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Math 150B Homework Problems: Winter 2020

Problems are our text book, “Differential Forms,” by Guillemin and Haine
or from the lecture notes as indicated. The problems from the lecture notes are
restated here, however there may be broken references. If this is the case, please
find the corresponding problem in the lecture notes for the proper references
and for more context of the problem.

0.0 Homework 0, Due Wednesday, January 8, 2020 (Not
to be collected)

e Lecture note Exercises: and

0.1 Homework 1. Due Thursday, January 16, 2020
e Lecture note Exercises:

e Book Exercises: 1.2.vi.

0.2 Homework 2. Due Thursday, January 23, 2020
e Lecture note Exercises:

e Book Exercises: 1.3.iii., 1.3.v., 1.3.vii, 1.4ix

0.3 Homework 3. Due Thursday, January 30, 2020
e Lecture note Exercises: [7.2] [7.3] B2 B3] B4l [3-F

Look at (but don’t hand in) Exercises and the Book Exercises:
1.7.iv., 1.8vi.

0.4 Homework 4. Due Thursday, February 6, 2020

These problems are part of your midterm and are to be worked on by your-self.
These are due at the start of the in-class portion of the midterm which is in
class on Thursday February 6, 2020.

e Lecture note Exercises: [6.6] [6.7] [7-1] [8:6] [8-7]

0.5 Homework 5. Due Thursday, February 13, 2020

Lecture note Exercises: [8:8] [8:9] [B-10] [8-11] B:12] B-13
Book Exercises: 2.3.ii., 2.3.iii., 2.4.i

0.6 Homework 6. Due Thursday, February 20, 2020

e Book Exercises: 2.1vii, 2.1viii, 2.4.ii, 2.4iii, 2.4iv. 2.6i, 2.6ii, 2.6iii (Refer to
exercise 2.1.vil not 2.2viii), 3.2.i, 3.2viii

e Have a look at Reyer Sjamaar’s notes: Manifolds and Differential Forms| —
especially see Chapter 6 starting on page 75 for the notions of a manifold,
tangent spaces, and lots of pictures!


http://pi.math.cornell.edu/~sjamaar/manifolds/manifold.pdf
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Introduction

This class is devoted to understanding, proving, and exploring the multi-
dimensional and “manifold” analogues of the classic one dimensional funda-
mental theorem of calculus and change of variables theorem. These theorems
take on the following form;

b
/dw:/ w /g’(m)dx=g(w)lfi and (1.1)
M oM a
f(o)

| ro=de) [w /abg(f(x))f’(x)dz/f(a)g(y)dy-
(1.2)

In meeting our goals we will need to understand all the ingredients in the above
formula including;

M is a manifold.

OM is the boundary of M.

w is a differential form an dw is its differential.

f*w is the pull back of w by a “smooth map” f: M — N.

deg (f) € Z is the degree of f.

There is also a hidden notion of orientation needed to make sense of the
above integrals.

AN o

Remark 1.1. We will see that Eq. (1.1) encodes (all wrapped into one neat
formula) the key integration formulas from 20E: Green’s theorem, Divergence
theorem, and Stoke’s theorem.
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Permutations Basics

The following proposition should be verified by the reader. or equivalently,

Proposition 2.1 (Permutation Groups). Let A be a set and

1 2 3 4 5 6
Y (A):={o: A — A| o is bijective} . M ><
j ; ; iti ; 1 2 3 4 5 6

If we equip G with the binary operation of function composition, then G is a
group. The identity element in G is the identity function, €, and the inverse,

_ . . ) and hence
o~L, to o € G is the inverse function to o. ’

123456

1 _

Definition 2.2 (Finite permutation groups). For n € Zi, let [n] = c = (4 1326 5) '
{1,2,...,n}, and X, := X ([n]) be the group described in Proposition [2.1 We
will identify elements, o € X, with the following 2 X n array,

1 9 1 2 3 4 5 6
<g(1)a(2)...g(n))' l l l J l J
(Notice that | X,| = n! since there are n choices for o (1), n—1 for o (2), n—2 1 2 3 4 5 6
foro(3), ..., 1 foro(n).)

For examples, suppose that n = 6 and let

Of course the identity in this graphical picture is simply given by

Now let 5 € Sg be given by

5_(123456
_ (123456 . ) = (5116358 )
€= (123456> the identity, and
123456 or in pictures;
(243165) . ) ; . . .

We identify o with the following picture, X W
1 2 3 4 5 6. 1 2 3 4 5 6
% >< We can now compose the two permutations 8 o o graphically to find,
1 2 3 4 5 6

The inverse to ¢ is gotten pictorially by reversing all of the arrows above to
find,
1>><T< Y
- X W
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which after erasing the intermediate arrows gives, 5 6
1 2 3 4 5 6. l l
l 5 6
1 9 3 4 5 6 In terms of these pictures it is easy to recognize transpositions and adjacent
transpositions.
In terms of our array notation we have,
Boo = 123456 . 123456
7= \214635 243165
(123456
- \164253)/°
Remark 2.3 (Optional). Tt is interesting to observe that § splits into a product
of two permutations,
3= 123456 . 123456
~\213456 124635
(123456 o 123456
~\124635 213456 )’
corresponding to the non-crossing parts in the graphical picture for 8. Each of
these permutations is called a “cycle.”
Definition 2.4 (Transpositions). A permutation, o € Xy, is a transposi-
tion if
#{lelkl:o()) £} =2.
We further say that o is an adjacent transposition if
{lelk]l:a(l) 1} ={i,i+ 1}
for some 1 < i < k.
Example 2.5. If
(123456 dr— 123456
7= \153426) ™77 124356
then o is a transposition and 7 is an adjacent transposition. Here are the pic-
torial representation of o and 7;
1 2 3 4 5 6
1 2 3 4 5 6
Page: 10 job: 150BNotes macro: svmonob.cls date/time: 13-Feb-2020/13:01
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Integration Theory Outline

In this course we are going to be considering integrals over open subsets
of R? and more generally over “manifolds.” As the prerequisites for this class
do not include real analysis, I will begin by summarizing a reasonable working
knowledge of integration theory over R?. We will thus be neglecting some tech-
nical details involving measures and o — algebras. The knowledgeable reader
should be able to fill in the missing hypothesis while the less knowledgeable
readers should not be too harmed by the omissions to follow.

Definition 3.1. The indicator function of a subset, A C R?, is defined by

_JlifxzeA
La (@) '{0ifx¢A.

Remark 3.2 (Optional). Every function, f : R — R, may be approximated by
a linear combination of indicator functions as follows. If € > 0 is given we let

fe = Z ne - 1{n5§f<(n+1)s}a (31)
neN

where {ne < f < (n+ 1)e} is shorthand for the set,
{zreR:ne< f(z)<(n+1)e}.
We now summarize “modern” Lebesgue integration theory over R?.

1. For each d, there is a uniquely determined volume measure, my on alﬂ
subsets of R? (subsets of R? ) with the following properties;
a) mq(A) €[0,00] for all A C R? with mg () = 0.
b) mg (AU B) = mg (A)+mgy (B) is ANB = (. More generally, if A,, C R?
for all n with A, N A,, = 0 for m # n we have

ma (Ui An) = Y ma(An).
n=1

c) mg(z+ A) =myg(A) for all A C R? and = € RY, where

r+A={z+yeRt:yec A}.

! This is a lie! Nevertheless, for our purposes it will be reasonably safe to ignore this
lie.

d) ma ([0, 1]d) =1
[The reader is supposed to view mg (A) as the d-dimensional volume of
a subset, A C R4\

2. Associated to this volume measure is an integral which takes (not all) func-
tions, f : R* — R, and assigns to them a number denoted by

/ fdmg = / f(x)dmg (z) € R.

Rd Rd

This integral has the following properties;

a) When d = 1 and f is continuous function with compact support,
fR fdm; is the ordinary integral you studied in your first few calcu-

lus courses.
b) The integral is defined for “all” f > 0 and in this case

fdmg € [0,00] and / Ladmg = mg (A) for all A C RY.

R4 R4

¢) The integral is “positive” linear, i.e. if f,g > 0 and ¢ € [0, 00), then

/Rd (f—i—cg)dmd:/Rd fdmd—i—c/]Rdgdmd, (3.2)

d) The integral is monotonic, i.e. if 0 < f < g, then
fdmg < / gdmg. (3.3)
R? R?

e) Let L' (mg) denote those functions f : R? — R such that [,, |f| dmq <
0o. Then for f € L' (mg) we define

/ fdmd ::/ f+dmd7/ f_dmd
R4 R4 R4
where

ft () =max(£f (x),0) and so that f (z) = f4 () — f- (x).
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f) The integral, L' (mg) 5 f — [ga fdmg is linear, i.e. Eq. (3.2) holds for
all f,g € L' (my) and ¢ € R.
g) If f,g € L' (my) and f < g then Eq. still holds.
3. The integral enjoys the following continuity properties.

a) MCT: the monotone convergence theorem holds; if 0 < f, 1 f
then

n—oo

1T lim fndmd = / fdmg (with co allowed as a possible value).
R4

Example 1: If {4, }77 | is a sequence of subsets of R? such that A,, T A
(i.e. Ay C Apyq for allm and A = U521 A,,), then

mg (An) = /Rd 1a,dmg T ladmg =mg(A) asn — oo

Rd

Example 2: If g, : R? — [0, 0] for n € N then

oo N N
= 1. = 1.
o0

=ngan/ gnznzl/wgn.

b) DCT: the dominated convergence theorem holds, if f, : R — R
are functions dominating by a function G € L' (my) is the sense
that |f, (¥)] < G (x) for all # € R? Then assuming that f () =
lim,, 00 fr (z) exists for a.e. x € R?, we may conclude that

lim fndmd:/ lim f,dmg = fdmg.
R R R

n— 00 4 N—00

Example: If {g,} -, is a sequence of real valued random variables

such that
o0 o0
[ 300l =3 [ laal <.
Re n=1 n=1 R4

then; 1) G = Y02 |lgn] < oo ae. and hence > 7 g, =
limpy 00 ZnN:1 gn exist a.e., 2) ’25:1 gn| < G and [, G < oo,
and so 3) by DCT,

0o N
= 1 == 1'
Lo Angngn [, o
00
:ngnooz/ gn:z:l/Rdgn-
n=

Page: 12 job: 150BNotes

¢) Fatou’s Lemma (*Optional): if 0 < f,, < oo, then

/ {hm inf fn < lim inf / fndmg.
Rd

n— oo n—oo

This may be proved as an application of MCT.
4. Tonmelli’s theorem; if f : R? — [0, 0], then for any i € [d],

/ fdmd—/ fdmg_, where
d—1
fxy,..., 2 /f Tiyeney Xy Tq) da;.

5. Fubini’s theorem; if f € L' (mg) then the previous formula still hold.

6. For our purposes, by repeated use of use of items 4. and 5. we may compute
fRd fdmyg in terms of iterated integrals in any order we prefer. In more detail
if 0 € X is any permutation of [d], then

fdde/d%u) -~/d$a(d)f(3317~-~7wd)
R R

R4

provided either that f > 0 or

/d%m.../ dzo ) |f @1, 24)| :/ fldma < oo,
R R R4

This fact coupled with item 2a. will basically allow us to understand most
integrals appearing in this course.

Notation 3.3 For A C R?, we let

/A fdmg = /R Laf dmg

Also when d =1 and —oo < s <t < 00, we write

t
/ fdm1 = fdm1 = / l(s,t)fdml
s (s,t) R

and (as usual in Riemann integration theory)

/ts fdmy = —/: fdmy.

macro: svmonob.cls date/time: 13-Feb-2020/13:01



Ezxample 3.4. Here is a MCT example,

< 1 Rl 1

oo 1 noq
MET Jim 1 (1) dt = lim / ——at

n—oo | _ 1+ t2 n—oo [__ 1+ t2
T 1 _ —1/ _rT_ _[) _
—nh_{glo [tan™" (n) — tan™" (—n)] 5 ( 5 .

Example 3.5. Similarly for any = > 0,

/O e_t”’dt:/ lim 1pg, (£) e dt €7 lim Ljony (£) et dt

oo P00 n—oo J_
: " —tz . -1 —tz|n 1

= lim e dt = lim —e |, = —. (3.4)
n—o0 Jq n—oo I T

Ezxample 3.6. Here is a DCT example,

> 1 > 1
lim sin t dt = / lim sin t dt = / 0dm =0
n—o00 700]_—|—t2 n 700n—>ool+t2 n R

since

lim #sin t =0forallteR
n—oo 1 + t2 n

and ) ) )
t
——sin | — || £ —— with / ——dt < .
1+ ¢2 n 1+ ¢2 r 1+ t2
Ezxample 3.7. In this example we will show

M gin g

lim
M—o00 0 x

de =m/2 (3.5)

Let us first note that ‘%’ <1 for all z and hence by DCT,

dr = lim dz.

M ginz M ginz
0 xT elo J xT

Moreover making use of Eq. (3.4), if 0 < £ < M < oo, then by Fubini’s theorem,
DCT, and FTC (Fundamental Theorem of Calculus) that

Page: 13 job: 150BNotes
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M M N
/ ST e = / [ lim / e sinw dt] dx (DCT)
e € € N—oo Jg

M N
= lim / dx/ dte " sinz  (DCT)
€ 0

N—o0

N M
= lim dt/ dre " sinz  (Fubini)
0 €

N—o0
N 1 =M
= lim dt |—— (—cosz — tsinz) e ™" (FTC)
N—oo 0 1 + t2 r—c
oo 1 =M
= /O dt [HtQ (—cosx — tsinx) em] - (DCT)
Since
1 v=M 1
[1+t2(—cos:r:—tsinac)e_mL_s %masMTooandaio,

1

we may again apply DCT with G (¢t) = being the dominating function in

T+¢2
order to show
M - M . o) x=M

sinx sinx 1

/ dx = lifg/ dx = liﬁ}/ dt [th (—cosx —tsinz)e

0 X € € X € 0 .
per [ 1 w=M
= / dt [2 (—cosz —tsinx) e_tx]
0 I+t =0

pcr [T 1 T
— ——dt = —.
M — o0 0 1+t2 2

Theorem 3.8 (Linear Change of Variables Theorem). If T € GL(d,R) =
GL(R?) — the space of d x d invertible matrices, then the change of variables
formula,

/ fdmg = |det T|/ foT dmyg, (3.6)
Rd Rd
holds for all Riemann integrable functions f : R — R.

Proof. From Exercise below, we know that Eq. is valid whenever T
is an elementary matrix. From the elementary theory of row reduction in linear
algebra, every matrix T € GL(R?) may be expressed as a finite product of the
“elementary matrices”, i.e. T'=Ty o Ts o --- o T, where the T; are elementary
matrices. From these assertions we may conclude that

1

m fOT10T20~ . ’OTn—l dmd.
n Rd

foT dmgy = foToTyo0---0T, dmg =
R R

macro: svmonob.cls date/time: 13-Feb-2020/13:01



14 3 Integration Theory Outline

Repeating this procedure n — 1 more times (i.e. by induction), we find,

|
T dmg =
Lot dma = T T A T

f dmd.

Finally we use,

|det Ty, ... |detTy| = |det T), ... det Ty | = |det (ThT% ... Ty,)| = |det T

in order to complete the proof. ]

3.1 Exercises

Exercise 3.1. Find the value of the following integral;

9 3
1 ::/ dy/ dz xeY.
1 v

Hint: use Tonelli’s theorem to change the order of integrations.

Exercise 3.2. Write the following iterated integral

1 1 X
I ::/ dx/ dy xe¥ .
0 y:IZ/S

as a multiple integral and use this to change the order of integrations and then
compute I.

For the next three exercises let

B(0,r):={zcR%: |z| =

d
Z 2 <r
i=1
be the d — dimensional ball of radius r and let
Vi (r) :==mq(B(0,r)) = /d Ip(o,rydma
R

be its volume. For example,

Vi(r)=my ((—r,1)) = /T do = 2r.

-

Exercise 3.3. Suppose that d = 2, show ma (B (0,7)) = mr?.

Page: 14 job: 150BNotes

Exercise 3.4. Suppose that d = 3, show mg (B (0,7)) = 4¢3,

Exercise 3.5. Let V(1) := my

r /2
Vaa (r) = dz - Vy (\/ r2 — z2) = T/ Vi (r cos ) cos 0d6.

—r —m/2

(B (0,r)). Show for d > 1 that

Remark 3.9. Using Exercise [3.5| we may deduce again that
Vi(r)=mq ((—r,7)) = 2r,

/2
‘/2(7”)27“/ 2r cos 6 cos 0df = w12,
—m/2

v = [ e (Ve )= [eaeo =

. o 3

In principle we may now compute the volume of balls in all dimensions induc-
tively this way.

Exercise 3.6 (Change of variables for elementary matrices). Let f :
R? — R be a continuous function with compact support. Show by direct calcu-
lation that;

dee7| [ f@)de= [ f)dy (37)
Rd Rd
for each of the following linear transformations;
1. Suppose that ¢ < k and
T(w1,22...,0q) = (T1, -+, i1y Thy Tig1 - -+ Th1, Ti, Tht 1, - - - Td),

i.e. T swaps the ¢ and k coordinates of z. [In matrix notation T is the
identity matrix with the ¢ and &k column interchanged.]

2. T(x1,.. . Ty yxg) = (T1,...,CTk, ... 24) where ¢ € R\ {0}. [In matrix
notation, T = [eq] ... |ex—1|cer|erti]---|ed] ]
i’th spot
3. T(x1,29...,2q) = (T1,...,2T; + Tk, ... Xk, ... xq) where ¢ € R. [In matrix
notation T' = [e1]...|ei| ... |ex + ce;lexti] - - |ed]-

Hint: you should use Fubini’s theorem along with the one dimensional
change of variables theorem.
[To be more concrete here are examples of each of the T appearing above
in the special case d = 4,
1000
0010
0100
0001

1.Ifi=2and k=3 then T =

macro: svmonob.cls date/time: 13-Feb-2020/13:01



1000
0100
2. If k=3 then T = 00col"
0001
3.If i =2 and k = 4 then
T1 T 1000 T
T T2 | | x2t+cra|  [010c¢c T2
T3 B X3 o 0010 I3
Ty Ty 0001 Ty

while if i =4 and k = 2,

T T 1000 T
T i) _ X9 _ 0100 To
T3 T3 0010 T3
T4 T4 + CT2 0cO1 T4

3.2 *Appendix: Another approach to the linear change of
variables theorem

Let (x,y) or x - y denote the standard dot product on R?, i.e

d
(wy)=z-y=> z;
j=1

Recall that if A is a d x d real matrix then the transpose matrix, A", may be
characterized as the unique real d x d matrix such that

(Az,y) = <x,Atry> for all z,y € R%.

Definition 3.10. A d x d real matriz, S, is orthogonal iff S**S = I or equiva-
lently stated S = S—1.

Here are a few basic facts about orthogonal matrices.

1. A d x d real matrix, S, is orthogonal iff (Sz, Sy) = (x,y) for all z,y € R,
2. If {uj}d is any orthonormal basis for R? and S is the d x d matrix deter-

mined by Se; = u; for 1 < j < d, then S is orthogonalﬂ Here is a proof for
your convenience; if x,y € R?, then

2 This is a standard result from linear algebra often stated as a matrix, S, is orthog-
onal iff the columns of S form an orthonormal basis.

Page: 15 job: 150BNotes
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(x,S"y) = (Sz,y) = g (x,e;) (Sej, y) E (z,ej) (uj,y
Jj=1 Jj=1

d
Z (2,8~ uj uj,y>:<x,571y>

Jj=1

from which it follows that S = S~1.
3. If S is orthogonal, then 1 = det I = det (S**S) = det S* - det § = (det S)?
and hence det §' = £1.

The following lemma is a special case the well known singular value de-
composition or SVD for short..

Lemma 3.11 (SVD). If T is a real d x d matriz, then there exists D =
diag (A1, ..., q) with Ay > Ay > -+ > Ny > 0 and two orthogonal matrices
R and S such that T = RDS. Further observe that |detT| = det D = Ay ... \q.

Proof. Since T%T is symmetric, by the spectral theorem there exists an
orthonormal basis {uj};l:l of R and A\y > Xy > -+ > Az > 0 such that

T"Tu; = )\?uj for all j. In particular we have
(Tuj, Tug) = (T"Tuj,up) = N0 V 1 < j, k < d.

Case where det T # 0. In this case A;...\g = det T"T = (det T)?
d
and so Aq > 0. It then follows that {Uj = %Tuj} is an orthonormal basis
3 j=1

for R9. Let us further let D = diag (\1,...,Aq) (i.e. Dej = Aje; for 1 < j < d)
and R and S be the orthogonal matrices defined by

Rej; =v; and Strej = Silej =u; forall 1 <j <d.
Combining these definitions with the identity, Tu; = A;v;, implies
TS~ 'e; = A\jRe; = R\jej = RDe;j for all 1 < j < d,

i.e. TS~ = RD or equivalently T = RDS.

Case where detT = 0. In this case there exists 1 < k < d such that
A > A > > A > 0= Agp1 = -+ = Ag. The only modification needed
for the above proof is to define v; := /\%Tuj for 7 < k and then extend choose

Vkt1,---,vq € R? so that {v; };.lzl is an orthonormal basis for RY. We still have
Tu; = Ajvu; for all j and so the proof in the first case goes through without
change. [

In the next theorem we will make use the characterization of my that it is
the unique measure on (Rd) which is translation invariant assigns unit measure

to [0,1]%.

macro: svmonob.cls date/time: 13-Feb-2020/13:01



Theorem 3.12. If T is a real d x d matriz, then mgoT = |det T| myq.

Proof. Recall that we know mqT = § (T') mq for some 6 (T') € (0,00) and
so we must show ¢ (T') = |det T'| . We first consider two special cases.

1. If T'= R is orthogonal and B is the unit ball in Rdﬂ then § (R) my (B) =
mg (RB) = mgq (B) from which it follows § (R) =1 = |det R].

2. If T = D = diag (\y,...,\g) with A; > 0, then D[0,1]% = [0, Ay] X --- x
[0, Ag] so that

§ (D) = 6 (D) my ([07 1]d) = my (D 0, 1]d) = 1. Mg = det D.

3. For the general case we use singular value decomposition (Lemma [3.11)) to
write T'= RDS and then find

5(T)=6(R)S(D)5(S)=1-detD-1=|detT]|.

*B={zeR":|z|| <1}.



Part 11

Multi-Linear Algebra
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Properties of Volumes

The goal of this short chapter is to show how computing volumes naturally
gives rise to the idea of the key objects of this book, namely differential forms,
i.e. alternating tensors. The point is that these objects are intimately related
to computing areas and volumes.

Let Q" :={x € R":0<+¢; <1V j}=10,1]" be the unit cube in R" which
we I think all agree should have volume equal to 1. For n-vectors, ay,...,a, €
R™, let

P(ay,...,an) =la1]...an] Q =Y tja;:0<t; <1V j

j=1
be the parallelepiped spanned by (a1, ...,a,) and let
0(ay,...,a,) = “signed” Vol (P (vy,...,v5)).

be the signed volume of the parallelepiped. To find the properties of this
volume, let us fix {ai}?:_ll and consider the function, F (a,) = ¢ (a1,...,a,).
This is easily computed using the formula of a slant cylinder, see Figure [4.1] as

F(a,)=0(a1,...,a,) =+ (Area of base ) -n-a, (4.1)
where n is a unit vector orthogonal to {ai,...,a,—1}.

Ezample 4.1. When n = 2, let us first verify Eq. (4.1) in this case by considering

b2 b2
0 (ae1,b) = / [slice width], dh = / adh =a(b-es).
0 0

The sign in Eq. (4.1) is positive if (a1,...,an—1,n) is “positively ori-
ented,” think of the right hand rule in dimensions 2 and 3. This show a,, —
d(aty...,an_1,ay) is a linear function. A similar argument shows

aj—>5(a1,...,aj,...,an)

is linear as well. That is § is a “multi-linear function” of its arguments. We
further have that § (a1, ..., a,) = 0if a; = a; for any i # j as the parallelepiped
generated by (ay,...,a,) is degenerate and zero volume. We summarize these

Fig. 4.1. The volume of a slant cylinder is it’s height, n - a,,.

two properties by saying J is an alternating multi-linear n-function on R”.
Lastly as P (eq,...e,) = @ we further have that

d(er,...,en) =1 (4.2)

Fact 4.2 We are going to show there is precisely one alternating multi-linear
n-function, 6, on R™ such that Eq. holds. This function is in fact the
function you know and the determinant.

Ezample 4.3 (n =1 Det). When n = 1 we must have § ([a]) = ta, we choose a
by convention.

Example 4.4 (n = 2 Det). When n = 2, we find
6 (a,b) =6 (arer + azeq, b) = aid (e1,b) + azd (e2,b)
=q10 (61, bie; + bgez) + asd (62, bie; + bgeg)
= a1b25 (61, 62) + a2b1(5 (627 61) = a1b2 — G,le

= det [alb] .

We now proceed to develop the theory of alternating multilinear functions
in general.
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Multi-linear Functions (Tensors)

For the rest of these notes, V' will denote a real vector space. Typically we
will assume that n = dimV < oo.

Example 5.1. V= R"™, subspaces of R", polynomials of degree < n. The most
general overarching vector space is typically

V = F (X,R) = {all functions from X to R}.
An interesting subspace is the space of finitely supported functions,

Fr(X,R) ={f e F(X,R) : # ({f # 0}) < o0},

where

{f#0 ={zeX:f(z)#0},

5.1 Basis and Dual Basis

Definition 5.2. Let V* denote the dual space of V, i.e. the vector space of all
linear functions, £ :V — R.

Ezxample 5.3. Here are some examples;

1.If V. =R", then ¢ (v) = w-v =w"v for w € V is in V*.

2. V = polynomials of deg < n is a vector space and ¢y (p) = p (0) or £ (p) =
f_llp (z) dx given £ € V*.

3. For {aj}?zl C R and {xj}’;:l C X, let £(f) = Z?:l a;f (z;), then £ €
F(X,R)".

Notation 5.4 Let §:= {e;};_, be a basis for V and B* := {e;}_, be its dual

basis, i.e.
n
£; <Z aiei> = a; for all j.
i=1

The book denotes €; as €;. In case, V. =R" and {ej}?zl 1s the standard basis,

we will later write dz; for €; = €j.

Ezample 5.5.1f V = R™ and 3 = {¢;}]_, is the standard basis for R™, then
gi (v) =e;-v=elv for 1 <i < n is the dual basis to 3.

Ezample 5.6. If V denotes polynomials of degree < n, with basis e; (z) = 27 for
0<j<n,thene;(p) = %p(j) (0) is the associated dual basis.

Ezample 5.7. For z € X, let 6, € Fy (X,R) be defined by

lify =
0z (y) = 1y (y)_{oif:ly/;éi'

One may easily show that {d,},.y is a basis for F;(X,R) and for f €
Fr(X,R),
f= Z f (@) ba.
@i f (2)#0
The dual basis ideas are complicated in this case when X is an infinite set

as Vaki mentioned in section. We will not consider such “infinite dimensional”
problems in these notes.

Proposition 5.8. Continuing the notation above, then

M=

gj(v)e; forallveV, and (5.1)
1

<.
I

l(ej)e; foralll e V™. (5.2)

<
Il
i

-

Moreover, 5*, is indeed a basis for V*.

Proof. Because {e;} is a basis, we know that v = Z?:1 aje;. Applying ey
to this formula shows

er (v) = Zajsk (ej) = ax

and hence Eq. ((5.1) holds. Now apply ¢ to Eq. (5.1]) to find,
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)= e ) lle;) =Y Llej)e; () =D tlej)es | (v)
j=1 j=1 j=1

which proves Eq. 1) From Eq. 1) we know that {¢; }?:1 spans V*. More-

over if N N
0= Zajej = 0=0(e) = Zajaj (ex) = ax
j=1 j=1

which shows {e;}"_, is linearly independent. [

Exercise 5.1. Let V = R™ and § = {uj}?zl be a basis for R™. Recall that

every £ € (R™)" is of the form ¢, (z) = a -z for some a € R™. Thus the dual
basis, 8*, to 8 can be written as {u;‘ = La, };;1 for some {aj}?zl C R™. In this

problem you are asked to show how to find the {a; }?:1 by the following steps.
1. Show that for j € [n], a; must solve the following k-linear equations;
8ik = Lo, (u) = aj -up, = ujla; for k € [n]. (5.3)

2. Let U := [uq]...|uy] (i.e. the columns of U are the vectors from j3). Show
that the equations in (5.3) may be written in matrix form as, U%a; = e;,
where {e;}7_, is the standard basis for R™.

3. Conclude that a; = [U“]_1 e;j or equivalently;
-1
[a1] ... |a,] = [U"]

Exercise 5.2. Let V = R? and 3 = {u1,uz2}, where

u = M and uy = {—11].

Find aj,as € R? explicitly so that explicitly the dual basis f* :=
{uy =Ly, ul =0,,} is the dual basis to (. Please explicitly verify your
answer is correct by showing u} (ux) = d;x.

Exercise 5.3. Let V = R", {aj}§:1 C V,and ¢ (z) = aj -z for z € R”
and j € [k]. Show {éj}?zl C V* is a linearly independent set if and only if
{a; }§:1 C V is a linearly independent set.

Exercise 5.4. Let V = R", {aj}le C V,and {j(z) = aj - x for z € R”
and j € [k]. If {éj}?zl C V* is a linearly independent set, show there exists
{u; }?:1 C V so that ¢; (u;) = &;; for 4, j € [k]. Here is a possible outline.

Page: 22 job: 150BNotes

—_

. Using Exercise [5.3] and citing a basic fact from Linear algebra, you may

choose {a;}7_, ; CV so that {a;} _, is a basis for V.

2. Argue that it suffices to find u; € V' so that
a; -uj = 0;; for all 4,5 € [n]. (5.4)

3. Let {e; }?:1 be the standard basis for R™ and A := [aq] ... |a,] be the n x n

matrix with columns given by that {a; }?:1 . Show that the Egs. l) may
be written as
A%uj; =ej for j € [n]. (5.5)

4. Cite basic facts from linear algebra to explain why A := [ay]...|a,| and A"
are both invertible n x n matrices.
5. Argue that Eq. (5.5 has a unique solution, u; € R™, for each j.

5.2 Multi-linear Forms

Definition 5.9. A  function T : V¥ = R is multi-linear
(k-linear to be precise) if for each 1 < i < k, the map

VB’UZ'—>T(U1,...,Ui7...vk)ER

is linear. We denote the space of k-linear maps by L* (V) and element of this
space is a k-tensor on (in) V.

Lemma 5.10. Note that L* (V) is a vector subspace of all functions from
VE - R.

Example 5.11. 1 £y,... £y € V*, welet {1 ® -+ ® £, € LF (V) be defined

k
(1@ @) (vr,. o) = [ & (v)

j=1
for all (v1,...,v;) € VE.
Exercise 5.5. In this problem, let
U1 w1
v=|vy| and w= | we
VU3 ws

Which of the following functions formulas for T' define a 2-tensors on R3. Please
justify your answers.
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T (v, w) = viws + Viws + vowy + TvW1.

T (v,w) = vy + Tvy + va.

T (v,w) = viwz + vown,

T (v,w) = sin (v1ws + Viws + vowy + Tvrwy) .

Theorem 5.12. If {ej}?zl is a basis for V, then {e;, ® ---®¢j, : j; € [n]} s
a basis for L¥ (V) and moreover if T € L* (V), then
T= Z T(ejl?""ejk)'sjl®"'®5jk (5.6)
J15e-dk€ln]

and this decomposition is unique. [One might identify 2-tensors with matrices
via T — A;j :=T (e;,¢€5) ]

Proof. Given vq,...,v; € V, we know that
n
Ui = Z €4 (vl) €3
Jji=1
and hence

T(viy...,v) =T Zsjl (v1) e, .-, Zejk (k) €j,

Jji=1 Jr=1

— Z Z T(gj1 (vl)ejl,...,zfjk (Uk)ejk)

=1 je=1

= D T(ej--mrei)en (0) . g ()

J1yesdk€[N]
= Z T(ej17"'7€jk)5jl®"'®5jk('l)1,...7’l}k>.
Tlyeens Jk€[n]

This verifies that Eq. (5.6) holds and also that
{E.jl ®- - ®ej, 1 Ji € [n]} spans ck (V).

For linearly independence, if {a;, ... ;. } C R are such that

0= § : Ajy gy €5 @ @ Ejy,

J1se-s ik €[N

then evaluating this expression at (e;,,...e;, ) shows
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0=00(ei,...€;)= Z Gy, " Ej1 Q- Q €4y, (€iys..-€i)
J1seesdk €[N
= § : Ajy,.ji " € (eil) - E (elk)
J1se-dr €[N
= > g O Oy = iy,
JisesJk €[]
which shows a;, ... ;, = 0 for all indices and completes the proof. [ |

Corollary 5.13. dim £* (V) = nF.
Definition 5.14. If S € LP (V) and T € L1(V), then we define S® T €
LPTL(V) by,

ST (V1,...,Vp,W1,...,Wyq) =S (V1,...,0p) T (w1,...,wy4).

Definition 5.15. If A : V. — W s a linear transformation, and T € L* (W),
then we define the pull back A*T € LF (V) by

(A*T) (v1, ..., v5) = A(Tvy,..., Tog) .
Vx: - xV—Wx---xW — R
(vl,...,vk) — (A’Ul,...,A’Uk) — T(Avl,...,Avk).
It is called pull back since A* : LK (W) — L* (V) maps the opposite direction
of A.
Remark 5.16. As shown in the book the tensor product satisfies

(RS)®T=Ro(S®T),
TRWI1+852)=T®S+T®5S,,
(S1+52)T=5T+5T,

Remark 5.17. The definition of T} ® T3 and the associated “tensor algebra.”
[Typically the tensor symbol, ®, in mathematics is used to denote the product of
two functions which have distinct arguments. Thusif f: X - Randg:Y — R
are two functions on the sets X and Y respectively, then f®g: X xY — R is
defined by
(f@g)(@y) =[f(=)g(y).
In contrast, if Y = X we may also define the more familiar product, f-g: X —
R, by
(f-9)(x)=f(x)g ().

Incidentally, the relationship between these two products is

(f-9) (@) =(feg)(z).
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Lemma 5.18. The product, ®, defined in the previous remark is associative
and distributive over addition. We also have for A € R, that

Mog=fog) =1 fog. (5.7)

That is ® satisfies the rules we expect of a “product,” i.e. plays nicely with the
vector space operations.

Proof. If h : Z — R is another function, then

(feg)@h)(r,y,2) = (f@g)(x,y)-h(2) = (f(x)g(y)) h(z)
=f(@)(gWh(2)=(f@(@®hn))(z,y,2).

This shows in general that (f® ¢g)@h = f® (g ® h), i.e. ® is associative.
Similarly if Z =Y, then

(f@(g+h)(zy)=f(z)(g+h)(y) =f(z):
=f(@)-g(y)+f(x) hy)
=(f®g)(z,y) + (f@h)(z,y)
=(feg+foh)(zy)

(9(y) +h(y)

from which we conclude that
fe+th=fog+fah

Similarly one shows (f+h)® g = f®g+ h® g when Z = X. These are the
distributive rules. The easy proof of Eq. (5.7)) is left to the reader. [
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Alternating Multi-linear Functions

Definition 6.1. T € L* (V) is said to be alternating if T (v1,...,v;) =
=T (wy,...,w) whenever (wy,...,wg) is the list (v1,...,v) with any two en-
tries interchanged. We denote the subspac of alternating functions by A* (V)
or by A¥ (V*) with the convention that A° (V) = A° (V*) = R. An element,
T € A (V) = A% (V*) will be called a k-form.

Remark 6.2. If f (v,w) is a multi-linear function such that f (v,v) = 0 then for
all v,w € V, then

O:f(v+w,v+w) :f(v,v)+f(w,w)+f(v,w)+f(w,v)
:f(w,v)+f(v,w) = f(’U,’UJ) = —f(w,v).

Conversely, if f(v,w) = —f (w,v) for all v, and w, then f (v,v) = —f (v,v)
which shows f (v,v) = 0.

Lemma 6.3. If T € L* (V) then the following are equivalent;

1. T is alternating, i.e. T € A* (V*).
2.T (v1,...,v;) =0 whenever any two distinct entries are equal.
3. T (v1,...,v) =0 whenever any two consecutive entries are equal.

Proof. 1. = 2. If v; = v; for some i < j and T € A* (V*), then by
interchanging the i and j entries we learn that T (vy,...,vg) = =T (v1,...,vk)
which implies T (vy,...,v5) = 0.

2. = 3. This is obvious.

3. = 1. Applying Remark with

flo,w) =T (v1,...,9j-1,0,W, Vjt2,...,Vk)

shows that T (vi,...,vx) = =T (wi,...,wg) if (wy,...,wg) is the list
(v1,...,v;) with the j and j + 1 entries interchanged. If (ws,...,w;) is the
list (vy,...,v) with the ¢ < j entries interchanged, then (ws,...,wy) can be
transformed back to (v1,...,v;) by an odd number of nearest neighbor inter-
changes and therefore it follows by what we just proved that

T(vy,...,v8) = =T (wy,...,wg).

! The alternating conditions are linear equations that 7' € £¥ (V) must satisfy and
hence A* (V) is a subspace of £* (V).

For example, to transform
(Ula Vs, U3, V4, V2, Uﬁ) back to (vla V2, U3, V4, Vs, vﬁ) )

we transpose vs with its nearest neighbor to the right 2 times to arrive at the
list (v1,v3,v4,v5,v2,v6) . We then we transpose vy with its nearest neighbor to
the left 3 times to arrive (after a sum total of 5 adjacent transpositions) back
to the list (v1,ve,vs,v4,v5,v6) . For the general ¢ < j the number of adjacent
transposition needed needed is 2 (j — i) — 1 which is always odd. ]

Exercise 6.1. If T € A* (V*), show T (vy,...,v;) = 0 whenever {vi}le cVv
are linearly dependent.

A simple consequence of this exercise is the following basic lemma.

Lemma 6.4. If T € A* (V*) with k > dimV, then T = 0, i.e. A¥(V*) = {0}
for all k > dim V.

At this point we have not given any non-zero examples of alternating forms.
The next definition and proposition gives a mechanism for constructing many
(in fact a full basis of) alternating forms.

Definition 6.5. For £ € V* and o € A* (V*), let Ly be the multi-linear k + 1
— form on V' defined by

k
(L) (UQ,...,vk):Z(—l)iﬂ(vi)w(vo,...,f}i,...,vk).

for all (v, ..., vg) € VFHL
Proposition 6.6. If £ € V* and ¢ € A* (V*), then (Lyp) € AFHL(V*).

Proof. We must show Ly is alternating. According to Lemma/[6.3] it suffices
to show (L) (vo,...,v,) = 0 whenever v; = v,4; for some 0 < j < k. So
suppose that v; = v;41, then since ¢ is alternating
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k .
(Le) (Vo ok) = > (=D)L (vi) @ (v0, -, i -, vk)
=0
J+1 .
= (—=1)" 2 (v;) (Vg -+ s Diy e vy VE)
i=j
= [+ P @) (v, u) =0
]

Proposition 6.7. Let {e;}.—, be a basis for V and {e;}!"_, be its dual basis for
V*. Then ‘
¢j 1= Le,Leyy, - Le,_yen € AM7FH (V) \ {0}

for all j € [n] and in particular, dim A¥ (V*) > 1 for all 0 < k < n. [We will
see in Theorem below that dim A (V*) = (Z) for all0 <k <nl]

Proof. We will show that ¢; is not zero by showing that
wj(ej,...,en) =1forall j € [n].

This is easily proved by (reverse induction) on j. Indeed, for j = n we have
©n (en) = en(en) =1 and for 1 < j < n we have ¢; := L., ;41 so that

n

k—j -~

0 (ejmen) =Y ()" gj(er) @1 (€jye s Chyennrn)
k=j

= 0jt1 (€, 54155 6n) = Pip1 (€41, -s6n) =1

wherein we used the induction hypothesis for the last equality. This completes
the proof for j € [n]. Finally for k = 0, we have A° (V*) = R by convention
and hence dim A% (V*) = 1. ]

Notation 6.8 Fiz a basis {e;};_, of V with dual basis, {e;}_, C V*, and then
let
Y =¢1 = L51L52 cee Lsn_l{':n- (61)

Proposition 6.9. When V =R" and {ej}?zl is the standard basis for V, then
olar,...,ap) =det[ar]...la,] V {a;};—, CR™ (6.2)

Proof. Let us note that if

v(ay,...,caiy ... an) =cplay,...,a,) and
@, @iy + €Ay, Gr)
=p(an,. ..., 0.0, 0n) F o (A1, Qe Gy

= p(area) +e-0=p(ar,...,a,).
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Thus both ¢ and det behave the same way under column operations and agree
with a; = e; which already shows Eq. (6.2) holds when {a;}._, are linearly
independent. As both sides of Eq. are zero when {a;};_, are linearly
dependent, the proof is complete. [

Definition 6.10 (Signature of o). For o € Xy, let

(_1)0 = (p(eala .- ~7ean) 5

where ¢ is as in Notation , We call (—1)° the sign of the permutation,
.

Lemma 6.11. If o € X, then (—=1)° may be computed as (—1)" where N is
the number of transpositionﬂ needed to bring (ol,...,0on) back to (1,2,...,n)

and so (—1)° does not depend on the choices made in defining (—1)° . Moreover,

if {vj}?zl C V, then

© (Voly- s Von) = (=1)7 @ (v1,...,v4) ¥V o € Y.

Proof. Straightforward and left to the reader. ]
Corollary 6.12. If o € X,, is a transposition, then (—1)7 = —1.

Proof. This has already been proved in the course of proving Lemma [6.3] m
Lemma 6.13. If 0.7 € Yy, then (=1)77 = (=1)7 (=1)" and in particular it
follows that (=1)7 = (=1)7.

Proof. Let v; := es; for each j, then

(=177 := @ (orts s €orn) = @ (Vr1y .oy Urn)

(=)@ (i, yva) = (=1)7 @ (eo1y---»€0d)

=D (=17,

Lemma 6.14. A multi-linear map, T € L¥(V), is alternating (i.e. T €
AR (V) = A% (V7)) iff

T (Vo1,---,0ok) = (=1)7 T (v1,...,v) for all o € Zy.

2 N is not unique but (—1)" = (=1)7 is unique.
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Proof. (-1)7 = (—l)N where N is the number of transpositions need to
transform o to the identity permutation. For each of these transpositions pro-
duce an interchange of entries of the T function and hence introduce a (—1)
factor. Thus in total,

T (ot 0ok) = (=D T (vy, .. 00) = (1) T (v1,. .., 0).

The converse direction follows from the simple fact that the sign of a transpo-
sition is —1. u

Notation 6.15 (Pull Backs) Let V and W be finite dimensional vector
spaces. To each linear transformation, T : 'V — W, there is linear transfor-
mation, T* : AF (W*) — A* (V*) defined by

(T*6) (1, 0g) = ¢ (Tws, ..., Ty)

for all p € AF (W*) and (v1,...,v;) € VF. [We leave to the reader the easy
proof that T*p is indeed in AF (V*) ]

Exercise 6.2. Let V, W, and Z be three finite dimensional vector spaces and

suppose that V' L w 5 Z are linear transformations. Noting that V' 5T Z,
show (ST)* = T*S*.

6.1 Structure of A™ (V*) and Determinants

In what follows we will continue to use the notation introduced in Notation [6.8]

Proposition 6.16 (Structure of A™ (V*)). If ¢» € A™(V*), then ¢ =
Y (e1,...,en) p and in particular, dim A™ (V*) = 1. Moreover for any {v, }?:1 -
v,

@1, vn) = Y (=1)7 g1 (v1) ... En (vn)

oceX,

— Z (—=1)7 &1 (V1) -+ -&n (Von) -

oeX,

The first equality may be rewritten as

Y = Z (71)0601®"'®50n-
oceX,

Proof. Let {v;}_, C V and recall that
= Z €k; (’Uj) €L
k=1
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Using the fact that 1 is multi-linear and alternating we find,

n

n
¢(Ul»~~,vn): Z Hsk]‘ (vj) w(eklv'“vekn)
k1,....kn=1 | j=1

= Z HEJj(’Uj) U (oyse-yon)

oceX, j:l ]
= Z H[_:U] v] (71)0111)(613"'3677«)
oceX, ] 1

while the same computation shows

PV, v) = Y He(,j(vj) (1) @ (e1,. .. en)

oceX,

= Z (=1)7 €01 (v1) - .- €0n () -

ceX,

Lastly let us note that

n n
H Eoj (U] H €oo—1j ’U(7 1) = H ’Ua 15
j=1 j=1

so that

> ﬁga‘ (vo-15) (=1)°

ceX, j=1

Z HEj (Uo—lj) (—1)071

ceX, j=1

> ITeiwai(

ceX, j=1

© (U1, ., 0p)

wherein we have used ¥, 3 0 — ¢~ € X, is a bijection for the last equality. m

Exercise 6.3.If ¢y € A™(V*) \ {0}, show ¥ (v1,...,v,) # 0 whenever
{v;}; C V are linearly independent. [Coupled with Exercise it follows
that ¢ (v1,...,v,) # 0 iff {v;}]_, C V are linearly independent.]

Definition 6.17. Suppose that T : V. — V is a linear map between a finite
dimensional vector space, then we define det T € R by the relationship, T*y =
det T -1 where 1 is any non-zero element in A™ (V*). [The reader should verify
that det T' is independent of the choice of ¥ € A™ (V*)\ {0}./

macro: svmonob.cls date/time: 13-Feb-2020/13:01



28 6 Alternating Multi-linear Functions
The next lemma gives a slight variant of the definition of the determinant.

Lemma 6.18. If ¢y € A™ (V*) \ {0}, {ej}?zl is a basis for V, and T : V -V
is a linear transformation, then

Y (Tey,...,Tey)
Y(er,...,en)

Proof. Evaluation the identity, det T - ¢ = T*%, at (ey,...,ey,) shows
detT - (e1,...,en) = (T*Y) (e1,...,en) =0 (Te1,...,Tey,)
from which the lemma directly follows. [

Corollary 6.19. Let T be as in Deﬁm’tion and suppose {ej}?zl 15 a basis
for V and {Ej}?zl is its dual basis, then

det T = (6.3)

detT= Y (=1)7e1(Teq1) .. cn (Teon)
oceX,

= Z (—1)7 o1 (Ter1) ... on (Tey).

oeX,

Proof. We take ¢ € A™ (V*) so that ¢ (eq,...,e,) = 1. Since T*p € A™ (V*)
we have seen that T*p = Ay where

A= (T"p) (e1,...,en) =@ (Te1,...,Tey,)
= Z (=1)7 e51 (Te1) ... €on (Ten)

oceX,

= Z (—1)061 (Tegl)...€n (Te,m).

oceX,

Corollary 6.20. Suppose that S,T : V — V are linear maps between a finite
dimensional vector space, V, then

det (ST) = det (S) - det (T) .
Proof. On one hand
(ST)" p = det (ST) ¢.
On the other using Exercise we have
(ST) o =T"(S*p) =T*(det S - ) =det S - T* (p) =det S -detT - .

Comparing the last two equations completes the proof. ]

Page: 28 job: 150BNotes

6.2 Determinants of Matrices

In this section we will restrict our attention to linear transformations on V' = R"
which we identify with n x n matrices. Also, for the purposes of this section let
{e; }?:1 be the standard basis for R™. Finally recall that the i*" column of A is
v; = Ae; and so we may express A as

A=v1]...|vn] = [Aeq] ... |Ae,].

Proposition 6.21. The function, A — det (A) is the unique alternating multi-
linear function of the columns of A such that det (I) = det [eq]...|e,] = 1.

Proof. Let ¢ € A™ (R™) \ {0}. Then by Lemma
P (Aey, ..., Aey)
Y(er,...,en)

which shows that det A is and alternating multi-linear function of the columns
of A. We have already seen in Proposition that there is only one such
function.

det A =

Theorem 6.22. If A is a nxn matriz which we view as a linear transformation
on R™, then;

LdetA=3% v (=1)7ao11 - Gonn,

2.det A=3 5 (-1)7 @161 .-G on, and

3. det A = det A",

4. The map A — det A is the unique alternating multilinear function of the
rows of A such that det I = 1.

Proof. We take {e;};_, to be the standard basis for R" and {e;}._, be its
dual basis. Then by Corollary [6.19]

det A = Z (—=1)7 &1 (Aep1) .. .en (Aesn)

oEX,

= ) (-1)7eq1 (Aer) ... con (Aen)

oeX,

which completes the proof of item 1. and 2. since ¢; (Ae;) = a; ;. For item 3 we
use item 1. with A replaced by A% to find,

det A" = " (=1)7(A") | (A7) = D (“1)  aren - non
ceX, oceX,

This completes the proof item 3. since the latter expression is equality to det A
by item 2. Finally item 4. follows from item 3. and Proposition [6.21] |
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Proposition 6.23. Suppose that n = ny + ng with n; € N and T is an X n
matriz which has the block form,
A B
T= ,
|:0n2 Xni C:|
where A is a nq X n1 — matriz, C is a no X ny — matriz and B is a ny X ny —

matriz. Then

detT =det A-detC.

Proof. Fix B and C and consider 6 (A) := det [O 4 g} . Then 6 €
no XNy
A" (R™) and hence
I B
d(A)=08(I)-det (A) =det (A) - det
On2><n1 O

By doing standard column operations it follows that

I B I Opyxns | %
det |:0n2><n1 C] = det [Ongxm C ] =:0(C).

Working as we did with § we conclude that 6 (C) = det[C] - § (I) = det C.
Putting this all together completes the proof. [
Next we want to prove the standard cofactor expansion of det A.

Notation 6.24 If A is an X n matriz and 1 < 4,5 <mn, let A(i,7) denotes A
with its it" row and j** — column being deleted.

Proposition 6.25 (Co-factor Expansion). If A is a n X n matriz and 1 <
7 <mn, then

n

det (4) = (=1)"" a;; det [A (i, j)] (6.4)

i=1
and similarly if 1 <i <mn, then

n

det (A) = (1) a;; det [A (i, )] . (6.5)

Jj=1

We refer to Eq. as the cofactor expansion along the j"* — column
and Eq. as the cofactor expansion along the i'" — row.

Proof. Equation (6.5) follows from Eq. (6.4) with that aid of item 3. of
Theorem To prove Eq. (6.4), let A = [v1]...|v,] and for b € R™ let
b@) := b — b;e; and then write v; = >, a;;e;. We then find,
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n
det A = Zaij det [v1]...|vj_1]es|vjq1] ... |vn]
i=1

= Za” det {U£Z)| e |v§21\ei|v§21\ . |v£f)}
n
j—1 i 7 7 i
= ay (1 det [ei|u§>|...|v§jl\v§+>1|...w}
1 0

- iaij (=171 (=)' det [0 A (m‘)]

= Z (—1)i+j Qjj det [A (Zv])]

@
Il
-

wherein we have used the determinant changes sign any time one interchanges
two columns or two rows. |

Example 6.26. Let us illustrate the above proof in the 3 x 3 case by expanding
along the second column. To shorten the notation we we write det A = |A|;

ai1 aiz ais ai1 1 ags ai1 0 a3 ai1 0 a3
a1 Q22 a23 | = @12 |a21 0 a3 | + aia|az1 1 ags | + aiz | az1 0 ao3
asy asz ass a31 0 aszs a31 0 ass az1 1 ass
where
ail 1 ai13 010 10 0 a a
21 @23
a1 0 asz| = |ag1 0 ass| = —|0aoq ass | = — = —det A (1, 2),
0 0 0 aszi ass
a1 0 ass az1 0 ass a1 ass
al 0 a3 a1 0 ai13 010 10 0
as1 1 ags | = 010 = —|ai 0 a1z | = 0 ai11 a13 | = det [A (2,2)] )
az1 0 azz a3 0 azz az1 0 azz 0 a3y ass
and
ai1 0 a3 0 a1 a3 0 a1 a3 10 0
any 0 agsz | = — 0 a91 A23 | = 10 0 =—1|0 a11 a1z | = — det [A (3, 1)] .
a31 1 aszs 10 0 0 az1 a3 0 a21 as3

6.3 The structure of A* (V*)

Definition 6.27. Letm € N and {Ej};n:l C V*, we define (4N - Ny, € A™ (V)
by
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30 6 Alternating Multi-linear Functions

by (v1) oo Ly (i) Exercise 6.4. Let {ei}?zl be the standard basis for R* and {¢; = e;‘}?zl be
la(v1) ... L2 (vm) the associated dual basis (i.e. g; (v) = v; for all v € R%.) Compute;
(LL A Nly) (U1, ..., up,) = det . ) . (6.6)
) ’ ; 1 0 1
o, (Ul) R . (Um) 2 1 0
m 1. ez Neg Ney 3l 1211713 ,
=Y () = X D o) b o). (67 R RE
ocEX i=1 oc€EX
1 0
or alternatively using det A% = det A, 2 1
2. ez NéEg 3] -1 ,
61 (v1) L2 (v1) i (v1) 4 1
by (v2) Lo (v2) ... L (v2)
(Ly AN ANly) (U1, ...y Uy) = det . (6.8) 1 0
: : : : 2 1
01 (Um) L2 (V) + .. L (V) 3. ahe|lq 1| |
m 4 1
=3 O [[lei )= > (=17 lor (v1) - o (vm) - (6.9) 1T o
oc€EX i=1 ceX,, 2 1
which may be written as, 4 (e1+es) Ae 317 -1 , and
4 1
bAoAy = Z (_1) b1 @+ @ lom. (610) 5. eqaNE3NEINEY (61,62,63,64).

oeX,

Remark 6.28. 1t is perhaps easier to remember these equations as The next problem is a special case of Theorem [6.30] below.

Exercise 6.5. Show, using basic knowledge of determinants, that for

(61 /\"'/\fm) (vl,...,vm)
by, l1,45,03 € V* that

—él (’Ul,...,’Um)
~ det 52(/017""77)?71) and (fo—l—el)/\ég/\gg):fo/\fg/\fg—i-gl/\gg/\gg.
Remark 6.29. Note that
| m (U1, .., Um)
I U1 U1 U1 Eal/\"'/\gam:(*1)061/\"‘/\£m
V2 V2 (%)
=det | 1 : £ : R - : for all ¢ € X, and in particular if m = p + ¢ with p,q € N, then
L Um Um Um Cpgrt Ao ANy NN ANl = (=1)PTl AN ANy Ay A e Ay,
where Theorem 6.30. For any fized { ..., 0 € V*, the map,
£<U17...7’Um) = I:g('lil) g(Um)] and V*9£1_>£1/\/\£ke/1k(v*)
V1 é(’Ul)
V2 4 (vg) is linear.
/ =
: : Proof. From Eq. (6.7) we find,
U, £ ()
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((81 + c€~1> A-ee /\ﬁk) (v1,...,0k)
= 3 17 (4 er) (o) o L (vo)

o€l
= Z (=1)7 41 (vo1) - - -k (vor) +C Z (=1)7 01 (V1) - . - Ly (Vo)
ceXy o€Xy

=0 ANl (o1, o)+ Ly A ANl (v, ..., 0)
= (61A~-~A£k+c-l71A~-~Mk) (U1, ..., Vk).
As this holds for all (vy,...,vx), it follows that
(£1+cl71)A---/\Ek:61/\---/\£k+c-z71/\~--/\£k

which is the desired linearity. [
Remark 6.31. If W is another finite dimensional vector space and T : W — V
is a linear transformation, then T* (€1 A -+ A lp,) = (T*l1) A -+« A (T*L,,) . To
see this is the case, let w; € W for i € [m], then
T* (fl /\"'/\Em) (wl,...,wm)
=l A Nly) (Twy, ..., Twy)

= > ()]t @we) = > (1) [[ () (we:)

o€l i c€X, i=1
= (T )N N(T ) (w1, .. W)

Z 13

Ezample 6.32. Let T € A? ([Rﬂ*) and v,w € R3. Then

T (v,w) =T (vie1 + vaes + v3es, wre1 + waes + wses)
=T (e1, ea) (v1wg — wiva) + T (€1, e3) (viws — wivs)
+ T (es, e3) (vows — wavs3)
=[T (e1,e2)e1 Nea+ T (er,e3)e1 Aes + T (ea,e3) ea Aes] (v, w)

from this it follows that
T =T (e1,e2)e1 Nea+T (e1,e3)e1 Nes + T (ea,e3) £2 Aes.
Further note that if
1261 N €g + a1361 N ez + agzea ANeg =0

then evaluating this expression at (e;, e;) for 1 < ¢ < j < 3 allows us to conclude
that a;; = 0 for 1 <i < j < 3. Therefore {e; Ae; : 1 <i < j <3} is a basis for

A2 ([R3] *) . This example is generalized in the next theorem.
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6.3 The structure of A* (V*) 31

Theorem 6.33. Let {ei}f\;l be a basis for V and {Ei}fil be its’ dual basis and
for

J={1<a1<az<---<a, <N} CI[N],
let with # (J) = p,
e = (€ays---€a,), and ey :=cq, A+ Neg,. (6.11)
Then;
1.8, = {esj:J C[N] with# (J)=p} is a basis for AP (V*) and so

dim (AP (V*)) = (J;[), and
2. any A € AP (V*) admits the following expansions,

-,ejp)€j1 /\"'/\Ejp (612)
= Z Ales)ey. (6.13)
N

Proof. We begin by proving Eqgs. (6.12) and (6.13). To this end let
v1,...,Vp € V and then compute using the multi-linear and alternating prop-

erties of A that

N
A(vl,...,vp): Z €51 ('Ul)---ffjp (vp)A(er...,ejP) (614)
1y dp=1
N

= E : E 5]al Ul

Ji,-- ajp—l UEZ

= Z Z 7 ey (Vg-11) .. .€5, (vo-1p) A(ejy,s-- - €5,)

J1se- a]p*l . 0'62

1
= H Z A (ejl geey
jl,...,jp:1

Ejap (’Up) A (Ejgl g ,ejap)

6jp)€j1 /\"'/\z’:‘jp (vl,...,vp),

which is Eq. (6.12)). Alternatively we may write Eq. (6.14) as
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N

Z Z €apy (V1) ... Eq,, (vp) A (eaa17 . ,eaap)

1<a1<a2<--<ap,<NocX,

Z Aleays---,€a,) Z (-1)7 €a,, (v1) .. €a,, (vp)

1<ai<az<--<ap<N oeX,

= Z A(eal,...,e%)sal/\~~~/\5ap(vl,...,vp)

1<ai<az<--<ap<N

= Z A(BJ)EJ(Ul,...,Up).
JC[N]

which verifies Eq. (6.13)) and hence item 2. is proved.
To prove item 1., since (by Eq. (6.13) we know that 5, spans AP (V*), it
suffices to show 3, is linearly independent. The key point is that for

J={1<a1<ay<---<ap, <N} and
K:{1§b1<b2<"'<bp§N}

we have

Eap (6b1) 5ap (ebp)
Thus if }° ;- (nyases =0, then

0=0(ex) = Z aseg(ex) = Z ajdjK = ak
JC[N] JC[N]
which shows that ax = 0 for all K as above. [ |
Exercise 6.6. Suppose {/; }?Zl C [R"]*.
1. Explaining why ¢; A -+ Al =0 if ¢; = ¢; for some i # j.
2. Show #4 A --- AN, =0 if {¢; }?:1 are linear dependent. [You may assume
that ¢, = Z?:z a;¢; for some a; € R\]
Exercise 6.7. If {/; }5:1 C [R"]" are linearly independent, show
by N N #0.
Hint: make use of Exercise 5.4l



7

Exterior/Wedge and Interior Products

The main goal of this chapter is to define a good notion of how to multiply
two alternating multi-linear forms. The multiplication will be referred to as
the “wedge product.” Here is the result we wish to prove whose proof will be
delayed until Section [7.4]

Theorem 7.1. Let V be a finite dimensional vector space, n = dim (V) , p,q €
[n], and let m = p+ q. Then there is a unique bilinear map,

M, : AP (VF) x AT (VF) — A™ (V)
such that for any {fi},_, C V* and {gj}?':1 Cc V*, we have,

Mpg(fiNANfp gt N ANgg) =Fi N ANfpAgr A= Agg. (7.1)

The notation, M, 4, in the previous theorem is a bit bulky and so we intro-
duce the following (also temporary) notation.

Notation 7.2 (Preliminary) For A € AP (V*) and B € A1 (V*), let us sim-
ply denote M, , (A, B) by A - BE|

Remark 7.8. 1f m = p+ q > n, then A™ (V*) = {0} and hence A- B =0.

7.1 Consequences of Theorem

Before going to the proof of Theorem (see Section let us work out some
of its consequences. By Theorem it is always possible to write A € AP (V*)
in the form

«

A= "aiff A NS (7.2)
i=1

for some a € N, {a;}, C R, and {fi:jelpl and i€ [o]} C V*. Similarly we
may write B € A9 (V*) in the form,

1 'We will see shortly that it is reasonable and more suggestive to write A A B rather
than A - B. We will make this change after it is justified, see Notation @ below.

B
B:ijg{/\~-~/\gg (7.3)
j=1

for some 8 € N, {bj}jyzl C R, and {g; :j€g) and j € [6]} C V*. Thus by
Theorem [Z.1] we must have

a B _ _
A-B = My (A, B) =33 aibiMyy (FiA- A figl A ng])

i=1j=1
=D abifin-Afingl A Agl. (7.4)
i=1 j=1
Proposition 7.4 (Associativity). If A € A?(V*), B € A2(V*), and C €
A" (V*) for some r € [n], then
(A-B)-C=A-(B-0). (7.5)
Proof. Let us express C' as
.
C=> ckhf A= AR
k=1
Then working as above we find with the aid of Eq. (7.4) that
a B
(A-B)-C=>_

i=1j

Y
> aibjerfin- NFEAGIN - Agh ABE A ABE.
1 k=1

A completely analogous computation then shows that A - (B - C) is also given
by the right side of the previously displayed equation and so Eq. ([7.5)) is proved.
]

Remark 7.5. Since our multiplication rule is associative it now makes sense to
simply write A - B - C rather than (A- B)-C or A-(B-C). More generally if
Aj € APi (V*) we may now simply write Ay --- - Ay,. For example by the above
associativity we may easily show,
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A-(B-(C-D))=(A-B)-(C-D)=((A-B)-C)-D

and so it makes sense to simply write A- B-C'- D for any one of these expressions.
Corollary 7.6. If {@-}?Zl C V*, then
gl.....gp:gl/\.../\gp_

Proof. For clarity of the argument let us suppose that p =5 in which case
we have

by -ly -y -y - ls =1y - ( )
=Ly (2 (L5 (54Af5)))
=01 (ly- (U3 NLy N E5))
— 01 (fy Ay ALy A L)
— 0y ALy Al ALy AL

by - (03 (g~ C5)

]

Because of Corollary [7.6] there is no longer any danger in denoting A - B =

M, (A, B) by AN B. Moreover, this notation suggestively leads one to the
correct multiplication formulas.

Notation 7.7 (Wedge=Exterior Product) For A € AP (V*) and B €
AT (V*), we will from now on denote M, , (A, B) by AN B.

Although the wedge product is associative, one must be careful to observe
that the wedge product is not commutative, i.e. groupings do not matter but
order may matter.

Lemma 7.8 (Non-commutativity). For A € A? (V*) and B € A7 (V*) we

have
ANB=(-1)""BAA.
Proof. See Remark [6.29 [ ]

Ezxample 7.9. Suppose that {5]} is the standard dual basis on R® and

j=1
a:2€1—3€3, 5262/\544-(81 +€3)/\E5.
Find and simplify formulas for o A a, a A 8 and B A 5.

l.aAa=0sincea ANa=—aA .
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2.
a/\B:(2€17353)/\52 /\€4+(2€1*3€3)/\(€1+€3)/\€5
=261 Neg ANeg+3ea Neg Ney
+251/\(81 +E3)/\E5—3€3/\<51 +€3)/\E5
=2e1Neag Neg+3ea NegNeg+ 261 Neg ANes + 361 Aeg Nes
=2e1 Neg ANeg+ 369 ANeg Neg + De1 ANeg Aes.
3. Finally,

BAB=leaNes+ (61 +¢€3) Nes| Aea ANea + (€1 +€3) Aes]
=egNegA(e1+e3)Nes+ (e1+e3)ANes Aeg ANey
=g Neg Negr Nes+eaNegNeg Nes
+e1NesNea Neg+eg3Nes NeEa Ney
=1 Neag NegNETNE;—EaNEZNELNES
+e1NeaNegNeg —ea NeEg Neg NeEs.

Theorem 7.10 (Pull-Backs and Wedges). If A: V — W is a linear trans-
formation, w € A¥ (W*), and n € AL (W*), then

A (wAn) =A"w A A%y (7.6)
and in particular if 01, ..., 0, € W*, then
A [l Ao Nl = A" N N ALy, (7.7)

Proof. Equation ([7.6) follows directly from Eq. (7.18)) used below in the
proof of Theorem Equation (|7.7)) then follows from Eq. (7.6 by induction
on k. However, not wanting to use the proof of Theorem in this proof we
will give another proof which only use the material presented so far.

To prove Eq. |D simply let {vi}le C V and compute

A* [fl/\'“/\fk] (’Ul,...,Ak) :Kl/\-“/\fk(Avl,...,A’Uk)
= det [{¢; (Av;)}] = det [{A™4; (v))}]
= (A" N NA) (1, ..., 0k)

As this is true for all (v1,...,vx) € V¥, Eq. (7.7) follows.
Since both sides of Eq. (7.6 are bilinear functions of w and 7, it suffices to
verify Eq. (7.6)) in the special case where

w=L0 AN Nlpandn=fi A---Af

for some {1, ..., 0k, f1,... fi € W*. However this is now simply done using Eq.

2.
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A" (wAn) = A" (LA N ANFIA-AS1)
=AU N NAUNAT LN NAT S
=[A N NAUAN[A LA NA ]
=A"w A A™n.

7.2 Interior product

There is yet one more product structure on A™ (V*) that we will used through-
out these notes given in the following definition.

Definition 7.11 (Interior product). Forv eV and T € A™ (V*), let i, T €
AT=L(V*) be defined by i,T =T (v,--+).

Lemma 7.12. If {¢;}", CV*, T =l A+ ANlp, and v € V, then
iy (LL A - =Y (- Yo lL A AL A A L. (7.8)
j=1

Proof. Expanding the determinant along its first column we find,

ly (v1) ... O (o)
fg (’Ul) fg (’Um)

T(Ula sy Um) =

by (V1) ool (V)
El (UQ) . él (Um)
Y4 (”02) 62 (Um)

= Z (—1)]‘71 fj (Ul) . éj_l (1}2) PN gj_l (’Um)

j=1 éj—&-l (’UQ) . €j+1 (Um)

ém (UQ) e ZTTL (U’m)
Ul) (fl/\”'/\é\j/\'”/\fm> (Ug,...,vm)
j=1
from which Eq. (7.8) follows. [
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Example 7.13. Let us work through the above proof when m = 3. Letting T =
1 N\ by A €3 we have

1 (1) 1 (v2) 4 (v3)
T (Uly Vg, 1)3) 2 (’Ul) Oy (’02) ly (vd)
3 (v1) L3 (v2) £3 (v3)

= (fl (’Ul)EQ ANl — lo (U1)£1 Nl + U3 (’Ul)gl /\Eg) (’1}2,’1)3)
and so
Ty, (51 Al /\ﬁg) =/ (’Ul)fz ANl — bo (Ul)fl Nl + V3 (’Ul)fl A Lo,

Exercise 7.1. Let {5]} , be the standard dual basis and v = (1,2, 3)" € R3,
find aq,a9,a3 € R so that

iy (61 Neg Ae3) = ar1e2 N eg + azeq A es + azer Aea.
Corollary 7.14. For A € AP (V*) and B € A7 (V*) and v € V, we have
iy [ANB] = (i,A) A B+ (=1)" AA (i,B).

Proof. It suffices to verify this identity on decomposable forms, A = ¢; A
-~Adlpand B =/, 1 A--- Nl sothat ANB =41 A--- AL, and we have

iv (AN B)

=S V)T ) A NG A Ay

p
=D )T @) A NG Ay Ny A Ny

j=1
m ~
YT @) A by Ny A AL A Ay
j=p+1
= T1 + TQ
where
p ~
= > (- )l A-- AL A ...y NB=(i,A)AB
j=1
macro: svmonob.cls date/time: 13-Feb-2020/13:01



36 7 Exterior/Wedge and Interior Products

and
Ty =AN Z (_l)j_lgj(v)gp—&-l/\"'/\[j/\"'/\ém
Jj=p+1
=(-DPAA | ST (TP ) Gy A AL A Ay
Jj=p+1

= (1)’ AA (i, B).

[
Lemma 7.15. If v,w € V, then i2 = 0 and iyiy = —iyiy.
Proof. Let T € A* (V*), then
i =T (w,v,—) =T (v, W,—) = Gyi,T.
[

Definition 7.16 (Cross product on R3). Fora,b € R3, let axb be the unique
vector in R® so that

det [c|a|b] = ¢ - (a x b) for all ¢ € R®.
Such a unique vector exists since we know that ¢ — det [c|a|b] is a linear func-
tional on R3 for each a,b € R3.

Lemma 7.17 (Cross product). The cross product in Definition agrees
with the “usual definition,

ijk
axb=|ai as as
b1 by b3

—'i a9z as s aj as ai ag

T by by | | by bs by by |’

where i = ey, j = es, and k = e3 is the standard basis for R3.

Proof. Suppose that a x b is defined by the formula in the lemma, then for
all c € R,

_ az az| a as ai az
(axb)-c=c by bs cs by bs + c3 by by
C1 C2 C3
= |ay az a3 | = det|[c|alb],
by by b

wherein we have used the cofactor expansion along the top row for the second
equality and the fact that det A = det A' for the last equality.
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Remark 7.18 (Generalized Cross product). If a1, as...,a,—1 € R™, let a1 X az X
-+ X anp—1 denote the unique vector in R™ such that

det [clai]az]| ... |an—1] =c a1 X az X -+ X a,_1 ¥V c € R".

This “multi-product” is the n > 3 analogue of the cross product in R3. I don’t
anticipate using this generalized cross product.

7.3 Exercises

Exercise 7.2 (Cross I). For a € R3, let £, (v) = a-v = a'Tv, so that ¢, €
(R?*)". In particular we have &; = £, for i € [3] is the dual basis to the standard

basis {e;}>_, . Show for a,b € R3,
Lo N\ Ly :iaxb[61/\€2/\€3] (7.9)
Hints: 1) write £, = 2?21 a;e; and 2) make use of Eq. (7.8)

Exercise 7.3 (Cross II). Use Exercise to prove the standard vector cal-
culus identity;

(@xb)-(zxy)=(a-z)(b-y)—(b-z)(a-y)

which is valid for all a,b, z,y € R3.Hint: evaluate Eq. (7.9) at (x,y) while using
Lemma [T.17

Exercise 7.4 (Surface Integrals). In this exercise, let w € Az (R?) be the
standard volume form, w (vy,ve,vs) := det[v1|va|vs], suppose D is an open
subset of R?, and X : D — S C R? is a “parametrized surface,” refer to Figure
If F: R? = R3 is a vector field on R3, then from your vector calculus class,

// F-NdA=c¢- // F (X (u,v)) - [Xy (u,v) x Xy (u,v)] dudv (7.10)
s D
where e =1 (e = —1) if N (¥ (u,v)) points in the same (opposite) direction as

X (u,v) X Xy (u,v) . We assume that € is independent of (u,v) € D.
Show the formula in Eq. (7.10) may be rewritten as

//SF NdA = 5//]J (ir (@) (B (,0), Dy (u,0)) dudv— (7.11)

where
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Fig. 7.1. In this figure N is a smoothly varying normal to S, n is a normal to
the boundary of S, and T is a tangential vector to the boundary of S. Moreover,
D 3> (u,v) = X (u,v) € S is a parametrization of S where D C R?.

1 fw(NoX, X, %X,)>0

g:=sgn(w(NoX X, X,)) = {_1 ifw(NoX X, %, <0.

Remarks: Once we introduce the proper notation, we will be able to write

Eq. (7.11]) more succinctly as

//SF~NdA://SiFw:ze//DE*(iFw).

Definition 7.19 (Curl). If F : R3 — R3 is a vector field on R3, we define a
new vector field called the curl of F' by

V X F = (02F3 — 03F3) e1 — (01 F3 — O3F1) ea + (01 F2 — OaF1)e3 (7.12)

where {e1, ez, ez} is the standard basis for R3. This usually remembered by the
following mnemonic formulas;

€1 €2 €3
VxF=det| 0 0 O3
Fy Fy Fs
_ a2 a3 31 33 81 82
= e det l:F2 F3:| — eg det |:F1 jor + ez det |

Exercise 7.5 (Boundary Orientation). Referring to the set up in Exercise
[7-4] the tangent vector T has been chosen by using the “right-hand” rule in
order to determine the orientation on the boundary, 05, of S so that Stoke’s
theorem holds, i.e.

[VxF]-NdA= | F-Tds. (7.13)
/1, L
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Show by using the “right hand rule” that T'=c- N x n with ¢ > 0 and then
also show
c=w(N,n,T) = (inizw) (T).

Also note by Exercise that Eq. (7.13) may be written as

// ’ivXFw Z/ F-Tds (714)
S o8

Remark: We will introduce the “one form”, F'-dr and an “exterior deriva-
tive” operator, d, so that
d[F . dl‘] = ivXFw

and Eq. (7.14) may be written in the pleasant form,
//d[F-dx]: F - dx.
S a8

7.4 *Proof of Theorem [7.1]

[This section may safely be skipped if you are willing to believe the results as
stated!]

If Theorem is going to be true we must have M, ,(4,B) = A-B =D
where, as written in Eq. ,

=17

The problem with this presumed definition is that the formula for D in Eq.
(7.15)) seems to depend on the expansions of A and B in Egs. and (7.3
rather than on only A and B. [The expansions for A and B in Egs.
and are highly non-unique!] In order to see that D is independent of the
possible choices of expansions of A and B, we are going to show in Proposition
below that D (v1,...,v,,) (with D as in Eq. ) may be expressed by a
formula which only involves A and B and not their expansions. Before getting
to this proposition we need some more notation and a preliminary lemma.

B

abjfi N AfEAGIA - Ngl. (7.15)
1

Notation 7.20 Let m = p + q be as in Theorem and let {v;}", C V be
fized. For each J C [m] with #J = p write

J:{1§a1<a2<~~<ap§m},
JO={1<b; <by <---<by <m},

vy = (val,...,vap), and vje 1= (vbl,...,qu).
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38 7 Exterior/Wedge and Interior Products
Also for any o € X, and B € X, let

- _ 1 ... p p+1... m
S Aql - - QAap bgl bgq ’

When o and 8 are the identity permutations in X, and Xy respectively we will
simply denote 045 by oy, i.c.

1...pp+1l...m
gy = .
ai ... ap b1 bq
The point of this notation is contained in the following lemma.

Lemma 7.21. Assuming Notation [7.20,

1. the map,
’Pilhm X Ep X Eq > (J,Oz,ﬁ) — O0JaB € Yms

s a bijection, and
2. ()7 = (=1)7 (1) (=1)"

Proof. We leave proof of these assertions to the reader. [
Lemma 7.22 (Wedge Product I). Let n = dimV, p,q € [n], m := p+ q,
{fi}f_, cve, {gj}?‘:1 c V* and {vj};n:l C V, then

(in-ANfpAgi A Ngg) (V1,...,0m)
= > DTS A A L) (00) (90 A Agg) (vge) (7.16)

#J=p

Proof. In order to simplify notation in the proof let, ¢; = f; for 1 <i < p
and £j4p, = g; for 1 < j < g so that

AN A AGLA - Agg=L1 A Al
Then by Definition [6.27] of ¢; A

(61/\-~-/\£m)(v1,...,vm)

-+ Ay, along with Lemma[7.21] we find,

m

= det [{6: )}y | = 30 (D)7 [T 4 (o).

S IDIDILCIEES | (LU

J acX, e,
m
S EIED DI SRS | (TN | AR
J acX, peX, i=1 i=p+1
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Combining this with the following identity,

Z Z H (UUJa,ﬂi) (_1)06 H l; (U"'J,cx,ﬁi)
a€X, fES, i=1 i=p+1

= > 0] @) Yo D7 T 4 (v,

acX), =1 BeEX 1=p+1

(61 A p) (V1) (b1 A=+ ANl (vge)
=(fin-Afp)(vg) (g1 A Ngg) (ve)

completes the proof. [

Proposition 7.23 (Wedge Product II). If A € AP (V*) and B € A9 (V™)
are written as in Eqgs. and D € A™ (V*) is defined as in Eq. (7.15),
then

D1, yvm) = Y (=) A(vy)B(vse) V {n}1, CV. (7.17)

#J=p
This shows defining A N B by Eq. is well defined and in fact could have

been defined intrinsically using the formula,
AANB (1. om) = Y (=1)7" A(vy) B (vye). (7.18)
#J=p
Proof. By Lemma [7.22]
Fin- NFIAGIA - NG (1, o)

= > DT (HA A @) (d A Agd) ()

#J=p
and therefore,
D (v1,...,0m)
a B 4
=3 >ty (A AfiAG A AG) (1, vm)
i=1j=1
a B A
=3ty 3 0 (A A L) o) (gl A A g)) ()
=1 j=1 #J=p
a B ' B
= 2 O a (A nf) @) b (el Ao A (v)
#J=p i=1 j=1 j=1
= (=1)%" A(vs) B (vye)
#J=p
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which proves Eq. and completes the proof of the proposition. [

With all of this preparation we are now in a position to complete the proof
of Theorem [T.1l

Proof of Theorem [7.1] As we have see we may define A A B by either
Eq. or by Eq. @ . Equation ensures A A B is well defined and
is multi-linear while Eq. ensures A A B € A™(V*) and that Eq.
holds. This proves the existence assertion of the theorem. The uniqueness of
M, ,(A,B) = A A B follows by the necessity of defining A A B by Eq. . ]

Corollary 7.24. Suppose that {ej};lzl is a basis of V and {Ej};.lzl is its dual
basis of V*. Then for A € AP (V*) and B € A% (V*) we have

AANB =

n
T Z A(ejl,...,ejp)B(ejp+1,...,ejm)sj1/\...~~/\5jm.
L

(7.19)

Proof. By Theorem [6.33] we may write,

N
1
A:E Z A(eju""ejp)gjl/\"'/\€jpand
J1yeeJp=1
1 n
BZ*‘ Z B(ejp+17""ej7n)5jp+l/\"'.'./\ejm

" pttsenim=1

and therefore Eq. (7.19) holds by computing A A B as in Eq. (7.4)). ]
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8

Derivatives, Tangent Spaces, and Differential Forms

In this chapter we will develop calculus and the language of differential forms
on open subsets of Euclidean space in such a way that our result will transfer
to the more general manifold setting.

8.1 Derivatives and Chain Rules

Notation 8.1 (Open subset) I use the symbol “C,” to denote containment
with the smaller set being open in the bigger. Thus writing U C, R™ means U
is an open subset of R™ which we always assume to be non-empty.

Notation 8.2 For U C, R"™, we write f : U — R™ as short hand for saying
that f is a function from U to R™, thus for each x € U,

fi(z)

Ja(z
f= |

fm ()
where f; : U — R for each i € [m].
Definition 8.3 (Directional Derivatives). Suppose U C, R™ that f : U —

R™ is a function, so For p € U and v € R™, let

(00) () = oS -+ 10)

be the directional deri'vativeﬂ of f at p in the direction v. By definition,
the j*"-partial derivative of f at p, is

af

aEL’j (p) = (aejf) (p> = %|Of (p+t6j) .

where {ej}?zl is the standard basis for R™. We will also write 0;f for % =

de, I

! 'We use this terminology even though no assumption about v being a unit vector is
being made.

Definition 8.4. A function, f: U — R, is smooth if  has partial derivatives
to all orders and all of these partial derivatives are continuous. We say f : U —
R™ 1is smooth if each of the functions, f; : U — R, are smooth functions.

Notation 8.5 We let C* (U,R™) denote the smooth functions from U to R™.
When m = 1 we will also write C* (U,R) = 2° (U) and refer to these as the
smooth 0-forms on U. We also let C* (U,R™) denote those f : U — R™ such
that each coordinate function, f;, has partial derivatives to order k an all of
these partial derivatives are continuous.

Let us recall a some version of the chain rule.

Theorem 8.6. If f € C* (U,R™), pe U, and v = (v, ... ,fun)tr € R™, then
)
0.0) ) =Y 25 )y = /' (p)v
=1 9%

where ' (p) = Df (p) is the m x n matriz defined by

f@zﬂﬂmgz.~$@>

o (p) |
[ O f1 (p) 02 f1 (p) On f1 (p)

O1f2(p) Oaf2(p) .. Onf2(p)

01 fon (9) Onfon (0) DS (D)

We refer to f' (p) = Df (p) as the differential of [ at p.
More generally, if, 0 : (—e,¢) = U is a curve in U such that 6 (0) =
4|0 (t) € R™ exists, then

Lol (0(8) = (9500)f) (0:0)) = (0 0)) 5(0)

> 5 (e (0)50). (s.)
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T
bi ($1> = sinl(;l)

Example 8.7. If

T
2 Toe®l
then
2 €2 Eal
f’( 1) = [cos(z1) O
T2 ToeTl e™1

Ezxample 8.8. Let

Then

f/(p): (]jéila and

@no=5,| 5] =]"%"]
1) =[] e (5) =
7 (g) and det [f’ <2)] :

Exercise 8.1. Let

Find;

Exercise 8.2. Let

r rsin @ - cos @ r
fl o] =|rsinp-sind| for | 4 | € R
® T COS P %)
Find;
r r
f'l 0] and det | f' | 6
14 ¥
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The following rewriting of the chain rule is often useful for computing di-
rectional derivatives.

Lemma 8.9 (Chain Rule II). Let 0 € U C, R™ and f : U — R™ be smooth
function. Then

d n d n d j position

— t.t,...,t) = — te;) = — 0,....0 t 0,...,0]).

dt|0f(a ) ) ) Zdt‘of(e_]) ;dtbf( ) s Yy » Uy ) )
Proof. Let o (t) = (t,¢t,... ,t)tr7 then by the chain rule,

Shof (bt o) = Tlof (0 () = 7' (0 (0)) 5 0)

j=1 j=1
[ ]
Exercise 8.3. Let
Ay A o Ay,
A21 A22 cee A2n
A= : oL : = lai]...|an)
Anl An2 Ann
be an n x n matrix with i*"-column
Ay
Ag;
a; = .
Ani
Given another n x n matrix B with analogous notation, show
((93 det) (A) = Zdet [a1| . \aj,1|bj|aj+1| e ‘bn} . (82)
j=1

For example if n = 3, this formula reads,
(Op det) (A) = det [b1|a2|a3] + det [a1|b2|a3] + det [a1|a2|bg] .

Suggestions; by definition,
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d d
(Op det) (A) := %|0 det (A+1tB) = £|0 det [ag + tby]. .. |an + tby] .
Now apply Lemma [8.9] with

fx1,...,zn) =det[ag + 21b1] ... |an + T0by) -

Exercise 8.4 (Exercise continued). Continuing the notation and results
from Exercise show;

1. If A =1 is the n x n identity matrix in Eq. (8.2)), then

(9 det) (I) Z Bj;.

2. If A is an n x n invertible matrix, shows
(0p det) (A) = det (4) - tr (A™'B).
Hint: Verify the identity,
det (A+tB) = det (A) - det (I + tA™"B)
which you should then use along with first item of this exercise.
Corollary 8.10. If A is an n X n matriz, then det (eA) = etr(4),

Proof. Let f (t) := det (e4), then

: d d
_ _ % (t+s)A

F8) = —lof (t+5) = —lodet (e+94)

d o
= £|0 det (etAe A) det (etA) Is
— () (a%‘ i det) (e OA) £(t) (04 det)( )
— F(®)tr (4) with £ (0) = det (I) =
Solving this differential equation then shows,

det (c4) = ettr(4),

4 det (e4)
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8.2 Tangent Spaces and More Chain Rules
Definition 8.11 (Tangent space). To each open set, U C, R™, let

TU :=U xR" ={v, = (p,v) : pe U and v € R"}.
For a given p € U, we let
T,U = {v, = (p,v) : v € R"}

and refer this as the tangent space to U at p. Note that

TU = UpevTpU.

For vy, w, € T,U and A € C we define,
vp + Awp 1= (v + Aw),

which makes T},U into a vector space isomorphic to R".

Notation 8.12 (Cotangent spaces) For p € R", let T;U := [T,U]" be the
dual space to T,U.

Definition 8.13. If f € C*™ (U,R™) and v, € T,U let
df (vp) = (0uf) (p) = f' (p) v.
We call df the differential of f and further write df, for df|r,u € [T,U]".

We will mostly (probably exclusively) use the df notation in the case where
m=1.

Ezample 8.14. Let f (z1,72) = 123, then

[ 21 2 r [ P1 2
= 2 == 2 .
f (x2> [23 21120 = f (p2> [p3 2p1p2 |
Therefore,

v
df (vp) = [p3 2p1p2 ] L}j = p3u1 + 2p1pava.

Notation 8.15 (Coordinate functions) Note well: from now on we will
usually consider x = (x1,. .. ,xn)tr to be the identity function from R™ to R"
rather than a point in R™, i.e. if p = (p1,pas---,pn)" then x; (p) = p;. We still
however write

of

8iL'i

(p) :== 0if (p) = (0, f) (p)
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46 8 Derivatives, Tangent Spaces, and Differential Forms

Ezample 8.16. We have for each i € [n]

pi +tv;) = ;.

dz; (vp) = (Ovzi) (p) = %bxl (p+tv) = %b(

Proposition 8.17. If f € 2° (U), then

df =) T dx;
i=1

where the right side of this equation evaluated at v, is by definition,

0 "0
( 8f dxl> ; ) - dz; (vp)

Proof. By definition and the chain rule,

& () = =3 g, =30 5 ) ()

Exercise 8.5. Using Proposition [8.17] find df when
fx1,@0,23) = x? sin (€¥2) 4 cos (x3) .

Lemma 8.18 (Product Rule). Suppose that f,g € C*> (U), then d(fg) =
fdg + gdf which in more detail means,

d(fg) (vp) = f (p)dg (vp) + g (p) df (vp) for all v, € TU.
[You are asked to generalize this result in Exercise . ]
Proof. This is the product rule. Here are two ways to prove this result.

1. The first method used the product rule for directional derivatives,
d(fg) (vp) = (v (f9)) (p) = (Ouf - g+ fOug) (D)
=g (p)df (vp) + f (p) dg (vp) .

2. For the second we use Proposition and the product rule for partial
derivatives to find,

Z@ Ydx; =Y [0;f - g+ fO;9) dx;
=1

<.

1
gZa fdx; +fZajgde = gdf + fdg.

j=1 j=1
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Ezample 8.19 (Example revisited). Let f (z1,72) = 2123 be as in Example
then using the product rule,

df = mgdml + z1d [x%} = x%dwl + 2x120dxs.
Proposition 8.20. If f € 2°(U) and o (t) is curve in U so that ¢ (0) exists,
then

Liof (0 0) = df (5 0)yqe))

Proof. By the chain rule and the definition of df (v,),

Liof (o (0) = /(0 (0)5(0) = (Do 1) (7 0) = df (5 (0)p))
| |
Exercise 8.6. Let ¢1,92,...,9» € C*({U,R), f € C*(R",R), and u =
fg1,---,9n), e
uw(p)=f(g1(p),---,9n () forallpelU.
Show

Jj=1

which is to be interpreted to mean,

n

du(v,) = > (9;£)(91(P) .-, 9n (b)) dg; (vp) for all v, € TU.
j=1
Hint: For v, € TU, let 0 (t) = (g1 (p +tv), ..., gn (p + tv)) and then make use
of the chain rule (see Eq. (8.1)) to compute du (vp) .

Here is yet one more version of the chain rule. [This next version essentially
encompasses all of the previous versions.|

Exercise 8.7 (Chain Rule for Maps). Suppose that f : U — V and g¢ :
V — W are C'-functions where U, V, and W are open subsets of R”, R™, and
RP respectively and let go f : U — W be the composition map,

gof:ULV&VV.

Show
(go ) () =9 (f(p)f (p) forallpeU. (8.3)

Hint: Let v € R” and o (¢) := f (p + tv) — a differentiable curve in V. Then use
the chain rule in Theorem twice in order to compute,

(901 (D)0 = o9 (F 0+ 1)) = log (0 (1)
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We now want to define a derivative map which fully keeps track of the base
points, unlike df which forgets the target base point.

Definition 8.21 ( f, : TU = TV). If U Co, R and V C, R™ and f : U -V
is a smooth function, i.e. f: U — R™ is smooth with f (U) C V, then we define
a map, f.: TU =TV by

fevp = [(0uf) (D) 5y = U (D) V] () for all (p,v) €TU =U xR™.  (8.4)

We further let f., denote the restriction of f. to T,U in which case f.p, : T,U —
TV which is seen to be linear by the formula in Eq. .

Jv,, =(fo0)'(0)

Fig. 8.1. Describing the differential in geometric context.

Proposition 8.22 (Chain rule again). Let f and g be as in Ezercises .
Here are are last two reformulations of the chain rule.

1. If o (t) is a curve in U such that 6 (0) = v and o (0) = p, then

fevp = fu (d (0)0(0)) - [c(litw(a (t))]f(O(O))'

2. The chain rule in Eq. may be written in the following pleasing form,
(gof),=g«fs

Proof. We take each item in turn.

1. Let v, € TU. By the chain rule,
d
S0/ (@ () = f(c(0)) 6 (0) = f' (p)v
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Jswn=(foo)'(0)

90 =(g0 foo) (O=(go v, | g(f(m)

B\

Fig. 8.2. The chain rule in pictures.

and therefore,

[jt'of (@ <t>>} = /' (0)v], = fovp.

f(e(0))
2. By the chain rule in Exercise
(gofl,vp= [(g ° f)/ (p) 'U] (gof)(®) — [g, (f () f (p) ’U]g(‘f(p)) :

On the other hand,

Gu fsp = 9x ([f/ (p) U]f(p)) =[g'(f () 1 (p) U]g(f(p))

and hence (g o f), v, = g« frvp for all v, € TU, ie. (go f), = gu fs.

8.3 Differential Forms

Standing notation: throughout this section, let {e;}!"_; be the standard basis
on R™, {&;}! | be its dual basis, {z;}._, be the standard coordinate functions
on R™ (so ; (v) = &; (v) = v; for all v = (vy,...,v,)" € R") and U be an open
subset of R"™.

Definition 8.23 (Differential k-form). A 0-form on U is just a function,
f: U = R while (for k € N) a differential k-form (w) on U is an assignment;

U3sp—w, € A" ([T,R"") forallp € U.
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48 8 Derivatives, Tangent Spaces, and Differential Forms

The form w is said to be C" if for every fized vy,...,vr € R™ the function,
Usp—wy ([vl]p,...,[vk]p> eR

is a C" function.

In order to simplify notation, I will usually just write
w (oo fonly) forwp ([onl s fonl, ) -

Notation 8.24 For an open subset, U C R™ and k € [n], we let 2% (U) denote
the collection of C*° (smooth) k-forms on U.

Ezample 8.25. If {fi}fzo are smooth functions on U, then w = fodf1 A -+ Adfy
defined by

w ([ oo fonly) = Fo g dfi A< Adf ([ [0,

%
= Jo (p) det {{dfi (twsl,) }m__J
= fo ) det [{(9,1:) ®)}1_, |

If fi=a,..., f =2, forsome 1 <y <l <--- <l <n, then
w (o1l [o],) = fo () det [z, (0}

= fO (p)€l1 A= Ney, (U17"'7vk)

Lemma 8.26. There is a one to one correspondence between k-forms (w) on U
and functions & : U — AF ([R"]*) . The correspondence is determined by;

@) (v1,...,0%) = wp ([vl]p b [vk]p) for allp e U and {vi}le C R™.

Under this correspondence, w is a C" k-form iff & : U — A* ([R"]") is a C-
function.

Definition 8.27 (Multiplication Rules). If o € 2% (U) and 8 € 2' (U), we
define a A\ B € Q2FTH(U) by requiring

[ A B, = ap A B, € AMTH(T,R™) for allp € U.
If a = f e 2°U), then the above formula is to be interpreted as

[f8], = £ (p) By € A" (IT,R"]") for all p € U.
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Remark 8.28. Using the identification in Lemma these multiplication rules
are equivalent to requiring

aAB(p)=a(p)ApB(b) forall peU.
Notation 8.29 For
J={1<j1 <jo<---<jr<n}Cln], (8.5)
let
dry = dxj, A--- Ndxj, € 28 (R™) and
eg=¢cj A+ Aej, € A" (R"]Y)
Proposition 8.30. If w is a k-form on U, there exist unique functions wy :

U — R such that
w= Z wydzy, (8.6)
JC[n]:|J|=k

and all possible functions wy : U — R may occur. Moreover, if J C [n] as in
Eq. , then wy is related to w by

Wy (p) =W ([ejl]p yeees [ejk]p> =w (p) (6]‘1, s ejk) f07’ allp e U.
Corollary 8.31. If w is given as in Fq. then

@ (p) = Z wy (p)es

JC[n]:|J|=k
and w is smooth iff the functions wy are smooth for each J C [n] with |J| = k.

Ezample 8.32. If w € 2% (U), then

w = Z wijdxi A dxj and @ = Z Wij€&; A €j

1<i<j<n 1<i<j<n
for some functions w;; € 2° (U).

The following lemma is a direct consequence of our development of the
multi-linear algebra in the previous part.

Lemma 8.33. If {ai}le C QY (U), thenay A---Aag € 2% (U) and moreover
if {v;}le C T,U, then

an Ao e (i) = ot [{a (o)} ]
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where
SRR
{{az( )}7]1}: 2 (01 2.2. 2 (Vg
k(v1) o (v2) ... o (vg)

or its transpose if you prefer.

Remark 8.34 (Book Ezercise 2.3.iii). Here is some help on Exercise in the
book which asks you to show the following. Suppose U is an open subset of R”
and f; € C* (U) for each j € [n]. Let F (p) = (f1 (D), -, fn (p))", show

dfy A---Ndfp, =det F' -dxy A -+ Adzp.
Well by Proposition [8:30] we know that
Afi A Adfy = w-daz A--- A day,

where

df: g[eﬂp dfy (les],) -~ dfi (lea],

dfa (leal, ) dfz ( [e2], dfa ( len],
= det . _

it (fe),) i (le2),) - (),
= det [F' (p)]

Ezample 8.35. If

a = fodfi A--- Ndfy, € 2% (U) and

B =godgy A--- Ndg; € 2 (U)

for some functions { f; }§:0 U {gi}ﬁzo C 2°(U), then
aA B = fogodft AN Ndfy ANdgy A -+ Ndg; € Qk—H(U).

Exercise 8.8. Suppose that {z; }jzl are the standard coordinates on R*, p =
(13 717 27 3)“ € R4> vl = (17 27 374)” ’ ’U2 = (07 13 717 1)tr ’ ,US = (17 Oa 33 2) )

a = x4 (dry + dxs), B =x122 (desg + dzy), and w = (m% + x%) drs ANdxo Adxy.

Compute the following quantities;
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Exercise 8.9. Let {:ci}le be the standard coordinates on R® and let
w = dxy Adzy + das A deg + des A deg € 22 (RG) .

Show
wAwAw=cdr; ANdxo Adxrs Adry Adxs A dxg,

for some ¢ € R which you should find.

8.4 Vector-Fields and Interior Products

Definition 8.36. A vector field on U C, R", is an assignment to each p €
U to and element F (p) € T,U. Necessarily, this means there exists a unique
function, f = (f1,.. .,fn)tr : U — R™, such that F (p) = [f (p)}p for all p € U.
We say F is smooth if f € C* (U,R™). To simplify notation, we will often
simply identify f with F.

Definition 8.37 (Interior Product). For w € 2% (U) and v, € T,M, let
Gy, Wp 1= Wp (Vp, ... )

be the interior product of v, with w, € A* (TI;k U) as in Definition . If F
s a vector field as in Deﬁm’tion we let ipw € 21 (U) be defined by

[iFW]p = ip(p)Wp = if(p)p‘*’p-
[We will abuse notation and often just (improperly) write ijw for ipw.]

Example 8.38. If w = godg1 A - - - A dgg, then from Lemma

sz—gOZ dgj -)dgl/\...d/g\j/\~-~/\dgk

k
=90 (1)’ (9rg;) dgy A...dg; A+ N\ dgg.
j=1

If go =1 and g; = z; for 1 < j <k, then dz; (F) = f; and the above formula
becomes,

k
p(dzy A Aday) :Z V)7 faday Ao Aday A A day,. (8.7)
j=1
macro: svmonob.cls date/time: 13-Feb-2020/13:01



50 8 Derivatives, Tangent Spaces, and Differential Forms

8.5 Pull Backs

Definition 8.39 (Pull-Back). Suppose that V C, R™ and U C, R™ and ¢ :
V = U is a smooth function. Then for w € 27 (U) we define o*w € 2P (V) by

(SD*(“)) (vla s 77)17) =w (QD*’Uh ceey SD*UP) :
Lemma 8.40. If f € 2° (V) and w = df € 2 (V), then
prdf =d[p"fl =d(fop). (8.8)

Proof. For v, € T,,V, let o (t) = ¢ (p + tv) and use the chain rule to find,

Lot (oot t0)) = Lo (0 (1) = df (5(0),0)) = (puy).

Therefore,

(6°df) () = df (puy) = o (o (p-+ 10))

:%|0[f0go(p+tv)] = d(f o) (vy) =d[e"f] (v).
]

Proposition 8.41. If w € 2% (U), n € 2'(U), and ¢ and 1 are maps such
that ¢ o @ makes sense, then

e P*w = (o) w (8.9)

and
" (wAR) = wAp™. (8.10)

Proof. The first identity follows from Exercise [6.2] and the second from
Theorem [Z.101
[

Corollary 8.42. Suppose that V.C, R™, U C, R", ¢ : V. — U is a smooth
function, g; € C> (U) for 0 < j < k. Then

©* [godgr A=+~ Ndgr] = goow-dgio@] A~ ANd[groy]. (8.11)

Proof. Let a = godgy N - -+ A dgg.-
First proof. Using Eq. (8.10)) it follows that

P a =" (godg1 A+ Ndgr) = ¢"go [ dgr A -+ A pdgy].
This result along with Lemma completes the proof of Eq. (8.11)).
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Second proof. Let {v } C R™ and ¢q € V, then
(p*a) (vg:---,vg) = () (Puv a~~-7<ﬂ*v§)
=90 (¢ (@) dg1 A -+ Adgk (pavg, ... puvk)
k

= g0 (¢ (q)) - det {{dgl (xv )}i,jzl} :

But finally we have by Lemma [8.40] that

dg; (pxvy) = (¢"dgi) (v]) = (d]gi o ¢]) (v])
and so

det [{dgi (ga*vg)}ijzl} =(dlgrop] A Ad[gk o ¢]) (v;, . ,vf;)

and hence
(") (vg, - vh) = (g009) (@) (d[gro @] A=~ Adlgr o)) (v),...,vF)
which again proves Eq. (8.11)). [

Ezample 8.43. Suppose that f : R3> — R? is given by f(z1,22,73) =

(z3e*2, m123) and w = xzdy and a = cos (zy) dz A dy as forms on R? where

(x,7) are the standard coordinates on R2. Here are the solutions;
ffo=wzof-dlyof]=zie™ - dlrixs] = x]e™ - (v3dw) + x1dx3)
and

[ra = cos (ziez123) [d (27e™)] A [d (z123)]
= cos (m?xge ) e®? [2x1dxy + dxo) A (z3dxy + 21dws)
= coS (x:fxgemz) e”? [Qx%dxl Adzg — z3dzy A dzy + z1dws A das)]
Basically in this case we need only let “x = x7e*2” and y = x;x3 and then
follows our nose in computing w = zdy and « = cos (zy) dz A dy.

Ezample 8.44. Let w = udv where u(z,y) = sin(z+y) and v(z,y) = e*¥
and suppose again that f (z1,22,z3) = (:C%e”,mlxg) . Again the rule is to let
x = x2e®? and y = 173 and then compute

f*w = sin (a:%e + x12x3) - dexp (av%e3122 . xlxg)

2 e’ + x1x3) - dexp (:ci’xge“)

) -
) -

+ xlxg) - exp (a:‘rfa:gem) d (xfxge“)
) - exp (xlacde ) (3x%x36”dx1 + x3e””2dx3 + x‘;’x;;e“d:rg)
)

- exp (xil”zge“) xle 2 (3xdxy + x1x3das + x1e%2drs) .
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8.6 Exterior Differentiation

Now that we have defined forms it is natural to try to differentiate these forms.
We have already differentiated O-forms, f, to get a 1-form df. So it is natural
to generalize this definition as follows.

Definition 8.45 (Exterior Differentiation). If w = Y wydz; € 2F (U),
we define

dw == Zde Adxy € QM (U) (8.12)
7

or equivalently,
= Z Z (8Z'CUJ) d(El AN dl’J.
i=1 J

It turns out in order to compute dw you only need to use the Properties
of d explained in the next proposition. You may wish to skip the proof of this
proposition until after seeing examples of computing dw and doing the related
exercises.

Proposition 8.46 (Properties of d). The exterior derivative d satisfies the
following properties;

1..df (vp) = (0uf) (p) for f € 2°(U).
2.d: QP (U) — QP (U) is a linear map for all 0 < p < n.
3. d satisfies the product rule

dlwAn =dwAn+ (-1’ wAdy

for allw e 2P (U) and n € 29(U).

4. d?w =0 for allw € 27 (V).
Suggestion: rather than reading the proof on your first pass, instead jump
to Lemma and continue reading from there. Come back to the proof
after you have some experience with computing with d.

Proof. In terms of the identification of w € QP (U) with
@ e C> (U, A* ([R"]")) in Lemma we have

dw = i;(@iwj)ei Neg= isi /\EJ:(@'WJ)EI

which may be written as

dw = do =Y &; A O, (8.13)
=1
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This last equation describes dw without first expanding w as a linear combi-
nation of the {dz;}. This turns out to be quite convenient for deducing the
basic properties of the exterior derivative stated in this proposition. To simplify
notation in this proof we will not distinguish between w and @ and d and d and
we will exclusively (in this proof) view forms as function from U to A* ([R"]").
We now go to the proof proper.

The first item immediate from the linearity of the derivative operator. The
second item is consequence of the product rule for differentiation;

0
dwAn) = w/\n ZEJ [ An+w /\8777
J

/\n+Zej/\w/\a—xj

>
D

=doAn+ (=1)PwA Zej

=dwAn+ (-1)" w/\dn.

Lastly,

- 0 " Ow
d*w = Y A —
@ ;6 633% ;5] 8.’17j

= giNE;
Z inEn 89:1833]

1,j=1

0w 0%w
:*Z SN oz, TN B om
105

n

Z 5»/\5-/\&—54/\6»/\ P =0
= ! / 8%8% ! J 8:@8% o

i,j=1

DN | =

wherein we have used the fact that mixed partial derivatives of C2-functions
(vector-valued or not) are equal. ]

Lemma 8.47. If {g;}/_, C 2°(U), then
dlgo-g1 N Ndgp] = dgo Ndg1 N\ --- N dgp. (8.14)

This formula along with the knowing df for f € Q°(U) completely determines
d on 27 (U).
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52 8 Derivatives, Tangent Spaces, and Differential Forms

Proof. The proof is by induction on p. Rather than do the general induction
argument, let me explain the case p = 3 in detail so that w = godgs A dgs A dgs.
Then using only the properties developed in Proposition [8.46]

dw = dgo A [dg1 N dga A dgs] + god [dgy A dga A dgs]
where

= d*g1 A (dga A dgs) — dgi A d (dgs A dgs)
=0—-dg A [d2gg Adgs — dga N dggg] =0.

Thus we have shown
dw = dgg N\ dgy N dgs A dgs

as desired. =
The next corollary shows that the properties in Proposition actually
uniquely determines the exterior derivative, d.

Corollary 8.48. Ifd : 2% (U) — 2*T1 (U) is any linear operator satisfying the
four properties in Proposition[8.46}, then d is in fact given as in Definition[8.73.

Proof. Let w = Y ;wydz; € 2% (U) where the sum is over J C [n] with
|J| = k. By Lemma which was proved using only the properties in Propo-
sition [8:46] we know that

dwydry] =dwydxj, A--- Ndzj, ) = dwy ANdxj, A--- Ndzj,
=dwy ANdzy.

Thus using the assumed linearity of d, it follows that

dw = Z dwy Ndxy
J
in agreement with the definition in Eq. (8.12).
|

Example 8.49. In this example, let z,y, z be the standard coordinates on R3
(actually any smooth function on R? or R* for that matter would work). If

a = zdy — ydr + zdz,

then
da=dr Ndy —dy Ndx + dz AN dz = 2dx A dy.

If B = e ¥ +°dz A dy, then
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dem V' +2° — gty +2° g (x + 9%+ 23)
= em v+ (dx + 2ydy + 322dz)
and therefore,
dB = de™ "+ Ndo N dy = YT (da + 2ydy + 322dz) Ade A dy
= "tV 32202 A da A dy = eV HZ 3200 A dy N dz.

Definition 8.50. A form w € 2% (U) is closed if dw = 0 and it is exact if
w = du for some p € Q1 (U).

Note that if w = du, then dw = d?u = 0, so exact forms are closed but the
converse is not always true.

Example 8.51. In this example, again z,y, z be the standard coordinates on R3
(actually any smooth function on R? or R* for that matter would work). If

a = ydx + (zcosyz + x) dy + ycosyzdz
then
do = dyNdz+((cosyz — yzsinyz) dz + dx)Ady+(cosyz — zy sinyz) dyAdz = 0,
i.e. « is closed, see Definition [8.50)

Exercise 8.10. Let a = xdx — ydy, § = zdx A dy + xdy A dz and v = zdy on
R3, calculate,
aANB, aANBAvy, da, dB, dy.

Exercise 8.11. Let (x,y) be the standard coordinates on R?, and define,
~1
o= (2 +y?) - (zdy —ydz) € ' (R*\ {0}).
Show « is closed. [We will eventually see that this form is not exact.]

Exercise 8.12 (Divergence Formula). Let f = (f1, fo, f3,..., fn) and w =
dxy A --- Adxy,. By Example with k£ = n we have

n
ifw=1lpw = Z(—l)r1 fidxy A=+ ANdxj A - ANday,.
j=1

Show .
dlipw] = (V- f)w where V- f = Zaifi,

i=1

i.e. V- f is the divergence of f from your vector calculus course.
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Exercise 8.13 (Curl Formula). Let f = (f1, f2, f3) € C*° (R3,R?),

w =dzi AN dxs N dxs, and
o= f-(dry,dxs,dxs) := fidey + fodrs + f3dxs.

Show da = ivxjw where V x f is the usual vector calculus curl of f, see Eq.

(712) of Definition [7.19 with F' replaced by f = (f1, fo, f3) -

Theorem 8.52 (d commutes with ¢*). Suppose that V C, R™ and U C, R™
and ¢ : V. — U is a smooth function. Then d commutes with the pull-back, p*.
In more detail, if 0 < p <m and o € 2P(V) then d(p*a) = ¢*(da).

Proof. We may assume that a = godgi A --- A dgp in which case

Y= " (godgi A--- Ndgp)
= gold(p g1) N Nd(9*gp)]
and so
dp*a=d(p"go) Nd(p*g1) A=+ Nd(9"gp)
while from Lemma [8.47]
@ da = p*dgo N ¢ dgi N+ N @*dg,
=d(p go) Nd (@ g1) N Nd (¢ gp) = d[p al.






9

An Introduction of Integration of Forms

One of the main point of differential k-forms is that they may be integrated
over k-dimensional manifolds. Although we are not going to define the notation
of a manifold at this time, please do have a look at Chapter 6 starting on page
75 of Reyer Sjamaar’s notes: Manifolds and Differential Forms, for the notion of
a manifold and associated tangent spaces along with lots of pictures! (Pictures
is one thing in short supply in our book.)

9.1 Integration of Forms Over “Parametrized Surfaces”

Definition 9.1 (Basic integral). If D C, R and o = fdxy A--- ANday, €

2% (D), we define
/Da = /Dfdm

provided the latter integral makes sense, i.e. provided fD |f]dm < oco. Often
times we will guarantee this to be the case by assuming f € C (D).

We now want elaborate on this basic integral.

Definition 9.2. Let D C, R* and U C, R™. We say a smooth function, v :
D — U, is a parametrized k-surface in U.

Definition 9.3. Ify: D — U is a parametrized k-surface in U and w € 2% (U)

is a k-form, then we define,
/w = / Y w.
oY D

Ezample 9.4 (Line Integrals). Suppose that w = Z?=1 fidz; € QY (U) and v =
(’yl,...,fyn)tr : la,b] — U is a smooth curve, then letting t be the standard
coordinate on R (i.e. t(a) = a for all a € R) we find,

I
NE

v f fiov(#®)d(zjoy(t) = ij (v (@) d (v (1))

<.
Il
—

[
NE

fi (v ()4 (t) dt

<.
Il
—

and hence
n b
Af=4mgyﬂwm%®ﬁ=lfwwfﬁ@ﬁ

where £ = (f1,..., fx)"" thought of as a vector files on U.

Ezample 9.5 (Integrals over surfaces). Suppose that D = (—1, 1)2 CR%U =
R3, and v (z,y) = (z,y,2 — 2? — y?) as in Figure and let

Y w = fdx A dy.

In this picture we have divided the base up into little square and then found
their images under ~. It is reasonable to assign a contribution to f,yw from a

little base square, Q; := p; + ¢ [0, 1]2 to be approximately,
w (7 (e, ) 3= (Ieealy, ) ) = (7w) (Ieerl,, s [eeal,)
= f(pj)e® = [ (p)) - Area(Q;)

and therefore we should have
/w o Zf(pj)~Area(Qj) %/ fdm as e ] 0.
ol j D

Theorem 9.6 (Stoke’s Theorem II). Suppose that D = H =
{(p1;---,pn) € R™: p; <0} is the “lower half space”, U C,R™, v: D — U
is a parametrized n—surfacﬂ and p € 2"~ (U), then assuming that v* i is the
restriction of a smooth compactly supported n — 1-form on R* ™1, we have

fou- f 0
vy Oy

where Oy : R*~ 1 = U is defined by

8’}/(t1,...,tn_1) :’}/(O,tl,...,tn_l).

! We assume v extends to a smooth function into U on an open neighborhood of H.


http://pi.math.cornell.edu/~sjamaar/manifolds/manifold.pdf
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Fig. 9.1. This is the plot of graph of v (z,y) = (ac, Y, 2 —x? — y2) over D.

9.2 The Goal:

In the end of the day we would really like to define an integral of the form,
fﬁ/( D)W by which we mean we want the integral to depend only on the image of
~ and not on the particular choice of parametrization of this image. For example
of ¢ : D' = D is a diffeomorphism, so that v (D) = yo ¢ (D’), we are going

to want,
[ra=[om [ o= [ bowro= [ o
D o Yo 4 D’

In other words we would like to show if ¢ : D’ — D is a diffeomorphism that
the following change of variable theorem hold,

/ o= / o*a for all a € 2% (D). (9.1)
D ’

This last assertion will actually only be true up to sign ambiguity when D
is connected and we will have to take care of this sign ambiguity later by
introducing the notion of an orientation. Nevertheless, the next very important
step in our development of integration of forms is to find how to relate [ D P
to [ p @ This will lead us to the deepest topic of this course, namely degree
theory and the change of variables theorem.

Proof. If, as in book Exercise 3.2viii (our first version of Stoke’s theorem),
we let 4 : R 1 — R”™ be the inclusion map,

L<t1a s 7tn—1) = (Oatla s atn—l) )

then 0y := v o¢: R*"! — U. Therefore, using pull-backs commute with d, the
definitions of integration we have given along with your book Exercise 3.2viii,

we find,
/du :Z/v*duz/d[v*u] =/ v
y H H Rn—1
:/ (VOL)*u:/ (37)*u::/ .
Rn—1 Rn—1 oy
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