldots| u_{n}\right]$ (i.e. the columns of U are the vectors from β). Show that the equations in 5.3 may be written in matrix form as, $U^{\operatorname{tr}} a_{j}=e_{j}$, where $\left\{e_{j}\right\}_{j=1}^{n}$ is the standard basis for \mathbb{R}^{n}.
3. Conclude that $a_{j}=\left[U^{\mathrm{tr}}\right]^{-1} e_{j}$ or equivalently;

$$
\left[a_{1}|\ldots| a_{n}\right]=\left[U^{\operatorname{tr}}\right]^{-1}
$$

Exercise 5.2. Let $V=\mathbb{R}^{2}$ and $\beta=\left\{u_{1}, u_{2}\right\}$, where

$$
u_{1}=\left[\begin{array}{l}
1 \\
3
\end{array}\right] \text { and } u_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Find $a_{1}, a_{2} \in \mathbb{R}^{2}$ explicitly so that explicitly the dual basis $\beta^{*}:=$ $\left\{u_{1}^{*}=\ell_{a_{1}}, u_{2}^{*}=\ell_{a_{2}}\right\}$ is the dual basis to β. Please explicitly verify your answer is correct by showing $u_{j}^{*}\left(u_{k}\right)=\delta_{j k}$.

Exercise 5.3. Let $V=\mathbb{R}^{n},\left\{a_{j}\right\}_{j=1}^{k} \subset V$, and $\ell_{j}(x)=a_{j} \cdot x$ for $x \in \mathbb{R}^{n}$ and $j \in[k]$. Show $\left\{\ell_{j}\right\}_{j=1}^{k} \subset V^{*}$ is a linearly independent set if and only if $\left\{a_{j}\right\}_{j=1}^{k} \subset V$ is a linearly independent set.

Exercise 5.4. Let $V=\mathbb{R}^{n},\left\{a_{j}\right\}_{j=1}^{k} \subset V$, and $\ell_{j}(x)=a_{j} \cdot x$ for $x \in \mathbb{R}^{n}$ and $j \in[k]$. If $\left\{\ell_{j}\right\}_{j=1}^{k} \subset V^{*}$ is a linearly independent set, show there exists $\left\{u_{j}\right\}_{j=1}^{k} \subset V$ so that $\ell_{i}\left(u_{j}\right)=\delta_{i j}$ for $i, j \in[k]$. Here is a possible outline.

1. $T(v, w)=v_{1} w_{3}+v_{1} w_{2}+v_{2} w_{1}+7 v_{1} w_{1}$
2. $T(v, w)=v_{1}+7 v_{1}+v_{2}$.
3. $T(v, w)=v_{1}^{2} w_{3}+v_{2} w_{1}$,
4. $T(v, w)=\sin \left(v_{1} w_{3}+v_{1} w_{2}+v_{2} w_{1}+7 v_{1} w_{1}\right)$.

Theorem 5.12. If $\left\{e_{j}\right\}_{j=1}^{n}$ is a basis for V, then $\left\{\varepsilon_{j_{1}} \otimes \cdots \otimes \varepsilon_{j_{k}}: j_{i} \in[n]\right\}$ is a basis for $\mathcal{L}^{k}(V)$ and moreover if $T \in \mathcal{L}^{k}(V)$, then

$$
\begin{equation*}
T=\sum_{j_{1}, \ldots, j_{k} \in[n]} T\left(e_{j_{1}}, \ldots, e_{j_{k}}\right) \cdot \varepsilon_{j_{1}} \otimes \cdots \otimes \varepsilon_{j_{k}} \tag{5.6}
\end{equation*}
$$

and this decomposition is unique. [One might identify 2-tensors with matrices $\left.\operatorname{via} T \rightarrow A_{i j}:=T\left(e_{i}, e_{j}\right).\right]$

Proof. Given $v_{1}, \ldots, v_{k} \in V$, we know that

$$
v_{i}=\sum_{j_{i}=1}^{n} \varepsilon_{j_{i}}\left(v_{i}\right) e_{j_{i}}
$$

and hence

$$
\begin{aligned}
T\left(v_{1}, \ldots, v_{k}\right) & =T\left(\sum_{j_{1}=1}^{n} \varepsilon_{j_{1}}\left(v_{1}\right) e_{j_{1}}, \ldots, \sum_{j_{k}=1}^{n} \varepsilon_{j_{k}}\left(v_{k}\right) e_{j_{k}}\right) \\
& =\sum_{j_{1}=1}^{n} \cdots \sum_{j_{k}=1}^{n} T\left(\varepsilon_{j_{1}}\left(v_{1}\right) e_{j_{1}}, \ldots, \varepsilon_{j_{k}}\left(v_{k}\right) e_{j_{k}}\right) \\
& =\sum_{j_{1}, \ldots, j_{k} \in[n]} T\left(e_{j_{1}}, \ldots, e_{j_{k}}\right) \varepsilon_{j_{1}}\left(v_{1}\right) \ldots \varepsilon_{j_{k}}\left(v_{k}\right) \\
& =\sum_{j_{1}, \ldots, j_{k} \in[n]} T\left(e_{j_{1}}, \ldots, e_{j_{k}}\right) \varepsilon_{j_{1}} \otimes \cdots \otimes \varepsilon_{j_{k}}\left(v_{1}, \ldots, v_{k}\right) .
\end{aligned}
$$

This verifies that Eq. (5.6) holds and also that

$$
\left\{\varepsilon_{j_{1}} \otimes \cdots \otimes \varepsilon_{j_{k}}: j_{i} \in[n]\right\} \text { spans } \mathcal{L}^{k}(V) .
$$

For linearly independence, if $\left\{a_{j_{1}, \ldots, j_{k}}\right\} \subset \mathbb{R}$ are such that

$$
\mathbf{0}=\sum_{j_{1}, \ldots, j_{k} \in[n]} a_{j_{1}, \ldots, j_{k}} \cdot \varepsilon_{j_{1}} \otimes \cdots \otimes \varepsilon_{j_{k}},
$$

then evaluating this expression at $\left(e_{i_{1}}, \ldots e_{i_{k}}\right)$ shows

$$
\begin{aligned}
0 & =\mathbf{0}\left(e_{i_{1}}, \ldots e_{i_{k}}\right)=\sum_{j_{1}, \ldots, j_{k} \in[n]} a_{j_{1}, \ldots, j_{k}} \cdot \varepsilon_{j_{1}} \otimes \cdots \otimes \varepsilon_{j_{k}}\left(e_{i_{1}}, \ldots e_{i_{k}}\right) \\
& =\sum_{j_{1}, \ldots, j_{k} \in[n]} a_{j_{1}, \ldots, j_{k}} \cdot \varepsilon_{j_{1}}\left(e_{i_{1}}\right) \ldots \varepsilon_{j_{k}}\left(e_{i_{k}}\right) \\
& =\sum_{j_{1}, \ldots, j_{k} \in[n]} a_{j_{1}, \ldots, j_{k}} \cdot \delta_{j_{1}, i_{1}} \ldots \delta_{j_{k}, i_{k}}=a_{i_{1} \ldots, i_{k}}
\end{aligned}
$$

which shows $a_{i_{1} \ldots, i_{k}}=0$ for all indices and completes the proof.
Corollary 5.13. $\operatorname{dim} \mathcal{L}^{k}(V)=n^{k}$.
Definition 5.14. If $S \in \mathcal{L}^{p}(V)$ and $T \in \mathcal{L}^{q}(V)$, then we define $S \otimes T \in$ $\mathcal{L}^{p+q}(V)$ by,

$$
S \otimes T\left(v_{1}, \ldots, v_{p}, w_{1}, \ldots, w_{q}\right)=S\left(v_{1}, \ldots, v_{p}\right) T\left(w_{1}, \ldots, w_{q}\right) .
$$

Definition 5.15. If $A: V \rightarrow W$ is a linear transformation, and $T \in \mathcal{L}^{k}(W)$, then we define the pull back $A^{*} T \in \mathcal{L}^{k}(V)$ by

$$
\begin{gathered}
\left(A^{*} T\right)\left(v_{1}, \ldots, v_{k}\right)=A\left(T v_{1}, \ldots, T v_{k}\right) . \\
V \times \cdots \times V \longrightarrow W \times \cdots \times W \longrightarrow(\mathbb{R} \\
\left(v_{1}, \ldots, v_{k}\right) \longrightarrow\left(A v_{1}, \ldots, A v_{k}\right) \longrightarrow T\left(A v_{1}, \ldots, A v_{k}\right) .
\end{gathered}
$$

It is called pull back since $A^{*}: \mathcal{L}^{k}(W) \rightarrow \mathcal{L}^{k}(V)$ maps the opposite direction of A.

Remark 5.16. As shown in the book the tensor product satisfies

$$
\begin{aligned}
(R \otimes S) \otimes T & =R \otimes(S \otimes T), \\
T \otimes\left(S_{1}+S_{2}\right) & =T \otimes S_{1}+T \otimes S_{2}, \\
\left(S_{1}+S_{2}\right) \otimes T & =S_{1} \otimes T+S_{2} \otimes T,
\end{aligned}
$$

Remark 5.17. The definition of $T_{1} \otimes T_{2}$ and the associated "tensor algebra." [Typically the tensor symbol, \otimes, in mathematics is used to denote the product of two functions which have distinct arguments. Thus if $f: X \rightarrow \mathbb{R}$ and $g: Y \rightarrow \mathbb{R}$ are two functions on the sets X and Y respectively, then $f \otimes g: X \times Y \rightarrow \mathbb{R}$ is defined by

$$
(f \otimes g)(x, y)=f(x) g(y)
$$

In contrast, if $Y=X$ we may also define the more familiar product, $f \cdot g: X \rightarrow$ \mathbb{R}, by

$$
(f \cdot g)(x)=f(x) g(x)
$$

Incidentally, the relationship between these two products is

$$
(f \cdot g)(x)=(f \otimes g)(x, x)
$$

Lemma 5.18. The product, \otimes, defined in the previous remark is associative and distributive over addition. We also have for $\lambda \in \mathbb{R}$, that

$$
\begin{equation*}
(\lambda f) \otimes g=f \otimes(\lambda g)=\lambda \cdot f \otimes g \tag{5.7}
\end{equation*}
$$

That is \otimes satisfies the rules we expect of a "product," i.e. plays nicely with the vector space operations.

Proof. If $h: Z \rightarrow \mathbb{R}$ is another function, then

$$
\begin{aligned}
((f \otimes g) \otimes h)(x, y, z) & =(f \otimes g)(x, y) \cdot h(z)=(f(x) g(y)) h(z) \\
& =f(x)(g(y) h(z))=(f \otimes(g \otimes h))(x, y, z)
\end{aligned}
$$

This shows in general that $(f \otimes g) \otimes h=f \otimes(g \otimes h)$, i.e. \otimes is associative.
Similarly if $Z=Y$, then

$$
\begin{aligned}
(f \otimes(g+h))(x, y) & =f(x) \cdot(g+h)(y)=f(x) \cdot(g(y)+h(y)) \\
& =f(x) \cdot g(y)+f(x) \cdot h(y) \\
& =(f \otimes g)(x, y)+(f \otimes h)(x, y) \\
& =(f \otimes g+f \otimes h)(x, y)
\end{aligned}
$$

from which we conclude that

$$
f \otimes(g+h)=f \otimes g+f \otimes h
$$

Similarly one shows $(f+h) \otimes g=f \otimes g+h \otimes g$ when $Z=X$. These are the distributive rules. The easy proof of Eq. 5.7 is left to the reader.

Alternating Multi-linear Functions

Definition 6.1. $T \in \mathcal{L}^{k}(V)$ is said to be alternating if $T\left(v_{1}, \ldots, v_{k}\right)=$ $-T\left(w_{1}, \ldots, w_{k}\right)$ whenever $\left(w_{1}, \ldots, w_{k}\right)$ is the list $\left(v_{1}, \ldots, v_{k}\right)$ with any two entries interchanged. We denote the subspac \rrbracket^{1} of alternating functions by $\mathcal{A}^{k}(V)$ or by $\Lambda^{k}\left(V^{*}\right)$ with the convention that $\mathcal{A}^{0}(V)=\Lambda^{0}\left(V^{*}\right)=\mathbb{R}$. An element, $T \in \mathcal{A}^{k}(V)=\Lambda^{k}\left(V^{*}\right)$ will be called a k-form.

Remark 6.2. If $f(v, w)$ is a multi-linear function such that $f(v, v)=0$ then for all $v, w \in V$, then

$$
\begin{aligned}
0 & =f(v+w, v+w)=f(v, v)+f(w, w)+f(v, w)+f(w, v) \\
& =f(w, v)+f(v, w) \Longrightarrow f(v, w)=-f(w, v)
\end{aligned}
$$

Conversely, if $f(v, w)=-f(w, v)$ for all v, and w, then $f(v, v)=-f(v, v)$ which shows $f(v, v)=0$.
Lemma 6.3. If $T \in \mathcal{L}^{k}(V)$, then the following are equivalent;

1. T is alternating, i.e. $T \in \Lambda^{k}\left(V^{*}\right)$.
2. $T\left(v_{1}, \ldots, v_{k}\right)=0$ whenever any two distinct entries are equal.
3. $T\left(v_{1}, \ldots, v_{k}\right)=0$ whenever any two consecutive entries are equal.

Proof. 1. $\Longrightarrow 2$. If $v_{i}=v_{j}$ for some $i<j$ and $T \in \Lambda^{k}\left(V^{*}\right)$, then by interchanging the i and j entries we learn that $T\left(v_{1}, \ldots, v_{k}\right)=-T\left(v_{1}, \ldots, v_{k}\right)$ which implies $T\left(v_{1}, \ldots, v_{k}\right)=0$.
2. $\Longrightarrow 3$. This is obvious.
3. \Longrightarrow 1. Applying Remark 6.2 with

$$
f(v, w):=T\left(v_{1}, \ldots, v_{j-1}, v, w, v_{j+2}, \ldots, v_{k}\right)
$$

shows that $T\left(v_{1}, \ldots, v_{k}\right)=-T\left(w_{1}, \ldots, w_{k}\right)$ if $\left(w_{1}, \ldots, w_{k}\right)$ is the list $\left(v_{1}, \ldots, v_{k}\right)$ with the j and $j+1$ entries interchanged. If $\left(w_{1}, \ldots, w_{k}\right)$ is the list $\left(v_{1}, \ldots, v_{k}\right)$ with the $i<j$ entries interchanged, then $\left(w_{1}, \ldots, w_{k}\right)$ can be transformed back to $\left(v_{1}, \ldots, v_{k}\right)$ by an odd number of nearest neighbor interchanges and therefore it follows by what we just proved that

$$
T\left(v_{1}, \ldots, v_{k}\right)=-T\left(w_{1}, \ldots, w_{k}\right)
$$

[^3]For example, to transform

$$
\left(v_{1}, v_{5}, v_{3}, v_{4}, v_{2}, v_{6}\right) \text { back to }\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right),
$$

we transpose v_{5} with its nearest neighbor to the right 2 times to arrive at the list $\left(v_{1}, v_{3}, v_{4}, v_{5}, v_{2}, v_{6}\right)$. We then we transpose v_{2} with its nearest neighbor to the left 3 times to arrive (after a sum total of 5 adjacent transpositions) back to the list $\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right)$. For the general $i<j$ the number of adjacent transposition needed needed is $2(j-i)-1$ which is always odd.

Exercise 6.1. If $T \in \Lambda^{k}\left(V^{*}\right)$, show $T\left(v_{1}, \ldots, v_{k}\right)=0$ whenever $\left\{v_{i}\right\}_{i=1}^{k} \subset V$ are linearly dependent.

A simple consequence of this exercise is the following basic lemma.
Lemma 6.4. If $T \in \Lambda^{k}\left(V^{*}\right)$ with $k>\operatorname{dim} V$, then $T \equiv 0$, i.e. $\Lambda^{k}\left(V^{*}\right)=\{0\}$ for all $k>\operatorname{dim} V$.

At this point we have not given any non-zero examples of alternating forms. The next definition and proposition gives a mechanism for constructing many (in fact a full basis of) alternating forms.

Definition 6.5. For $\ell \in V^{*}$ and $\varphi \in \Lambda^{k}\left(V^{*}\right)$, let $L_{\ell} \varphi$ be the multi-linear $k+1$ - form on V defined by

$$
\left(L_{\ell} \varphi\right)\left(v_{0}, \ldots, v_{k}\right)=\sum_{i=0}^{k}(-1)^{i} \ell\left(v_{i}\right) \varphi\left(v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{k}\right) .
$$

for all $\left(v_{0}, \ldots, v_{k}\right) \in V^{k+1}$.
Proposition 6.6. If $\ell \in V^{*}$ and $\varphi \in \Lambda^{k}\left(V^{*}\right)$, then $\left(L_{\ell} \varphi\right) \in \Lambda^{k+1}\left(V^{*}\right)$.
Proof. We must show $L_{\ell} \varphi$ is alternating. According to Lemma 6.3 it suffices to show $\left(L_{\ell} \varphi\right)\left(v_{0}, \ldots, v_{k}\right)=0$ whenever $v_{j}=v_{j+1}$ for some $0 \leq j<k$. So suppose that $v_{j}=v_{j+1}$, then since φ is alternating

$$
\begin{aligned}
\left(L_{\ell} \varphi\right)\left(v_{0}, \ldots, v_{k}\right) & =\sum_{i=0}^{k}(-1)^{i} \ell\left(v_{i}\right) \varphi\left(v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{k}\right) \\
& =\sum_{i=j}^{j+1}(-1)^{i} \ell\left(v_{i}\right) \varphi\left(v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{k}\right) \\
& =\left[(-1)^{j}+(-1)^{j+1}\right] \ell\left(v_{j}\right) \varphi\left(v_{0}, \ldots, \hat{v}_{j}, \ldots, v_{k}\right)=0 .
\end{aligned}
$$

Proposition 6.7. Let $\left\{e_{i}\right\}_{i=1}^{n}$ be a basis for V and $\left\{\varepsilon_{i}\right\}_{i=1}^{n}$ be its dual basis for V^{*}. Then

$$
\varphi_{j}:=L_{\varepsilon_{j}} L_{\varepsilon_{j+1}} \ldots L_{\varepsilon_{n-1}} \varepsilon_{n} \in \Lambda^{n-j+1}\left(V^{*}\right) \backslash\{0\}
$$

for all $j \in[n]$ and in particular, $\operatorname{dim} \Lambda^{k}\left(V^{*}\right) \geq 1$ for all $0 \leq k \leq n$. [We will see in Theorem 6.33 below that $\operatorname{dim} \Lambda^{k}\left(V^{*}\right)=\binom{n}{k}$ for all $0 \leq k \leq n$.]

Proof. We will show that φ_{j} is not zero by showing that

$$
\varphi_{j}\left(e_{j}, \ldots, e_{n}\right)=1 \text { for all } j \in[n]
$$

This is easily proved by (reverse induction) on j. Indeed, for $j=n$ we have $\varphi_{n}\left(e_{n}\right)=\varepsilon_{n}\left(e_{n}\right)=1$ and for $1 \leq j<n$ we have $\varphi_{j}:=L_{\varepsilon_{j}} \varphi_{j+1}$ so that

$$
\begin{aligned}
\varphi_{j}\left(e_{j}, \ldots, e_{n}\right) & =\sum_{k=j}^{n}(-1)^{k-j} \varepsilon_{j}\left(e_{k}\right) \varphi_{j+1}\left(e_{j}, \ldots, \widehat{e_{k}}, \ldots, e_{n}\right) \\
& =\varphi_{j+1}\left(\widehat{e_{j}}, e_{j+1}, \ldots, e_{n}\right)=\varphi_{j+1}\left(e_{j+1}, \ldots, e_{n}\right)=1
\end{aligned}
$$

wherein we used the induction hypothesis for the last equality. This completes the proof for $j \in[n]$. Finally for $k=0$, we have $\Lambda^{0}\left(V^{*}\right)=\mathbb{R}$ by convention and hence $\operatorname{dim} \Lambda^{0}\left(V^{*}\right)=1$.

Notation 6.8 Fix a basis $\left\{e_{i}\right\}_{i=1}^{n}$ of V with dual basis, $\left\{\varepsilon_{i}\right\}_{i=1}^{n} \subset V^{*}$, and then let

$$
\begin{equation*}
\varphi=\varphi_{1}=L_{\varepsilon_{1}} L_{\varepsilon_{2}} \ldots L_{\varepsilon_{n-1}} \varepsilon_{n} \tag{6.1}
\end{equation*}
$$

Proposition 6.9. When $V=\mathbb{R}^{n}$ and $\left\{e_{j}\right\}_{j=1}^{n}$ is the standard basis for V, then

$$
\begin{equation*}
\varphi\left(a_{1}, \ldots, a_{n}\right)=\operatorname{det}\left[a_{1}|\ldots| a_{n}\right] \forall\left\{a_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{n} \tag{6.2}
\end{equation*}
$$

Proof. Let us note that if

$$
\begin{aligned}
\varphi\left(a_{1}, \ldots, c a_{i}, \ldots, a_{n}\right) & =c \varphi\left(a_{1}, \ldots, a_{n}\right) \text { and } \\
\varphi & \left(a_{1}, \ldots, a_{i}, \ldots, a_{j}+c a_{i}, \ldots, a_{n}\right) \\
& =\varphi\left(a_{1}, \ldots, a_{i}, \ldots, a_{j}, \ldots, a_{n}\right)+c \varphi\left(a_{1}, \ldots, a_{i}, \ldots, a_{i}, \ldots, a_{n}\right) \\
& =\varphi\left(a_{1}, \ldots, a_{n}\right)+c \cdot 0=\varphi\left(a_{1}, \ldots, a_{n}\right)
\end{aligned}
$$

Thus both φ and det behave the same way under column operations and agree with $a_{i}=e_{i}$ which already shows Eq. 6.2 holds when $\left\{a_{i}\right\}_{i=1}^{n}$ are linearly independent. As both sides of Eq. 6.2 are zero when $\left\{a_{i}\right\}_{i=1}^{n=1}$ are linearly dependent, the proof is complete.

Definition 6.10 (Signature of σ). For $\sigma \in \Sigma_{n}$, let

$$
(-1)^{\sigma}:=\varphi\left(e_{\sigma 1}, \ldots, e_{\sigma n}\right)
$$

where φ is as in Notation 6.8. We call $(-1)^{\sigma}$ the sign of the permutation, σ.

Lemma 6.11. If $\sigma \in \Sigma_{n}$, then $(-1)^{\sigma}$ may be computed as $(-1)^{N}$ where N is the number of transposition ξ^{2} needed to bring $(\sigma 1, \ldots, \sigma n)$ back to $(1,2, \ldots, n)$ and so $(-1)^{\sigma}$ does not depend on the choices made in defining $(-1)^{\sigma}$. Moreover, if $\left\{v_{j}\right\}_{j=1}^{n} \subset V$, then

$$
\varphi\left(v_{\sigma 1}, \ldots, v_{\sigma n}\right)=(-1)^{\sigma} \varphi\left(v_{1}, \ldots, v_{d}\right) \forall \sigma \in \Sigma_{n} .
$$

Proof. Straightforward and left to the reader.
Corollary 6.12. If $\sigma \in \Sigma_{n}$ is a transposition, then $(-1)^{\sigma}=-1$.
Proof. This has already been proved in the course of proving Lemma 6.3.
Lemma 6.13. If $\sigma, \tau \in \Sigma_{n}$, then $(-1)^{\sigma \tau}=(-1)^{\sigma}(-1)^{\tau}$ and in particular it follows that $(-1)^{\sigma^{-1}}=(-1)^{\sigma}$.

Proof. Let $v_{j}:=e_{\sigma j}$ for each j, then

$$
\begin{aligned}
(-1)^{\sigma \tau} & :=\varphi\left(e_{\sigma \tau 1}, \ldots, e_{\sigma \tau n}\right)=\varphi\left(v_{\tau 1}, \ldots, v_{\tau n}\right) \\
& =(-1)^{\tau} \varphi\left(v_{1}, \ldots, v_{d}\right)=(-1)^{\tau} \varphi\left(e_{\sigma 1}, \ldots, e_{\sigma d}\right) \\
& =(-1)^{\tau}(-1)^{\sigma} .
\end{aligned}
$$

Lemma 6.14. A multi-linear map, $T \in \mathcal{L}^{k}(V)$, is alternating (i.e. $T \in$ $\left.\mathcal{A}^{k}(V)=\Lambda^{k}\left(V^{*}\right)\right)$ iff

$$
T\left(v_{\sigma 1}, \ldots, v_{\sigma k}\right)=(-1)^{\sigma} T\left(v_{1}, \ldots, v_{k}\right) \text { for all } \sigma \in \Sigma_{k}
$$

${ }^{2} N$ is not unique but $(-1)^{N}=(-1)^{\sigma}$ is unique.

Proof. $(-1)^{\sigma}=(-1)^{N}$ where N is the number of transpositions need to transform σ to the identity permutation. For each of these transpositions produce an interchange of entries of the T function and hence introduce a (-1) factor. Thus in total,

$$
T\left(v_{\sigma 1}, \ldots, v_{\sigma k}\right)=(-1)^{N} T\left(v_{1}, \ldots, v_{k}\right)=(-1)^{\sigma} T\left(v_{1}, \ldots, v_{k}\right) .
$$

The converse direction follows from the simple fact that the sign of a transposition is -1 .

Notation 6.15 (Pull Backs) Let V and W be finite dimensional vector spaces. To each linear transformation, $T: V \rightarrow W$, there is linear transformation, $T^{*}: \Lambda^{k}\left(W^{*}\right) \rightarrow \Lambda^{k}\left(V^{*}\right)$ defined by

$$
\left(T^{*} \varphi\right)\left(v_{1}, \ldots, v_{k}\right):=\varphi\left(T v_{1}, \ldots, T v_{k}\right)
$$

for all $\varphi \in \Lambda^{k}\left(W^{*}\right)$ and $\left(v_{1}, \ldots, v_{k}\right) \in V^{k}$. [We leave to the reader the easy proof that $T^{*} \varphi$ is indeed in $\left.\Lambda^{k}\left(V^{*}\right).\right]$
Exercise 6.2. Let V, W, and Z be three finite dimensional vector spaces and suppose that $V \xrightarrow{T} W \xrightarrow{S} Z$ are linear transformations. Noting that $V \xrightarrow{S T} Z$, show $(S T)^{*}=T^{*} S^{*}$.

6.1 Structure of $\Lambda^{n}\left(V^{*}\right)$ and Determinants

In what follows we will continue to use the notation introduced in Notation 6.8.
Proposition 6.16 (Structure of $\Lambda^{n}\left(V^{*}\right)$). If $\psi \in \Lambda^{n}\left(V^{*}\right)$, then $\psi=$ $\psi\left(e_{1}, \ldots, e_{n}\right) \varphi$ and in particular, $\operatorname{dim} \Lambda^{n}\left(V^{*}\right)=1$. Moreover for any $\left\{v_{j}\right\}_{j=1}^{n} \subset$ V,

$$
\begin{aligned}
\varphi\left(v_{1}, \ldots, v_{n}\right) & =\sum_{\sigma \in \Sigma_{n}}(-1)^{\sigma} \varepsilon_{\sigma 1}\left(v_{1}\right) \ldots \varepsilon_{\sigma n}\left(v_{n}\right) \\
& =\sum_{\sigma \in \Sigma_{n}}(-1)^{\sigma} \varepsilon_{1}\left(v_{\sigma 1}\right) \ldots \varepsilon_{n}\left(v_{\sigma n}\right) .
\end{aligned}
$$

The first equality may be rewritten as

$$
\varphi=\sum_{\sigma \in \Sigma_{n}}(-1)^{\sigma} \varepsilon_{\sigma 1} \otimes \cdots \otimes \varepsilon_{\sigma n}
$$

Proof. Let $\left\{v_{j}\right\}_{j=1}^{n} \subset V$ and recall that

$$
v_{j}=\sum_{k_{j}=1}^{n} \varepsilon_{k_{j}}\left(v_{j}\right) e_{k_{j}} .
$$

Using the fact that ψ is multi-linear and alternating we find,

$$
\begin{aligned}
\psi\left(v_{1}, \ldots, v_{n}\right) & =\sum_{k_{1}, \ldots, k_{n}=1}^{n}\left[\prod_{j=1}^{n} \varepsilon_{k_{j}}\left(v_{j}\right)\right] \psi\left(e_{k_{1}}, \ldots, e_{k_{n}}\right) \\
& =\sum_{\sigma \in \Sigma_{n}}\left[\prod_{j=1}^{n} \varepsilon_{\sigma j}\left(v_{j}\right)\right] \psi\left(e_{\sigma_{1}}, \ldots, e_{\sigma n}\right) \\
& =\sum_{\sigma \in \Sigma_{n}}\left[\prod_{j=1}^{n} \varepsilon_{\sigma j}\left(v_{j}\right)\right](-1)^{\sigma} \psi\left(e_{1}, \ldots, e_{n}\right)
\end{aligned}
$$

while the same computation shows

$$
\begin{aligned}
\varphi\left(v_{1}, \ldots, v_{n}\right) & =\sum_{\sigma \in \Sigma_{n}}\left[\prod_{j=1}^{n} \varepsilon_{\sigma j}\left(v_{j}\right)\right](-1)^{\sigma} \varphi\left(e_{1}, \ldots, e_{n}\right) \\
& =\sum_{\sigma \in \Sigma_{n}}(-1)^{\sigma} \varepsilon_{\sigma 1}\left(v_{1}\right) \ldots \varepsilon_{\sigma n}\left(v_{n}\right)
\end{aligned}
$$

Lastly let us note that

$$
\prod_{j=1}^{n} \varepsilon_{\sigma j}\left(v_{j}\right)=\prod_{j=1}^{n} \varepsilon_{\sigma \sigma^{-1} j}\left(v_{\sigma^{-1} j}\right)=\prod_{j=1}^{n} \varepsilon_{j}\left(v_{\sigma^{-1} j}\right)
$$

so that

$$
\begin{aligned}
\varphi\left(v_{1}, \ldots, v_{n}\right) & =\sum_{\sigma \in \Sigma_{n}} \prod_{j=1}^{n} \varepsilon_{j}\left(v_{\sigma^{-1} j}\right)(-1)^{\sigma} \\
& =\sum_{\sigma \in \Sigma_{n}} \prod_{j=1}^{n} \varepsilon_{j}\left(v_{\sigma^{-1} j}\right)(-1)^{\sigma^{-1}} \\
& =\sum_{\sigma \in \Sigma_{n}} \prod_{j=1}^{n} \varepsilon_{j}\left(v_{\sigma j}\right)(-1)^{\sigma}
\end{aligned}
$$

wherein we have used $\Sigma_{n} \ni \sigma \rightarrow \sigma^{-1} \in \Sigma_{n}$ is a bijection for the last equality.
Exercise 6.3. If $\psi \in \Lambda^{n}\left(V^{*}\right) \backslash\{0\}$, show $\psi\left(v_{1}, \ldots, v_{n}\right) \neq 0$ whenever $\left\{v_{i}\right\}_{i=1}^{n} \subset V$ are linearly independent. [Coupled with Exercise 6.1] it follows that $\psi\left(v_{1}, \ldots, v_{n}\right) \neq 0$ iff $\left\{v_{i}\right\}_{i=1}^{n} \subset V$ are linearly independent.]
Definition 6.17. Suppose that $T: V \rightarrow V$ is a linear map between a finite dimensional vector space, then we define $\operatorname{det} T \in \mathbb{R}$ by the relationship, $T^{*} \psi=$ $\operatorname{det} T \cdot \psi$ where ψ is any non-zero element in $\Lambda^{n}\left(V^{*}\right)$. [The reader should verify that $\operatorname{det} T$ is independent of the choice of $\left.\psi \in \Lambda^{n}\left(V^{*}\right) \backslash\{0\}.\right]$

The next lemma gives a slight variant of the definition of the determinant.
Lemma 6.18. If $\psi \in \Lambda^{n}\left(V^{*}\right) \backslash\{0\},\left\{e_{j}\right\}_{j=1}^{n}$ is a basis for V, and $T: V \rightarrow V$ is a linear transformation, then

$$
\begin{equation*}
\operatorname{det} T=\frac{\psi\left(T e_{1}, \ldots, T e_{n}\right)}{\psi\left(e_{1}, \ldots, e_{n}\right)} \tag{6.3}
\end{equation*}
$$

Proof. Evaluation the identity, $\operatorname{det} T \cdot \psi=T^{*} \psi$, at $\left(e_{1}, \ldots, e_{n}\right)$ shows

$$
\operatorname{det} T \cdot \psi\left(e_{1}, \ldots, e_{n}\right)=\left(T^{*} \psi\right)\left(e_{1}, \ldots, e_{n}\right)=\psi\left(T e_{1}, \ldots, T e_{n}\right)
$$

from which the lemma directly follows.
Corollary 6.19. Let T be as in Definition 6.17 and suppose $\left\{e_{j}\right\}_{j=1}^{n}$ is a basis for V and $\left\{\varepsilon_{j}\right\}_{j=1}^{n}$ is its dual basis, then

$$
\begin{aligned}
\operatorname{det} T & =\sum_{\sigma \in \Sigma_{n}}(-1)^{\sigma} \varepsilon_{1}\left(T e_{\sigma 1}\right) \ldots \varepsilon_{n}\left(T e_{\sigma n}\right) \\
& =\sum_{\sigma \in \Sigma_{n}}(-1)^{\sigma} \varepsilon_{\sigma 1}\left(T e_{1}\right) \ldots \varepsilon_{\sigma n}\left(T e_{n}\right) .
\end{aligned}
$$

Proof. We take $\varphi \in \Lambda^{n}\left(V^{*}\right)$ so that $\varphi\left(e_{1}, \ldots, e_{n}\right)=1$. Since $T^{*} \varphi \in \Lambda^{n}\left(V^{*}\right)$ we have seen that $T^{*} \varphi=\lambda \varphi$ where

$$
\begin{aligned}
\lambda & =\left(T^{*} \varphi\right)\left(e_{1}, \ldots, e_{n}\right)=\varphi\left(T e_{1}, \ldots, T e_{n}\right) \\
& =\sum_{\sigma \in \Sigma_{n}}(-1)^{\sigma} \varepsilon_{\sigma 1}\left(T e_{1}\right) \ldots \varepsilon_{\sigma n}\left(T e_{n}\right) \\
& =\sum_{\sigma \in \Sigma_{n}}(-1)^{\sigma} \varepsilon_{1}\left(T e_{\sigma 1}\right) \ldots \varepsilon_{n}\left(T e_{\sigma n}\right) .
\end{aligned}
$$

Corollary 6.20. Suppose that $S, T: V \rightarrow V$ are linear maps between a finite dimensional vector space, V, then

$$
\operatorname{det}(S T)=\operatorname{det}(S) \cdot \operatorname{det}(T)
$$

Proof. On one hand

$$
(S T)^{*} \varphi=\operatorname{det}(S T) \varphi
$$

On the other using Exercise 6.2 we have

$$
(S T)^{*} \varphi=T^{*}\left(S^{*} \varphi\right)=T^{*}(\operatorname{det} S \cdot \varphi)=\operatorname{det} S \cdot T^{*}(\varphi)=\operatorname{det} S \cdot \operatorname{det} T \cdot \varphi
$$

Comparing the last two equations completes the proof.

6.2 Determinants of Matrices

In this section we will restrict our attention to linear transformations on $V=\mathbb{R}^{n}$ which we identify with $n \times n$ matrices. Also, for the purposes of this section let $\left\{e_{j}\right\}_{j=1}^{n}$ be the standard basis for \mathbb{R}^{n}. Finally recall that the $i^{\text {th }}$ column of A is $v_{i}=\bar{A} e_{i}$ and so we may express A as

$$
A=\left[v_{1}|\ldots| v_{n}\right]=\left[A e_{1}|\ldots| A e_{n}\right]
$$

Proposition 6.21. The function, $A \rightarrow \operatorname{det}(A)$ is the unique alternating multilinear function of the columns of A such that $\operatorname{det}(I)=\operatorname{det}\left[e_{1}|\ldots| e_{n}\right]=1$.

Proof. Let $\psi \in \mathcal{A}^{n}\left(\mathbb{R}^{n}\right) \backslash\{0\}$. Then by Lemma 6.18.

$$
\operatorname{det} A=\frac{\psi\left(A e_{1}, \ldots, A e_{n}\right)}{\psi\left(e_{1}, \ldots, e_{n}\right)}
$$

which shows that $\operatorname{det} A$ is and alternating multi-linear function of the columns of A. We have already seen in Proposition 6.16 that there is only one such function.

Theorem 6.22. If A is a $n \times n$ matrix which we view as a linear transformation on \mathbb{R}^{n}, then;

1. $\operatorname{det} A=\sum_{\sigma \in \Sigma_{n}}(-1)^{\sigma} a_{\sigma 1,1} \ldots a_{\sigma n, n}$,
2. $\operatorname{det} A=\sum_{\sigma \in \sum_{n}}(-1)^{\sigma} a_{1, \sigma 1} \ldots a_{n, \sigma n}$, and
3. $\operatorname{det} A=\operatorname{det} A^{\text {tr }}$.
4. The map $A \rightarrow \operatorname{det} A$ is the unique alternating multilinear function of the rows of A such that $\operatorname{det} I=1$.
Proof. We take $\left\{e_{i}\right\}_{i=1}^{n}$ to be the standard basis for \mathbb{R}^{n} and $\left\{\varepsilon_{i}\right\}_{i=1}^{n}$ be its dual basis. Then by Corollary 6.19,

$$
\begin{aligned}
\operatorname{det} A & =\sum_{\sigma \in \Sigma_{n}}(-1)^{\sigma} \varepsilon_{1}\left(A e_{\sigma 1}\right) \ldots \varepsilon_{n}\left(A e_{\sigma n}\right) \\
& =\sum_{\sigma \in \Sigma_{n}}(-1)^{\sigma} \varepsilon_{\sigma 1}\left(A e_{1}\right) \ldots \varepsilon_{\sigma n}\left(A e_{n}\right)
\end{aligned}
$$

which completes the proof of item 1. and 2. since $\varepsilon_{i}\left(A e_{j}\right)=a_{i, j}$. For item 3 we use item 1 . with A replaced by $A^{\text {tr }}$ to find,

$$
\operatorname{det} A^{\operatorname{tr}}=\sum_{\sigma \in \Sigma_{n}}(-1)^{\sigma}\left(A^{\operatorname{tr}}\right)_{\sigma 1,1} \ldots\left(A^{\operatorname{tr}}\right)_{\sigma n, n}=\sum_{\sigma \in \Sigma_{n}}(-1)^{\sigma} a_{1, \sigma 1} \ldots a_{n, \sigma n} .
$$

This completes the proof item 3 . since the latter expression is equality to $\operatorname{det} A$ by item 2. Finally item 4 . follows from item 3. and Proposition 6.21.

Proposition 6.23. Suppose that $n=n_{1}+n_{2}$ with $n_{i} \in \mathbb{N}$ and T is a $n \times n$ matrix which has the block form,

$$
T=\left[\begin{array}{cc}
A & B \\
0_{n_{2} \times n_{1}} & C
\end{array}\right],
$$

where A is a $n_{1} \times n_{1}-$ matrix, C is a $n_{2} \times n_{2}-m a t r i x$ and B is a $n_{1} \times n_{2}$ matrix. Then

$$
\operatorname{det} T=\operatorname{det} A \cdot \operatorname{det} C
$$

Proof. Fix B and C and consider $\delta(A):=\operatorname{det}\left[\begin{array}{cc}A & B \\ 0_{n_{2} \times n_{1}} & C\end{array}\right]$. Then $\delta \in$ $\Lambda^{n_{1}}\left(\mathbb{R}^{n_{1}}\right)$ and hence

$$
\delta(A)=\delta(I) \cdot \operatorname{det}(A)=\operatorname{det}(A) \cdot \operatorname{det}\left[\begin{array}{cc}
I & B \\
0_{n_{2} \times n_{1}} & C
\end{array}\right] .
$$

By doing standard column operations it follows that

$$
\operatorname{det}\left[\begin{array}{cc}
I & B \\
0_{n_{2} \times n_{1}} & C
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
I & 0_{n_{1} \times n_{2}} \\
0_{n_{2} \times n_{1}} & C
\end{array}\right]=: \tilde{\delta}(C) .
$$

Working as we did with δ we conclude that $\tilde{\delta}(C)=\operatorname{det}[C] \cdot \tilde{\delta}(I)=\operatorname{det} C$. Putting this all together completes the proof.

Next we want to prove the standard cofactor expansion of $\operatorname{det} A$.
Notation 6.24 If A is a $n \times n$ matrix and $1 \leq i, j \leq n$, let $A(i, j)$ denotes A with its $i^{\text {th }}$ row and $j^{\text {th }}-$ column being deleted.

Proposition 6.25 (Co-factor Expansion). If A is a $n \times n$ matrix and $1 \leq$ $j \leq n$, then

$$
\begin{equation*}
\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det}[A(i, j)] \tag{6.4}
\end{equation*}
$$

and similarly if $1 \leq i \leq n$, then

$$
\begin{equation*}
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det}[A(i, j)] \tag{6.5}
\end{equation*}
$$

We refer to Eq. (6.4) as the cofactor expansion along the $j^{\text {th }}-$ column and $E q$. 6.5) as the cofactor expansion along the $i^{\text {th }}-$ row.

Proof. Equation 6.5 follows from Eq. (6.4) with that aid of item 3. of Theorem 6.22. To prove Eq. (6.4), let $A=\left[v_{1}|\ldots| v_{n}\right]$ and for $b \in \mathbb{R}^{n}$ let $b^{(i)}:=b-b_{i} e_{i}$ and then write $v_{j}=\sum_{i=1}^{n} a_{i j} e_{i}$. We then find,

$$
\begin{aligned}
\operatorname{det} A & =\sum_{i=1}^{n} a_{i j} \operatorname{det}\left[v_{1}|\ldots| v_{j-1}\left|e_{i}\right| v_{j+1}|\ldots| v_{n}\right] \\
& =\sum_{i=1}^{n} a_{i j} \operatorname{det}\left[v_{1}^{(i)}|\ldots| v_{j-1}^{(i)}\left|e_{i}\right| v_{j+1}^{(i)}|\ldots| v_{n}^{(i)}\right] \\
& =\sum_{i=1}^{n} a_{i j}(-1)^{j-1} \operatorname{det}\left[e_{i}\left|v_{1}^{(i)}\right| \ldots\left|v_{j-1}^{(i)}\right| v_{j+1}^{(i)}|\ldots| v_{n}^{(i)}\right] \\
& =\sum_{i=1}^{n} a_{i j}(-1)^{j-1}(-1)^{i-1} \operatorname{det}\left[\begin{array}{cc}
1 & 0 \\
0 & A(i, j)
\end{array}\right] \\
& =\sum_{i=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det}[A(i, j)]
\end{aligned}
$$

wherein we have used the determinant changes sign any time one interchanges two columns or two rows.

Example 6.26. Let us illustrate the above proof in the 3×3 case by expanding along the second column. To shorten the notation we we write $\operatorname{det} A=|A|$;

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{12}\left|\begin{array}{lll}
a_{11} & 1 & a_{13} \\
a_{21} & 0 & a_{23} \\
a_{31} & 0 & a_{33}
\end{array}\right|+a_{12}\left|\begin{array}{lll}
a_{11} & 0 & a_{13} \\
a_{21} & 1 & a_{23} \\
a_{31} & 0 & a_{33}
\end{array}\right|+a_{12}\left|\begin{array}{lll}
a_{11} & 0 & a_{13} \\
a_{21} & 0 & a_{23} \\
a_{31} & 1 & a_{33}
\end{array}\right|
$$

where

$$
\begin{aligned}
& \left|\begin{array}{lll}
a_{11} & 1 & a_{13} \\
a_{21} & 0 & a_{23} \\
a_{31} & 0 & a_{33}
\end{array}\right|=\left|\begin{array}{ccc}
0 & 1 & 0 \\
a_{21} & 0 & a_{23} \\
a_{31} & 0 & a_{33}
\end{array}\right|=-\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & a_{21} & a_{23} \\
0 & a_{31} & a_{33}
\end{array}\right|=-\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|=-\operatorname{det} A(1,2), \\
& \left|\begin{array}{lll}
a_{11} & 0 & a_{13} \\
a_{21} & 1 & a_{23} \\
a_{31} & 0 & a_{33}
\end{array}\right|=\left|\begin{array}{ccc}
a_{11} & 0 & a_{13} \\
0 & 1 & 0 \\
a_{31} & 0 & a_{33}
\end{array}\right|=-\left|\begin{array}{ccc}
0 & 1 & 0 \\
a_{11} & 0 & a_{13} \\
a_{31} & 0 & a_{33}
\end{array}\right|=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & a_{11} & a_{13} \\
0 & a_{31} & a_{33}
\end{array}\right|=\operatorname{det}[A(2,2)],
\end{aligned}
$$

and

$$
\left|\begin{array}{lll}
a_{11} & 0 & a_{13} \\
a_{21} & 0 & a_{23} \\
a_{31} & 1 & a_{33}
\end{array}\right|=-\left|\begin{array}{ccc}
0 & a_{11} & a_{13} \\
0 & a_{21} & a_{23} \\
1 & 0 & 0
\end{array}\right|=\left|\begin{array}{ccc}
0 & a_{11} & a_{13} \\
1 & 0 & 0 \\
0 & a_{21} & a_{23}
\end{array}\right|=-\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & a_{11} & a_{13} \\
0 & a_{21} & a_{23}
\end{array}\right|=-\operatorname{det}[A(3,1)]
$$

6.3 The structure of $\Lambda^{k}\left(V^{*}\right)$

Definition 6.27. Let $m \in \mathbb{N}$ and $\left\{\ell_{j}\right\}_{j=1}^{m} \subset V^{*}$, we define $\ell_{1} \wedge \cdots \wedge \ell_{m} \in \mathcal{A}^{m}(V)$ by

$$
\begin{align*}
& \left(\ell_{1} \wedge \ldots \wedge \ell_{m}\right)\left(v_{1}, \ldots, v_{m}\right)=\operatorname{det}\left[\begin{array}{ccc}
\ell_{1}\left(v_{1}\right) & \ldots & \ell_{1}\left(v_{m}\right) \\
\ell_{2}\left(v_{1}\right) & \ldots & \ell_{2}\left(v_{m}\right) \\
\vdots & \vdots & \vdots \\
\ell_{m}\left(v_{1}\right) & \ldots & \ell_{m}\left(v_{m}\right)
\end{array}\right] \tag{6.6}\\
& =\sum_{\sigma \in \Sigma_{m}}(-1)^{\sigma} \prod_{i=1}^{m} \ell_{i}\left(v_{\sigma i}\right)=\sum_{\sigma \in \Sigma_{m}}(-1)^{\sigma} \ell_{1}\left(v_{\sigma 1}\right) \ldots \ell_{m}\left(v_{\sigma m}\right) . \tag{6.7}
\end{align*}
$$

or alternatively using $\operatorname{det} A^{\operatorname{tr}}=\operatorname{det} A$,

$$
\begin{align*}
& \left(\ell_{1} \wedge \ldots \wedge \ell_{m}\right)\left(v_{1}, \ldots, v_{m}\right)=\operatorname{det}\left[\begin{array}{cccc}
\ell_{1}\left(v_{1}\right) & \ell_{2}\left(v_{1}\right) & \ldots & \ell_{m}\left(v_{1}\right) \\
\ell_{1}\left(v_{2}\right) & \ell_{2}\left(v_{2}\right) & \ldots & \ell_{m}\left(v_{2}\right) \\
\vdots & \vdots & \vdots & \vdots \\
\ell_{1}\left(v_{m}\right) & \ell_{2}\left(v_{m}\right) & \ldots & \ell_{m}\left(v_{m}\right)
\end{array}\right] \tag{6.8}\\
& =\sum_{\sigma \in \Sigma_{m}}(-1)^{\sigma} \prod_{i=1}^{m} \ell_{\sigma i}\left(v_{i}\right)=\sum_{\sigma \in \Sigma_{m}}(-1)^{\sigma} \ell_{\sigma 1}\left(v_{1}\right) \ldots \ell_{\sigma m}\left(v_{m}\right)
\end{align*}
$$

which may be written as,

$$
\begin{equation*}
\ell_{1} \wedge \cdots \wedge \ell_{m}=\sum_{\sigma \in \Sigma_{m}}(-1)^{\sigma} \ell_{\sigma 1} \otimes \cdots \otimes \ell_{\sigma m} \tag{6.10}
\end{equation*}
$$

Remark 6.28. It is perhaps easier to remember these equations as

$$
\begin{aligned}
& \left(\ell_{1} \wedge \cdots \wedge \ell_{m}\right)\left(v_{1}, \ldots, v_{m}\right) \\
& =\operatorname{det}\left[\begin{array}{c}
\ell_{1}\left(v_{1}, \ldots, v_{m}\right) \\
\ell_{2}\left(v_{1}, \ldots, v_{m}\right) \\
\vdots \\
\ell_{m}\left(v_{1}, \ldots, v_{m}\right)
\end{array}\right] \text { and } \\
& =\operatorname{det}\left[\ell_{1}\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{m}
\end{array}\right) \ell_{2}\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{m}
\end{array}\right) \ldots \ell_{m}\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{m}
\end{array}\right)\right]
\end{aligned}
$$

where

$$
\begin{aligned}
\ell\left(v_{1}, \ldots, v_{m}\right) & :=\left[\ell\left(v_{1}\right) \ldots \ell\left(v_{m}\right)\right] \text { and } \\
\ell\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{m}
\end{array}\right) & :=\left[\begin{array}{c}
\ell\left(v_{1}\right) \\
\ell\left(v_{2}\right) \\
\vdots \\
\ell\left(v_{m}\right)
\end{array}\right] .
\end{aligned}
$$

Exercise 6.4. Let $\left\{e_{i}\right\}_{i=1}^{4}$ be the standard basis for \mathbb{R}^{4} and $\left\{\varepsilon_{i}=e_{i}^{*}\right\}_{i=1}^{4}$ be the associated dual basis (i.e. $\varepsilon_{i}(v)=v_{i}$ for all $v \in \mathbb{R}^{4}$.) Compute;

$$
\begin{array}{ll}
\text { 1. } & \varepsilon_{3} \wedge \varepsilon_{2} \wedge \varepsilon_{4}\left(\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
3 \\
2
\end{array}\right]\right), \\
\text { 2. } & \varepsilon_{3} \wedge \varepsilon_{2}\left(\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1 \\
1
\end{array}\right]\right), \\
\text { 3. } & \varepsilon_{1} \wedge \varepsilon_{2}\left(\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1 \\
1
\end{array}\right]\right), \\
\text { 4. } & \left(\varepsilon_{1}+\varepsilon_{3}\right) \wedge \varepsilon_{2}\left(\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1 \\
1
\end{array}\right]\right), \text { and } \\
\text { 5. } & \varepsilon_{4} \wedge \varepsilon_{3} \wedge \varepsilon_{2} \wedge \varepsilon_{1}\left(e_{1}, e_{2}, e_{3}, e_{4}\right) .
\end{array}
$$

The next problem is a special case of Theorem 6.30 below.
Exercise 6.5. Show, using basic knowledge of determinants, that for $\ell_{0}, \ell_{1}, \ell_{2}, \ell_{3} \in V^{*}$, that

$$
\left(\ell_{0}+\ell_{1}\right) \wedge \ell_{2} \wedge \ell_{3}=\ell_{0} \wedge \ell_{2} \wedge \ell_{3}+\ell_{1} \wedge \ell_{2} \wedge \ell_{3}
$$

Remark 6.29. Note that

$$
\ell_{\sigma 1} \wedge \cdots \wedge \ell_{\sigma m}=(-1)^{\sigma} \ell_{1} \wedge \cdots \wedge \ell_{m}
$$

for all $\sigma \in \Sigma_{m}$ and in particular if $m=p+q$ with $p, q \in \mathbb{N}$, then

$$
\ell_{p+1} \wedge \cdots \wedge \ell_{m} \wedge \ell_{1} \wedge \cdots \wedge \ell_{p}=(-1)^{p q} \ell_{1} \wedge \cdots \wedge \ell_{p} \wedge \ell_{p+1} \wedge \cdots \wedge \ell_{m}
$$

Theorem 6.30. For any fixed $\ell_{2}, \ldots, \ell_{k} \in V^{*}$, the map,

$$
V^{*} \ni \ell_{1} \rightarrow \ell_{1} \wedge \cdots \wedge \ell_{k} \in \Lambda^{k}\left(V^{*}\right)
$$

is linear.
Proof. From Eq. 6.7) we find,

$$
\begin{aligned}
& \left(\left(\ell_{1}+c \tilde{\ell}_{1}\right) \wedge \cdots \wedge \ell_{k}\right)\left(v_{1}, \ldots, v_{k}\right) \\
& \quad=\sum_{\sigma \in \Sigma_{k}}(-1)^{\sigma}\left(\ell_{1}+c \tilde{\ell}_{1}\right)\left(v_{\sigma 1}\right) \ldots \ell_{k}\left(v_{\sigma k}\right) \\
& \quad=\sum_{\sigma \in \Sigma_{k}}(-1)^{\sigma} \ell_{1}\left(v_{\sigma 1}\right) \ldots \ell_{k}\left(v_{\sigma k}\right)+c \sum_{\sigma \in \Sigma_{k}}(-1)^{\sigma} \tilde{\ell}_{1}\left(v_{\sigma 1}\right) \ldots \ell_{k}\left(v_{\sigma k}\right) \\
& \quad=\ell_{1} \wedge \cdots \wedge \ell_{k}\left(v_{1}, \ldots, v_{k}\right)+c \cdot \tilde{\ell}_{1} \wedge \cdots \wedge \ell_{k}\left(v_{1}, \ldots, v_{k}\right) \\
& \quad=\left(\ell_{1} \wedge \cdots \wedge \ell_{k}+c \cdot \tilde{\ell}_{1} \wedge \cdots \wedge \ell_{k}\right)\left(v_{1}, \ldots, v_{k}\right)
\end{aligned}
$$

As this holds for all $\left(v_{1}, \ldots, v_{k}\right)$, it follows that

$$
\left(\ell_{1}+c \tilde{\ell}_{1}\right) \wedge \cdots \wedge \ell_{k}=\ell_{1} \wedge \cdots \wedge \ell_{k}+c \cdot \tilde{\ell}_{1} \wedge \cdots \wedge \ell_{k}
$$

which is the desired linearity.
Remark 6.31. If W is another finite dimensional vector space and $T: W \rightarrow V$ is a linear transformation, then $T^{*}\left(\ell_{1} \wedge \cdots \wedge \ell_{m}\right)=\left(T^{*} \ell_{1}\right) \wedge \cdots \wedge\left(T^{*} \ell_{m}\right)$. To see this is the case, let $w_{i} \in W$ for $i \in[m]$, then

$$
\begin{aligned}
T^{*} & \left(\ell_{1} \wedge \cdots \wedge \ell_{m}\right)\left(w_{1}, \ldots, w_{m}\right) \\
& =\left(\ell_{1} \wedge \cdots \wedge \ell_{m}\right)\left(T w_{1}, \ldots, T w_{m}\right) \\
\quad & =\sum_{\sigma \in \Sigma_{m}}(-1)^{\sigma} \prod_{i=1}^{m} \ell_{i}\left(T w_{\sigma i}\right)=\sum_{\sigma \in \Sigma_{m}}(-1)^{\sigma} \prod_{i=1}^{m}\left(T^{*} \ell_{i}\right)\left(w_{\sigma i}\right) \\
& =\left(T^{*} \ell_{1}\right) \wedge \cdots \wedge\left(T^{*} \ell_{m}\right)\left(w_{1}, \ldots, w_{m}\right)
\end{aligned}
$$

Example 6.32. Let $T \in \Lambda^{2}\left(\left[\mathbb{R}^{3}\right]^{*}\right)$ and $v, w \in \mathbb{R}^{3}$. Then

$$
\begin{aligned}
T(v, w)= & T\left(v_{1} e_{1}+v_{2} e_{2}+v_{3} e_{3}, w_{1} e_{1}+w_{2} e_{2}+w_{3} e_{3}\right) \\
= & T\left(e_{1}, e_{2}\right)\left(v_{1} w_{2}-w_{1} v_{2}\right)+T\left(e_{1}, e_{3}\right)\left(v_{1} w_{3}-w_{1} v_{3}\right) \\
& +T\left(e_{2}, e_{3}\right)\left(v_{2} w_{3}-w_{2} v_{3}\right) \\
= & {\left[T\left(e_{1}, e_{2}\right) \varepsilon_{1} \wedge \varepsilon_{2}+T\left(e_{1}, e_{3}\right) \varepsilon_{1} \wedge \varepsilon_{3}+T\left(e_{2}, e_{3}\right) \varepsilon_{2} \wedge \varepsilon_{3}\right](v, w) }
\end{aligned}
$$

from this it follows that

$$
T=T\left(e_{1}, e_{2}\right) \varepsilon_{1} \wedge \varepsilon_{2}+T\left(e_{1}, e_{3}\right) \varepsilon_{1} \wedge \varepsilon_{3}+T\left(e_{2}, e_{3}\right) \varepsilon_{2} \wedge \varepsilon_{3}
$$

Further note that if

$$
a_{12} \varepsilon_{1} \wedge \varepsilon_{2}+a_{13} \varepsilon_{1} \wedge \varepsilon_{3}+a_{23} \varepsilon_{2} \wedge \varepsilon_{3}=0
$$

then evaluating this expression at $\left(e_{i}, e_{j}\right)$ for $1 \leq i<j \leq 3$ allows us to conclude that $a_{i j}=0$ for $1 \leq i \leq j \leq 3$. Therefore $\left\{\varepsilon_{i} \wedge \varepsilon_{j}: 1 \leq i<j \leq 3\right\}$ is a basis for $\Lambda^{2}\left(\left[\mathbb{R}^{3}\right]^{*}\right)$. This example is generalized in the next theorem.

Theorem 6.33. Let $\left\{e_{i}\right\}_{i=1}^{N}$ be a basis for V and $\left\{\varepsilon_{i}\right\}_{i=1}^{N}$ be its' dual basis and for

$$
J=\left\{1 \leq a_{1}<a_{2}<\cdots<a_{p} \leq N\right\} \subset[N],
$$

let with $\#(J)=p$,

$$
\begin{equation*}
e_{J}:=\left(e_{a_{1}}, \ldots, e_{a_{p}}\right), \text { and } \varepsilon_{J}:=\varepsilon_{a_{1}} \wedge \cdots \wedge \varepsilon_{a_{p}} \tag{6.11}
\end{equation*}
$$

Then;

1. $\beta_{p}:=\left\{\varepsilon_{J}: J \subset[N]\right.$ with $\left.\#(J)=p\right\}$ is a basis for $\Lambda^{p}\left(V^{*}\right)$ and so $\operatorname{dim}\left(\Lambda^{p}\left(V^{*}\right)\right)=\binom{N}{p}$, and
2. any $A \in \Lambda^{p}\left(V^{*}\right)$ admits the following expansions,

$$
\begin{align*}
A & =\frac{1}{p!} \sum_{j_{1}, \ldots, j_{p}=1}^{N} A\left(e_{j_{1}}, \ldots, e_{j_{p}}\right) \varepsilon_{j_{1}} \wedge \cdots \wedge \varepsilon_{j_{p}} \tag{6.12}\\
& =\sum_{J \subset[N]} A\left(e_{J}\right) \varepsilon_{J} \tag{6.13}
\end{align*}
$$

Proof. We begin by proving Eqs. 6.12 and 6.13). To this end let $v_{1}, \ldots, v_{p} \in V$ and then compute using the multi-linear and alternating properties of A that

$$
\begin{align*}
A\left(v_{1}, \ldots, v_{p}\right) & =\sum_{j_{1}, \ldots, j_{p}=1}^{N} \varepsilon_{j_{1}}\left(v_{1}\right) \ldots \varepsilon_{j_{p}}\left(v_{p}\right) A\left(e_{j_{1}}, \ldots, e_{j_{p}}\right) \tag{6.14}\\
& =\sum_{j_{1}, \ldots, j_{p}=1}^{N} \frac{1}{p!} \sum_{\sigma \in \Sigma_{p}} \varepsilon_{j_{\sigma 1}}\left(v_{1}\right) \ldots \varepsilon_{j_{\sigma p}}\left(v_{p}\right) A\left(e_{j_{\sigma 1}}, \ldots, e_{j_{\sigma p}}\right) \\
& =\sum_{j_{1}, \ldots, j_{p}=1}^{N} \frac{1}{p!} \sum_{\sigma \in \Sigma_{p}}(-1)^{\sigma} \varepsilon_{j_{1}}\left(v_{\sigma^{-1}}\right) \ldots \varepsilon_{j_{p}}\left(v_{\sigma^{-1} p}\right) A\left(e_{j_{1}}, \ldots, e_{j_{p}}\right) \\
& =\frac{1}{p!} \sum_{j_{1}, \ldots, j_{p}=1}^{N} A\left(e_{j_{1}}, \ldots, e_{j_{p}}\right) \varepsilon_{j_{1}} \wedge \ldots \wedge \varepsilon_{j_{p}}\left(v_{1}, \ldots, v_{p}\right),
\end{align*}
$$

which is Eq. 6.12. Alternatively we may write Eq. 6.14 as

$$
\begin{aligned}
A\left(v_{1}, \ldots, v_{p}\right) & =\sum_{j_{1}, \ldots, j_{p}=1}^{N} 1_{\#\left(\left\{j_{1}, \ldots, j_{p}\right\}\right)=p} \varepsilon_{j_{1}}\left(v_{1}\right) \ldots \varepsilon_{j_{p}}\left(v_{p}\right) A\left(e_{j_{1}}, \ldots, e_{j_{p}}\right) \\
& =\sum_{1 \leq a_{1}<a_{2}<\cdots<a_{p} \leq N} \sum_{\sigma \in \Sigma_{n}} \varepsilon_{a_{\sigma 1}}\left(v_{1}\right) \ldots \varepsilon_{a_{\sigma p}}\left(v_{p}\right) A\left(e_{a_{\sigma 1}}, \ldots, e_{a_{\sigma_{p}}}\right) \\
& =\sum_{1 \leq a_{1}<a_{2}<\cdots<a_{p} \leq N} A\left(e_{a_{1}}, \ldots, e_{a_{p}}\right) \sum_{\sigma \in \Sigma_{n}}(-1)^{\sigma} \varepsilon_{a_{\sigma 1}}\left(v_{1}\right) \ldots \varepsilon_{a_{\sigma p}}\left(v_{p}\right) \\
& =\sum_{1 \leq a_{1}<a_{2}<\cdots<a_{p} \leq N} A\left(e_{a_{1}}, \ldots, e_{a_{p}}\right) \varepsilon_{a_{1}} \wedge \cdots \wedge \varepsilon_{a_{p}}\left(v_{1}, \ldots, v_{p}\right) \\
& =\sum_{J \subset[N]} A\left(e_{J}\right) \varepsilon_{J}\left(v_{1}, \ldots, v_{p}\right)
\end{aligned}
$$

which verifies Eq. 6.13 and hence item 2. is proved.
To prove item 1., since (by Eq. 6.13 we know that β_{p} spans $\Lambda^{p}\left(V^{*}\right)$, it suffices to show β_{p} is linearly independent. The key point is that for

$$
\begin{aligned}
J & =\left\{1 \leq a_{1}<a_{2}<\cdots<a_{p} \leq N\right\} \text { and } \\
K & =\left\{1 \leq b_{1}<b_{2}<\cdots<b_{p} \leq N\right\}
\end{aligned}
$$

we have

$$
\varepsilon_{J}\left(e_{K}\right)=\operatorname{det}\left[\begin{array}{c}
\varepsilon_{a_{1}}\left(e_{b_{1}}\right) \ldots \\
\varepsilon_{a_{2}}\left(e_{b_{1}}\right) \ldots \\
\vdots \\
\vdots \\
a_{a_{1}}\left(e_{b_{p}}\right) \\
\varepsilon_{a_{p}}\left(e_{b_{1}}\right)
\end{array}\right] .
$$

Thus if $\sum_{J \subset[N]} a_{J} \varepsilon_{J}=0$, then

$$
0=0\left(e_{K}\right)=\sum_{J \subset[N]} a_{J} \varepsilon_{J}\left(e_{K}\right)=\sum_{J \subset[N]} a_{J} \delta_{J, K}=a_{K}
$$

which shows that $a_{K}=0$ for all K as above.
Exercise 6.6. Suppose $\left\{\ell_{j}\right\}_{j=1}^{k} \subset\left[\mathbb{R}^{n}\right]^{*}$.

1. Explaining why $\ell_{1} \wedge \cdots \wedge \ell_{k}=0$ if $\ell_{i}=\ell_{j}$ for some $i \neq j$.
2. Show $\ell_{1} \wedge \cdots \wedge \ell_{k}=0$ if $\left\{\ell_{j}\right\}_{j=1}^{k}$ are linear dependent. [You may assume that $\ell_{1}=\sum_{j=2}^{k} a_{j} \ell_{j}$ for some $a_{j} \in \mathbb{R}$.]

Exercise 6.7. If $\left\{\ell_{j}\right\}_{j=1}^{k} \subset\left[\mathbb{R}^{n}\right]^{*}$ are linearly independent, show

$$
\ell_{1} \wedge \cdots \wedge \ell_{k} \neq 0
$$

Hint: make use of Exercise 5.4.

Exterior/Wedge and Interior Products

The main goal of this chapter is to define a good notion of how to multiply two alternating multi-linear forms. The multiplication will be referred to as the "wedge product." Here is the result we wish to prove whose proof will be delayed until Section 7.4 .

Theorem 7.1. Let V be a finite dimensional vector space, $n=\operatorname{dim}(V), p, q \in$ $[n]$, and let $m=p+q$. Then there is a unique bilinear map,

$$
M_{p, q}: \Lambda^{p}\left(V^{*}\right) \times \Lambda^{q}\left(V^{*}\right) \rightarrow \Lambda^{m}\left(V^{*}\right)
$$

such that for any $\left\{f_{i}\right\}_{i=1}^{p} \subset V^{*}$ and $\left\{g_{j}\right\}_{j=1}^{q} \subset V^{*}$, we have,

$$
\begin{equation*}
M_{p, q}\left(f_{1} \wedge \cdots \wedge f_{p}, g_{1} \wedge \cdots \wedge g_{q}\right)=f_{1} \wedge \cdots \wedge f_{p} \wedge g_{1} \wedge \cdots \wedge g_{q} \tag{7.1}
\end{equation*}
$$

The notation, $M_{p, q}$, in the previous theorem is a bit bulky and so we introduce the following (also temporary) notation.
Notation 7.2 (Preliminary) For $A \in \Lambda^{p}\left(V^{*}\right)$ and $B \in \Lambda^{q}\left(V^{*}\right)$, let us simply denote $M_{p, q}(A, B)$ by $A \cdot B \square^{1}$
Remark 7.3. If $m=p+q>n$, then $\Lambda^{m}\left(V^{*}\right)=\{0\}$ and hence $A \cdot B=0$.

7.1 Consequences of Theorem 7.1

Before going to the proof of Theorem 7.1 (see Section 7.4) let us work out some of its consequences. By Theorem 6.33 it is always possible to write $A \in \Lambda^{p}\left(V^{*}\right)$ in the form

$$
\begin{equation*}
A=\sum_{i=1}^{\alpha} a_{i} f_{1}^{i} \wedge \cdots \wedge f_{p}^{i} \tag{7.2}
\end{equation*}
$$

for some $\alpha \in \mathbb{N},\left\{a_{i}\right\}_{i=1}^{N} \subset \mathbb{R}$, and $\left\{f_{j}^{i}: j \in[p]\right.$ and $\left.i \in[\alpha]\right\} \subset V^{*}$. Similarly we may write $B \in \Lambda^{q}\left(V^{*}\right)$ in the form,

[^4]\[

$$
\begin{equation*}
B=\sum_{j=1}^{\beta} b_{j} g_{1}^{j} \wedge \cdots \wedge g_{q}^{j} \tag{7.3}
\end{equation*}
$$

\]

for some $\beta \in \mathbb{N},\left\{b_{j}\right\}_{j=1}^{N} \subset \mathbb{R}$, and $\left\{g_{j}^{j}: j \in[q]\right.$ and $\left.j \in[\beta]\right\} \subset V^{*}$. Thus by Theorem 7.1 we must have

$$
\begin{align*}
A \cdot B & =M_{p, q}(A, B)=\sum_{i=1}^{\alpha} \sum_{j=1}^{\beta} a_{i} b_{j} M_{p, q}\left(f_{1}^{i} \wedge \cdots \wedge f_{p}^{i}, g_{1}^{j} \wedge \cdots \wedge g_{q}^{j}\right) \\
& =\sum_{i=1}^{\alpha} \sum_{j=1}^{\beta} a_{i} b_{j} f_{1}^{i} \wedge \cdots \wedge f_{p}^{i} \wedge g_{1}^{j} \wedge \cdots \wedge g_{q}^{j} \tag{7.4}
\end{align*}
$$

Proposition 7.4 (Associativity). If $A \in \Lambda^{p}\left(V^{*}\right), B \in \Lambda^{q}\left(V^{*}\right)$, and $C \in$ $\Lambda^{r}\left(V^{*}\right)$ for some $r \in[n]$, then

$$
\begin{equation*}
(A \cdot B) \cdot C=A \cdot(B \cdot C) \tag{7.5}
\end{equation*}
$$

Proof. Let us express C as

$$
C=\sum_{k=1}^{\gamma} c_{k} h_{1}^{k} \wedge \cdots \wedge h_{r}^{k}
$$

Then working as above we find with the aid of Eq. 7.4 that
$(A \cdot B) \cdot C=\sum_{i=1}^{\alpha} \sum_{j=1}^{\beta} \sum_{k=1}^{\gamma} a_{i} b_{j} c_{k} f_{1}^{i} \wedge \cdots \wedge f_{p}^{i} \wedge g_{1}^{j} \wedge \cdots \wedge g_{q}^{j} \wedge h_{1}^{k} \wedge \cdots \wedge h_{r}^{k}$.
A completely analogous computation then shows that $A \cdot(B \cdot C)$ is also given by the right side of the previously displayed equation and so Eq. 7.5) is proved.

Remark 7.5. Since our multiplication rule is associative it now makes sense to simply write $A \cdot B \cdot C$ rather than $(A \cdot B) \cdot C$ or $A \cdot(B \cdot C)$. More generally if $A_{j} \in \Lambda^{p_{j}}\left(V^{*}\right)$ we may now simply write $A_{1} \cdots \cdots A_{k}$. For example by the above associativity we may easily show,

$$
A \cdot(B \cdot(C \cdot D))=(A \cdot B) \cdot(C \cdot D)=((A \cdot B) \cdot C) \cdot D
$$

and so it makes sense to simply write $A \cdot B \cdot C \cdot D$ for any one of these expressions.
Corollary 7.6. If $\left\{\ell_{j}\right\}_{j=1}^{p} \subset V^{*}$, then

$$
\ell_{1} \cdots \ell_{p}=\ell_{1} \wedge \cdots \wedge \ell_{p}
$$

Proof. For clarity of the argument let us suppose that $p=5$ in which case we have

$$
\begin{aligned}
\ell_{1} \cdot \ell_{2} \cdot \ell_{3} \cdot \ell_{4} \cdot \ell_{5} & =\ell_{1} \cdot\left(\ell_{2} \cdot\left(\ell_{3} \cdot\left(\ell_{4} \cdot \ell_{5}\right)\right)\right) \\
& =\ell_{1} \cdot\left(\ell_{2} \cdot\left(\ell_{3} \cdot\left(\ell_{4} \wedge \ell_{5}\right)\right)\right) \\
& =\ell_{1} \cdot\left(\ell_{2} \cdot\left(\ell_{3} \wedge \ell_{4} \wedge \ell_{5}\right)\right) \\
& =\ell_{1} \cdot\left(\ell_{2} \wedge \ell_{3} \wedge \ell_{4} \wedge \ell_{5}\right) \\
& =\ell_{1} \wedge \ell_{2} \wedge \ell_{3} \wedge \ell_{4} \wedge \ell_{5} .
\end{aligned}
$$

Because of Corollary 7.6 there is no longer any danger in denoting $A \cdot B=$ $M_{p, q}(A, B)$ by $A \wedge B$. Moreover, this notation suggestively leads one to the correct multiplication formulas.

Notation 7.7 (Wedge=Exterior Product) For $A \in \Lambda^{p}\left(V^{*}\right)$ and $B \in$ $\Lambda^{q}\left(V^{*}\right)$, we will from now on denote $M_{p, q}(A, B)$ by $A \wedge B$.

Although the wedge product is associative, one must be careful to observe that the wedge product is not commutative, i.e. groupings do not matter but order may matter.

Lemma 7.8 (Non-commutativity). For $A \in \Lambda^{p}\left(V^{*}\right)$ and $B \in \Lambda^{q}\left(V^{*}\right)$ we have

$$
A \wedge B=(-1)^{p q} B \wedge A
$$

Proof. See Remark 6.29

Example 7.9. Suppose that $\left\{\varepsilon_{j}\right\}_{j=1}^{5}$ is the standard dual basis on \mathbb{R}^{5} and

$$
\alpha=2 \varepsilon_{1}-3 \varepsilon_{3}, \beta=\varepsilon_{2} \wedge \varepsilon_{4}+\left(\varepsilon_{1}+\varepsilon_{3}\right) \wedge \varepsilon_{5}
$$

Find and simplify formulas for $\alpha \wedge \alpha, \alpha \wedge \beta$ and $\beta \wedge \beta$.

1. $\alpha \wedge \alpha=0$ since $\alpha \wedge \alpha=-\alpha \wedge \alpha$.
2.

$$
\begin{aligned}
\alpha \wedge \beta & =\left(2 \varepsilon_{1}-3 \varepsilon_{3}\right) \wedge \varepsilon_{2} \wedge \varepsilon_{4}+\left(2 \varepsilon_{1}-3 \varepsilon_{3}\right) \wedge\left(\varepsilon_{1}+\varepsilon_{3}\right) \wedge \varepsilon_{5} \\
& =2 \varepsilon_{1} \wedge \varepsilon_{2} \wedge \varepsilon_{4}+3 \varepsilon_{2} \wedge \varepsilon_{3} \wedge \varepsilon_{4} \\
& +2 \varepsilon_{1} \wedge\left(\varepsilon_{1}+\varepsilon_{3}\right) \wedge \varepsilon_{5}-3 \varepsilon_{3} \wedge\left(\varepsilon_{1}+\varepsilon_{3}\right) \wedge \varepsilon_{5} \\
& =2 \varepsilon_{1} \wedge \varepsilon_{2} \wedge \varepsilon_{4}+3 \varepsilon_{2} \wedge \varepsilon_{3} \wedge \varepsilon_{4}+2 \varepsilon_{1} \wedge \varepsilon_{3} \wedge \varepsilon_{5}+3 \varepsilon_{1} \wedge \varepsilon_{3} \wedge \varepsilon_{5} \\
& =2 \varepsilon_{1} \wedge \varepsilon_{2} \wedge \varepsilon_{4}+3 \varepsilon_{2} \wedge \varepsilon_{3} \wedge \varepsilon_{4}+5 \varepsilon_{1} \wedge \varepsilon_{3} \wedge \varepsilon_{5}
\end{aligned}
$$

3. Finally,

$$
\begin{aligned}
\beta \wedge \beta & =\left[\varepsilon_{2} \wedge \varepsilon_{4}+\left(\varepsilon_{1}+\varepsilon_{3}\right) \wedge \varepsilon_{5}\right] \wedge\left[\varepsilon_{2} \wedge \varepsilon_{4}+\left(\varepsilon_{1}+\varepsilon_{3}\right) \wedge \varepsilon_{5}\right] \\
& =\varepsilon_{2} \wedge \varepsilon_{4} \wedge\left(\varepsilon_{1}+\varepsilon_{3}\right) \wedge \varepsilon_{5}+\left(\varepsilon_{1}+\varepsilon_{3}\right) \wedge \varepsilon_{5} \wedge \varepsilon_{2} \wedge \varepsilon_{4} \\
& =\varepsilon_{2} \wedge \varepsilon_{4} \wedge \varepsilon_{1} \wedge \varepsilon_{5}+\varepsilon_{2} \wedge \varepsilon_{4} \wedge \varepsilon_{3} \wedge \varepsilon_{5} \\
& +\varepsilon_{1} \wedge \varepsilon_{5} \wedge \varepsilon_{2} \wedge \varepsilon_{4}+\varepsilon_{3} \wedge \varepsilon_{5} \wedge \varepsilon_{2} \wedge \varepsilon_{4} \\
& =\varepsilon_{1} \wedge \varepsilon_{2} \wedge \varepsilon_{4} \wedge \varepsilon_{1} \wedge \varepsilon_{5}-\varepsilon_{2} \wedge \varepsilon_{3} \wedge \varepsilon_{4} \wedge \varepsilon_{5} \\
& +\varepsilon_{1} \wedge \varepsilon_{2} \wedge \varepsilon_{4} \wedge \varepsilon_{5}-\varepsilon_{2} \wedge \varepsilon_{3} \wedge \varepsilon_{4} \wedge \varepsilon_{5}
\end{aligned}
$$

Theorem 7.10 (Pull-Backs and Wedges). If $A: V \rightarrow W$ is a linear transformation, $\omega \in \Lambda^{k}\left(W^{*}\right)$, and $\eta \in \Lambda^{l}\left(W^{*}\right)$, then

$$
\begin{equation*}
A^{*}(\omega \wedge \eta)=A^{*} \omega \wedge A^{*} \eta \tag{7.6}
\end{equation*}
$$

and in particular if $\ell_{1}, \ldots, \ell_{k} \in W^{*}$, then

$$
\begin{equation*}
A^{*}\left[\ell_{1} \wedge \cdots \wedge \ell_{k}\right]=A^{*} \ell_{1} \wedge \cdots \wedge A^{*} \ell_{k} \tag{7.7}
\end{equation*}
$$

Proof. Equation (7.6) follows directly from Eq. 7.17) used below in the proof of Theorem 7.1. Equation 7.7 then follows from Eq. (7.6) by induction on k. Let us give another proof using only what has been presented so far.

We begin by proving Eq. 7.7 by showing for all $\left\{v_{i}\right\}_{i=1}^{k} \subset V$ that

$$
\begin{aligned}
A^{*}\left[\ell_{1} \wedge \cdots \wedge \ell_{k}\right]\left(v_{1}, \ldots, A v_{k}\right) & =\ell_{1} \wedge \cdots \wedge \ell_{k}\left(A v_{1}, \ldots, A v_{k}\right) \\
& =\operatorname{det}\left[\left\{\ell_{i}\left(A v_{j}\right)\right\}\right]=\operatorname{det}\left[\left\{A^{*} \ell_{i}\left(v_{j}\right)\right\}\right] \\
& =\left(A^{*} \ell_{1} \wedge \cdots \wedge A^{*} \ell_{k}\right)\left(v_{1}, \ldots, v_{k}\right)
\end{aligned}
$$

Given this we next remark that both sides of Eq. 7.6) are bilinear functions of ω and η and hence it suffices to verify Eq. 7.6 holds when

$$
\omega=\ell_{1} \wedge \cdots \wedge \ell_{k} \text { and } \eta=f_{1} \wedge \cdots \wedge f_{l}
$$

for all $\ell_{1}, \ldots, \ell_{k}, f_{1}, \ldots f_{l} \in W^{*}$. However this is now simply done,

$$
\begin{aligned}
A^{*}(\omega \wedge \eta) & =A^{*}\left(\ell_{1} \wedge \cdots \wedge \ell_{k} \wedge f_{1} \wedge \cdots \wedge f_{l}\right) \\
& =A^{*} \ell_{1} \wedge \cdots \wedge A^{*} \ell_{k} \wedge A^{*} f_{1} \wedge \cdots \wedge A^{*} f_{l} \\
& =\left[A^{*} \ell_{1} \wedge \cdots \wedge A^{*} \ell_{k}\right] \wedge\left[A^{*} f_{1} \wedge \cdots \wedge A^{*} f_{l}\right] \\
& =A^{*} \omega \wedge A^{*} \eta .
\end{aligned}
$$

7.2 Interior product

There is yet one more product structure on $\Lambda^{m}\left(V^{*}\right)$ that we will used throughout these notes given in the following definition.
Definition 7.11 (Interior product). For $v \in V$ and $T \in \Lambda^{m}\left(V^{*}\right)$, let $i_{v} T \in$ $\Lambda^{m-1}\left(V^{*}\right)$ be defined by $i_{v} T=T(v, \cdots)$.
Lemma 7.12. If $\left\{\ell_{i}\right\}_{i=1}^{m} \subset V^{*}, T=\ell_{1} \wedge \cdots \wedge \ell_{m}$, and $v \in V$, then

$$
\begin{equation*}
i_{v}\left(\ell_{1} \wedge \cdots \wedge \ell_{m}\right)=\sum_{j=1}^{m}(-1)^{j-1} \ell_{j}(v) \cdot \ell_{1} \wedge \cdots \wedge \widehat{\ell}_{j} \wedge \cdots \wedge \ell_{m} \tag{7.8}
\end{equation*}
$$

Proof. Expanding the determinant along its first column we find,

$$
\begin{aligned}
T\left(v_{1}, \ldots, v_{m}\right) & =\left|\begin{array}{ccc}
\ell_{1}\left(v_{1}\right) & \ldots & \ell_{1}\left(v_{m}\right) \\
\ell_{2}\left(v_{1}\right) & \ldots & \ell_{2}\left(v_{m}\right) \\
\vdots & \vdots & \vdots \\
\ell_{m}\left(v_{1}\right) & \ldots & \ell_{m}\left(v_{m}\right)
\end{array}\right| \\
& =\sum_{j=1}^{m}(-1)^{j-1} \ell_{j}\left(v_{1}\right) \cdot\left|\begin{array}{ccc}
\ell_{1}\left(v_{2}\right) & \ldots & \ell_{1}\left(v_{m}\right) \\
\ell_{2}\left(v_{2}\right) & \ldots & \ell_{2}\left(v_{m}\right) \\
\vdots & \vdots & \vdots \\
\ell_{j-1}\left(v_{2}\right) & \ldots & \ell_{j-1}\left(v_{m}\right) \\
\ell_{j+1}\left(v_{2}\right) & \ldots & \ell_{j+1}\left(v_{m}\right) \\
\vdots & \vdots & \vdots \\
\ell_{m}\left(v_{2}\right) & \ldots & \ell_{m}\left(v_{m}\right)
\end{array}\right| \\
& =\sum_{j=1}^{m}(-1)^{j-1} \ell_{j}\left(v_{1}\right)\left(\ell_{1} \wedge \ldots \wedge \widehat{\ell}_{j} \wedge \ldots \wedge \ell_{m}\right)\left(v_{2}, \ldots, v_{m}\right)
\end{aligned}
$$

from which Eq. 7.8 follows.
Exercise 7.1. Let $\left\{\varepsilon_{j}\right\}_{j=1}^{3}$ be the standard dual basis and $v=(1,2,3)^{\operatorname{tr}} \in \mathbb{R}^{3}$, find $a_{1}, a_{2}, a_{3} \in \mathbb{R}$ so that

$$
i_{v}\left(\varepsilon_{1} \wedge \varepsilon_{2} \wedge \varepsilon_{3}\right)=a_{1} \varepsilon_{2} \wedge \varepsilon_{3}+a_{2} \varepsilon_{1} \wedge \varepsilon_{3}+a_{3} \varepsilon_{1} \wedge \varepsilon_{2}
$$

Corollary 7.13. For $A \in \Lambda^{p}\left(V^{*}\right)$ and $B \in \Lambda^{q}\left(V^{*}\right)$ and $v \in V$, we have

$$
i_{v}[A \wedge B]=\left(i_{v} A\right) \wedge B+(-1)^{p} A \wedge\left(i_{v} B\right)
$$

Proof. It suffices to verify this identity on decomposable forms, $A=\ell_{1} \wedge$ $\cdots \wedge \ell_{p}$ and $B=\ell_{p+1} \wedge \cdots \wedge \ell_{m}$ so that $A \wedge B=\ell_{1} \wedge \cdots \wedge \ell_{m}$ and we have

$$
\begin{aligned}
i_{v} & (A \wedge B) \\
= & \sum_{j=1}^{m}(-1)^{j-1} \ell_{j}(v) \cdot \ell_{1} \wedge \cdots \wedge \widehat{\ell}_{j} \wedge \cdots \wedge \ell_{m} \\
= & \sum_{j=1}^{p}(-1)^{j-1} \ell_{j}(v) \cdot \ell_{1} \wedge \cdots \wedge \widehat{\ell}_{j} \wedge \ldots \ell_{p} \wedge \ell_{p+1} \wedge \cdots \wedge \ell_{m} \\
& \quad+\sum_{j=p+1}^{m}(-1)^{j-1} \ell_{j}(v) \cdot \ell_{1} \wedge \ldots \ell_{p} \wedge \ell_{p+1} \wedge \cdots \wedge \widehat{\ell}_{j} \wedge \cdots \wedge \ell_{m} \\
= & T_{1}+T_{2}
\end{aligned}
$$

where

$$
T_{1}=\left[\sum_{j=1}^{p}(-1)^{j-1} \ell_{j}(v) \cdot \ell_{1} \wedge \cdots \wedge \widehat{\ell}_{j} \wedge \ldots \ell_{p}\right] \wedge B=\left(i_{v} A\right) \wedge B
$$

and

$$
\begin{aligned}
T_{2} & =A \wedge\left[\sum_{j=p+1}^{m}(-1)^{j-1} \ell_{j}(v) \ell_{p+1} \wedge \cdots \wedge \widehat{\ell}_{j} \wedge \cdots \wedge \ell_{m}\right] \\
& =(-1)^{p} A \wedge\left[\sum_{j=p+1}^{m}(-1)^{j-(p+1)} \ell_{j}(v) \ell_{p+1} \wedge \cdots \wedge \widehat{\ell}_{j} \wedge \cdots \wedge \ell_{m}\right] \\
& =(-1)^{p} A \wedge\left(i_{v} B\right)
\end{aligned}
$$

Lemma 7.14. If $v, w \in V$, then $i_{v}^{2}=0$ and $i_{v} i_{w}=-i_{w} i_{v}$.
Proof. Let $T \in \Lambda^{k}\left(V^{*}\right)$, then

$$
i_{v} i_{w} T=T(w, v,-)=T(v, w,-)=i_{w} i_{v} T .
$$

Definition 7.15 (Cross product on \mathbb{R}^{3}). For $a, b \in \mathbb{R}^{3}$, let $a \times b$ be the unique vector in \mathbb{R}^{3} so that

$$
\operatorname{det}[c|a| b]=c \cdot(a \times b) \text { for all } c \in \mathbb{R}^{3} .
$$

Such a unique vector exists since we know that $c \rightarrow \operatorname{det}[c|a| b]$ is a linear functional on \mathbb{R}^{3} for each $a, b \in \mathbb{R}^{3}$.

Lemma 7.16 (Cross product). The cross product in Definition 7.15 agrees with the "usual definition,

$$
\begin{aligned}
a \times b & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \\
& =: \mathbf{i}\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|-\mathbf{j}\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|+\mathbf{k}\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|,
\end{aligned}
$$

where $\mathbf{i}=e_{1}, \mathbf{j}=e_{2}$, and $\mathbf{k}=e_{3}$ is the standard basis for \mathbb{R}^{3}.
Proof. Suppose that $a \times b$ is defined by the formula in the lemma, then for all $c \in \mathbb{R}$,

$$
\begin{aligned}
(a \times b) \cdot c & =c_{1}\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|-c_{2}\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|+c_{3}\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \\
& =\left|\begin{array}{lll}
c_{1} & c_{2} & c_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\operatorname{det}[c|a| b],
\end{aligned}
$$

wherein we have used the cofactor expansion along the top row for the second equality and the fact that $\operatorname{det} A=\operatorname{det} A^{\operatorname{tr}}$ for the last equality.

Remark 7.17 (Generalized Cross product). If $a_{1}, a_{2} \ldots, a_{n-1} \in \mathbb{R}^{n}$, let $a_{1} \times a_{2} \times$ $\cdots \times a_{n-1}$ denote the unique vector in \mathbb{R}^{n} such that

$$
\operatorname{det}\left[c\left|a_{1}\right| a_{2}|\ldots| a_{n-1}\right]=c \cdot a_{1} \times a_{2} \times \cdots \times a_{n-1} \forall c \in \mathbb{R}^{n}
$$

This "multi-product" is the $n>3$ analogue of the cross product in \mathbb{R}^{3}. I don't anticipate using this generalized cross product.

7.3 Exercises

Exercise 7.2 (Cross I). For $a \in \mathbb{R}^{3}$, let $\ell_{a}(v)=a \cdot v=a^{\text {tr }} v$, so that $\ell_{a} \in$ $\left(\mathbb{R}^{3}\right)^{*}$. In particular we have $\varepsilon_{i}=\ell_{e_{i}}$ for $i \in[3]$ is the dual basis to the standard basis $\left\{e_{i}\right\}_{i=1}^{3}$. Show for $a, b \in \mathbb{R}^{3}$,

$$
\begin{equation*}
\ell_{a} \wedge \ell_{b}=i_{a \times b}\left[\varepsilon_{1} \wedge \varepsilon_{2} \wedge \varepsilon_{3}\right] \tag{7.9}
\end{equation*}
$$

Hints: 1) write $\ell_{a}=\sum_{i=1}^{3} a_{i} \varepsilon_{i}$ and 2) make use of Eq. 7.8
Exercise 7.3 (Cross II). Use Exercise 7.2 to prove the standard vector calculus identity;

$$
(a \times b) \cdot(x \times y)=(a \cdot x)(b \cdot y)-(b \cdot x)(a \cdot y)
$$

which is valid for all $a, b, x, y \in \mathbb{R}^{3}$. Hint: evaluate Eq. (7.9) at (x, y) while using Lemma 7.16

Exercise 7.4 (Surface Integrals). In this exercise, let $\omega \in \mathcal{A}_{3}\left(\mathbb{R}^{3}\right)$ be the standard volume form, $\omega\left(v_{1}, v_{2}, v_{3}\right):=\operatorname{det}\left[v_{1}\left|v_{2}\right| v_{3}\right]$, suppose D is an open subset of \mathbb{R}^{2}, and $\Sigma: D \rightarrow S \subset \mathbb{R}^{3}$ is a "parametrized surface," refer to Figure 7.1. If $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a vector field on \mathbb{R}^{3}, then from your vector calculus class,

Fig. 7.1. In this figure N is a smoothly varying normal to S, n is a normal to the boundary of S, and T is a tangential vector to the boundary of S. Moreover, $D \ni(u, v) \rightarrow \Sigma(u, v) \in S$ is a parametrization of S where $D \subset \mathbb{R}^{2}$.

$$
\begin{equation*}
\iint_{S} F \cdot N d A=\varepsilon \cdot \iint_{D} F(\Sigma(u, v)) \cdot\left[\Sigma_{u}(u, v) \times \Sigma_{v}(u, v)\right] d u d v \tag{7.10}
\end{equation*}
$$

where $\varepsilon=1(\varepsilon=-1)$ if $N(\Sigma(u, v))$ points in the same (opposite) direction as $\Sigma_{u}(u, v) \times \Sigma_{v}(u, v)$. We assume that ε is independent of $(u, v) \in D$.

Show the formula in Eq. 7.10 may be rewritten as

$$
\begin{equation*}
\iint_{S} F \cdot N d A=\varepsilon \iint_{D}\left(i_{F(\Sigma(u, v))} \omega\right)\left(\Sigma_{u}(u, v), \Sigma_{v}(u, v)\right) d u d v \tag{7.11}
\end{equation*}
$$

where

$$
\varepsilon:=\operatorname{sgn}\left(\omega\left(N \circ \Sigma, \Sigma_{u}, \Sigma_{v}\right)\right)=\left\{\begin{array}{c}
1 \text { if } \omega\left(N \circ \Sigma, \Sigma_{u}, \Sigma_{v}\right)>0 \\
-1 \text { if } \omega\left(N \circ \Sigma, \Sigma_{u}, \Sigma_{v}\right)<0 .
\end{array}\right.
$$

Remarks: Once we introduce the proper notation, we will be able to write Eq. 7.11) more succinctly as

$$
\iint_{S} F \cdot N d A=\iint_{S} i_{F} \omega:=\varepsilon \iint_{D} \Sigma^{*}\left(i_{F} \omega\right)
$$

Exercise 7.5 (Boundary Orientation). Referring to the set up in Exercise 7.4 the tangent vector T has been chosen by using the "right-hand" rule in order to determine the orientation on the boundary, ∂S, of S so that Stoke's theorem holds, i.e.

$$
\begin{equation*}
\iint_{S}[\nabla \times F] \cdot N d A=\int_{\partial S} F \cdot T d s \tag{7.12}
\end{equation*}
$$

Show by using the "right hand rule" that $T=c \cdot N \times n$ with $c>0$ and then also show

$$
c=\omega(N, n, T)=\left(i_{n} i_{N} \omega\right)(T)
$$

Also note by Exercise 7.4 that Eq. 7.12 may be written as

$$
\begin{equation*}
\iint_{S} i_{\nabla \times F} \omega=\int_{\partial S} F \cdot T d s \tag{7.13}
\end{equation*}
$$

Remark: We will introduce the "one form", $F \cdot d x$ and an "exterior derivative" operator, d, so that

$$
d[F \cdot d x]=i_{\nabla \times F} \omega
$$

and Eq. 7.13 may be written in the pleasant form,

$$
\iint_{S} d[F \cdot d x]=\int_{\partial S} F \cdot d x
$$

$7.4 *$ Proof of Theorem 7.1

[This section may safely be skipped if you are willing to believe the results as stated!]

If Theorem 7.1 is going to be true we must have $M_{p, q}(A, B)=A \cdot B=D$ where, as written in Eq. (7.4,

$$
\begin{equation*}
D=\sum_{i=1}^{\alpha} \sum_{j=1}^{\beta} a_{i} b_{j} f_{1}^{i} \wedge \cdots \wedge f_{p}^{i} \wedge g_{1}^{j} \wedge \cdots \wedge g_{q}^{j} \tag{7.14}
\end{equation*}
$$

The problem with this presumed definition is that the formula for D in Eq. (7.14) seems to depend on the expansions of A and B in Eqs. 7.2) and 7.3 rather than on only A and B. [The expansions for A and B in Eqs. 7.2 and (7.3) are highly non-unique!] In order to see that D is independent of the possible choices of expansions of A and B, we are going to show in Proposition 7.21 below that $D\left(v_{1}, \ldots, v_{m}\right)$ (with D as in Eq. 7.14) may be expressed by a formula which only involves A and B and not their expansions. Before getting to this proposition we need some more notation and a preliminary lemma.

Notation 7.18 Let $m=p+q$ be as in Theorem 7.1 and let $\left\{v_{i}\right\}_{i=1}^{m} \subset V$ be fixed. For each $J \subset[m]$ with $\# J=p$ write

$$
\begin{aligned}
J & =\left\{1 \leq a_{1}<a_{2}<\cdots<a_{p} \leq m\right\} \\
J^{c} & =\left\{1 \leq b_{1}<b_{2}<\cdots<b_{q} \leq m\right\} \\
v_{J} & :=\left(v_{a_{1}}, \ldots, v_{a_{p}}\right), \text { and } v_{J^{c}}:=\left(v_{b_{1}}, \ldots, v_{b_{q}}\right) .
\end{aligned}
$$

Also for any $\alpha \in \Sigma_{p}$ and $\beta \in \Sigma_{q}$, let

$$
\sigma_{J, \alpha, \beta}=\left(\begin{array}{cccccc}
1 & \ldots & p & p+1 & \ldots & m \\
a_{\alpha 1} & \ldots & a_{\alpha p} & b_{\beta 1} & \ldots & b_{\beta q}
\end{array}\right) .
$$

When α and β are the identity permutations in Σ_{p} and Σ_{q} respectively we will simply denote $\sigma_{J, \alpha, \beta}$ by σ_{J}, i.e.

$$
\sigma_{J}=\left(\begin{array}{cccccc}
1 & \ldots & p & p+1 & \ldots & m \\
a_{1} & \ldots & a_{p} & b_{1} & \ldots & b_{q}
\end{array}\right) .
$$

The point of this notation is contained in the following lemma.

Lemma 7.19. Assuming Notation 7.18.

1. the map,

$$
\mathcal{P}_{p, m} \times \Sigma_{p} \times \Sigma_{q} \ni(J, \alpha, \beta) \rightarrow \sigma_{J, \alpha, \beta} \in \Sigma_{m},
$$

is a bijection, and
2. $(-1)^{\sigma_{J, \alpha, \beta}}=(-1)^{\sigma_{J}}(-1)^{\alpha}(-1)^{\beta}$.

Proof. We leave proof of these assertions to the reader.
Lemma 7.20 (Wedge Product I). Let $n=\operatorname{dim} V, p, q \in[n], m:=p+q$, $\left\{f_{i}\right\}_{i=1}^{p} \subset V^{*},\left\{g_{j}\right\}_{j=1}^{q} \subset V^{*}$, and $\left\{v_{j}\right\}_{j=1}^{m} \subset V$, then

$$
\begin{align*}
& \left(f_{1} \wedge \cdots \wedge f_{p} \wedge g_{1} \wedge \cdots \wedge g_{q}\right)\left(v_{1}, \ldots, v_{m}\right) \\
& \quad=\sum_{\# J=p}(-1)^{\sigma_{J}}\left(f_{1} \wedge \cdots \wedge f_{p}\right)\left(v_{J}\right)\left(g_{1} \wedge \cdots \wedge g_{q}\right)\left(v_{J^{c}}\right) \tag{7.15}
\end{align*}
$$

7 Exterior/Wedge and Interior Products
Proof. In order to simplify notation in the proof let, $\ell_{i}=f_{i}$ for $1 \leq i \leq p$ and $\ell_{j+p}=g_{j}$ for $1 \leq j \leq q$ so that

$$
f_{1} \wedge \cdots \wedge f_{p} \wedge g_{1} \wedge \cdots \wedge g_{q}=\ell_{1} \wedge \cdots \wedge \ell_{m}
$$

Then by Definition 6.27 of $\ell_{1} \wedge \cdots \wedge \ell_{m}$ along with Lemma 7.19, we find,

$$
\begin{aligned}
& \left(\ell_{1} \wedge \cdots \wedge \ell_{m}\right)\left(v_{1}, \ldots, v_{m}\right) \\
& =\operatorname{det}\left[\left\{\ell_{i}\left(v_{j}\right)\right\}_{i, j=1}^{m}\right]=\sum_{\sigma \in \Sigma_{m}}(-1)^{\sigma} \prod_{i=1}^{m} \ell_{i}\left(v_{\sigma i}\right) \\
& =\sum_{J} \sum_{\alpha \in \Sigma_{p}} \sum_{\beta \in \Sigma_{q}}(-1)^{\sigma_{J, \alpha, \beta}} \prod_{i=1}^{m} \ell_{i}\left(v_{\sigma_{J, \alpha, \beta} i}\right) \\
& =\sum_{J}(-1)^{\sigma_{J}} \sum_{\alpha \in \Sigma_{p}} \sum_{\beta \in \Sigma_{q}}(-1)^{\sigma_{\alpha}} \prod_{i=1}^{p} \ell_{i}\left(v_{\sigma_{J, \alpha, \beta} i}\right)(-1)^{\sigma_{\beta}} \prod_{i=p+1}^{m} \ell_{i}\left(v_{\sigma_{J, \alpha, \beta} i}\right)
\end{aligned}
$$

Combining this with the following identity,

$$
\begin{aligned}
& \sum_{\alpha \in \Sigma_{p}} \sum_{\beta \in \Sigma_{q}}(-1)^{\sigma_{\alpha}} \prod_{i=1}^{p} \ell_{i}\left(v_{\sigma_{J, \alpha, \beta} i}\right)(-1)^{\sigma_{\beta}} \prod_{i=p+1}^{m} \ell_{i}\left(v_{\sigma_{J, \alpha, \beta} i}\right) \\
& =\sum_{\alpha \in \Sigma_{p}}(-1)^{\sigma_{\alpha}} \prod_{i=1}^{p} \ell_{i}\left(v_{a_{\alpha i}}\right) \sum_{\beta \in \Sigma_{q}}(-1)^{\sigma_{\beta}} \prod_{i=p+1}^{m} \ell_{i}\left(v_{b_{\beta i}}\right) \\
& =\left(\ell_{1} \wedge \cdots \wedge \ell_{p}\right)\left(v_{J}\right)\left(\ell_{p+1} \wedge \cdots \wedge \ell_{m}\right)\left(v_{J^{c}}\right) \\
& =\left(f_{1} \wedge \cdots \wedge f_{p}\right)\left(v_{J}\right)\left(g_{1} \wedge \cdots \wedge g_{q}\right)\left(v_{J^{c}}\right)
\end{aligned}
$$

completes the proof.
Proposition 7.21 (Wedge Product II). If $A \in \Lambda^{p}\left(V^{*}\right)$ and $B \in \Lambda^{q}\left(V^{*}\right)$ are written as in Eqs. (7.2 7.3) and $D \in \Lambda^{m}\left(V^{*}\right)$ is defined as in Eq. 7.14, then

$$
\begin{equation*}
D\left(v_{1}, \ldots, v_{m}\right)=\sum_{\# J=p}(-1)^{\sigma_{J}} A\left(v_{J}\right) B\left(v_{J^{c}}\right) \quad \forall\left\{v_{j}\right\}_{j=1}^{m} \subset V \tag{7.16}
\end{equation*}
$$

This shows defining $A \wedge B$ by Eq. 7.4 is well defined and in fact could have been defined intrinsically using the formula,

$$
\begin{equation*}
A \wedge B\left(v_{1}, \ldots, v_{m}\right)=\sum_{\# J=p}(-1)^{\sigma_{J}} A\left(v_{J}\right) B\left(v_{J^{c}}\right) \tag{7.17}
\end{equation*}
$$

Proof. By Lemma 7.20

$$
\begin{aligned}
& f_{1}^{i} \wedge \cdots \wedge f_{p}^{i} \wedge g_{1}^{j} \wedge \cdots \wedge g_{q}^{j}\left(v_{1}, \ldots, v_{m}\right) \\
& =\sum_{\# J=p}(-1)^{\sigma_{J}}\left(f_{1}^{i} \wedge \cdots \wedge f_{p}^{i}\right)\left(v_{J}\right) \cdot\left(g_{1}^{j} \wedge \cdots \wedge g_{q}^{j}\right)\left(v_{J^{c}}\right)
\end{aligned}
$$

and therefore,

$$
\begin{aligned}
& D\left(v_{1}, \ldots, v_{m}\right) \\
& =\sum_{i=1}^{\alpha} \sum_{j=1}^{\beta} a_{i} b_{j}\left(f_{1}^{i} \wedge \cdots \wedge f_{p}^{i} \wedge g_{1}^{j} \wedge \cdots \wedge g_{q}^{j}\right)\left(v_{1}, \ldots, v_{m}\right) \\
& =\sum_{i=1}^{\alpha} \sum_{j=1}^{\beta} a_{i} b_{j} \sum_{\# J=p}(-1)^{\sigma_{J}}\left(f_{1}^{i} \wedge \cdots \wedge f_{p}^{i}\right)\left(v_{J}\right) \cdot\left(g_{1}^{j} \wedge \cdots \wedge g_{q}^{j}\right)\left(v_{J^{c}}\right) \\
& =\sum_{\# J=p}(-1)^{\sigma_{J}} \sum_{i=1}^{\alpha} \sum_{j=1}^{\beta} a_{i}\left(f_{1}^{i} \wedge \cdots \wedge f_{p}^{i}\right)\left(v_{J}\right) \cdot \sum_{j=1}^{\beta} b_{j}\left(g_{1}^{j} \wedge \cdots \wedge g_{q}^{j}\right)\left(v_{J^{c}}\right) \\
& =\sum_{\# J=p}(-1)^{\sigma_{J}} A\left(v_{J}\right) B\left(v_{J^{c}}\right)
\end{aligned}
$$

which proves Eq. 7.16 and completes the proof of the proposition.
With all of this preparation we are now in a position to complete the proof of Theorem 7.1.

Proof of Theorem 7.1. As we have see we may define $A \wedge B$ by either Eq. (7.4) or by Eq. 7.17). Equation (7.17) ensures $A \wedge B$ is well defined and is multi-linear while Eq. (7.4) ensures $A \wedge B \in \Lambda^{m}\left(V^{*}\right)$ and that Eq. 7.1) holds. This proves the existence assertion of the theorem. The uniqueness of $M_{p, q}(A, B)=A \wedge B$ follows by the necessity of defining $A \wedge B$ by Eq. 7.4. \quad
Corollary 7.22. Suppose that $\left\{e_{j}\right\}_{j=1}^{n}$ is a basis of V and $\left\{\varepsilon_{j}\right\}_{j=1}^{n}$ is its dual basis of V^{*}. Then for $A \in \Lambda^{p}\left(V^{*}\right)$ and $B \in \Lambda^{q}\left(V^{*}\right)$ we have

$$
\begin{equation*}
A \wedge B=\frac{1}{p!\cdot q!} \sum_{j_{1}, \ldots, j_{m}=1}^{n} A\left(e_{j_{1}}, \ldots, e_{j_{p}}\right) B\left(e_{j_{p+1}}, \ldots, e_{j_{m}}\right) \varepsilon_{j_{1}} \wedge \ldots \cdots \wedge \varepsilon_{j_{m}} \tag{7.18}
\end{equation*}
$$

Proof. By Theorem 6.33 we may write,

$$
\begin{aligned}
& A=\frac{1}{p!} \sum_{j_{1}, \ldots, j_{p}=1}^{N} A\left(e_{j_{1}}, \ldots, e_{j_{p}}\right) \varepsilon_{j_{1}} \wedge \cdots \wedge \varepsilon_{j_{p}} \text { and } \\
& B=\frac{1}{q!} \sum_{j_{p+1}, \ldots, j_{m}=1}^{n} B\left(e_{j_{p+1}}, \ldots, e_{j_{m}}\right) \varepsilon_{j_{p+1}} \wedge \ldots \cdots \wedge \varepsilon_{j_{m}}
\end{aligned}
$$

and therefore Eq. (7.18) holds by computing $A \wedge B$ as in Eq. (7.4).

Derivatives, Tangent Spaces, and Differential Forms

In this chapter we will develop calculus and the language of differential forms on open subsets of Euclidean space in such a way that our result will transfer to the more general manifold setting.

8.1 Derivatives and Chain Rules

Notation 8.1 (Open subset) I use the symbol " \subset_{o} " to denote containment with the smaller set being open in the bigger. Thus writing $U \subset_{o} \mathbb{R}^{n}$ means U is an open subset of \mathbb{R}^{n} which we always assume to be non-empty.

Notation 8.2 For $U \subset o \mathbb{R}^{n}$, we write $f: U \rightarrow \mathbb{R}^{m}$ as short hand for saying that f is a function from U to \mathbb{R}^{m}, thus for each $x \in U$,

$$
f(x)=\left[\begin{array}{c}
f_{1}(x) \\
f_{2}(x) \\
\vdots \\
f_{m}(x)
\end{array}\right]
$$

where $f_{i}: U \rightarrow \mathbb{R}$ for each $i \in[m]$.
Definition 8.3 (Directional Derivatives). Suppose $U \subset_{o} \mathbb{R}^{n}$ that $f: U \rightarrow$ \mathbb{R}^{m} is a function, so For $p \in U$ and $v \in \mathbb{R}^{n}$, let

$$
\left(\partial_{v} f\right)(p):=\left.\frac{d}{d t}\right|_{0} f(p+t v)
$$

be the directional derivativ ϵ^{1} of f at p in the direction v. By definition, the $j^{\text {th }}$-partial derivative of f at p, is

$$
\frac{\partial f}{\partial x_{j}}(p)=\left(\partial_{e_{j}} f\right)(p)=\left.\frac{d}{d t}\right|_{0} f\left(p+t e_{j}\right)
$$

where $\left\{e_{j}\right\}_{j=1}^{n}$ is the standard basis for \mathbb{R}^{n}. We will also write $\partial_{j} f$ for $\frac{\partial f}{\partial x_{j}}=$ $\partial_{e_{j}} f$.

[^5]Definition 8.4. A function, $f: U \rightarrow \mathbb{R}$, is smooth if f has partial derivatives to all orders and all of these partial derivatives are continuous. We say $f: U \rightarrow$ \mathbb{R}^{m} is smooth if each of the functions, $f_{i}: U \rightarrow \mathbb{R}$, are smooth functions.

Notation 8.5 We let $C^{\infty}\left(U, \mathbb{R}^{m}\right)$ denote the smooth functions from U to \mathbb{R}^{m}. When $m=1$ we will also write $C^{\infty}(U, \mathbb{R})=\Omega^{0}(U)$ and refer to these as the smooth 0 -forms on U. We also let $C^{k}\left(U, \mathbb{R}^{m}\right)$ denote those $f: U \rightarrow \mathbb{R}^{m}$ such that each coordinate function, f_{i}, has partial derivatives to order k an all of these partial derivatives are continuous.

Let us recall a some version of the chain rule.
Theorem 8.6. If $f \in C^{1}\left(U, \mathbb{R}^{m}\right), p \in U$, and $v=\left(v_{1}, \ldots, v_{n}\right)^{\operatorname{tr}} \in \mathbb{R}^{n}$, then

$$
\left(\partial_{v} f\right)(p)=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(p) v_{j}=f^{\prime}(p) v
$$

where $f^{\prime}(p)=D f(p)$ is the $m \times n$ matrix defined by

$$
\left.\left.\begin{array}{rl}
f^{\prime}(p) & =\left[\left.\frac{\partial f}{\partial p_{1}}(p)\left|\frac{\partial f}{\partial p_{2}}(p)\right| \ldots \right\rvert\, \frac{\partial f}{\partial p_{n}}(p)\right.
\end{array}\right] \quad \begin{array}{cccc}
\partial_{1} f_{1}(p) & \partial_{2} f_{1}(p) & \ldots & \partial_{n} f_{1}(p) \\
\partial_{1} f_{2}(p) & \partial_{2} f_{2}(p) & \ldots & \partial_{n} f_{2}(p) \\
\vdots & \vdots & \cdots & \vdots \\
\partial_{1} f_{m}(p) & \partial_{2} f_{m}(p) & \cdots & \partial_{n} f_{m}(p)
\end{array}\right] .\left[\begin{array}{lll}
&
\end{array}\right.
$$

We refer to $f^{\prime}(p)=D f(p)$ as the differential of f at p.
More generally, if, $\sigma:(-\varepsilon, \varepsilon) \rightarrow U$ is a curve in U such that $\dot{\sigma}(0)=$ $\left.\frac{d}{d t}\right|_{0} \sigma(t) \in \mathbb{R}^{n}$ exists, then

$$
\begin{align*}
\left.\frac{d}{d t}\right|_{0} f(\sigma(t)) & =\left(\partial_{\dot{\sigma}(0)} f\right)(\sigma(0))=f^{\prime}(\sigma(0)) \dot{\sigma}(0) \\
& =\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(\sigma(0)) \dot{\sigma}_{j}(0) \tag{8.1}
\end{align*}
$$

Example 8.7. If

$$
f\binom{x_{1}}{x_{2}}=\left(\begin{array}{c}
x_{1} x_{2} \\
\sin \left(x_{1}\right) \\
x_{2} e^{x_{1}}
\end{array}\right)
$$

then

$$
f^{\prime}\binom{x_{1}}{x_{2}}=\left[\begin{array}{cc}
x_{2} & x_{1} \\
\cos \left(x_{1}\right) & 0 \\
x_{2} e^{x_{1}} & e^{x_{1}}
\end{array}\right]
$$

Example 8.8. Let

$$
\begin{aligned}
p & =\left[\begin{array}{l}
0 \\
1
\end{array}\right], v=\left[\begin{array}{c}
\pi \\
11
\end{array}\right], \text { and } \\
f\binom{x}{y} & =\left[\begin{array}{c}
y e^{x} \\
x^{2}+y^{2}
\end{array}\right] .
\end{aligned}
$$

Then

$$
\begin{aligned}
f^{\prime}\binom{x}{y} & =\left[\begin{array}{ll}
y e^{x} & e^{x} \\
2 x & 2 y
\end{array}\right] \\
f^{\prime}(p) & =\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right], \text { and } \\
\left(\partial_{v} f\right)(p) & =\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{c}
\pi \\
11
\end{array}\right]=\left[\begin{array}{c}
\pi+11 \\
22
\end{array}\right] .
\end{aligned}
$$

Exercise 8.1. Let

$$
f\binom{r}{\theta}=\left[\begin{array}{l}
r \cos \theta \\
r \sin \theta
\end{array}\right] \text { for }\binom{r}{\theta} \in \mathbb{R}^{2}
$$

Find;

$$
f^{\prime}\binom{r}{\theta} \text { and } \operatorname{det}\left[f^{\prime}\binom{r}{\theta}\right] .
$$

Exercise 8.2. Let

$$
f\left(\begin{array}{c}
r \\
\theta \\
\varphi
\end{array}\right)=\left[\begin{array}{c}
r \sin \varphi \cdot \cos \theta \\
r \sin \varphi \cdot \sin \theta \\
r \cos \varphi
\end{array}\right] \text { for }\left(\begin{array}{c}
r \\
\theta \\
\varphi
\end{array}\right) \in \mathbb{R}^{3}
$$

Find;

$$
f^{\prime}\left(\begin{array}{c}
r \\
\theta \\
\varphi
\end{array}\right) \text { and } \operatorname{det}\left[f^{\prime}\left(\begin{array}{c}
r \\
\theta \\
\varphi
\end{array}\right)\right] .
$$

The following rewriting of the chain rule is often useful for computing directional derivatives.

Lemma 8.9 (Chain Rule II). Let $0 \in U \subset_{o} \mathbb{R}^{n}$ and $f: U \rightarrow \mathbb{R}^{m}$ be smooth function. Then

$$
\left.\frac{d}{d t}\right|_{0} f(t, t, \ldots, t)=\left.\sum_{j=1}^{n} \frac{d}{d t}\right|_{0} f\left(t e_{j}\right)=\left.\sum_{j=1}^{n} \frac{d}{d t}\right|_{0} f\left(0, \ldots, 0,{ }_{t}^{j \text { position }}, 0, \ldots, 0\right)
$$

Proof. Let $\sigma(t)=(t, t, \ldots, t)^{\text {tr }}$, then by the chain rule,

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{0} f(t, t, \ldots, t) & =\left.\frac{d}{d t}\right|_{0} f(\sigma(t))=f^{\prime}(\sigma(0)) \dot{\sigma}(0) \\
& =f^{\prime}(0)\left[e_{1}+\cdots+e_{n}\right] \\
& =\sum_{j=1}^{n}\left(\partial_{e_{j}} f\right)(0)=\left.\sum_{j=1}^{n} \frac{d}{d t}\right|_{0} f\left(t e_{j}\right) .
\end{aligned}
$$

Exercise 8.3. Let

$$
A=\left[\begin{array}{cccc}
A_{11} & A_{12} & \ldots & A_{1 n} \\
A_{21} & A_{22} & \ldots & A_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{n 1} & A_{n 2} & \ldots & A_{n n}
\end{array}\right]=\left[a_{1}|\ldots| a_{n}\right]
$$

be an $n \times n$ matrix with $i^{\text {th }}$-column

$$
a_{i}=\left[\begin{array}{c}
A_{1 i} \\
A_{2 i} \\
\vdots \\
A_{n i}
\end{array}\right]
$$

Given another $n \times n$ matrix B with analogous notation, show

$$
\begin{equation*}
\left(\partial_{B} \operatorname{det}\right)(A)=\sum_{j=1}^{n} \operatorname{det}\left[a_{1}|\ldots| a_{j-1}\left|b_{j}\right| a_{j+1}|\ldots| b_{n}\right] \tag{8.2}
\end{equation*}
$$

For example if $n=3$, this formula reads,

$$
\left(\partial_{B} \operatorname{det}\right)(A)=\operatorname{det}\left[b_{1}\left|a_{2}\right| a_{3}\right]+\operatorname{det}\left[a_{1}\left|b_{2}\right| a_{3}\right]+\operatorname{det}\left[a_{1}\left|a_{2}\right| b_{3}\right]
$$

Suggestions; by definition,

$$
\left(\partial_{B} \operatorname{det}\right)(A):=\left.\frac{d}{d t}\right|_{0} \operatorname{det}(A+t B)=\left.\frac{d}{d t}\right|_{0} \operatorname{det}\left[a_{1}+t b_{1}|\ldots| a_{n}+t b_{n}\right] .
$$

Now apply Lemma 8.9 with

$$
f\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det}\left[a_{1}+x_{1} b_{1}|\ldots| a_{n}+x_{n} b_{n}\right] .
$$

Exercise 8.4 (Exercise 8.3 continued). Continuing the notation and results from Exercise 8.3, show;

1. If $A=I$ is the $n \times n$ identity matrix in Eq. 8.2), then

$$
\left(\partial_{B} \operatorname{det}\right)(I)=\operatorname{tr}(B)=\sum_{j=1}^{n} B_{j, j}
$$

2. If A is an $n \times n$ invertible matrix, shows

$$
\left(\partial_{B} \operatorname{det}\right)(A)=\operatorname{det}(A) \cdot \operatorname{tr}\left(A^{-1} B\right)
$$

Hint: Verify the identity,

$$
\operatorname{det}(A+t B)=\operatorname{det}(A) \cdot \operatorname{det}\left(I+t A^{-1} B\right)
$$

which you should then use along with first item of this exercise.
Corollary 8.10. If A is an $n \times n$ matrix, then $\operatorname{det}\left(e^{A}\right)=e^{\operatorname{tr}(A)}$.
Proof. Let $f(t):=\operatorname{det}\left(e^{t A}\right)$, then

$$
\begin{aligned}
\dot{f}(t) & =\left.\frac{d}{d s}\right|_{0} f(t+s)=\left.\frac{d}{d s}\right|_{0} \operatorname{det}\left(e^{(t+s) A}\right) \\
& =\left.\frac{d}{d s}\right|_{0} \operatorname{det}\left(e^{t A} e^{s A}\right)=\left.\operatorname{det}\left(e^{t A}\right) \frac{d}{d s}\right|_{0} \operatorname{det}\left(e^{s A}\right) \\
& =f(t)\left(\partial_{\frac{d}{d s}} l_{0} e^{s A} \operatorname{det}\right)\left(e^{0 A}\right)=f(t)\left(\partial_{A} \operatorname{det}\right)(I) \\
& =f(t) \operatorname{tr}(A) \text { with } f(0)=\operatorname{det}(I)=1
\end{aligned}
$$

Solving this differential equation then shows,

$$
\operatorname{det}\left(e^{t A}\right)=e^{t \cdot \operatorname{tr}(A)}
$$

8.2 Tangent Spaces and More Chain Rules

Definition 8.11 (Tangent space). To each open set, $U \subset_{o} \mathbb{R}^{n}$, let

$$
T U:=U \times \mathbb{R}^{n}=\left\{v_{p}=(p, v): p \in U \text { and } v \in \mathbb{R}^{n}\right\}
$$

For a given $p \in U$, we let

$$
T_{p} U=\left\{v_{p}=(p, v): v \in \mathbb{R}^{n}\right\}
$$

and refer this as the tangent space to U at p. Note that

$$
T U=\cup_{p \in U} T_{p} U .
$$

For $v_{p}, w_{p} \in T_{p} U$ and $\lambda \in \mathbb{C}$ we define,

$$
v_{p}+\lambda w_{p}:=(v+\lambda w)_{p}
$$

which makes $T_{p} U$ into a vector space isomorphic to \mathbb{R}^{n}.
Notation 8.12 (Cotangent spaces) For $p \in \mathbb{R}^{n}$, let $T_{p}^{*} U:=\left[T_{p} U\right]^{*}$ be the dual space to $T_{p} U$.

Definition 8.13. If $f \in C^{\infty}\left(U, \mathbb{R}^{m}\right)$ and $v_{p} \in T_{p} U$ let

$$
d f\left(v_{p}\right):=\left(\partial_{v} f\right)(p)=f^{\prime}(p) v
$$

We call df the differential of f and further write $d f_{p}$ for $\left.d f\right|_{T_{p} U} \in\left[T_{p} U\right]^{*}$.
We will mostly (probably exclusively) use the $d f$ notation in the case where $m=1$.

Example 8.14. Let $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}^{2}$, then

$$
f^{\prime}\binom{x_{1}}{x_{2}}=\left[\begin{array}{ll}
\left.x_{2}^{2} 2 x_{1} x_{2}\right] \Longrightarrow f^{\prime}\binom{p_{1}}{p_{2}}=\left[\begin{array}{ll}
\left.p_{2}^{2} 2 p_{1} p_{2}\right]
\end{array}\right] . . . ~
\end{array}\right.
$$

Therefore,

$$
d f\left(v_{p}\right)=\left[\begin{array}{ll}
p_{2}^{2} & 2 p_{1} p_{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=p_{2}^{2} v_{1}+2 p_{1} p_{2} v_{2}
$$

Notation 8.15 (Coordinate functions) Note well: from now on we will usually consider $x=\left(x_{1}, \ldots, x_{n}\right)^{\text {tr }}$ to be the identity function from \mathbb{R}^{n} to \mathbb{R}^{n} rather than a point in \mathbb{R}^{n}, i.e. if $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)^{\operatorname{tr}}$ then $x_{i}(p)=p_{i}$. We still however write

$$
\frac{\partial f}{\partial x_{i}}(p):=\partial_{i} f(p)=\left(\partial_{e_{i}} f\right)(p)
$$

Example 8.16. We have for each $i \in[n]$

$$
d x_{i}\left(v_{p}\right)=\left(\partial_{v} x_{i}\right)(p)=\left.\frac{d}{d t}\right|_{0} x_{i}(p+t v)=\left.\frac{d}{d t}\right|_{0}\left(p_{i}+t v_{i}\right)=v_{i}
$$

Proposition 8.17. If $f \in \Omega^{0}(U)$, then

$$
d f=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} d x_{i}
$$

where the right side of this equation evaluated at v_{p} is by definition,

$$
\left(\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} d x_{i}\right)\left(v_{p}\right)=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(p) \cdot d x_{i}\left(v_{p}\right)
$$

Proof. By definition and the chain rule,

$$
d f\left(v_{p}\right)=\left(\partial_{v} f\right)(p)=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(p) v_{i}=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(p) \cdot d x_{i}\left(v_{p}\right)
$$

Exercise 8.5. Using Proposition 8.17, find $d f$ when

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} \sin \left(e^{x_{2}}\right)+\cos \left(x_{3}\right)
$$

Lemma 8.18 (Product Rule). Suppose that $f, g \in C^{\infty}(U)$, then $d(f g)=$ $f d g+g d f$ which in more detail means,

$$
d(f g)\left(v_{p}\right)=f(p) d g\left(v_{p}\right)+g(p) d f\left(v_{p}\right) \text { for all } v_{p} \in T U
$$

[You are asked to generalize this result in Exercise 8.6.]
Proof. This is the product rule. Here are two ways to prove this result.

1. The first method used the product rule for directional derivatives,

$$
\begin{aligned}
d(f g)\left(v_{p}\right) & =\left(\partial_{v}(f g)\right)(p)=\left(\partial_{v} f \cdot g+f \partial_{v} g\right)(p) \\
& =g(p) d f\left(v_{p}\right)+f(p) d g\left(v_{p}\right)
\end{aligned}
$$

2. For the second we use Proposition 8.17 and the product rule for partial derivatives to find,

$$
\begin{align*}
d(f g) & =\sum_{j=1}^{n} \partial_{j}(f g) d x_{j}=\sum_{j=1}^{n}\left[\partial_{j} f \cdot g+f \partial_{j} g\right] d x_{j} \tag{8.3}\\
& =g \sum_{j=1}^{n} \partial_{j} f d x_{j}+f \sum_{j=1}^{n} \partial_{j} g d x_{j}=g d f+f d g
\end{align*}
$$

Example 8.19 (Example 8.14 revisited). Let $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}^{2}$ be as in Example 8.14 then using the product rule,

$$
d f=x_{2}^{2} d x_{1}+x_{1} d\left[x_{2}^{2}\right]=x_{2}^{2} d x_{1}+2 x_{1} x_{2} d x_{2}
$$

Proposition 8.20. If $f \in \Omega^{0}(U)$ and $\sigma(t)$ is curve in U so that $\dot{\sigma}(0)$ exists, then

$$
\left.\frac{d}{d t}\right|_{0} f(\sigma(t))=d f\left(\dot{\sigma}(0)_{\sigma(0)}\right)
$$

Proof. By the chain rule and the definition of $d f\left(v_{p}\right)$,

$$
\left.\frac{d}{d t}\right|_{0} f(\sigma(t))=f^{\prime}(\sigma(0)) \dot{\sigma}(0)=\left(\partial_{\dot{\sigma}(t)} f\right)(\sigma(0))=d f\left(\dot{\sigma}(0)_{\sigma(0)}\right)
$$

Exercise 8.6. Let $g_{1}, g_{2}, \ldots, g_{n} \in C^{1}(U, \mathbb{R}), f \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$, and $u=$ $f\left(g_{1}, \ldots, g_{n}\right)$, i.e.

$$
u(p)=f\left(g_{1}(p), \ldots, g_{n}(p)\right) \text { for all } p \in U
$$

Show

$$
d u=\sum_{j=1}^{n}\left(\partial_{j} f\right)\left(g_{1}, \ldots, g_{n}\right) d g_{j}
$$

which is to be interpreted to mean,

$$
d u\left(v_{p}\right)=\sum_{j=1}^{n}\left(\partial_{j} f\right)\left(g_{1}(p), \ldots, g_{n}(p)\right) d g_{j}\left(v_{p}\right) \text { for all } v_{p} \in T U
$$

Hint: For $v_{p} \in T U$, let $\sigma(t)=\left(g_{1}(p+t v), \ldots, g_{n}(p+t v)\right)$ and then make use of the chain rule (see Eq. 8.1)) to compute $d u\left(v_{p}\right)$.

Here is yet one more version of the chain rule. [This next version essentially encompasses all of the previous versions.]
Exercise 8.7 (Chain Rule for Maps). Suppose that $f: U \rightarrow V$ and g : $V \rightarrow W$ are C^{1}-functions where U, V, and W are open subsets of $\mathbb{R}^{n}, \mathbb{R}^{m}$, and \mathbb{R}^{p} respectively and let $g \circ f: U \rightarrow W$ be the composition map,

$$
g \circ f: U \xrightarrow{f} V \xrightarrow{g} W
$$

Show

$$
(g \circ f)^{\prime}(p)=g^{\prime}(f(p)) f^{\prime}(p) \text { for all } p \in U
$$

Hint: Let $v \in \mathbb{R}^{n}$ and $\sigma(t):=f(p+t v)$ - a differentiable curve in V. Then use the chain rule in Theorem 8.6 twice in order to compute,

$$
(g \circ f)^{\prime}(p) v=\frac{d}{d t} \operatorname{lo}_{0} g(f(p+t v))=\frac{d}{d t} \log _{0} g(\sigma(t))
$$

We now want to define a derivative map which fully keeps track of the base points, unlike $d f$ which forgets the target base point.
Definition $8.21\left(f_{*}: T U \rightarrow T V\right)$. If $U \subset_{o} \mathbb{R}^{n}$ and $V \subset_{o} \mathbb{R}^{m}$ and $f: U \rightarrow V$ is a smooth function, i.e. $f: U \rightarrow \mathbb{R}^{m}$ is smooth with $f(U) \subset V$, then we define a map, $f_{*}: T U \rightarrow T V$ by

$$
\begin{equation*}
f_{*} v_{p}:=\left[\left(\partial_{v} f\right)(p)\right]_{f(p)}=\left[f^{\prime}(p) v\right]_{f(p)} \text { for all }(p, v) \in T U=U \times \mathbb{R}^{n} \tag{8.4}
\end{equation*}
$$

We further let $f_{* p}$ denote the restriction of f_{*} to $T_{p} U$ in which case $f_{* p}: T_{p} U \rightarrow$ $T_{f(p)} V$ which is seen to be linear by the formula in Eq. 8.4.
Proposition 8.22 (Chain rule again). Let f and g be as in Exercises 8.7 Here are are last two reformulations of the chain rule.

1. If $\sigma(t)$ is a curve in U such that $\dot{\sigma}(0)=v$ and $\sigma(0)=p$, then

$$
f_{*} v_{p}=f_{*}\left(\dot{\sigma}(0)_{\sigma(0)}\right)=\left[\left.\frac{d}{d t}\right|_{0} f(\sigma(t))\right]_{f(\sigma(0))}
$$

2. The chain rule in Eq. 8.3) may be written in the following pleasing form,

$$
(g \circ f)_{*}=g_{*} f_{*}
$$

Proof. We take each item in turn.

1. Let $v_{p} \in T U$. By the chain rule,

$$
\left.\frac{d}{d t}\right|_{0} f(\sigma(t))=f^{\prime}(\sigma(0)) \dot{\sigma}(0)=f^{\prime}(p) v
$$

and therefore,

$$
\left[\left.\frac{d}{d t}\right|_{0} f(\sigma(t))\right]_{f(\sigma(0))}=\left[f^{\prime}(p) v\right]_{p}=: f_{*} v_{p}
$$

2. By the chain rule in Exercise 8.7,

$$
(g \circ f)_{*} v_{p}=\left[(g \circ f)^{\prime}(p) v\right]_{(g \circ f)(p)}=\left[g^{\prime}(f(p)) f^{\prime}(p) v\right]_{g(f(p))}
$$

On the other hand,

$$
g_{*} f_{*} v_{p}=g_{*}\left(\left[f^{\prime}(p) v\right]_{f(p)}\right)=\left[g^{\prime}(f(p)) f^{\prime}(p) v\right]_{g(f(p))}
$$

and hence $(g \circ f)_{*} v_{p}=g_{*} f_{*} v_{p}$ for all $v_{p} \in T U$, i.e. $(g \circ f)_{*}=g_{*} f_{*}$.

8.3 Differential Forms

Standing notation: throughout this section, let $\left\{e_{i}\right\}_{i=1}^{n}$ be the standard basis on $\mathbb{R}^{n},\left\{\varepsilon_{i}\right\}_{i=1}^{n}$ be its dual basis, $\left\{x_{i}\right\}_{i=1}^{n}$ be the standard coordinate functions on \mathbb{R}^{n} (so $x_{i}(v)=\varepsilon_{i}(v)=v_{i}$ for all $v=\left(v_{1}, \ldots, v_{n}\right)^{\operatorname{tr}} \in \mathbb{R}^{n}$) and U be an open subset of \mathbb{R}^{n}.

Definition 8.23 (Differential k-form). A 0 -form on U is just a function, $f: U \rightarrow \mathbb{R}$ while (for $k \in \mathbb{N}$) a differential k-form (ω) on U is an assignment;

$$
U \ni p \rightarrow \omega_{p} \in \Lambda^{k}\left(\left[T_{p} \mathbb{R}^{n}\right]^{*}\right) \text { for all } p \in U
$$

The form ω is said to be C^{r} if for every fixed $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$ the function,

$$
U \ni p \rightarrow \omega_{p}\left(\left[v_{1}\right]_{p}, \ldots,\left[v_{k}\right]_{p}\right) \in \mathbb{R}
$$

is a C^{r} function.
In order to simplify notation, I will usually just write

$$
\omega\left(\left[v_{1}\right]_{p}, \ldots,\left[v_{k}\right]_{p}\right) \text { for } \omega_{p}\left(\left[v_{1}\right]_{p}, \ldots,\left[v_{k}\right]_{p}\right)
$$

Notation 8.24 For an open subset, $U \subset \mathbb{R}^{n}$ and $k \in[n]$, we let $\Omega^{k}(U)$ denote the collection of C^{∞} (smooth) k-forms on U.
Example 8.25. If $\left\{f_{i}\right\}_{i=0}^{k}$ are smooth functions on U, then $\omega=f_{0} d f_{1} \wedge \cdots \wedge d f_{k}$ defined by

$$
\begin{aligned}
\omega\left(\left[v_{1}\right]_{p}, \ldots,\left[v_{k}\right]_{p}\right) & =f_{0}(p)_{0} d f_{1} \wedge \cdots \wedge d f_{k}\left(\left[v_{1}\right]_{p}, \ldots,\left[v_{k}\right]_{p}\right) \\
& =f_{0}(p) \operatorname{det}\left[\left\{d f_{i}\left(\left[v_{j}\right]_{p}\right)\right\}_{i, j=1}^{k}\right] \\
& =f_{0}(p) \operatorname{det}\left[\left\{\left(\partial_{v_{j}} f_{i}\right)(p)\right\}_{i, j=1}^{k}\right]
\end{aligned}
$$

If $f_{1}=x_{l_{1}}, \ldots, f_{k}=x_{l_{k}}$ for some $1 \leq l_{1}<l_{2}<\cdots<l_{k} \leq n$, then

$$
\begin{aligned}
\omega\left(\left[v_{1}\right]_{p}, \ldots,\left[v_{k}\right]_{p}\right) & =f_{0}(p) \operatorname{det}\left[\left\{\varepsilon_{l_{i}}\left(v_{j}\right)\right\}_{i, j=1}^{k}\right] \\
& =f_{0}(p) \varepsilon_{l_{1}} \wedge \cdots \wedge \varepsilon_{l_{k}}\left(v_{1}, \ldots, v_{k}\right)
\end{aligned}
$$

Lemma 8.26. There is a one to one correspondence between k-forms (ω) on U and functions $\tilde{\omega}: U \rightarrow \Lambda^{k}\left(\left[\mathbb{R}^{n}\right]^{*}\right)$. The correspondence is determined by;

$$
\tilde{\omega}(p)\left(v_{1}, \ldots, v_{k}\right)=\omega_{p}\left(\left[v_{1}\right]_{p}, \ldots,\left[v_{k}\right]_{p}\right) \text { for all } p \in U \text { and }\left\{v_{i}\right\}_{i=1}^{k} \subset \mathbb{R}^{n}
$$

Under this correspondence, ω is a $C^{r} k$-form iff $\tilde{\omega}: U \rightarrow \Lambda^{k}\left(\left[\mathbb{R}^{n}\right]^{*}\right)$ is a C^{r} function.

Definition 8.27 (Multiplication Rules). If $\alpha \in \Omega^{k}(U)$ and $\beta \in \Omega^{l}(U)$, we define $\alpha \wedge \beta \in \Omega^{k+l}(U)$ by requiring

$$
[\alpha \wedge \beta]_{p}=\alpha_{p} \wedge \beta_{p} \in \Lambda^{k+l}\left(\left[T_{p} \mathbb{R}^{n}\right]^{*}\right) \text { for all } p \in U
$$

If $\alpha=f \in \Omega^{0}(U)$, then the above formula is to be interpreted as

$$
[f \beta]_{p}=f(p) \beta_{b} \in \Lambda^{l}\left(\left[T_{p} \mathbb{R}^{n}\right]^{*}\right) \text { for all } p \in U
$$

Remark 8.28. Using the identification in Lemma 8.26 , these multiplication rules are equivalent to requiring

$$
\widetilde{\alpha \wedge \beta}(p)=\tilde{\alpha}(p) \wedge \tilde{\beta}(b) \text { for all } p \in U
$$

Notation 8.29 For

$$
\begin{equation*}
J=\left\{1 \leq j_{1}<j_{2}<\cdots<j_{k} \leq n\right\} \subset[n] \tag{8.5}
\end{equation*}
$$

let

$$
\begin{aligned}
d x_{J} & :=d x_{j_{1}} \wedge \cdots \wedge d x_{j_{k}} \in \Omega^{k}\left(\mathbb{R}^{n}\right) \text { and } \\
\varepsilon_{J} & =\varepsilon_{j_{1}} \wedge \cdots \wedge \varepsilon_{j_{k}} \in \Lambda^{k}\left(\left[\mathbb{R}^{n}\right]^{*}\right)
\end{aligned}
$$

Proposition 8.30. If ω is a k-form on U, there exist unique functions ω_{J} : $U \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\omega=\sum_{J \subset[n]:|J|=k} \omega_{J} d x_{J} \tag{8.6}
\end{equation*}
$$

and all possible functions $\omega_{J}: U \rightarrow \mathbb{R}$ may occur. Moreover, if $J \subset[n]$ as in Eq. (8.5), then ω_{J} is related to ω by

$$
\omega_{J}(p):=\omega\left(\left[e_{j_{1}}\right]_{p}, \ldots,\left[e_{j_{k}}\right]_{p}\right)=\tilde{\omega}(p)\left(e_{j_{1}}, \ldots, e_{j_{k}}\right) \text { for all } p \in U
$$

Corollary 8.31. If ω is given as in Eq. 8.6) then

$$
\tilde{\omega}(p)=\sum_{J \subset[n]:|J|=k} \omega_{J}(p) \varepsilon_{J}
$$

and ω is smooth iff the functions ω_{J} are smooth for each $J \subset[n]$ with $|J|=k$.
Example 8.32. If $\omega \in \Omega^{2}(U)$, then

$$
\omega=\sum_{1 \leq i<j \leq n} \omega_{i j} d x_{i} \wedge d x_{j} \text { and } \tilde{\omega}=\sum_{1 \leq i<j \leq n} \omega_{i j} \varepsilon_{i} \wedge \varepsilon_{j}
$$

for some functions $\omega_{i j} \in \Omega^{0}(U)$.

The following lemma is a direct consequence of our development of the multi-linear algebra in the previous part.
Lemma 8.33. If $\left\{\alpha_{i}\right\}_{i=1}^{k} \subset \Omega^{1}(U)$, then $\alpha_{1} \wedge \cdots \wedge \alpha_{k} \in \Omega^{k}(U)$ and moreover if $\left\{v_{p}^{i}\right\}_{i=1}^{k} \subset T_{p} U$, then

$$
\alpha_{1} \wedge \cdots \wedge \alpha_{k}\left(v_{p}^{1}, \ldots, v_{p}^{k}\right)=\operatorname{det}\left[\left\{\alpha_{i}\left(v_{p}^{j}\right)\right\}_{i, j=1}^{k}\right]
$$

where

$$
\left[\left\{\alpha_{i}\left(v_{p}^{j}\right)\right\}_{i, j=1}^{k}\right]=\left[\begin{array}{cccc}
\alpha_{1}\left(v_{1}\right) & \alpha_{1}\left(v_{2}\right) & \ldots & \alpha_{1}\left(v_{k}\right) \\
\alpha_{2}\left(v_{1}\right) & \alpha_{2}\left(v_{2}\right) & \ldots & \alpha_{2}\left(v_{k}\right) \\
\vdots & \vdots & \ldots & \vdots \\
\alpha_{k}\left(v_{1}\right) & \alpha_{k}\left(v_{2}\right) & \ldots & \alpha_{k}\left(v_{k}\right)
\end{array}\right]
$$

or its transpose if you prefer.
Example 8.34. If

$$
\begin{aligned}
& \alpha=f_{0} d f_{1} \wedge \cdots \wedge d f_{k} \in \Omega^{k}(U) \text { and } \\
& \beta=g_{0} d g_{1} \wedge \cdots \wedge d g_{l} \in \Omega^{l}(U)
\end{aligned}
$$

for some functions $\left\{f_{j}\right\}_{j=0}^{k} \cup\left\{g_{i}\right\}_{i=0}^{l} \subset \Omega^{0}(U)$, then

$$
\alpha \wedge \beta=f_{0} g_{0} d f_{1} \wedge \cdots \wedge d f_{k} \wedge d g_{1} \wedge \cdots \wedge d g_{l} \in \Omega^{k+l}(U)
$$

Exercise 8.8. Suppose that $\left\{x_{j}\right\}_{j=1}^{4}$ are the standard coordinates on $\mathbb{R}^{4}, p=$ $(1,-1,2,3)^{\operatorname{tr}} \in \mathbb{R}^{4}, v^{1}=(1,2,3,4)^{\operatorname{tr}}, v^{2}=(0,1,-1,1)^{\operatorname{tr}}, v^{3}=(1,0,3,2)$,
$\alpha=x_{4}\left(d x_{1}+d x_{2}\right), \beta=x_{1} x_{2}\left(d x_{3}+d x_{4}\right)$, and $\omega=\left(x_{1}^{2}+x_{3}^{2}\right) d x_{3} \wedge d x_{2} \wedge d x_{4}$.
Compute the following quantities;

1. $\alpha\left(v_{p}^{1}\right)$,
2. $\alpha \wedge \alpha\left(v_{p}^{1}, v_{p}^{2}\right)$
3. $\alpha \wedge \beta\left(v_{p}^{1}, v_{p}^{2}\right)$,
4. $\omega\left(v_{p}^{1}, v_{p}^{2}, v_{p}^{3}\right)$.

Exercise 8.9. Let $\left\{x_{i}\right\}_{i=1}^{6}$ be the standard coordinates on \mathbb{R}^{6} and let

$$
\omega=d x_{1} \wedge d x_{2}+d x_{3} \wedge d x_{4}+d x_{5} \wedge d x_{6} \in \Omega^{2}\left(\mathbb{R}^{6}\right)
$$

Show

$$
\omega \wedge \omega \wedge \omega=c d x_{1} \wedge d x_{2} \wedge d x_{3} \wedge d x_{4} \wedge d x_{5} \wedge d x_{6}
$$

for some $c \in \mathbb{R}$ which you should find.

Definition 8.35 (Pull-Back). Suppose that $V \subset_{o} \mathbb{R}^{m}$ and $U \subset_{o} \mathbb{R}^{n}$ and φ : $V \rightarrow U$ is a smooth function. Then for $\omega \in \Omega^{p}(U)$ we define $\varphi^{*} \omega \in \Omega^{p}(V)$ by

$$
\left(\varphi^{*} \omega\right)\left(v_{1}, \ldots, v_{p}\right)=\omega\left(\varphi_{*} v_{1}, \ldots, \varphi_{*} v_{p}\right)
$$

Lemma 8.36. If $f \in \Omega^{0}(V)$ and $\omega=d f \in \Omega^{1}(V)$, then

$$
\begin{equation*}
\varphi^{*} d f=d\left[\varphi^{*} f\right]=d(f \circ \varphi) \tag{8.7}
\end{equation*}
$$

Proof. For $v_{p} \in T_{p} V$, let $\sigma(t)=\varphi(p+t v)$ and use the chain rule to find,

$$
\left.\frac{d}{d t}\right|_{0} f(\varphi(p+t v))=\left.\frac{d}{d t}\right|_{0} f(\sigma(t))=d f\left(\dot{\sigma}(0)_{\sigma(0)}\right)=d f\left(\varphi_{*} v_{p}\right)
$$

Therefore,

$$
\begin{aligned}
\left(\varphi^{*} d f\right)\left(v_{p}\right) & =d f\left(\varphi_{*} v_{p}\right)=\left.\frac{d}{d t}\right|_{0} f(\varphi(p+t v)) \\
& =\left.\frac{d}{d t}\right|_{0}[f \circ \varphi(p+t v)]=d(f \circ \varphi)\left(v_{p}\right)=d\left[\varphi^{*} f\right]\left(v_{p}\right)
\end{aligned}
$$

Proposition 8.37. If $\omega \in \Omega^{k}(U), \eta \in \Omega^{l}(U)$, and φ and ψ are maps such that $\psi \circ \varphi$ makes sense, then

$$
\begin{equation*}
\varphi^{*} \psi^{*} \omega=(\psi \circ \varphi)^{*} \omega \tag{8.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi^{*}(\omega \wedge \eta)=\varphi^{*} \omega \wedge \varphi^{*} \eta \tag{8.9}
\end{equation*}
$$

Proof. The first identity follows from Exercise 6.2 and the second from Theorem 7.10

8.4 Exterior Differentiation

Now that we have defined forms it is natural to try to differentiate these forms. We have already differentiated 0 -forms, f, to get a 1 -form $d f$. So it is natural to generalize this definition as follows.
Definition 8.38 (Exterior Differentiation). If $\omega=\sum_{J} \omega_{J} d x_{J} \in \Omega^{k}(U)$, we define

$$
\begin{equation*}
d \omega:=\sum_{J} d \omega_{J} \wedge d x_{J} \in \Omega^{k+1}(U) \tag{8.10}
\end{equation*}
$$

or equivalently,

$$
d \omega=\sum_{i=1}^{n} \sum_{J}\left(\partial_{i} \omega_{J}\right) d x_{i} \wedge d x_{J}
$$

In terms of the identification of $\omega \in \Omega^{p}(U)$ with $\tilde{\omega} \in C^{\infty}\left(U, \Lambda^{k}\left(\left[\mathbb{R}^{n}\right]^{*}\right)\right)$ in Lemma 8.26 we have

$$
\widetilde{d \omega}=\sum_{i=1}^{n} \sum_{J}\left(\partial_{i} \omega_{J}\right) \varepsilon_{i} \wedge \varepsilon_{J}=\sum_{i=1}^{n} \varepsilon_{i} \wedge \sum_{J}\left(\partial_{i} \omega_{J}\right) \varepsilon_{J}
$$

which may be written as

$$
\begin{equation*}
\widetilde{d \omega}=\hat{d} \tilde{\omega}:=\sum_{i=1}^{n} \varepsilon_{i} \wedge \partial_{i} \tilde{\omega} \tag{8.11}
\end{equation*}
$$

This last equation describes $d \omega$ without first expanding ω as a linear combination of the $\left\{d x_{J}\right\}$. This turns out to be quite convenient for deducing the basic properties of the exterior derivative.
Proposition 8.39 (Properties of d). The exterior derivative d satisfies the following properties;

1. $d f\left(v_{p}\right)=\left(\partial_{v} f\right)(p)$ for $f \in \Omega^{0}(U)$.
2. $d: \Omega^{p}(U) \rightarrow \Omega^{p+1}(U)$ is a linear map for all $0 \leq p<n$.
3. d satisfies the product rule

$$
d[\omega \wedge \eta]=d \omega \wedge \eta+(-1)^{p} \omega \wedge d \eta
$$

for all $\omega \in \Omega^{p}(U)$ and $\eta \in \Omega^{q}(U)$.
4. $d^{2} \omega=0$ for all $\omega \in \Omega^{p}(U)$.

Proof. To simplify notation in this proof we will not distinguish between ω and $\tilde{\omega}$ and d and \hat{d} and we will exclusively (in this proof) view forms as function from U to $\Lambda^{k}\left(\left[\mathbb{R}^{n}\right]^{*}\right)$. We now go to the proof.

The first item immediate from the linearity of the derivative operator. The second item is consequence of the product rule for differentiation;

$$
\begin{aligned}
d[\omega \wedge \eta] & =\sum_{j=1}^{n} \varepsilon_{j} \wedge \frac{\partial}{\partial x_{j}}[\omega \wedge \eta]=\sum_{j=1}^{n} \varepsilon_{j} \wedge\left[\frac{\partial \omega}{\partial x_{j}} \wedge \eta+\omega \wedge \frac{\partial \eta}{\partial x_{j}}\right] \\
& =\sum_{j=1}^{n} \varepsilon_{j} \wedge \frac{\partial \omega}{\partial x_{j}} \wedge \eta+\sum_{j=1}^{n} \varepsilon_{j} \wedge \omega \wedge \frac{\partial \eta}{\partial x_{j}} \\
& =d \omega \wedge \eta+(-1)^{p} \omega \wedge\left(\sum_{j=1}^{n} \varepsilon_{j} \wedge \frac{\partial \eta}{\partial x_{j}}\right) \\
& =d \omega \wedge \eta+(-1)^{p} \omega \wedge d \eta
\end{aligned}
$$

Lastly,

$$
\begin{aligned}
d^{2} \omega & =\sum_{i=1}^{n} \varepsilon_{i} \wedge \frac{\partial}{\partial x_{i}}\left(\sum_{j=1}^{n} \varepsilon_{j} \wedge \frac{\partial \omega}{\partial x_{j}}\right) \\
& =\sum_{i, j=1}^{n} \varepsilon_{i} \wedge \varepsilon_{j} \wedge \frac{\partial^{2} \omega}{\partial x_{i} \partial x_{j}} \\
& =\frac{1}{2} \sum_{i, j=1}^{n}\left[\varepsilon_{i} \wedge \varepsilon_{j} \wedge \frac{\partial^{2} \omega}{\partial x_{i} \partial x_{j}}+\varepsilon_{j} \wedge \varepsilon_{i} \wedge \frac{\partial^{2} \omega}{\partial x_{j} \partial x_{i}}\right] \\
& =\frac{1}{2} \sum_{i, j=1}^{n}\left[\varepsilon_{i} \wedge \varepsilon_{j} \wedge \frac{\partial^{2} \omega}{\partial x_{i} \partial x_{j}}-\varepsilon_{i} \wedge \varepsilon_{j} \wedge \frac{\partial^{2} \omega}{\partial x_{i} \partial x_{j}}\right]=0
\end{aligned}
$$

wherein we have used the fact that mixed partial derivatives of C^{2}-functions (vector-valued or not) are equal.

Lemma 8.40. If $\left\{g_{j}\right\}_{j=0}^{p} \subset \Omega^{0}(U)$, then

$$
\begin{equation*}
d\left[g_{0} \cdot g_{1} \wedge \cdots \wedge d g_{p}\right]=d g_{0} \wedge d g_{1} \wedge \cdots \wedge d g_{p} \tag{8.12}
\end{equation*}
$$

This formula along with the knowing df for $f \in \Omega^{0}(U)$ completely determines d on $\Omega^{p}(U)$.

Proof. The proof is by induction on p. Rather than do the general induction argument, let me explain the case $p=3$ in detail so that $\omega=g_{0} d g_{1} \wedge d g_{2} \wedge d g_{3}$. Then using only the properties developed in Proposition 8.39 ,

$$
d \omega=d g_{0} \wedge\left[d g_{1} \wedge d g_{2} \wedge d g_{3}\right]+g_{0} d\left[d g_{1} \wedge d g_{2} \wedge d g_{3}\right]
$$

where

$$
\begin{aligned}
d\left[d g_{1} \wedge d g_{2} \wedge d g_{3}\right] & =d\left[d g_{1} \wedge\left(d g_{2} \wedge d g_{3}\right)\right] \\
& =d^{2} g_{1} \wedge\left(d g_{2} \wedge d g_{3}\right)-d g_{1} \wedge d\left(d g_{2} \wedge d g_{3}\right) \\
& =0-d g_{1} \wedge\left[d^{2} g_{2} \wedge d g_{3}-d g_{2} \wedge d^{2} g_{3}\right]=0
\end{aligned}
$$

Thus we have shown

$$
d \omega=d g_{0} \wedge d g_{1} \wedge d g_{2} \wedge d g_{3}
$$

as desired.

The next corollary shows that the properties in Proposition 8.39 actually uniquely determines the exterior derivative, d.

Corollary 8.41. If $d: \Omega^{*}(U) \rightarrow \Omega^{*+1}(U)$ is any linear operator satisfying the four properties in Proposition 8.39, then d is in fact given as in Definition 8.38.

Proof. Let $\omega=\sum_{J} \omega_{J} d x_{J} \in \Omega^{k}(U)$ where the sum is over $J \subset[n]$ with $|J|=k$. By Lemma 8.40 , which was proved using only the properties in Proposition 8.39, we know that

$$
\begin{aligned}
d\left[\omega_{J} d x_{J}\right] & =d\left[\omega_{J} d x_{j_{1}} \wedge \cdots \wedge d x_{j_{k}}\right]=d \omega_{J} \wedge d x_{j_{1}} \wedge \cdots \wedge d x_{j_{k}} \\
& =d \omega_{J} \wedge d x_{J} .
\end{aligned}
$$

Thus using the assumed linearity of d, it follows that

$$
d \omega=\sum_{J} d \omega_{J} \wedge d x_{J}
$$

in agreement with the definition in Eq. 8.10.

Example 8.42. In this example, let x, y, z be the standard coordinates on \mathbb{R}^{3} (actually any smooth function on \mathbb{R}^{3} or \mathbb{R}^{k} for that matter would work). If

$$
\alpha=y d x+(z \cos y z+x) d y+y \cos y z d z
$$

then
$d \alpha=d y \wedge d x+((\cos y z-y z \sin y z) d z+d x) \wedge d y+(\cos y z-z y \sin y z) d y \wedge d z=0$, i.e. α is closed, see Definition 8.43 below.

Exercise 8.10. Let $\alpha=x d x-y d y, \beta=z d x \wedge d y+x d y \wedge d z$ and $\gamma=z d y$ on \mathbb{R}^{3}, calculate,

$$
\alpha \wedge \beta, \quad \alpha \wedge \beta \wedge \gamma, \quad d \alpha, \quad d \beta, \quad d \gamma
$$

Definition 8.43. A form $\omega \in \Omega^{k}(U)$ is closed if $d \omega=0$ and it is exact if $\omega=d \mu$ for some $\mu \in \Omega^{k-1}(U)$.

Note that if $\omega=d \mu$, then $d \omega=d^{2} \mu=0$, so exact forms are closed but the converse is not always true.
Exercise 8.11. Let (x, y) be the standard coordinates on \mathbb{R}^{2}, and define,

$$
\alpha:=\left(x^{2}+y^{2}\right)^{-1} \cdot(x d y-y d x) \in \Omega^{1}\left(\mathbb{R}^{2} \backslash\{0\}\right)
$$

Show α is closed. [We will eventually see that this form is not exact.]
Definition 8.44. A vector field on $U \subset_{o} \mathbb{R}^{n}$, is an assignment to each $p \in$ U to and element $F(p) \in T_{p} U$. Necessarily, this means there exists a unique function, $f: U \rightarrow \mathbb{R}^{n}$, such that $F(p)=[f(p)]_{p}$ for all $p \in U$. We say F is smooth if $f \in C^{\infty}\left(U, \mathbb{R}^{n}\right)$. To simplify notation, we will often simply identify f with F.

Exercise 8.12 (Divergence Formula). Let $f=\left(f_{1}, f_{2}, f_{3}, \ldots, f_{n}\right)$ and $\omega=$

 $d x_{1} \ldots d x_{n}$. By Lemma 7.12,$$
i_{F} \omega=\sum_{j=1}^{n}(-1)^{j-1} f_{j} d x_{1} \wedge \cdots \wedge \widehat{d x_{j}} \wedge \cdots \wedge d x_{n} .
$$

[We will abuse notation and often just (improperly) write $i_{f} \omega$ for $i_{F} \omega$.] Show

$$
d\left[i_{F} \omega\right]=(\nabla \cdot f) \omega \text { where } \nabla \cdot f=\sum_{i=1}^{n} \partial_{i} f_{i} .
$$

where $\nabla \cdot f$ is the divergence of f.
Exercise 8.13 (Curl Formula). Let $f=\left(f_{1}, f_{2}, f_{3}\right) \in C^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$,

$$
\begin{aligned}
& \omega=d x_{1} \wedge d x_{2} \wedge d x_{3}, \text { and } \\
& \alpha=f \cdot\left(d x_{1}, d x_{2}, d x_{3}\right)=f_{1} d x_{1}+f_{2} d x_{2}+f_{3} d x_{3} .
\end{aligned}
$$

Show $d \alpha=i_{\nabla \times f} \omega$.
Theorem 8.45 (d commutes with φ^{*}). Suppose that $V \subset_{o} \mathbb{R}^{m}$ and $U \subset_{o} \mathbb{R}^{n}$ and $\varphi: V \rightarrow U$ is a smooth function. Then d commutes with the pull-back, φ^{*}. In more detail, if $0 \leq p \leq m$ and $\alpha \in \Omega^{p}(V)$ then $d\left(\varphi^{*} \alpha\right)=\varphi^{*}(d \alpha)$.

Proof. We may assume that $\alpha=f d g_{1} \wedge \cdots \wedge d g_{p}$ in which case

$$
\begin{aligned}
\varphi^{*} \alpha & =\varphi^{*}\left(f d g_{1} \wedge \cdots \wedge d g_{p}\right) \\
& =\varphi^{*} f\left[d\left(\varphi^{*} g_{1}\right) \wedge \cdots \wedge d\left(\varphi^{*} g_{p}\right)\right]
\end{aligned}
$$

and so

$$
d \varphi^{*} \alpha=d\left(\varphi^{*} f\right) \wedge d\left(\varphi^{*} g_{1}\right) \wedge \cdots \wedge d\left(\varphi^{*} g_{p}\right)
$$

while from Lemma 8.40,

$$
\begin{aligned}
\varphi^{*} d \alpha & =\varphi^{*} d f \wedge \varphi^{*} d g_{1} \wedge \cdots \wedge \varphi^{*} d g_{p} \\
& =d\left(\varphi^{*} f\right) \wedge d\left(\varphi^{*} g_{1}\right) \wedge \cdots \wedge d\left(\varphi^{*} g_{p}\right)=d\left[\varphi^{*} \alpha\right]
\end{aligned}
$$

[^0]: ${ }^{1}$ This is a lie! Nevertheless, for our purposes it will be reasonably safe to ignore this lie.

[^1]: ${ }^{2}$ This is a standard result from linear algebra often stated as a matrix, S, is orthogonal iff the columns of S form an orthonormal basis.

[^2]: $\left.\overline{{ }^{3} B=\left\{x \in \mathbb{R}^{d}\right.}:\|x\|<1\right\}$.

[^3]: ${ }^{1}$ The alternating conditions are linear equations that $T \in \mathcal{L}^{k}(V)$ must satisfy and hence $\mathcal{A}^{k}(V)$ is a subspace of $\mathcal{L}^{k}(V)$.

[^4]: ${ }^{1}$ We will see shortly that it is reasonable and more suggestive to write $A \wedge B$ rather than $A \cdot B$. We will make this change after it is justified, see Notation 7.7 below.

[^5]: ${ }^{1}$ We use this terminology even though no assumption about v being a unit vector is being made.

