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Part

Homework Problems





0

Math 150B Homework Problems: Winter 2020

Problems are our text book, “Differential Forms,” by Guillemin and Haine
or from the lecture notes as indicated. The problems from the lecture notes are
restated here, however there may be broken references. If this is the case, please
find the corresponding problem in the lecture notes for the proper references
and for more context of the problem.

0.0 Homework 0, Due Wednesday, January 8, 2020 (Not
to be collected)

• Lecture note Exercises: 3.1, 3.2, 3.3, 3.4, and 3.5.

0.1 Homework 1. Due Thursday, January 16, 2020

• Lecture note Exercises: 3.6, 5.1, 5.2, 5.5
• Book Exercises: 1.2.vi.

0.2 Homework 2. Due Thursday, January 23, 2020

• Lecture note Exercises: 5.3, 5.4, 6.1, 6.2, 6.3, 6.4, 6.5
• Book Exercises: 1.3.iii., 1.3.v., 1.3.vii, 1.4ix

0.3 Homework 3. Due Thursday, January 30, 2020

• Lecture note Exercises: 7.2, 7.3, 8.1, 8.2, 8.3, 8.4, 8.5
• Look at (but don’t hand in) Exercises 7.4, 7.5 and the Book Exercises:

1.7.iv., 1.8vi.

0.4 Homework 4. Due Thursday, February 6, 2020

These problems are part of your midterm and are to be worked on by your-self.
These are due at the start of the in-class portion of the midterm which is in
class on Thursday February 6, 2020.

• Lecture note Exercises: 6.6, 6.7, 7.1, 8.6, 8.7

0.5 Homework 5. Due Thursday, February 13, 2020

• Lecture note Exercises: 8.8, 8.9, 8.10, 8.11, 8.12, 8.13
• Book Exercises: 2.3.ii., 2.3.iii., 2.4.i

0.6 Homework 6. Due Thursday, February 20, 2020

• Book Exercises: 2.1vii, 2.1viii, 2.4.ii, 2.4iii, 2.4iv. 2.6i, 2.6ii, 2.6iii (Refer to
exercise 2.1.vii not 2.2viii), 3.2.i, 3.2viii

• Have a look at Reyer Sjamaar’s notes: Manifolds and Differential Forms –
especially see Chapter 6 starting on page 75 for the notions of a manifold,
tangent spaces, and lots of pictures!

http://pi.math.cornell.edu/~sjamaar/manifolds/manifold.pdf
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1

Introduction

This class is devoted to understanding, proving, and exploring the multi-
dimensional and “manifold” analogues of the classic one dimensional funda-
mental theorem of calculus and change of variables theorem. These theorems
take on the following form;∫

M

dω =

∫
∂M

ω ←→
∫ b

a

g′ (x) dx = g (x) |ba and (1.1)∫
M

f∗ω = deg (f) ·
∫
N

ω ←→
∫ b

a

g (f (x)) f ′ (x) dx =

∫ f(b)

f(a)

g (y) dy.

(1.2)

In meeting our goals we will need to understand all the ingredients in the above
formula including;

1. M is a manifold.
2. ∂M is the boundary of M.
3. ω is a differential form an dω is its differential.
4. f∗ω is the pull back of ω by a “smooth map” f : M → N.
5. deg (f) ∈ Z is the degree of f.
6. There is also a hidden notion of orientation needed to make sense of the

above integrals.

Remark 1.1. We will see that Eq. (1.1) encodes (all wrapped into one neat
formula) the key integration formulas from 20E: Green’s theorem, Divergence
theorem, and Stoke’s theorem.





2

Permutations Basics

The following proposition should be verified by the reader.

Proposition 2.1 (Permutation Groups). Let Λ be a set and

Σ (Λ) := {σ : Λ→ Λ| σ is bijective} .

If we equip G with the binary operation of function composition, then G is a
group. The identity element in G is the identity function, ε, and the inverse,
σ−1, to σ ∈ G is the inverse function to σ.

Definition 2.2 (Finite permutation groups). For n ∈ Z+, let [n] :=
{1, 2, . . . , n} , and Σn := Σ ([n]) be the group described in Proposition 2.1. We
will identify elements, σ ∈ Σn, with the following 2× n array,(

1 2 . . . n
σ (1) σ (2) . . . σ (n)

)
.

(Notice that |Σn| = n! since there are n choices for σ (1) , n− 1 for σ (2) , n− 2
for σ (3) , . . . , 1 for σ (n) .)

For examples, suppose that n = 6 and let

ε =

(
1 2 3 4 5 6
1 2 3 4 5 6

)
– the identity, and

σ =

(
1 2 3 4 5 6
2 4 3 1 6 5

)
.

We identify σ with the following picture,

1

��

2

''

3

��

4

uu

5

��

6

��
1 2 3 4 5 6

.

The inverse to σ is gotten pictorially by reversing all of the arrows above to
find,

1 2 3 4 5 6

1

55

2

^^

3

OO

4

gg

5

@@

6

^^

or equivalently,

1

))

2

��

3

��

4

ww

5

��

6

��
1 2 3 4 5 6

and hence,

σ−1 =

(
1 2 3 4 5 6
4 1 3 2 6 5

)
.

Of course the identity in this graphical picture is simply given by

1

��

2

��

3

��

4

��

5

��

6

��

1 2 3 4 5 6

Now let β ∈ S6 be given by

β =

(
1 2 3 4 5 6
2 1 4 6 3 5

)
,

or in pictures;

1

��

2

��

3

��

4

''

5

ww

6

��
1 2 3 4 5 6

We can now compose the two permutations β ◦ σ graphically to find,

1

��

2

''

3

��

4

uu

5

��

6

��
1

��

2

��

3

��

4

''

5

ww

6

��
1 2 3 4 5 6
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which after erasing the intermediate arrows gives,

1

��

2

++

3

��

4

ww

5

��

6

uu1 2 3 4 5 6

.

In terms of our array notation we have,

β ◦ σ =

(
1 2 3 4 5 6
2 1 4 6 3 5

)
◦
(

1 2 3 4 5 6
2 4 3 1 6 5

)
=

(
1 2 3 4 5 6
1 6 4 2 5 3

)
.

Remark 2.3 (Optional). It is interesting to observe that β splits into a product
of two permutations,

β =

(
1 2 3 4 5 6
2 1 3 4 5 6

)
◦
(

1 2 3 4 5 6
1 2 4 6 3 5

)
=

(
1 2 3 4 5 6
1 2 4 6 3 5

)
◦
(

1 2 3 4 5 6
2 1 3 4 5 6

)
,

corresponding to the non-crossing parts in the graphical picture for β. Each of
these permutations is called a “cycle.”

Definition 2.4 (Transpositions). A permutation, σ ∈ Σk, is a transposi-
tion if

# {l ∈ [k] : σ (l) 6= l} = 2.

We further say that σ is an adjacent transposition if

{l ∈ [k] : σ (l) 6= l} = {i, i+ 1}

for some 1 ≤ i < k.

Example 2.5. If

σ =

(
1 2 3 4 5 6
1 5 3 4 2 6

)
and τ =

(
1 2 3 4 5 6
1 2 4 3 5 6

)
then σ is a transposition and τ is an adjacent transposition. Here are the pic-
torial representation of σ and τ ;

1

��

2

))

3

��

4

��

5

uu

6

��

1 2 3 4 5 6

1

��

2

��

3

��

4

��

5

��

6

��

1 2 3 4 5 6

In terms of these pictures it is easy to recognize transpositions and adjacent
transpositions.

Page: 10 job: 150BNotes macro: svmonob.cls date/time: 13-Feb-2020/13:01



3

Integration Theory Outline

In this course we are going to be considering integrals over open subsets
of Rd and more generally over “manifolds.” As the prerequisites for this class
do not include real analysis, I will begin by summarizing a reasonable working
knowledge of integration theory over Rd. We will thus be neglecting some tech-
nical details involving measures and σ – algebras. The knowledgeable reader
should be able to fill in the missing hypothesis while the less knowledgeable
readers should not be too harmed by the omissions to follow.

Definition 3.1. The indicator function of a subset, A ⊂ Rd, is defined by

1A (x) :=

{
1 if x ∈ A
0 if x /∈ A.

Remark 3.2 (Optional). Every function, f : Rd → R, may be approximated by
a linear combination of indicator functions as follows. If ε > 0 is given we let

fε :=
∑
n∈N

nε · 1{nε≤f<(n+1)ε}, (3.1)

where {nε ≤ f < (n+ 1) ε} is shorthand for the set,{
x ∈ Rd : nε ≤ f (x) < (n+ 1) ε

}
.

We now summarize “modern” Lebesgue integration theory over Rd.

1. For each d, there is a uniquely determined volume measure, md on all1

subsets of Rd (subsets of Rd ) with the following properties;

a) md (A) ∈ [0,∞] for all A ⊂ Rd with md (∅) = 0.
b) md (A ∪B) = md (A)+md (B) is A∩B = ∅. More generally, if An ⊂ Rd

for all n with An ∩Am = ∅ for m 6= n we have

md (∪∞n=1An) =

∞∑
n=1

md (An) .

c) md (x+A) = md (A) for all A ⊂ Rd and x ∈ Rd, where

x+A :=
{
x+ y ∈ Rd : y ∈ A

}
.

1 This is a lie! Nevertheless, for our purposes it will be reasonably safe to ignore this
lie.

d) md

(
[0, 1]

d
)

= 1.

[The reader is supposed to view md (A) as the d-dimensional volume of
a subset, A ⊂ Rd.]

2. Associated to this volume measure is an integral which takes (not all) func-
tions, f : Rd → R, and assigns to them a number denoted by∫

Rd
fdmd =

∫
Rd
f (x) dmd (x) ∈ R.

This integral has the following properties;

a) When d = 1 and f is continuous function with compact support,∫
R fdm1 is the ordinary integral you studied in your first few calcu-

lus courses.
b) The integral is defined for “all” f ≥ 0 and in this case∫

Rd
fdmd ∈ [0,∞] and

∫
Rd

1Admd = md (A) for all A ⊂ Rd.

c) The integral is “positive” linear, i.e. if f, g ≥ 0 and c ∈ [0,∞), then∫
Rd

(f + cg) dmd =

∫
Rd
fdmd + c

∫
Rd
gdmd. (3.2)

d) The integral is monotonic, i.e. if 0 ≤ f ≤ g, then∫
Rd
fdmd ≤

∫
Rd
gdmd. (3.3)

e) Let L1 (md) denote those functions f : Rd → R such that
∫
Rd |f | dmd <

∞. Then for f ∈ L1 (md) we define∫
Rd
fdmd :=

∫
Rd
f+dmd −

∫
Rd
f−dmd

where

f± (x) = max (±f (x) , 0) and so that f (x) = f+ (x)− f− (x) .
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f) The integral, L1 (md) 3 f →
∫
Rd fdmd is linear, i.e. Eq. (3.2) holds for

all f, g ∈ L1 (md) and c ∈ R.
g) If f, g ∈ L1 (md) and f ≤ g then Eq. (3.3) still holds.

3. The integral enjoys the following continuity properties.

a) MCT: the monotone convergence theorem holds; if 0 ≤ fn ↑ f
then

↑ lim
n→∞

∫
Rd
fndmd =

∫
Rd
fdmd (with ∞ allowed as a possible value).

Example 1: If {An}∞n=1 is a sequence of subsets of Rd such that An ↑ A
(i.e. An ⊂ An+1 for all n and A = ∪∞n=1An), then

md (An) =

∫
Rd

1Andmd ↑
∫
Rd

1Admd = md (A) as n→∞

Example 2: If gn : Rd → [0,∞] for n ∈ N then∫
Rd

∞∑
n=1

gn =

∫
Rd

lim
N→∞

N∑
n=1

gn = lim
N→∞

∫
Rd

N∑
n=1

gn

= lim
N→∞

N∑
n=1

∫
Rd
gn =

∞∑
n=1

∫
Rd
gn.

b) DCT: the dominated convergence theorem holds, if fn : Rd → R
are functions dominating by a function G ∈ L1 (md) is the sense
that |fn (x)| ≤ G (x) for all x ∈ Rd. Then assuming that f (x) =
limn→∞ fn (x) exists for a.e. x ∈ Rd, we may conclude that

lim
n→∞

∫
Rd
fndmd =

∫
Rd

lim
n→∞

fndmd =

∫
Rd
fdmd.

Example: If {gn}∞n=1 is a sequence of real valued random variables
such that ∫

Rd

∞∑
n=1

|gn| =
∞∑
n=1

∫
Rd
|gn| <∞,

then; 1) G :=
∑∞
n=1 |gn| < ∞ a.e. and hence

∑∞
n=1 gn =

limN→∞
∑N
n=1 gn exist a.e., 2)

∣∣∣∑N
n=1 gn

∣∣∣ ≤ G and
∫
Rd G < ∞,

and so 3) by DCT,∫
Rd

∞∑
n=1

gn =

∫
Rd

lim
N→∞

N∑
n=1

gn = lim
N→∞

∫
Rd

N∑
n=1

gn

= lim
N→∞

N∑
n=1

∫
Rd
gn =

∞∑
n=1

∫
Rd
gn.

c) Fatou’s Lemma (*Optional): if 0 ≤ fn ≤ ∞, then∫
Rd

[
lim inf
n→∞

fn

]
≤ lim inf

n→∞

∫
Rd
fndmd.

This may be proved as an application of MCT.

4. Tonelli’s theorem; if f : Rd → [0,∞] , then for any i ∈ [d] ,∫
Rd
fdmd =

∫
Rd−1

f̄dmd−1 where

f̄ (x1, . . . , x̂i, . . . xd) :=

∫
R
f (x1, . . . , xi, . . . xd) dxi.

5. Fubini’s theorem; if f ∈ L1 (md) then the previous formula still hold.
6. For our purposes, by repeated use of use of items 4. and 5. we may compute∫

Rd fdmd in terms of iterated integrals in any order we prefer. In more detail
if σ ∈ Σd is any permutation of [d] , then∫

Rd
fdmd =

∫
R
dxσ(1)· · ·

∫
R
dxσ(d)f (x1, . . . , xd)

provided either that f ≥ 0 or∫
R
dxσ(1)· · ·

∫
R
dxσ(d) |f (x1, . . . , xd)| =

∫
Rd
|f | dmd <∞.

This fact coupled with item 2a. will basically allow us to understand most
integrals appearing in this course.

Notation 3.3 For A ⊂ Rd, we let∫
A

fdmd :=

∫
Rd

1Af dmd.

Also when d = 1 and −∞ ≤ s < t ≤ ∞, we write∫ t

s

fdm1 =

∫
(s,t)

fdm1 =

∫
R

1(s,t)fdm1

and (as usual in Riemann integration theory)∫ s

t

fdm1 := −
∫ t

s

fdm1.
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3 Integration Theory Outline 13

Example 3.4. Here is a MCT example,∫ ∞
−∞

1

1 + t2
dt =

∫ ∞
−∞

lim
n→∞

1[−n,n] (t)
1

1 + t2
dt

MCT
= lim

n→∞

∫ ∞
−∞

1[−n,n] (t)
1

1 + t2
dt = lim

n→∞

∫ n

−n

1

1 + t2
dt

= lim
n→∞

[
tan−1 (n)− tan−1 (−n)

]
=
π

2
−
(
−π

2

)
= π.

Example 3.5. Similarly for any x > 0,∫ ∞
0

e−txdt =

∫ ∞
−∞

lim
n→∞

1[0,n] (t) e−txdt
MCT

= lim
n→∞

∫ ∞
−∞

1[0,n] (t) e−txdt

= lim
n→∞

∫ n

0

e−txdt = lim
n→∞

−1

x
e−tx|nt=0 =

1

x
. (3.4)

Example 3.6. Here is a DCT example,

lim
n→∞

∫ ∞
−∞

1

1 + t2
sin

(
t

n

)
dt =

∫ ∞
−∞

lim
n→∞

1

1 + t2
sin

(
t

n

)
dt =

∫
R

0dm = 0

since

lim
n→∞

1

1 + t2
sin

(
t

n

)
= 0 for all t ∈ R

and ∣∣∣∣ 1

1 + t2
sin

(
t

n

)∣∣∣∣ ≤ 1

1 + t2
with

∫
R

1

1 + t2
dt <∞.

Example 3.7. In this example we will show

lim
M→∞

∫ M

0

sinx

x
dx = π/2 (3.5)

Let us first note that
∣∣ sin x
x

∣∣ ≤ 1 for all x and hence by DCT,∫ M

0

sinx

x
dx = lim

ε↓0

∫ M

ε

sinx

x
dx.

Moreover making use of Eq. (3.4), if 0 < ε < M <∞, then by Fubini’s theorem,
DCT, and FTC (Fundamental Theorem of Calculus) that

∫ M

ε

sinx

x
dx =

∫ M

ε

[
lim
N→∞

∫ N

0

e−tx sinx dt

]
dx (DCT)

= lim
N→∞

∫ M

ε

dx

∫ N

0

dte−tx sinx (DCT)

= lim
N→∞

∫ N

0

dt

∫ M

ε

dxe−tx sinx (Fubini)

= lim
N→∞

∫ N

0

dt

[
1

1 + t2
(− cosx− t sinx) e−tx

]x=M
x=ε

(FTC)

=

∫ ∞
0

dt

[
1

1 + t2
(− cosx− t sinx) e−tx

]x=M
x=ε

. (DCT)

Since [
1

1 + t2
(− cosx− t sinx) e−tx

]x=M
x=ε

→ 1

1 + t2
as M ↑ ∞ and ε ↓ 0,

we may again apply DCT with G (t) = 1
1+t2 being the dominating function in

order to show∫ M

0

sinx

x
dx = lim

ε↓0

∫ M

ε

sinx

x
dx = lim

ε↓0

∫ ∞
0

dt

[
1

1 + t2
(− cosx− t sinx) e−tx

]x=M
x=ε

DCT
=

∫ ∞
0

dt

[
1

1 + t2
(− cosx− t sinx) e−tx

]x=M
x=0

DCT−→
M→∞

∫ ∞
0

1

1 + t2
dt =

π

2
.

Theorem 3.8 (Linear Change of Variables Theorem). If T ∈ GL(d,R) =
GL(Rd) – the space of d × d invertible matrices, then the change of variables
formula, ∫

Rd
fdmd = |detT |

∫
Rd
f ◦ T dmd, (3.6)

holds for all Riemann integrable functions f : Rd → R.

Proof. From Exercise 3.6 below, we know that Eq. (3.6) is valid whenever T
is an elementary matrix. From the elementary theory of row reduction in linear
algebra, every matrix T ∈ GL(Rd) may be expressed as a finite product of the
“elementary matrices”, i.e. T = T1 ◦ T2 ◦ · · · ◦ Tn where the Ti are elementary
matrices. From these assertions we may conclude that∫
Rd
f◦T dmd =

∫
Rd
f◦T1◦T2◦· · ·◦Tn dmd =

1

|detTn|

∫
Rd
f◦T1◦T2◦· · ·◦Tn−1 dmd.
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14 3 Integration Theory Outline

Repeating this procedure n− 1 more times (i.e. by induction), we find,∫
Rd
f ◦ T dmd =

1

|detTn| . . . |detT1|

∫
Rd
f dmd.

Finally we use,

|detTn| . . . |detT1| = |detTn . . . detT1| = |det (T1T2 . . . Tn)| = |detT |

in order to complete the proof.

3.1 Exercises

Exercise 3.1. Find the value of the following integral;

I :=

∫ 9

1

dy

∫ 3

√
y

dx xey.

Hint: use Tonelli’s theorem to change the order of integrations.

Exercise 3.2. Write the following iterated integral

I :=

∫ 1

0

dx

∫ 1

y=x2/3

dy xey
4

.

as a multiple integral and use this to change the order of integrations and then
compute I.

For the next three exercises let

B (0, r) :=

x ∈ Rd : ‖x‖ =

√√√√ d∑
i=1

x2i < r


be the d – dimensional ball of radius r and let

Vd (r) := md (B (0, r)) =

∫
Rd

1B(0,r)dmd

be its volume. For example,

V1 (r) = m1 ((−r, r)) =

∫ r

−r
dx = 2r.

Exercise 3.3. Suppose that d = 2, show m2 (B (0, r)) = πr2.

Exercise 3.4. Suppose that d = 3, show m3 (B (0, r)) = 4π
3 r

3.

Exercise 3.5. Let Vd (r) := md (B (0, r)) . Show for d ≥ 1 that

Vd+1 (r) =

∫ r

−r
dz · Vd

(√
r2 − z2

)
= r

∫ π/2

−π/2
Vd (r cos θ) cos θdθ.

Remark 3.9. Using Exercise 3.5 we may deduce again that

V1 (r) = m1 ((−r, r)) = 2r,

V2 (r) = r

∫ π/2

−π/2
2r cos θ cos θdθ = πr2,

V3 (r) =

∫ r

−r
dz · V2

(√
r2 − z2

)
=

∫ r

−r
dz · π

(
r2 − z2

)
=

4π

3
r3.

In principle we may now compute the volume of balls in all dimensions induc-
tively this way.

Exercise 3.6 (Change of variables for elementary matrices). Let f :
Rd → R be a continuous function with compact support. Show by direct calcu-
lation that;

|detT |
∫
Rd
f (T (x)) dx =

∫
Rd
f (y) dy (3.7)

for each of the following linear transformations;

1. Suppose that i < k and

T (x1, x2 . . . , xd) = (x1, . . . , xi−1, xk, xi+1 . . . , xk−1, xi, xk+1, . . . xd),

i.e. T swaps the i and k coordinates of x. [In matrix notation T is the
identity matrix with the i and k column interchanged.]

2. T (x1, . . . xk, . . . , xd) = (x1, . . . , cxk, . . . xd) where c ∈ R \ {0} . [In matrix
notation, T = [e1| . . . |ek−1|cek|ek+1| . . . |ed] .]

3. T (x1, x2 . . . , xd) = (x1, . . . ,
i’th spot
xi + cxk, . . . xk, . . . xd) where c ∈ R. [In matrix

notation T = [e1| . . . |ei| . . . |ek + cei|ek+1| . . . |ed].

Hint: you should use Fubini’s theorem along with the one dimensional
change of variables theorem.

[To be more concrete here are examples of each of the T appearing above
in the special case d = 4,

1. If i = 2 and k = 3 then T =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
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3.2 *Appendix: Another approach to the linear change of variables theorem 15

2. If k = 3 then T =


1 0 0 0
0 1 0 0
0 0 c 0
0 0 0 1

 ,
3. If i = 2 and k = 4 then

T


x1
x2
x3
x4

 =


x1

x2 + cx4
x3
x4

 =


1 0 0 0
0 1 0 c
0 0 1 0
0 0 0 1



x1
x2
x3
x4


while if i = 4 and k = 2,

T


x1
x2
x3
x4

 =


x1
x2
x3

x4 + cx2

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 c 0 1



x1
x2
x3
x4

 .

3.2 *Appendix: Another approach to the linear change of
variables theorem

Let 〈x, y〉 or x · y denote the standard dot product on Rd, i.e.

〈x, y〉 = x · y =

d∑
j=1

xjyj .

Recall that if A is a d× d real matrix then the transpose matrix, Atr, may be
characterized as the unique real d× d matrix such that

〈Ax, y〉 =
〈
x,Atry

〉
for all x, y ∈ Rd.

Definition 3.10. A d× d real matrix, S, is orthogonal iff StrS = I or equiva-
lently stated Str = S−1.

Here are a few basic facts about orthogonal matrices.

1. A d× d real matrix, S, is orthogonal iff 〈Sx, Sy〉 = 〈x, y〉 for all x, y ∈ Rd.
2. If {uj}dj=1 is any orthonormal basis for Rd and S is the d× d matrix deter-

mined by Sej = uj for 1 ≤ j ≤ d, then S is orthogonal.2 Here is a proof for
your convenience; if x, y ∈ Rd, then

2 This is a standard result from linear algebra often stated as a matrix, S, is orthog-
onal iff the columns of S form an orthonormal basis.

〈
x, Stry

〉
= 〈Sx, y〉 =

d∑
j=1

〈x, ej〉 〈Sej , y〉 =

d∑
j=1

〈x, ej〉 〈uj , y〉

=

d∑
j=1

〈
x, S−1uj

〉
〈uj , y〉 =

〈
x, S−1y

〉
from which it follows that Str = S−1.

3. If S is orthogonal, then 1 = det I = det (StrS) = detStr · detS = (detS)
2

and hence detS = ±1.

The following lemma is a special case the well known singular value de-
composition or SVD for short..

Lemma 3.11 (SVD). If T is a real d × d matrix, then there exists D =
diag (λ1, . . . , λd) with λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0 and two orthogonal matrices
R and S such that T = RDS. Further observe that |detT | = detD = λ1 . . . λd.

Proof. Since T trT is symmetric, by the spectral theorem there exists an
orthonormal basis {uj}dj=1 of Rd and λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0 such that

T trTuj = λ2juj for all j. In particular we have

〈Tuj , Tuk〉 =
〈
T trTuj , uk

〉
= λ2jδjk ∀ 1 ≤ j, k ≤ d.

Case where detT 6= 0. In this case λ1 . . . λd = detT trT = (detT )
2
> 0

and so λd > 0. It then follows that
{
vj := 1

λj
Tuj

}d
j=1

is an orthonormal basis

for Rd. Let us further let D = diag (λ1, . . . , λd) (i.e. Dej = λjej for 1 ≤ j ≤ d)
and R and S be the orthogonal matrices defined by

Rej = vj and Strej = S−1ej = uj for all 1 ≤ j ≤ d.

Combining these definitions with the identity, Tuj = λjvj , implies

TS−1ej = λjRej = Rλjej = RDej for all 1 ≤ j ≤ d,

i.e. TS−1 = RD or equivalently T = RDS.
Case where detT = 0. In this case there exists 1 ≤ k < d such that

λ1 ≥ λ2 ≥ · · · ≥ λk > 0 = λk+1 = · · · = λd. The only modification needed
for the above proof is to define vj := 1

λj
Tuj for j ≤ k and then extend choose

vk+1, . . . , vd ∈ Rd so that {vj}dj=1 is an orthonormal basis for Rd. We still have
Tuj = λjvj for all j and so the proof in the first case goes through without
change.

In the next theorem we will make use the characterization of md that it is
the unique measure on

(
Rd
)

which is translation invariant assigns unit measure

to [0, 1]
d
.
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Theorem 3.12. If T is a real d× d matrix, then md ◦ T = |detT |md.

Proof. Recall that we know mdT = δ (T )md for some δ (T ) ∈ (0,∞) and
so we must show δ (T ) = |detT | . We first consider two special cases.

1. If T = R is orthogonal and B is the unit ball in Rd,3 then δ (R)md (B) =
md (RB) = md (B) from which it follows δ (R) = 1 = |detR| .

2. If T = D = diag (λ1, . . . , λd) with λi ≥ 0, then D [0, 1]
d

= [0, λ1] × · · · ×
[0, λd] so that

δ (D) = δ (D)md

(
[0, 1]

d
)

= md

(
D [0, 1]

d
)

= λ1 . . . λd = detD.

3. For the general case we use singular value decomposition (Lemma 3.11) to
write T = RDS and then find

δ (T ) = δ (R) δ (D) δ (S) = 1 · detD · 1 = |detT | .

3 B =
{
x ∈ Rd : ‖x‖ < 1

}
.
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4

Properties of Volumes

The goal of this short chapter is to show how computing volumes naturally
gives rise to the idea of the key objects of this book, namely differential forms,
i.e. alternating tensors. The point is that these objects are intimately related
to computing areas and volumes.

Let Qn := {x ∈ Rn : 0 ≤ tj ≤ 1 ∀ j} = [0, 1]
n

be the unit cube in Rn which
we I think all agree should have volume equal to 1. For n-vectors, a1, . . . , an ∈
Rn, let

P (a1, . . . , an) = [a1| . . . |an]Q =


n∑
j=1

tjaj : 0 ≤ tj ≤ 1 ∀ j


be the parallelepiped spanned by (a1, . . . , an) and let

δ (a1, . . . , an) = “signed” Vol (P (v1, . . . , vn)) .

be the signed volume of the parallelepiped. To find the properties of this
volume, let us fix {ai}n−1i=1 and consider the function, F (an) = δ (a1, . . . , an) .
This is easily computed using the formula of a slant cylinder, see Figure 4.1, as

F (an) = δ (a1, . . . , an) = ± (Area of base ) · n · an (4.1)

where n is a unit vector orthogonal to {a1, . . . , an−1} .

Example 4.1. When n = 2, let us first verify Eq. (4.1) in this case by considering

δ (ae1, b) =

∫ b2

0

[slice width]h dh =

∫ b2

0

adh = a (b · e2) .

The sign in Eq. (4.1) is positive if (a1, . . . , an−1,n) is “positively ori-
ented,” think of the right hand rule in dimensions 2 and 3. This show an →
δ (a1, . . . , an−1, an) is a linear function. A similar argument shows

aj → δ (a1, . . . , aj , . . . , an)

is linear as well. That is δ is a “multi-linear function” of its arguments. We
further have that δ (a1, . . . , an) = 0 if ai = aj for any i 6= j as the parallelepiped
generated by (a1, . . . , an) is degenerate and zero volume. We summarize these

Fig. 4.1. The volume of a slant cylinder is it’s height, n · an.

two properties by saying δ is an alternating multi-linear n-function on Rn.
Lastly as P (e1, . . . en) = Q we further have that

δ (e1, . . . , en) = 1. (4.2)

Fact 4.2 We are going to show there is precisely one alternating multi-linear
n-function, δ, on Rn such that Eq. (4.2) holds. This function is in fact the
function you know and the determinant.

Example 4.3 (n = 1 Det). When n = 1 we must have δ ([a]) = ±a, we choose a
by convention.

Example 4.4 (n = 2 Det). When n = 2, we find

δ (a, b) = δ (a1e1 + a2e2, b) = a1δ (e1, b) + a2δ (e2, b)

= a1δ (e1, b1e1 + b2e2) + a2δ (e2, b1e1 + b2e2)

= a1b2δ (e1, e2) + a2b1δ (e2, e1) = a1b2 − a2b1
= det [a|b] .

We now proceed to develop the theory of alternating multilinear functions
in general.





5

Multi-linear Functions (Tensors)

For the rest of these notes, V will denote a real vector space. Typically we
will assume that n = dimV <∞.

Example 5.1. V = Rn, subspaces of Rn, polynomials of degree < n. The most
general overarching vector space is typically

V = F (X,R) = {all functions from X to R} .

An interesting subspace is the space of finitely supported functions,

Ff (X,R) = {f ∈ F (X,R) : # ({f 6= 0}) <∞} ,

where
{f 6= 0} = {x ∈ X : f (x) 6= 0} .

5.1 Basis and Dual Basis

Definition 5.2. Let V ∗ denote the dual space of V, i.e. the vector space of all
linear functions, ` : V → R.

Example 5.3. Here are some examples;

1. If V = Rn, then ` (v) = w · v = wtrv for w ∈ V is in V ∗.
2. V = polynomials of deg < n is a vector space and `0 (p) = p (0) or ` (p) =∫ 1

−1 p (x) dx given ` ∈ V ∗.
3. For {aj}pj=1 ⊂ R and {xj}pj=1 ⊂ X, let ` (f) =

∑p
j=1 ajf (xj) , then ` ∈

F (X,R)
∗
.

Notation 5.4 Let β := {ej}nj=1 be a basis for V and β∗ := {εj}nj=1 be its dual
basis, i.e.

εj

(
n∑
i=1

aiei

)
:= aj for all j.

The book denotes εj as e∗j . In case, V = Rn and {ej}nj=1 is the standard basis,
we will later write dxj for εj = e∗j .

Example 5.5. If V = Rn and β = {ei}ni=1 is the standard basis for Rn, then
εi (v) = ei · v = etri v for 1 ≤ i ≤ n is the dual basis to β.

Example 5.6. If V denotes polynomials of degree < n, with basis ej (x) = xj for
0 ≤ j < n, then εj (p) := 1

j!p
(j) (0) is the associated dual basis.

Example 5.7. For x ∈ X, let δx ∈ Ff (X,R) be defined by

δx (y) = 1{x} (y) =

{
1 if y = x
0 if y 6= x

.

One may easily show that {δx}x∈X is a basis for Ff (X,R) and for f ∈
Ff (X,R) ,

f =
∑

x:f(x) 6=0

f (x) δx.

The dual basis ideas are complicated in this case when X is an infinite set
as Vaki mentioned in section. We will not consider such “infinite dimensional”
problems in these notes.

Proposition 5.8. Continuing the notation above, then

v =

n∑
j=1

εj (v) ej for all v ∈ V, and (5.1)

` =

n∑
j=1

` (ej) εj for all ` ∈ V ∗. (5.2)

Moreover, β∗, is indeed a basis for V ∗.

Proof. Because {ej} is a basis, we know that v =
∑n
j=1 ajej . Applying εk

to this formula shows

εk (v) =

n∑
j=1

ajεk (ej) = ak

and hence Eq. (5.1) holds. Now apply ` to Eq. (5.1) to find,
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` (v) =

n∑
j=1

εj (v) ` (ej) =

n∑
j=1

` (ej) εj (v) =

 n∑
j=1

` (ej) εj

 (v)

which proves Eq. (5.2). From Eq. (5.2) we know that {εj}nj=1 spans V ∗. More-
over if

0 =

n∑
j=1

ajεj =⇒ 0 = 0 (ek) =

n∑
j=1

ajεj (ek) = ak

which shows {εj}nj=1 is linearly independent.

Exercise 5.1. Let V = Rn and β = {uj}nj=1 be a basis for Rn. Recall that

every ` ∈ (Rn)
∗

is of the form `a (x) = a · x for some a ∈ Rn. Thus the dual
basis, β∗, to β can be written as

{
u∗j = `aj

}n
j=1

for some {aj}nj=1 ⊂ Rn. In this

problem you are asked to show how to find the {aj}nj=1 by the following steps.

1. Show that for j ∈ [n] , aj must solve the following k-linear equations;

δj,k = `aj (uk) = aj · uk = utrk aj for k ∈ [n] . (5.3)

2. Let U := [u1| . . . |un] (i.e. the columns of U are the vectors from β). Show
that the equations in (5.3) may be written in matrix form as, U traj = ej ,
where {ej}nj=1 is the standard basis for Rn.

3. Conclude that aj = [U tr]
−1
ej or equivalently;

[a1| . . . |an] =
[
U tr
]−1

Exercise 5.2. Let V = R2 and β = {u1, u2} , where

u1 =

[
1
3

]
and u2 =

[
−1
1

]
.

Find a1, a2 ∈ R2 explicitly so that explicitly the dual basis β∗ :=
{u∗1 = `a1 , u

∗
2 = `a2} is the dual basis to β. Please explicitly verify your

answer is correct by showing u∗j (uk) = δjk.

Exercise 5.3. Let V = Rn, {aj}kj=1 ⊂ V, and `j (x) = aj · x for x ∈ Rn

and j ∈ [k] . Show {`j}kj=1 ⊂ V ∗ is a linearly independent set if and only if

{aj}kj=1 ⊂ V is a linearly independent set.

Exercise 5.4. Let V = Rn, {aj}kj=1 ⊂ V, and `j (x) = aj · x for x ∈ Rn

and j ∈ [k] . If {`j}kj=1 ⊂ V ∗ is a linearly independent set, show there exists

{uj}kj=1 ⊂ V so that `i (uj) = δij for i, j ∈ [k] . Here is a possible outline.

1. Using Exercise 5.3 and citing a basic fact from Linear algebra, you may
choose {aj}nj=k+1 ⊂ V so that {aj}nj=1 is a basis for V.

2. Argue that it suffices to find uj ∈ V so that

ai · uj = δij for all i, j ∈ [n] . (5.4)

3. Let {ej}nj=1 be the standard basis for Rn and A := [a1| . . . |an] be the n×n
matrix with columns given by that {aj}nj=1 . Show that the Eqs. (5.4) may
be written as

Atruj = ej for j ∈ [n] . (5.5)

4. Cite basic facts from linear algebra to explain why A := [a1| . . . |an] and Atr

are both invertible n× n matrices.
5. Argue that Eq. (5.5) has a unique solution, uj ∈ Rn, for each j.

5.2 Multi-linear Forms

Definition 5.9. A function T : V k → R is multi-linear
(k-linear to be precise) if for each 1 ≤ i ≤ k, the map

V 3 vi → T (v1, . . . , vi, . . . vk) ∈ R

is linear. We denote the space of k-linear maps by Lk (V ) and element of this
space is a k-tensor on (in) V.

Lemma 5.10. Note that Lk (V ) is a vector subspace of all functions from
V k → R.

Example 5.11. If `1, . . . , `k ∈ V ∗, we let `1 ⊗ · · · ⊗ `k ∈ Lk (V ) be defined

(`1 ⊗ · · · ⊗ `k) (v1, . . . , vk) =

k∏
j=1

`j (vj)

for all (v1, . . . , vk) ∈ V k.

Exercise 5.5. In this problem, let

v =

 v1v2
v3

 and w =

w1

w2

w3

 .
Which of the following functions formulas for T define a 2-tensors on R3. Please
justify your answers.
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1. T (v, w) = v1w3 + v1w2 + v2w1 + 7v1w1.
2. T (v, w) = v1 + 7v1 + v2.
3. T (v, w) = v21w3 + v2w1,
4. T (v, w) = sin (v1w3 + v1w2 + v2w1 + 7v1w1) .

Theorem 5.12. If {ej}nj=1 is a basis for V, then {εj1 ⊗ · · · ⊗ εjk : ji ∈ [n]} is

a basis for Lk (V ) and moreover if T ∈ Lk (V ), then

T =
∑

j1,...,jk∈[n]

T (ej1 , . . . , ejk) · εj1 ⊗ · · · ⊗ εjk (5.6)

and this decomposition is unique. [One might identify 2-tensors with matrices
via T → Aij := T (ei, ej) .]

Proof. Given v1, . . . , vk ∈ V, we know that

vi =

n∑
ji=1

εji (vi) eji

and hence

T (v1, . . . , vk) = T

 n∑
j1=1

εj1 (v1) ej1 , . . . ,

n∑
jk=1

εjk (vk) ejk


=

n∑
j1=1

· · ·
n∑

jk=1

T (εj1 (v1) ej1 , . . . , εjk (vk) ejk)

=
∑

j1,...,jk∈[n]

T (ej1 , . . . , ejk) εj1 (v1) . . . εjk (vk)

=
∑

j1,...,jk∈[n]

T (ej1 , . . . , ejk) εj1 ⊗ · · · ⊗ εjk (v1, . . . , vk) .

This verifies that Eq. (5.6) holds and also that

{εj1 ⊗ · · · ⊗ εjk : ji ∈ [n]} spans Lk (V ) .

For linearly independence, if {aj1,...,jk} ⊂ R are such that

0 =
∑

j1,...,jk∈[n]

aj1,...,jk · εj1 ⊗ · · · ⊗ εjk ,

then evaluating this expression at (ei1 , . . . eik) shows

0 = 0 (ei1 , . . . eik) =
∑

j1,...,jk∈[n]

aj1,...,jk · εj1 ⊗ · · · ⊗ εjk (ei1 , . . . eik)

=
∑

j1,...,jk∈[n]

aj1,...,jk · εj1 (ei1) . . . εjk (eik)

=
∑

j1,...,jk∈[n]

aj1,...,jk · δj1,i1 . . . δjk,ik = ai1...,ik

which shows ai1...,ik = 0 for all indices and completes the proof.

Corollary 5.13. dimLk (V ) = nk.

Definition 5.14. If S ∈ Lp (V ) and T ∈ Lq (V ) , then we define S ⊗ T ∈
Lp+q (V ) by,

S ⊗ T (v1, . . . , vp, w1, . . . , wq) = S (v1, . . . , vp)T (w1, . . . , wq) .

Definition 5.15. If A : V → W is a linear transformation, and T ∈ Lk (W ),
then we define the pull back A∗T ∈ Lk (V ) by

(A∗T ) (v1, . . . , vk) = A (Tv1, . . . , T vk) .

V × · · · × V −→ W × · · · ×W −→ R
(v1, . . . , vk) −→ (Av1, . . . , Avk) −→ T (Av1, . . . , Avk) .

It is called pull back since A∗ : Lk (W ) → Lk (V ) maps the opposite direction
of A.

Remark 5.16. As shown in the book the tensor product satisfies

(R⊗ S)⊗ T = R⊗ (S ⊗ T ) ,

T ⊗ (S1 + S2) = T ⊗ S1 + T ⊗ S2,

(S1 + S2)⊗ T = S1 ⊗ T + S2 ⊗ T,
....

Remark 5.17. The definition of T1 ⊗ T2 and the associated “tensor algebra.”
[Typically the tensor symbol, ⊗, in mathematics is used to denote the product of
two functions which have distinct arguments. Thus if f : X → R and g : Y → R
are two functions on the sets X and Y respectively, then f ⊗ g : X × Y → R is
defined by

(f ⊗ g) (x, y) = f (x) g (y) .

In contrast, if Y = X we may also define the more familiar product, f ·g : X →
R, by

(f · g) (x) = f (x) g (x) .

Incidentally, the relationship between these two products is

(f · g) (x) = (f ⊗ g) (x, x) .
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Lemma 5.18. The product, ⊗, defined in the previous remark is associative
and distributive over addition. We also have for λ ∈ R, that

(λf)⊗ g = f ⊗ (λg) = λ · f ⊗ g. (5.7)

That is ⊗ satisfies the rules we expect of a “product,” i.e. plays nicely with the
vector space operations.

Proof. If h : Z → R is another function, then

((f ⊗ g)⊗ h) (x, y, z) = (f ⊗ g) (x, y) · h (z) = (f (x) g (y))h (z)

= f (x) (g (y)h (z)) = (f ⊗ (g ⊗ h)) (x, y, z) .

This shows in general that (f ⊗ g)⊗ h = f ⊗ (g ⊗ h) , i.e. ⊗ is associative.
Similarly if Z = Y, then

(f ⊗ (g + h)) (x, y) = f (x) · (g + h) (y) = f (x) · (g (y) + h (y))

= f (x) · g (y) + f (x) · h (y)

= (f ⊗ g) (x, y) + (f ⊗ h) (x, y)

= (f ⊗ g + f ⊗ h) (x, y)

from which we conclude that

f ⊗ (g + h) = f ⊗ g + f ⊗ h

Similarly one shows (f + h) ⊗ g = f ⊗ g + h ⊗ g when Z = X. These are the
distributive rules. The easy proof of Eq. (5.7) is left to the reader.



6

Alternating Multi-linear Functions

Definition 6.1. T ∈ Lk (V ) is said to be alternating if T (v1, . . . , vk) =
−T (w1, . . . , wk) whenever (w1, . . . , wk) is the list (v1, . . . , vk) with any two en-
tries interchanged. We denote the subspace1 of alternating functions by Ak (V )
or by Λk (V ∗) with the convention that A0 (V ) = Λ0 (V ∗) = R. An element,
T ∈ Ak (V ) = Λk (V ∗) will be called a k-form.

Remark 6.2. If f (v, w) is a multi-linear function such that f (v, v) = 0 then for
all v, w ∈ V, then

0 = f (v + w, v + w) = f (v, v) + f (w,w) + f (v, w) + f (w, v)

= f (w, v) + f (v, w) =⇒ f (v, w) = −f (w, v) .

Conversely, if f (v, w) = −f (w, v) for all v, and w, then f (v, v) = −f (v, v)
which shows f (v, v) = 0.

Lemma 6.3. If T ∈ Lk (V ) , then the following are equivalent;

1. T is alternating, i.e. T ∈ Λk (V ∗) .
2. T (v1, . . . , vk) = 0 whenever any two distinct entries are equal.
3. T (v1, . . . , vk) = 0 whenever any two consecutive entries are equal.

Proof. 1. =⇒ 2. If vi = vj for some i < j and T ∈ Λk (V ∗) , then by
interchanging the i and j entries we learn that T (v1, . . . , vk) = −T (v1, . . . , vk)
which implies T (v1, . . . , vk) = 0.

2. =⇒ 3. This is obvious.
3. =⇒ 1. Applying Remark 6.2 with

f (v, w) := T (v1, . . . , vj−1, v, w, vj+2, . . . , vk)

shows that T (v1, . . . , vk) = −T (w1, . . . , wk) if (w1, . . . , wk) is the list
(v1, . . . , vk) with the j and j + 1 entries interchanged. If (w1, . . . , wk) is the
list (v1, . . . , vk) with the i < j entries interchanged, then (w1, . . . , wk) can be
transformed back to (v1, . . . , vk) by an odd number of nearest neighbor inter-
changes and therefore it follows by what we just proved that

T (v1, . . . , vk) = −T (w1, . . . , wk) .

1 The alternating conditions are linear equations that T ∈ Lk (V ) must satisfy and
hence Ak (V ) is a subspace of Lk (V ) .

For example, to transform

(v1, v5, v3, v4, v2, v6) back to (v1, v2, v3, v4, v5, v6) ,

we transpose v5 with its nearest neighbor to the right 2 times to arrive at the
list (v1, v3, v4, v5, v2, v6) . We then we transpose v2 with its nearest neighbor to
the left 3 times to arrive (after a sum total of 5 adjacent transpositions) back
to the list (v1, v2, v3, v4, v5, v6) . For the general i < j the number of adjacent
transposition needed needed is 2 (j − i)− 1 which is always odd.

Exercise 6.1. If T ∈ Λk (V ∗) , show T (v1, . . . , vk) = 0 whenever {vi}ki=1 ⊂ V
are linearly dependent.

A simple consequence of this exercise is the following basic lemma.

Lemma 6.4. If T ∈ Λk (V ∗) with k > dimV, then T ≡ 0, i.e. Λk (V ∗) = {0}
for all k > dimV.

At this point we have not given any non-zero examples of alternating forms.
The next definition and proposition gives a mechanism for constructing many
(in fact a full basis of) alternating forms.

Definition 6.5. For ` ∈ V ∗ and ϕ ∈ Λk (V ∗) , let L`ϕ be the multi-linear k+ 1
– form on V defined by

(L`ϕ) (v0, . . . , vk) =

k∑
i=0

(−1)
i
` (vi)ϕ (v0, . . . , v̂i, . . . , vk) .

for all (v0, . . . , vk) ∈ V k+1.

Proposition 6.6. If ` ∈ V ∗ and ϕ ∈ Λk (V ∗) , then (L`ϕ) ∈ Λk+1 (V ∗) .

Proof. We must show L`ϕ is alternating. According to Lemma 6.3, it suffices
to show (L`ϕ) (v0, . . . , vk) = 0 whenever vj = vj+1 for some 0 ≤ j < k. So
suppose that vj = vj+1, then since ϕ is alternating
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(L`ϕ) (v0, . . . , vk) =

k∑
i=0

(−1)
i
` (vi)ϕ (v0, . . . , v̂i, . . . , vk)

=

j+1∑
i=j

(−1)
i
` (vi)ϕ (v0, . . . , v̂i, . . . , vk)

=
[
(−1)

j
+ (−1)

j+1
]
` (vj)ϕ (v0, . . . , v̂j , . . . , vk) = 0.

Proposition 6.7. Let {ei}ni=1 be a basis for V and {εi}ni=1 be its dual basis for
V ∗. Then

ϕj := LεjLεj+1
. . . Lεn−1

εn ∈ Λn−j+1 (V ∗) \ {0}
for all j ∈ [n] and in particular, dimΛk (V ∗) ≥ 1 for all 0 ≤ k ≤ n. [We will
see in Theorem 6.33 below that dimΛk (V ∗) =

(
n
k

)
for all 0 ≤ k ≤ n.]

Proof. We will show that ϕj is not zero by showing that

ϕj (ej , . . . , en) = 1 for all j ∈ [n] .

This is easily proved by (reverse induction) on j. Indeed, for j = n we have
ϕn (en) = εn (en) = 1 and for 1 ≤ j < n we have ϕj := Lεjϕj+1 so that

ϕj (ej , . . . , en) =

n∑
k=j

(−1)
k−j

εj (ek)ϕj+1 (ej , . . . , êk, . . . , en)

= ϕj+1 (êj , ej+1, . . . , en) = ϕj+1 (ej+1, . . . , en) = 1

wherein we used the induction hypothesis for the last equality. This completes
the proof for j ∈ [n] . Finally for k = 0, we have Λ0 (V ∗) = R by convention
and hence dimΛ0 (V ∗) = 1.

Notation 6.8 Fix a basis {ei}ni=1 of V with dual basis, {εi}ni=1 ⊂ V ∗, and then
let

ϕ = ϕ1 = Lε1Lε2 . . . Lεn−1
εn. (6.1)

Proposition 6.9. When V = Rn and {ej}nj=1 is the standard basis for V, then

ϕ (a1, . . . , an) = det [a1| . . . |an] ∀ {ai}ni=1 ⊂ Rn. (6.2)

Proof. Let us note that if

ϕ (a1, . . . , cai, . . . , an) = cϕ (a1, . . . , an) and

ϕ (a1, . . . , ai, . . . , aj + cai, . . . , an)

= ϕ (a1, . . . , ai, . . . , aj , . . . , an) + cϕ (a1, . . . , ai, . . . , ai, . . . , an)

= ϕ (a1, . . . , an) + c · 0 = ϕ (a1, . . . , an) .

Thus both ϕ and det behave the same way under column operations and agree
with ai = ei which already shows Eq. (6.2) holds when {ai}ni=1 are linearly
independent. As both sides of Eq. (6.2) are zero when {ai}ni=1 are linearly
dependent, the proof is complete.

Definition 6.10 (Signature of σ). For σ ∈ Σn, let

(−1)
σ

:= ϕ (eσ1, . . . , eσn) ,

where ϕ is as in Notation 6.8. We call (−1)
σ

the sign of the permutation,
σ.

Lemma 6.11. If σ ∈ Σn, then (−1)
σ

may be computed as (−1)
N

where N is
the number of transpositions2 needed to bring (σ1, . . . , σn) back to (1, 2, . . . , n)
and so (−1)

σ
does not depend on the choices made in defining (−1)

σ
. Moreover,

if {vj}nj=1 ⊂ V, then

ϕ (vσ1, . . . , vσn) = (−1)
σ
ϕ (v1, . . . , vd) ∀ σ ∈ Σn.

Proof. Straightforward and left to the reader.

Corollary 6.12. If σ ∈ Σn is a transposition, then (−1)
σ

= −1.

Proof. This has already been proved in the course of proving Lemma 6.3.

Lemma 6.13. If σ, τ ∈ Σn, then (−1)
στ

= (−1)
σ

(−1)
τ

and in particular it

follows that (−1)
σ−1

= (−1)
σ
.

Proof. Let vj := eσj for each j, then

(−1)
στ

:= ϕ (eστ1, . . . , eστn) = ϕ (vτ1, . . . , vτn)

= (−1)
τ
ϕ (v1, . . . , vd) = (−1)

τ
ϕ (eσ1, . . . , eσd)

= (−1)
τ

(−1)
σ
.

Lemma 6.14. A multi-linear map, T ∈ Lk (V ) , is alternating (i.e. T ∈
Ak (V ) = Λk (V ∗)) iff

T (vσ1, . . . , vσk) = (−1)
σ
T (v1, . . . , vk) for all σ ∈ Σk.

2 N is not unique but (−1)N = (−1)σ is unique.
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Proof. (−1)
σ

= (−1)
N

where N is the number of transpositions need to
transform σ to the identity permutation. For each of these transpositions pro-
duce an interchange of entries of the T function and hence introduce a (−1)
factor. Thus in total,

T (vσ1, . . . , vσk) = (−1)
N
T (v1, . . . , vk) = (−1)

σ
T (v1, . . . , vk) .

The converse direction follows from the simple fact that the sign of a transpo-
sition is −1.

Notation 6.15 (Pull Backs) Let V and W be finite dimensional vector
spaces. To each linear transformation, T : V → W, there is linear transfor-
mation, T ∗ : Λk (W ∗)→ Λk (V ∗) defined by

(T ∗ϕ) (v1, . . . , vk) := ϕ (Tv1, . . . , T vk)

for all ϕ ∈ Λk (W ∗) and (v1, . . . , vk) ∈ V k. [We leave to the reader the easy
proof that T ∗ϕ is indeed in Λk (V ∗) .]

Exercise 6.2. Let V,W, and Z be three finite dimensional vector spaces and

suppose that V
T→ W

S→ Z are linear transformations. Noting that V
ST→ Z,

show (ST )
∗

= T ∗S∗.

6.1 Structure of Λn (V ∗) and Determinants

In what follows we will continue to use the notation introduced in Notation 6.8.

Proposition 6.16 (Structure of Λn (V ∗)). If ψ ∈ Λn (V ∗) , then ψ =
ψ (e1, . . . , en)ϕ and in particular, dimΛn (V ∗) = 1. Moreover for any {vj}nj=1 ⊂
V,

ϕ (v1, . . . , vn) =
∑
σ∈Σn

(−1)
σ
εσ1 (v1) . . . εσn (vn)

=
∑
σ∈Σn

(−1)
σ
ε1 (vσ1) . . . εn (vσn) .

The first equality may be rewritten as

ϕ =
∑
σ∈Σn

(−1)
σ
εσ1 ⊗ · · · ⊗ εσn.

Proof. Let {vj}nj=1 ⊂ V and recall that

vj =

n∑
kj=1

εkj (vj) ekj .

Using the fact that ψ is multi-linear and alternating we find,

ψ (v1, . . . , vn) =

n∑
k1,...,kn=1

 n∏
j=1

εkj (vj)

ψ (ek1 , . . . , ekn)

=
∑
σ∈Σn

 n∏
j=1

εσj (vj)

ψ (eσ1 , . . . , eσn)

=
∑
σ∈Σn

 n∏
j=1

εσj (vj)

 (−1)
σ
ψ (e1, . . . , en)

while the same computation shows

ϕ (v1, . . . , vn) =
∑
σ∈Σn

 n∏
j=1

εσj (vj)

 (−1)
σ
ϕ (e1, . . . , en)

=
∑
σ∈Σn

(−1)
σ
εσ1 (v1) . . . εσn (vn) .

Lastly let us note that

n∏
j=1

εσj (vj) =

n∏
j=1

εσσ−1j

(
vσ−1j

)
=

n∏
j=1

εj
(
vσ−1j

)
so that

ϕ (v1, . . . , vn) =
∑
σ∈Σn

n∏
j=1

εj
(
vσ−1j

)
(−1)

σ

=
∑
σ∈Σn

n∏
j=1

εj
(
vσ−1j

)
(−1)

σ−1

=
∑
σ∈Σn

n∏
j=1

εj (vσj) (−1)
σ

wherein we have used Σn 3 σ → σ−1 ∈ Σn is a bijection for the last equality.

Exercise 6.3. If ψ ∈ Λn (V ∗) \ {0} , show ψ (v1, . . . , vn) 6= 0 whenever
{vi}ni=1 ⊂ V are linearly independent. [Coupled with Exercise 6.1, it follows
that ψ (v1, . . . , vn) 6= 0 iff {vi}ni=1 ⊂ V are linearly independent.]

Definition 6.17. Suppose that T : V → V is a linear map between a finite
dimensional vector space, then we define detT ∈ R by the relationship, T ∗ψ =
detT ·ψ where ψ is any non-zero element in Λn (V ∗) . [The reader should verify
that detT is independent of the choice of ψ ∈ Λn (V ∗) \ {0} .]
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The next lemma gives a slight variant of the definition of the determinant.

Lemma 6.18. If ψ ∈ Λn (V ∗) \ {0} , {ej}nj=1 is a basis for V, and T : V → V
is a linear transformation, then

detT =
ψ (Te1, . . . , T en)

ψ (e1, . . . , en)
. (6.3)

Proof. Evaluation the identity, detT · ψ = T ∗ψ, at (e1, . . . , en) shows

detT · ψ (e1, . . . , en) = (T ∗ψ) (e1, . . . , en) = ψ (Te1, . . . , T en)

from which the lemma directly follows.

Corollary 6.19. Let T be as in Definition 6.17 and suppose {ej}nj=1 is a basis

for V and {εj}nj=1 is its dual basis, then

detT =
∑
σ∈Σn

(−1)
σ
ε1 (Teσ1) . . . εn (Teσn)

=
∑
σ∈Σn

(−1)
σ
εσ1 (Te1) . . . εσn (Ten) .

Proof. We take ϕ ∈ Λn (V ∗) so that ϕ (e1, . . . , en) = 1. Since T ∗ϕ ∈ Λn (V ∗)
we have seen that T ∗ϕ = λϕ where

λ = (T ∗ϕ) (e1, . . . , en) = ϕ (Te1, . . . , T en)

=
∑
σ∈Σn

(−1)
σ
εσ1 (Te1) . . . εσn (Ten)

=
∑
σ∈Σn

(−1)
σ
ε1 (Teσ1) . . . εn (Teσn) .

Corollary 6.20. Suppose that S, T : V → V are linear maps between a finite
dimensional vector space, V, then

det (ST ) = det (S) · det (T ) .

Proof. On one hand

(ST )
∗
ϕ = det (ST )ϕ.

On the other using Exercise 6.2 we have

(ST )
∗
ϕ = T ∗ (S∗ϕ) = T ∗ (detS · ϕ) = detS · T ∗ (ϕ) = detS · detT · ϕ.

Comparing the last two equations completes the proof.

6.2 Determinants of Matrices

In this section we will restrict our attention to linear transformations on V = Rn
which we identify with n×n matrices. Also, for the purposes of this section let
{ej}nj=1 be the standard basis for Rn. Finally recall that the ith column of A is
vi = Aei and so we may express A as

A = [v1| . . . |vn] = [Ae1| . . . |Aen] .

Proposition 6.21. The function, A→ det (A) is the unique alternating multi-
linear function of the columns of A such that det (I) = det [e1| . . . |en] = 1.

Proof. Let ψ ∈ An (Rn) \ {0} . Then by Lemma 6.18,

detA =
ψ (Ae1, . . . , Aen)

ψ (e1, . . . , en)

which shows that detA is and alternating multi-linear function of the columns
of A. We have already seen in Proposition 6.16 that there is only one such
function.

Theorem 6.22. If A is a n×n matrix which we view as a linear transformation
on Rn, then;

1. detA =
∑
σ∈Σn (−1)

σ
aσ1,1 . . . aσn,n,

2. detA =
∑
σ∈Σn (−1)

σ
a1,σ1 . . . an,σn, and

3. detA = detAtr.
4. The map A → detA is the unique alternating multilinear function of the

rows of A such that det I = 1.

Proof. We take {ei}ni=1 to be the standard basis for Rn and {εi}ni=1 be its
dual basis. Then by Corollary 6.19,

detA =
∑
σ∈Σn

(−1)
σ
ε1 (Aeσ1) . . . εn (Aeσn)

=
∑
σ∈Σn

(−1)
σ
εσ1 (Ae1) . . . εσn (Aen)

which completes the proof of item 1. and 2. since εi (Aej) = ai,j . For item 3 we
use item 1. with A replaced by Atr to find,

detAtr =
∑
σ∈Σn

(−1)
σ (
Atr
)
σ1,1

. . .
(
Atr
)
σn,n

=
∑
σ∈Σn

(−1)
σ
a1,σ1 . . . an,σn.

This completes the proof item 3. since the latter expression is equality to detA
by item 2. Finally item 4. follows from item 3. and Proposition 6.21.
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Proposition 6.23. Suppose that n = n1 + n2 with ni ∈ N and T is a n × n
matrix which has the block form,

T =

[
A B

0n2×n1
C

]
,

where A is a n1 × n1 – matrix, C is a n2 × n2 – matrix and B is a n1 × n2 –
matrix. Then

detT = detA · detC.

Proof. Fix B and C and consider δ (A) := det

[
A B

0n2×n1
C

]
. Then δ ∈

Λn1 (Rn1) and hence

δ (A) = δ (I) · det (A) = det (A) · det

[
I B

0n2×n1 C

]
.

By doing standard column operations it follows that

det

[
I B

0n2×n1
C

]
= det

[
I 0n1×n2

0n2×n1
C

]
=: δ̃ (C) .

Working as we did with δ we conclude that δ̃ (C) = det [C] · δ̃ (I) = detC.
Putting this all together completes the proof.

Next we want to prove the standard cofactor expansion of detA.

Notation 6.24 If A is a n× n matrix and 1 ≤ i, j ≤ n, let A (i, j) denotes A
with its ith row and jth – column being deleted.

Proposition 6.25 (Co-factor Expansion). If A is a n × n matrix and 1 ≤
j ≤ n, then

det (A) =

n∑
i=1

(−1)
i+j

aij det [A (i, j)] (6.4)

and similarly if 1 ≤ i ≤ n, then

det (A) =

n∑
j=1

(−1)
i+j

aij det [A (i, j)] . (6.5)

We refer to Eq. (6.4) as the cofactor expansion along the jth – column
and Eq. (6.5) as the cofactor expansion along the ith – row.

Proof. Equation (6.5) follows from Eq. (6.4) with that aid of item 3. of
Theorem 6.22. To prove Eq. (6.4), let A = [v1| . . . |vn] and for b ∈ Rn let
b(i) := b− biei and then write vj =

∑n
i=1 aijei. We then find,

detA =

n∑
i=1

aij det [v1| . . . |vj−1|ei|vj+1| . . . |vn]

=

n∑
i=1

aij det
[
v
(i)
1 | . . . |v

(i)
j−1|ei|v

(i)
j+1| . . . |v

(i)
n

]
=

n∑
i=1

aij (−1)
j−1

det
[
ei|v(i)1 | . . . |v

(i)
j−1|v

(i)
j+1| . . . |v

(i)
n

]
=

n∑
i=1

aij (−1)
j−1

(−1)
i−1

det

[
1 0
0 A (i, j)

]

=

n∑
i=1

(−1)
i+j

aij det [A (i, j)]

wherein we have used the determinant changes sign any time one interchanges
two columns or two rows.

Example 6.26. Let us illustrate the above proof in the 3× 3 case by expanding
along the second column. To shorten the notation we we write detA = |A| ;∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a12

∣∣∣∣∣∣
a11 1 a13
a21 0 a23
a31 0 a33

∣∣∣∣∣∣+ a12

∣∣∣∣∣∣
a11 0 a13
a21 1 a23
a31 0 a33

∣∣∣∣∣∣+ a12

∣∣∣∣∣∣
a11 0 a13
a21 0 a23
a31 1 a33

∣∣∣∣∣∣
where∣∣∣∣∣∣

a11 1 a13
a21 0 a23
a31 0 a33

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0 1 0
a21 0 a23
a31 0 a33

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
1 0 0
0 a21 a23
0 a31 a33

∣∣∣∣∣∣ = −
∣∣∣∣a21 a23a31 a33

∣∣∣∣ = −detA (1, 2) ,

∣∣∣∣∣∣
a11 0 a13
a21 1 a23
a31 0 a33

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a11 0 a13
0 1 0
a31 0 a33

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
0 1 0
a11 0 a13
a31 0 a33

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 0 0
0 a11 a13
0 a31 a33

∣∣∣∣∣∣ = det [A (2, 2)] ,

and∣∣∣∣∣∣
a11 0 a13
a21 0 a23
a31 1 a33

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
0 a11 a13
0 a21 a23
1 0 0

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0 a11 a13
1 0 0
0 a21 a23

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
1 0 0
0 a11 a13
0 a21 a23

∣∣∣∣∣∣ = −det [A (3, 1)] .

6.3 The structure of Λk (V ∗)

Definition 6.27. Let m ∈ N and {`j}mj=1 ⊂ V
∗, we define `1∧· · ·∧`m ∈ Am (V )

by
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(`1 ∧ · · · ∧ `m) (v1, . . . , vm) = det


`1 (v1) . . . `1 (vm)
`2 (v1) . . . `2 (vm)

...
...

...
`m (v1) . . . `m (vm)

 (6.6)

=
∑
σ∈Σm

(−1)
σ
m∏
i=1

`i (vσi) =
∑
σ∈Σm

(−1)
σ
`1 (vσ1) . . . `m (vσm) . (6.7)

or alternatively using detAtr = detA,

(`1 ∧ · · · ∧ `m) (v1, . . . , vm) = det


`1 (v1) `2 (v1) . . . `m (v1)
`1 (v2) `2 (v2) . . . `m (v2)

...
...

...
...

`1 (vm) `2 (vm) . . . `m (vm)

 (6.8)

=
∑
σ∈Σm

(−1)
σ
m∏
i=1

`σi (vi) =
∑
σ∈Σm

(−1)
σ
`σ1 (v1) . . . `σm (vm) . (6.9)

which may be written as,

`1 ∧ · · · ∧ `m =
∑
σ∈Σm

(−1)
σ
`σ1 ⊗ · · · ⊗ `σm. (6.10)

Remark 6.28. It is perhaps easier to remember these equations as

(`1 ∧ · · · ∧ `m) (v1, . . . , vm)

= det


`1 (v1, . . . , vm)
`2 (v1, . . . , vm)

...
`m (v1, . . . , vm)

 and

= det

 `1

v1
v2
...
vm

 `2


v1
v2
...
vm

 . . . `m


v1
v2
...
vm




where

` (v1, . . . , vm) :=
[
` (v1) . . . ` (vm)

]
and

`


v1
v2
...
vm

 :=


` (v1)
` (v2)

...
` (vm)

 .

Exercise 6.4. Let {ei}4i=1 be the standard basis for R4 and {εi = e∗i }
4
i=1 be

the associated dual basis (i.e. εi (v) = vi for all v ∈ R4.) Compute;

1. ε3 ∧ ε2 ∧ ε4




1
2
3
4

 ,


0
1
−1
1

 ,


1
0
3
2


 ,

2. ε3 ∧ ε2




1
2
3
4

 ,


0
1
−1
1


 ,

3. ε1 ∧ ε2




1
2
3
4

 ,


0
1
−1
1


 ,

4. (ε1 + ε3) ∧ ε2




1
2
3
4

 ,


0
1
−1
1


 , and

5. ε4 ∧ ε3 ∧ ε2 ∧ ε1 (e1, e2, e3, e4) .

The next problem is a special case of Theorem 6.30 below.

Exercise 6.5. Show, using basic knowledge of determinants, that for
`0, `1, `2, `3 ∈ V ∗, that

(`0 + `1) ∧ `2 ∧ `3 = `0 ∧ `2 ∧ `3 + `1 ∧ `2 ∧ `3.

Remark 6.29. Note that

`σ1 ∧ · · · ∧ `σm = (−1)
σ
`1 ∧ · · · ∧ `m

for all σ ∈ Σm and in particular if m = p+ q with p, q ∈ N, then

`p+1 ∧ · · · ∧ `m ∧ `1 ∧ · · · ∧ `p = (−1)
pq
`1 ∧ · · · ∧ `p ∧ `p+1 ∧ · · · ∧ `m.

Theorem 6.30. For any fixed `2, . . . , `k ∈ V ∗, the map,

V ∗ 3 `1 → `1 ∧ · · · ∧ `k ∈ Λk (V ∗)

is linear.

Proof. From Eq. (6.7) we find,
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`1 + c˜̀1

)
∧ · · · ∧ `k

)
(v1, . . . , vk)

=
∑
σ∈Σk

(−1)
σ
(
`1 + c˜̀1

)
(vσ1) . . . `k (vσk)

=
∑
σ∈Σk

(−1)
σ
`1 (vσ1) . . . `k (vσk) + c

∑
σ∈Σk

(−1)
σ ˜̀

1 (vσ1) . . . `k (vσk)

= `1 ∧ · · · ∧ `k (v1, . . . , vk) + c · ˜̀1 ∧ · · · ∧ `k (v1, . . . , vk)

=
(
`1 ∧ · · · ∧ `k + c · ˜̀1 ∧ · · · ∧ `k

)
(v1, . . . , vk) .

As this holds for all (v1, . . . , vk) , it follows that(
`1 + c˜̀1

)
∧ · · · ∧ `k = `1 ∧ · · · ∧ `k + c · ˜̀1 ∧ · · · ∧ `k

which is the desired linearity.

Remark 6.31. If W is another finite dimensional vector space and T : W → V
is a linear transformation, then T ∗ (`1 ∧ · · · ∧ `m) = (T ∗`1) ∧ · · · ∧ (T ∗`m) . To
see this is the case, let wi ∈W for i ∈ [m] , then

T ∗ (`1 ∧ · · · ∧ `m) (w1, . . . , wm)

= (`1 ∧ · · · ∧ `m) (Tw1, . . . , Twm)

=
∑
σ∈Σm

(−1)
σ
m∏
i=1

`i (Twσi) =
∑
σ∈Σm

(−1)
σ
m∏
i=1

(T ∗`i) (wσi)

= (T ∗`1) ∧ · · · ∧ (T ∗`m) (w1, . . . , wm)

Example 6.32. Let T ∈ Λ2
([

R3
]∗)

and v, w ∈ R3. Then

T (v, w) =T (v1e1 + v2e2 + v3e3, w1e1 + w2e2 + w3e3)

=T (e1, e2) (v1w2 − w1v2) + T (e1, e3) (v1w3 − w1v3)

+ T (e2, e3) (v2w3 − w2v3)

= [T (e1, e2) ε1 ∧ ε2 + T (e1, e3) ε1 ∧ ε3 + T (e2, e3) ε2 ∧ ε3] (v, w)

from this it follows that

T = T (e1, e2) ε1 ∧ ε2 + T (e1, e3) ε1 ∧ ε3 + T (e2, e3) ε2 ∧ ε3.

Further note that if

a12ε1 ∧ ε2 + a13ε1 ∧ ε3 + a23ε2 ∧ ε3 = 0

then evaluating this expression at (ei, ej) for 1 ≤ i < j ≤ 3 allows us to conclude
that aij = 0 for 1 ≤ i ≤ j ≤ 3. Therefore {εi ∧ εj : 1 ≤ i < j ≤ 3} is a basis for

Λ2
([

R3
]∗)

. This example is generalized in the next theorem.

Theorem 6.33. Let {ei}Ni=1 be a basis for V and {εi}Ni=1 be its’ dual basis and
for

J = {1 ≤ a1 < a2 < · · · < ap ≤ N} ⊂ [N ] ,

let with # (J) = p,

eJ :=
(
ea1 , . . . , eap

)
, and εJ := εa1 ∧ · · · ∧ εap . (6.11)

Then;

1. βp := {εJ : J ⊂ [N ] with # (J) = p} is a basis for Λp (V ∗) and so

dim (Λp (V ∗)) =
(
N
p

)
, and

2. any A ∈ Λp (V ∗) admits the following expansions,

A =
1

p!

N∑
j1,...,jp=1

A
(
ej1 , . . . , ejp

)
εj1 ∧ · · · ∧ εjp (6.12)

=
∑
J⊂[N ]

A (eJ) εJ . (6.13)

Proof. We begin by proving Eqs. (6.12) and (6.13). To this end let
v1, . . . , vp ∈ V and then compute using the multi-linear and alternating prop-
erties of A that

A (v1, . . . , vp) =

N∑
j1,...,jp=1

εj1 (v1) . . . εjp (vp)A
(
ej1 , . . . , ejp

)
(6.14)

=

N∑
j1,...,jp=1

1

p!

∑
σ∈Σp

εjσ1 (v1) . . . εjσp (vp)A
(
ejσ1 , . . . , ejσp

)
=

N∑
j1,...,jp=1

1

p!

∑
σ∈Σp

(−1)
σ
εj1 (vσ−11) . . . εjp

(
vσ−1p

)
A
(
ej1 , . . . , ejp

)
=

1

p!

N∑
j1,...,jp=1

A
(
ej1 , . . . , ejp

)
εj1 ∧ · · · ∧ εjp (v1, . . . , vp) ,

which is Eq. (6.12). Alternatively we may write Eq. (6.14) as

Page: 31 job: 150BNotes macro: svmonob.cls date/time: 13-Feb-2020/13:01



A (v1, . . . , vp) =

N∑
j1,...,jp=1

1#({j1,...,jp})=pεj1 (v1) . . . εjp (vp)A
(
ej1 , . . . , ejp

)
=

∑
1≤a1<a2<···<ap≤N

∑
σ∈Σn

εaσ1 (v1) . . . εaσp (vp)A
(
eaσ1 , . . . , eaσp

)
=

∑
1≤a1<a2<···<ap≤N

A
(
ea1 , . . . , eap

) ∑
σ∈Σn

(−1)
σ
εaσ1 (v1) . . . εaσp (vp)

=
∑

1≤a1<a2<···<ap≤N

A
(
ea1 , . . . , eap

)
εa1 ∧ · · · ∧ εap (v1, . . . , vp)

=
∑
J⊂[N ]

A (eJ) εJ (v1, . . . , vp) .

which verifies Eq. (6.13) and hence item 2. is proved.
To prove item 1., since (by Eq. (6.13) we know that βp spans Λp (V ∗) , it

suffices to show βp is linearly independent. The key point is that for

J = {1 ≤ a1 < a2 < · · · < ap ≤ N} and

K = {1 ≤ b1 < b2 < · · · < bp ≤ N}

we have

εJ (eK) = det


εa1 (eb1) . . . εa1

(
ebp
)

εa2 (eb1) . . . εa2
(
ebp
)

...
...

...
εap (eb1) . . . εap

(
ebp
)
 = δJ,K .

Thus if
∑
J⊂[N ] aJεJ = 0, then

0 = 0 (eK) =
∑
J⊂[N ]

aJεJ (eK) =
∑
J⊂[N ]

aJδJ,K = aK

which shows that aK = 0 for all K as above.

Exercise 6.6. Suppose {`j}kj=1 ⊂ [Rn]
∗
.

1. Explaining why `1 ∧ · · · ∧ `k = 0 if `i = `j for some i 6= j.

2. Show `1 ∧ · · · ∧ `k = 0 if {`j}kj=1 are linear dependent. [You may assume

that `1 =
∑k
j=2 aj`j for some aj ∈ R.]

Exercise 6.7. If {`j}kj=1 ⊂ [Rn]
∗

are linearly independent, show

`1 ∧ · · · ∧ `k 6= 0.

Hint: make use of Exercise 5.4.



7

Exterior/Wedge and Interior Products

The main goal of this chapter is to define a good notion of how to multiply
two alternating multi-linear forms. The multiplication will be referred to as
the “wedge product.” Here is the result we wish to prove whose proof will be
delayed until Section 7.4.

Theorem 7.1. Let V be a finite dimensional vector space, n = dim (V ) , p, q ∈
[n] , and let m = p+ q. Then there is a unique bilinear map,

Mp,q : Λp (V ∗)× Λq (V ∗)→ Λm (V ∗) ,

such that for any {fi}pi=1 ⊂ V ∗ and {gj}qj=1 ⊂ V
∗, we have,

Mp,q (f1 ∧ · · · ∧ fp, g1 ∧ · · · ∧ gq) = f1 ∧ · · · ∧ fp ∧ g1 ∧ · · · ∧ gq. (7.1)

The notation, Mp,q, in the previous theorem is a bit bulky and so we intro-
duce the following (also temporary) notation.

Notation 7.2 (Preliminary) For A ∈ Λp (V ∗) and B ∈ Λq (V ∗) , let us sim-
ply denote Mp,q (A,B) by A ·B.1

Remark 7.3. If m = p+ q > n, then Λm (V ∗) = {0} and hence A ·B = 0.

7.1 Consequences of Theorem 7.1

Before going to the proof of Theorem 7.1 (see Section 7.4) let us work out some
of its consequences. By Theorem 6.33 it is always possible to write A ∈ Λp (V ∗)
in the form

A =

α∑
i=1

aif
i
1 ∧ · · · ∧ f ip (7.2)

for some α ∈ N, {ai}Ni=1 ⊂ R, and
{
f ij : j ∈ [p] and i ∈ [α]

}
⊂ V ∗. Similarly we

may write B ∈ Λq (V ∗) in the form,

1 We will see shortly that it is reasonable and more suggestive to write A∧B rather
than A ·B. We will make this change after it is justified, see Notation 7.7 below.

B =

β∑
j=1

bjg
j
1 ∧ · · · ∧ gjq (7.3)

for some β ∈ N, {bj}Nj=1 ⊂ R, and
{
gjj : j ∈ [q] and j ∈ [β]

}
⊂ V ∗. Thus by

Theorem 7.1 we must have

A ·B = Mp,q (A,B) =

α∑
i=1

β∑
j=1

aibjMp,q

(
f i1 ∧ · · · ∧ f ip, g

j
1 ∧ · · · ∧ gjq

)

=

α∑
i=1

β∑
j=1

aibjf
i
1 ∧ · · · ∧ f ip ∧ g

j
1 ∧ · · · ∧ gjq . (7.4)

Proposition 7.4 (Associativity). If A ∈ Λp (V ∗) , B ∈ Λq (V ∗) , and C ∈
Λr (V ∗) for some r ∈ [n] , then

(A ·B) · C = A · (B · C) . (7.5)

Proof. Let us express C as

C =

γ∑
k=1

ckh
k
1 ∧ · · · ∧ hkr .

Then working as above we find with the aid of Eq. (7.4) that

(A ·B) · C =

α∑
i=1

β∑
j=1

γ∑
k=1

aibjckf
i
1 ∧ · · · ∧ f ip ∧ g

j
1 ∧ · · · ∧ gjq ∧ hk1 ∧ · · · ∧ hkr .

A completely analogous computation then shows that A · (B · C) is also given
by the right side of the previously displayed equation and so Eq. (7.5) is proved.

Remark 7.5. Since our multiplication rule is associative it now makes sense to
simply write A · B · C rather than (A ·B) · C or A · (B · C) . More generally if
Aj ∈ Λpj (V ∗) we may now simply write A1 · · · · ·Ak. For example by the above
associativity we may easily show,
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A · (B · (C ·D)) = (A ·B) · (C ·D) = ((A ·B) · C) ·D

and so it makes sense to simply write A·B ·C ·D for any one of these expressions.

Corollary 7.6. If {`j}pj=1 ⊂ V
∗, then

`1 · · · · · `p = `1 ∧ · · · ∧ `p.

Proof. For clarity of the argument let us suppose that p = 5 in which case
we have

`1 · `2 · `3 · `4 · `5 = `1 · (`2 · (`3 · (`4 · `5)))

= `1 · (`2 · (`3 · (`4 ∧ `5)))

= `1 · (`2 · (`3 ∧ `4 ∧ `5))

= `1 · (`2 ∧ `3 ∧ `4 ∧ `5)

= `1 ∧ `2 ∧ `3 ∧ `4 ∧ `5.

Because of Corollary 7.6 there is no longer any danger in denoting A ·B =
Mp,q (A,B) by A ∧ B. Moreover, this notation suggestively leads one to the
correct multiplication formulas.

Notation 7.7 (Wedge=Exterior Product) For A ∈ Λp (V ∗) and B ∈
Λq (V ∗) , we will from now on denote Mp,q (A,B) by A ∧B.

Although the wedge product is associative, one must be careful to observe
that the wedge product is not commutative, i.e. groupings do not matter but
order may matter.

Lemma 7.8 (Non-commutativity). For A ∈ Λp (V ∗) and B ∈ Λq (V ∗) we
have

A ∧B = (−1)
pq
B ∧A.

Proof. See Remark 6.29.

Example 7.9. Suppose that {εj}5j=1 is the standard dual basis on R5 and

α = 2ε1 − 3ε3, β = ε2 ∧ ε4 + (ε1 + ε3) ∧ ε5.

Find and simplify formulas for α ∧ α, α ∧ β and β ∧ β.

1. α ∧ α = 0 since α ∧ α = −α ∧ α.

2.

α ∧ β = (2ε1 − 3ε3) ∧ ε2 ∧ ε4 + (2ε1 − 3ε3) ∧ (ε1 + ε3) ∧ ε5
= 2ε1 ∧ ε2 ∧ ε4 + 3ε2 ∧ ε3 ∧ ε4
+ 2ε1 ∧ (ε1 + ε3) ∧ ε5 − 3ε3 ∧ (ε1 + ε3) ∧ ε5
= 2ε1 ∧ ε2 ∧ ε4 + 3ε2 ∧ ε3 ∧ ε4 + 2ε1 ∧ ε3 ∧ ε5 + 3ε1 ∧ ε3 ∧ ε5
= 2ε1 ∧ ε2 ∧ ε4 + 3ε2 ∧ ε3 ∧ ε4 + 5ε1 ∧ ε3 ∧ ε5.

3. Finally,

β ∧ β = [ε2 ∧ ε4 + (ε1 + ε3) ∧ ε5] ∧ [ε2 ∧ ε4 + (ε1 + ε3) ∧ ε5]

= ε2 ∧ ε4 ∧ (ε1 + ε3) ∧ ε5 + (ε1 + ε3) ∧ ε5 ∧ ε2 ∧ ε4
= ε2 ∧ ε4 ∧ ε1 ∧ ε5 + ε2 ∧ ε4 ∧ ε3 ∧ ε5
+ ε1 ∧ ε5 ∧ ε2 ∧ ε4 + ε3 ∧ ε5 ∧ ε2 ∧ ε4
= ε1 ∧ ε2 ∧ ε4 ∧ ε1 ∧ ε5 − ε2 ∧ ε3 ∧ ε4 ∧ ε5
+ ε1 ∧ ε2 ∧ ε4 ∧ ε5 − ε2 ∧ ε3 ∧ ε4 ∧ ε5.

Theorem 7.10 (Pull-Backs and Wedges). If A : V →W is a linear trans-
formation, ω ∈ Λk (W ∗) , and η ∈ Λl (W ∗) , then

A∗ (ω ∧ η) = A∗ω ∧A∗η (7.6)

and in particular if `1, . . . , `k ∈W ∗, then

A∗ [`1 ∧ · · · ∧ `k] = A∗`1 ∧ · · · ∧A∗`k. (7.7)

Proof. Equation (7.6) follows directly from Eq. (7.18) used below in the
proof of Theorem 7.1. Equation (7.7) then follows from Eq. (7.6) by induction
on k. However, not wanting to use the proof of Theorem 7.1 in this proof we
will give another proof which only use the material presented so far.

To prove Eq. (7.7), simply let {vi}ki=1 ⊂ V and compute

A∗ [`1 ∧ · · · ∧ `k] (v1, . . . , Ak) = `1 ∧ · · · ∧ `k (Av1, . . . , Avk)

= det [{`i (Avj)}] = det [{A∗`i (vj)}]
= (A∗`1 ∧ · · · ∧A∗`k) (v1, . . . , vk) .

As this is true for all (v1, . . . , vk) ∈ V k, Eq. (7.7) follows.
Since both sides of Eq. (7.6) are bilinear functions of ω and η, it suffices to

verify Eq. (7.6) in the special case where

ω = `1 ∧ · · · ∧ `k and η = f1 ∧ · · · ∧ fl

for some `1, . . . , `k, f1, . . . fl ∈ W ∗. However this is now simply done using Eq.
(7.7),
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A∗ (ω ∧ η) = A∗ (`1 ∧ · · · ∧ `k ∧ f1 ∧ · · · ∧ fl)
= A∗`1 ∧ · · · ∧A∗`k ∧A∗f1 ∧ · · · ∧A∗fl
= [A∗`1 ∧ · · · ∧A∗`k] ∧ [A∗f1 ∧ · · · ∧A∗fl]
= A∗ω ∧A∗η.

7.2 Interior product

There is yet one more product structure on Λm (V ∗) that we will used through-
out these notes given in the following definition.

Definition 7.11 (Interior product). For v ∈ V and T ∈ Λm (V ∗) , let ivT ∈
Λm−1 (V ∗) be defined by ivT = T (v, · · · ) .

Lemma 7.12. If {`i}mi=1 ⊂ V ∗, T = `1 ∧ · · · ∧ `m, and v ∈ V, then

iv (`1 ∧ · · · ∧ `m) =

m∑
j=1

(−1)
j−1

`j (v) · `1 ∧ · · · ∧ ̂̀j ∧ · · · ∧ `m. (7.8)

Proof. Expanding the determinant along its first column we find,

T (v1, . . ., vm) =

∣∣∣∣∣∣∣∣∣
`1 (v1) . . . `1 (vm)
`2 (v1) . . . `2 (vm)

...
...

...
`m (v1) . . . `m (vm)

∣∣∣∣∣∣∣∣∣

=

m∑
j=1

(−1)
j−1

`j (v1) ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

`1 (v2) . . . `1 (vm)
`2 (v2) . . . `2 (vm)

...
...

...
`j−1 (v2) . . . `j−1 (vm)
`j+1 (v2) . . . `j+1 (vm)

...
...

...
`m (v2) . . . `m (vm)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

m∑
j=1

(−1)
j−1

`j (v1)
(
`1 ∧ · · · ∧ ̂̀j ∧ · · · ∧ `m) (v2, . . . , vm)

from which Eq. (7.8) follows.

Example 7.13. Let us work through the above proof when m = 3. Letting T =
`1 ∧ `2 ∧ `3 we have

T (v1, v2, v3) =

∣∣∣∣∣∣
`1 (v1) `1 (v2) `1 (v3)
`2 (v1) `2 (v2) `2 (v3)
`3 (v1) `3 (v2) `3 (v3)

∣∣∣∣∣∣
=`1 (v1)

∣∣∣∣ `2 (v2) `2 (v3)
`3 (v2) `3 (v3)

∣∣∣∣− `2 (v1)

∣∣∣∣ `1 (v2) `1 (v3)
`3 (v2) `3 (v3)

∣∣∣∣
+ `3 (v1)

∣∣∣∣ `1 (v2) `1 (v3)
`2 (v2) `2 (v3)

∣∣∣∣
= (`1 (v1) `2 ∧ `3 − `2 (v1) `1 ∧ `3 + `3 (v1) `1 ∧ `2) (v2, v3)

and so

iv1 (`1 ∧ `2 ∧ `3) = `1 (v1) `2 ∧ `3 − `2 (v1) `1 ∧ `3 + `3 (v1) `1 ∧ `2.

Exercise 7.1. Let {εj}3j=1 be the standard dual basis and v = (1, 2, 3)
tr ∈ R3,

find a1, a2, a3 ∈ R so that

iv (ε1 ∧ ε2 ∧ ε3) = a1ε2 ∧ ε3 + a2ε1 ∧ ε3 + a3ε1 ∧ ε2.

Corollary 7.14. For A ∈ Λp (V ∗) and B ∈ Λq (V ∗) and v ∈ V, we have

iv [A ∧B] = (ivA) ∧B + (−1)
p
A ∧ (ivB) .

Proof. It suffices to verify this identity on decomposable forms, A = `1 ∧
· · · ∧ `p and B = `p+1 ∧ · · · ∧ `m so that A ∧B = `1 ∧ · · · ∧ `m and we have

iv (A ∧B)

=

m∑
j=1

(−1)
j−1

`j (v) · `1 ∧ · · · ∧ ̂̀j ∧ · · · ∧ `m
=

p∑
j=1

(−1)
j−1

`j (v) · `1 ∧ · · · ∧ ̂̀j ∧ . . . `p ∧ `p+1 ∧ · · · ∧ `m

+

m∑
j=p+1

(−1)
j−1

`j (v) · `1 ∧ . . . `p ∧ `p+1 ∧ · · · ∧ ̂̀j ∧ · · · ∧ `m
=: T1 + T2

where

T1 =

 p∑
j=1

(−1)
j−1

`j (v) · `1 ∧ · · · ∧ ̂̀j ∧ . . . `p
 ∧B = (ivA) ∧B
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and

T2 = A ∧

 m∑
j=p+1

(−1)
j−1

`j (v) `p+1 ∧ · · · ∧ ̂̀j ∧ · · · ∧ `m


= (−1)
p
A ∧

 m∑
j=p+1

(−1)
j−(p+1)

`j (v) `p+1 ∧ · · · ∧ ̂̀j ∧ · · · ∧ `m


= (−1)
p
A ∧ (ivB) .

Lemma 7.15. If v, w ∈ V, then i2v = 0 and iviw = −iwiv.
Proof. Let T ∈ Λk (V ∗) , then

iviwT = T (w, v,—) = T (v, w,—) = iwivT.

Definition 7.16 (Cross product on R3). For a, b ∈ R3, let a×b be the unique
vector in R3 so that

det [c|a|b] = c · (a× b) for all c ∈ R3.

Such a unique vector exists since we know that c→ det [c|a|b] is a linear func-
tional on R3 for each a, b ∈ R3.

Lemma 7.17 (Cross product). The cross product in Definition 7.16 agrees
with the “usual definition,

a× b =

∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
=: i

∣∣∣∣a2 a3b2 b3

∣∣∣∣− j

∣∣∣∣a1 a3b1 b3

∣∣∣∣+ k

∣∣∣∣a1 a2b1 b2

∣∣∣∣ ,
where i = e1, j = e2, and k = e3 is the standard basis for R3.

Proof. Suppose that a× b is defined by the formula in the lemma, then for
all c ∈ R,

(a× b) · c = c1

∣∣∣∣a2 a3b2 b3

∣∣∣∣− c2 ∣∣∣∣a1 a3b1 b3

∣∣∣∣+ c3

∣∣∣∣a1 a2b1 b2

∣∣∣∣
=

∣∣∣∣∣∣
c1 c2 c3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ = det [c|a|b] ,

wherein we have used the cofactor expansion along the top row for the second
equality and the fact that detA = detAtr for the last equality.

Remark 7.18 (Generalized Cross product). If a1, a2 . . . , an−1 ∈ Rn, let a1×a2×
· · · × an−1 denote the unique vector in Rn such that

det [c|a1|a2| . . . |an−1] = c · a1 × a2 × · · · × an−1 ∀ c ∈ Rn.

This “multi-product” is the n > 3 analogue of the cross product in R3. I don’t
anticipate using this generalized cross product.

7.3 Exercises

Exercise 7.2 (Cross I). For a ∈ R3, let `a (v) = a · v = atrv, so that `a ∈(
R3
)∗
. In particular we have εi = `ei for i ∈ [3] is the dual basis to the standard

basis {ei}3i=1 . Show for a, b ∈ R3,

`a ∧ `b = ia×b [ε1 ∧ ε2 ∧ ε3] (7.9)

Hints: 1) write `a =
∑3
i=1 aiεi and 2) make use of Eq. (7.8)

Exercise 7.3 (Cross II). Use Exercise 7.2 to prove the standard vector cal-
culus identity;

(a× b) · (x× y) = (a · x) (b · y)− (b · x) (a · y)

which is valid for all a, b, x, y ∈ R3.Hint: evaluate Eq. (7.9) at (x, y) while using
Lemma 7.17.

Exercise 7.4 (Surface Integrals). In this exercise, let ω ∈ A3

(
R3
)

be the
standard volume form, ω (v1, v2, v3) := det [v1|v2|v3] , suppose D is an open
subset of R2, and Σ : D → S ⊂ R3 is a “parametrized surface,” refer to Figure
7.1. If F : R3 → R3 is a vector field on R3, then from your vector calculus class,∫∫

S

F ·NdA = ε ·
∫∫

D

F (Σ (u, v)) · [Σu (u, v)×Σv (u, v)] dudv (7.10)

where ε = 1 (ε = −1) if N (Σ (u, v)) points in the same (opposite) direction as
Σu (u, v)×Σv (u, v) . We assume that ε is independent of (u, v) ∈ D.

Show the formula in Eq. (7.10) may be rewritten as∫∫
S

F ·NdA = ε

∫∫
D

(
iF (Σ(u,v))ω

)
(Σu (u, v) , Σv (u, v)) dudv (7.11)

where
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Fig. 7.1. In this figure N is a smoothly varying normal to S, n is a normal to
the boundary of S, and T is a tangential vector to the boundary of S. Moreover,
D 3 (u, v)→ Σ (u, v) ∈ S is a parametrization of S where D ⊂ R2.

ε := sgn(ω (N ◦Σ,Σu, Σv)) =

{
1 if ω (N ◦Σ,Σu, Σv) > 0
−1 if ω (N ◦Σ,Σu, Σv) < 0.

Remarks: Once we introduce the proper notation, we will be able to write
Eq. (7.11) more succinctly as∫∫

S

F ·NdA =

∫∫
S

iFω := ε

∫∫
D

Σ∗ (iFω) .

Definition 7.19 (Curl). If F : R3 → R3 is a vector field on R3, we define a
new vector field called the curl of F by

∇× F = (∂2F3 − ∂3F2) e1 − (∂1F3 − ∂3F1) e2 + (∂1F2 − ∂2F1) e3 (7.12)

where {e1, e2, e3} is the standard basis for R3. This usually remembered by the
following mnemonic formulas;

∇× F = det

 e1 e2 e3
∂1 ∂2 ∂3
F1 F2 F3


= e1 det

[
∂2 ∂3
F2 F3

]
− e2 det

[
∂1 ∂3
F1 F3

]
+ e3 det

[
∂1 ∂2
F1 F2

]
.

Exercise 7.5 (Boundary Orientation). Referring to the set up in Exercise
7.4, the tangent vector T has been chosen by using the “right-hand” rule in
order to determine the orientation on the boundary, ∂S, of S so that Stoke’s
theorem holds, i.e. ∫∫

S

[∇× F ] ·NdA =

∫
∂S

F · Tds. (7.13)

Show by using the “right hand rule” that T = c ·N × n with c > 0 and then
also show

c = ω (N,n, T ) = (iniNω) (T ) .

Also note by Exercise 7.4, that Eq. (7.13) may be written as∫∫
S

i∇×Fω =

∫
∂S

F · Tds (7.14)

Remark: We will introduce the “one form”, F ·dx and an “exterior deriva-
tive” operator, d, so that

d [F · dx] = i∇×Fω

and Eq. (7.14) may be written in the pleasant form,∫∫
S

d [F · dx] =

∫
∂S

F · dx.

7.4 *Proof of Theorem 7.1

[This section may safely be skipped if you are willing to believe the results as
stated!]

If Theorem 7.1 is going to be true we must have Mp,q (A,B) = A · B = D
where, as written in Eq. (7.4),

D =

α∑
i=1

β∑
j=1

aibjf
i
1 ∧ · · · ∧ f ip ∧ g

j
1 ∧ · · · ∧ gjq . (7.15)

The problem with this presumed definition is that the formula for D in Eq.
(7.15) seems to depend on the expansions of A and B in Eqs. (7.2) and (7.3)
rather than on only A and B. [The expansions for A and B in Eqs. (7.2)
and (7.3) are highly non-unique!] In order to see that D is independent of the
possible choices of expansions of A and B, we are going to show in Proposition
7.23 below that D (v1, . . . , vm) (with D as in Eq. (7.15)) may be expressed by a
formula which only involves A and B and not their expansions. Before getting
to this proposition we need some more notation and a preliminary lemma.

Notation 7.20 Let m = p + q be as in Theorem 7.1 and let {vi}mi=1 ⊂ V be
fixed. For each J ⊂ [m] with #J = p write

J = {1 ≤ a1 < a2 < · · · < ap ≤ m} ,
Jc = {1 ≤ b1 < b2 < · · · < bq ≤ m} ,
vJ :=

(
va1 , . . . , vap

)
, and vJc :=

(
vb1 , . . . , vbq

)
.
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Also for any α ∈ Σp and β ∈ Σq, let

σJ,α,β =

(
1 . . . p p+ 1 . . . m
aα1 . . . aαp bβ1 . . . bβq

)
.

When α and β are the identity permutations in Σp and Σq respectively we will
simply denote σJ,α,β by σJ , i.e.

σJ =

(
1 . . . p p+ 1 . . . m
a1 . . . ap b1 . . . bq

)
.

The point of this notation is contained in the following lemma.

Lemma 7.21. Assuming Notation 7.20,

1. the map,
Pp,m ×Σp ×Σq 3 (J, α, β)→ σJ,α,β ∈ Σm,

is a bijection, and
2. (−1)

σJ,α,β = (−1)
σJ (−1)

α
(−1)

β
.

Proof. We leave proof of these assertions to the reader.

Lemma 7.22 (Wedge Product I). Let n = dimV, p, q ∈ [n] , m := p + q,
{fi}pi=1 ⊂ V ∗, {gj}

q
j=1 ⊂ V

∗, and {vj}mj=1 ⊂ V, then

(f1 ∧ · · · ∧ fp ∧ g1 ∧ · · · ∧ gq) (v1, . . . , vm)

=
∑

#J=p

(−1)
σJ (f1 ∧ · · · ∧ fp) (vJ) (g1 ∧ · · · ∧ gq) (vJc) . (7.16)

Proof. In order to simplify notation in the proof let, `i = fi for 1 ≤ i ≤ p
and `j+p = gj for 1 ≤ j ≤ q so that

f1 ∧ · · · ∧ fp ∧ g1 ∧ · · · ∧ gq = `1 ∧ · · · ∧ `m.

Then by Definition 6.27 of `1 ∧ · · · ∧ `m along with Lemma 7.21, we find,

(`1 ∧ · · · ∧ `m) (v1, . . . , vm)

= det
[
{`i (vj)}mi,j=1

]
=
∑
σ∈Σm

(−1)
σ
m∏
i=1

`i (vσi) .

=
∑
J

∑
α∈Σp

∑
β∈Σq

(−1)
σJ,α,β

m∏
i=1

`i
(
vσJ,α,βi

)
=
∑
J

(−1)
σJ
∑
α∈Σp

∑
β∈Σq

(−1)
σα

p∏
i=1

`i
(
vσJ,α,βi

)
(−1)

σβ
m∏

i=p+1

`i
(
vσJ,α,βi

)
.

Combining this with the following identity,∑
α∈Σp

∑
β∈Σq

(−1)
σα

p∏
i=1

`i
(
vσJ,α,βi

)
(−1)

σβ
m∏

i=p+1

`i
(
vσJ,α,βi

)
=
∑
α∈Σp

(−1)
σα

p∏
i=1

`i (vaαi)
∑
β∈Σq

(−1)
σβ

m∏
i=p+1

`i
(
vbβi

)
= (`1 ∧ · · · ∧ `p) (vJ) (`p+1 ∧ · · · ∧ `m) (vJc)

= (f1 ∧ · · · ∧ fp) (vJ) (g1 ∧ · · · ∧ gq) (vJc)

completes the proof.

Proposition 7.23 (Wedge Product II). If A ∈ Λp (V ∗) and B ∈ Λq (V ∗)
are written as in Eqs. (7.2–7.3) and D ∈ Λm (V ∗) is defined as in Eq. (7.15),
then

D (v1, . . . , vm) =
∑

#J=p

(−1)
σJ A (vJ)B (vJc) ∀ {vj}mj=1 ⊂ V. (7.17)

This shows defining A ∧ B by Eq. (7.4)is well defined and in fact could have
been defined intrinsically using the formula,

A ∧B (v1, . . . , vm) =
∑

#J=p

(−1)
σJ A (vJ)B (vJc) . (7.18)

Proof. By Lemma 7.22,

f i1 ∧ · · · ∧ f ip ∧ g
j
1 ∧ · · · ∧ gjq (v1, . . . , vm)

=
∑

#J=p

(−1)
σJ
(
f i1 ∧ · · · ∧ f ip

)
(vJ) ·

(
gj1 ∧ · · · ∧ gjq

)
(vJc)

and therefore,

D (v1, . . . , vm)

=

α∑
i=1

β∑
j=1

aibj

(
f i1 ∧ · · · ∧ f ip ∧ g

j
1 ∧ · · · ∧ gjq

)
(v1, . . . , vm)

=

α∑
i=1

β∑
j=1

aibj
∑

#J=p

(−1)
σJ
(
f i1 ∧ · · · ∧ f ip

)
(vJ) ·

(
gj1 ∧ · · · ∧ gjq

)
(vJc)

=
∑

#J=p

(−1)
σJ

α∑
i=1

β∑
j=1

ai
(
f i1 ∧ · · · ∧ f ip

)
(vJ) ·

β∑
j=1

bj

(
gj1 ∧ · · · ∧ gjq

)
(vJc)

=
∑

#J=p

(−1)
σJ A (vJ)B (vJc)
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which proves Eq. (7.17) and completes the proof of the proposition.
With all of this preparation we are now in a position to complete the proof

of Theorem 7.1.
Proof of Theorem 7.1. As we have see we may define A ∧ B by either

Eq. (7.4) or by Eq. (7.18). Equation (7.18) ensures A ∧ B is well defined and
is multi-linear while Eq. (7.4) ensures A ∧ B ∈ Λm (V ∗) and that Eq. (7.1)
holds. This proves the existence assertion of the theorem. The uniqueness of
Mp,q (A,B) = A ∧B follows by the necessity of defining A ∧B by Eq. (7.4).

Corollary 7.24. Suppose that {ej}nj=1 is a basis of V and {εj}nj=1 is its dual

basis of V ∗. Then for A ∈ Λp (V ∗) and B ∈ Λq (V ∗) we have

A ∧B =
1

p! · q!

n∑
j1,...,jm=1

A
(
ej1 , . . . , ejp

)
B
(
ejp+1 , . . . , ejm

)
εj1 ∧ . . . · · · ∧ εjm .

(7.19)

Proof. By Theorem 6.33 we may write,

A =
1

p!

N∑
j1,...,jp=1

A
(
ej1 , . . . , ejp

)
εj1 ∧ · · · ∧ εjp and

B =
1

q!

n∑
jp+1,...,jm=1

B
(
ejp+1

, . . . , ejm
)
εjp+1

∧ . . . · · · ∧ εjm

and therefore Eq. (7.19) holds by computing A ∧B as in Eq. (7.4).





Part III

Differential Forms on U ⊂o Rn





8

Derivatives, Tangent Spaces, and Differential Forms

In this chapter we will develop calculus and the language of differential forms
on open subsets of Euclidean space in such a way that our result will transfer
to the more general manifold setting.

8.1 Derivatives and Chain Rules

Notation 8.1 (Open subset) I use the symbol “⊂o” to denote containment
with the smaller set being open in the bigger. Thus writing U ⊂o Rn means U
is an open subset of Rn which we always assume to be non-empty.

Notation 8.2 For U ⊂o Rn, we write f : U → Rm as short hand for saying
that f is a function from U to Rm, thus for each x ∈ U,

f (x) =


f1 (x)
f2 (x)

...
fm (x)


where fi : U → R for each i ∈ [m] .

Definition 8.3 (Directional Derivatives). Suppose U ⊂o Rn that f : U →
Rm is a function, so For p ∈ U and v ∈ Rn, let

(∂vf) (p) :=
d

dt
|0f (p+ tv)

be the directional derivative1 of f at p in the direction v. By definition,
the jth-partial derivative of f at p, is

∂f

∂xj
(p) =

(
∂ejf

)
(p) =

d

dt
|0f (p+ tej) .

where {ej}nj=1 is the standard basis for Rn. We will also write ∂jf for ∂f
∂xj

=

∂ejf.

1 We use this terminology even though no assumption about v being a unit vector is
being made.

Definition 8.4. A function, f : U → R, is smooth if f has partial derivatives
to all orders and all of these partial derivatives are continuous. We say f : U →
Rm is smooth if each of the functions, fi : U → R, are smooth functions.

Notation 8.5 We let C∞ (U,Rm) denote the smooth functions from U to Rm.
When m = 1 we will also write C∞ (U,R) = Ω0 (U) and refer to these as the
smooth 0-forms on U. We also let Ck (U,Rm) denote those f : U → Rm such
that each coordinate function, fi, has partial derivatives to order k an all of
these partial derivatives are continuous.

Let us recall a some version of the chain rule.

Theorem 8.6. If f ∈ C1 (U,Rm) , p ∈ U, and v = (v1, . . . , vn)
tr ∈ Rn, then

(∂vf) (p) =

n∑
j=1

∂f

∂xj
(p) vj = f ′ (p) v

where f ′ (p) = Df (p) is the m× n matrix defined by

f ′ (p) =

[
∂f

∂p1
(p) | ∂f

∂p2
(p) | . . . | ∂f

∂pn
(p)

]

=


∂1f1 (p)
∂1f2 (p)

...
∂1fm (p)

∂2f1 (p)
∂2f2 (p)

...
∂2fm (p)

. . .

. . .

. . .

. . .

∂nf1 (p)
∂nf2 (p)

...
∂nfm (p)


We refer to f ′ (p) = Df (p) as the differential of f at p.

More generally, if, σ : (−ε, ε) → U is a curve in U such that σ̇ (0) =
d
dt |0σ (t) ∈ Rn exists, then

d

dt
|0f (σ (t)) =

(
∂σ̇(0)f

)
(σ (0)) = f ′ (σ (0)) σ̇ (0)

=

n∑
j=1

∂f

∂xj
(σ (0)) σ̇j (0) . (8.1)
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Example 8.7. If

f

(
x1
x2

)
=

 x1x2
sin (x1)
x2e

x1


then

f ′
(
x1
x2

)
=

 x2 x1
cos (x1) 0
x2e

x1 ex1

 .
Example 8.8. Let

p =

[
0
1

]
, v =

[
π
11

]
, and

f

(
x
y

)
=

[
yex

x2 + y2

]
.

Then

f ′
(
x
y

)
=

[
yex ex

2x 2y

]
,

f ′ (p) =

[
1 1
0 2

]
, and

(∂vf) (p) =

[
1 1
0 2

] [
π
11

]
=

[
π + 11

22

]
.

Exercise 8.1. Let

f

(
r
θ

)
=

[
r cos θ
r sin θ

]
for

(
r
θ

)
∈ R2.

Find;

f ′
(
r
θ

)
and det

[
f ′
(
r
θ

)]
.

Exercise 8.2. Let

f

 r
θ
ϕ

 =

 r sinϕ · cos θ
r sinϕ · sin θ
r cosϕ

 for

 r
θ
ϕ

 ∈ R3.

Find;

f ′

 r
θ
ϕ

 and det

f ′
 r
θ
ϕ

 .

The following rewriting of the chain rule is often useful for computing di-
rectional derivatives.

Lemma 8.9 (Chain Rule II). Let 0 ∈ U ⊂o Rn and f : U → Rm be smooth
function. Then

d

dt
|0f (t, t, . . . , t) =

n∑
j=1

d

dt
|0f (tej) =

n∑
j=1

d

dt
|0f
(

0, . . . , 0,
j position

t , 0, . . . , 0

)
.

Proof. Let σ (t) = (t, t, . . . , t)
tr
, then by the chain rule,

d

dt
|0f (t, t, . . . , t) =

d

dt
|0f (σ (t)) = f ′ (σ (0)) σ̇ (0)

= f ′ (0) [e1 + · · ·+ en]

=

n∑
j=1

(
∂ejf

)
(0) =

n∑
j=1

d

dt
|0f (tej) .

Exercise 8.3. Let

A =


A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

. . .
...

An1 An2 . . . Ann

 = [a1| . . . |an]

be an n× n matrix with ith-column

ai =


A1i

A2i

...
Ani

 .
Given another n× n matrix B with analogous notation, show

(∂B det) (A) =

n∑
j=1

det [a1| . . . |aj−1|bj |aj+1| . . . |bn] . (8.2)

For example if n = 3, this formula reads,

(∂B det) (A) = det [b1|a2|a3] + det [a1|b2|a3] + det [a1|a2|b3] .

Suggestions; by definition,
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(∂B det) (A) :=
d

dt
|0 det (A+ tB) =

d

dt
|0 det [a1 + tb1| . . . |an + tbn] .

Now apply Lemma 8.9 with

f (x1, . . . , xn) = det [a1 + x1b1| . . . |an + xnbn] .

Exercise 8.4 (Exercise 8.3 continued). Continuing the notation and results
from Exercise 8.3, show;

1. If A = I is the n× n identity matrix in Eq. (8.2), then

(∂B det) (I) = tr (B) =

n∑
j=1

Bj,j .

2. If A is an n× n invertible matrix, shows

(∂B det) (A) = det (A) · tr
(
A−1B

)
.

Hint: Verify the identity,

det (A+ tB) = det (A) · det
(
I + tA−1B

)
which you should then use along with first item of this exercise.

Corollary 8.10. If A is an n× n matrix, then det
(
eA
)

= etr(A).

Proof. Let f (t) := det
(
etA
)
, then

ḟ (t) =
d

ds
|0f (t+ s) =

d

ds
|0 det

(
e(t+s)A

)
=

d

ds
|0 det

(
etAesA

)
= det

(
etA
) d
ds
|0 det

(
esA
)

= f (t)
(
∂ d
ds |0esA

det
) (
e0A
)

= f (t) (∂A det) (I)

= f (t) tr (A) with f (0) = det (I) = 1.

Solving this differential equation then shows,

det
(
etA
)

= et·tr(A).

8.2 Tangent Spaces and More Chain Rules

Definition 8.11 (Tangent space). To each open set, U ⊂o Rn, let

TU := U × Rn = {vp = (p, v) : p ∈ U and v ∈ Rn} .

For a given p ∈ U, we let

TpU = {vp = (p, v) : v ∈ Rn}

and refer this as the tangent space to U at p. Note that

TU = ∪p∈UTpU.

For vp, wp ∈ TpU and λ ∈ C we define,

vp + λwp := (v + λw)p

which makes TpU into a vector space isomorphic to Rn.

Notation 8.12 (Cotangent spaces) For p ∈ Rn, let T ∗pU := [TpU ]
∗

be the
dual space to TpU.

Definition 8.13. If f ∈ C∞ (U,Rm) and vp ∈ TpU let

df (vp) := (∂vf) (p) = f ′ (p) v.

We call df the differential of f and further write dfp for df |TpU ∈ [TpU ]
∗
.

We will mostly (probably exclusively) use the df notation in the case where
m = 1.

Example 8.14. Let f (x1, x2) = x1x
2
2, then

f ′
(
x1
x2

)
=
[
x22 2x1x2

]
=⇒ f ′

(
p1
p2

)
=
[
p22 2p1p2

]
.

Therefore,

df (vp) =
[
p22 2p1p2

] [ v1
v2

]
= p22v1 + 2p1p2v2.

Notation 8.15 (Coordinate functions) Note well: from now on we will
usually consider x = (x1, . . . , xn)

tr
to be the identity function from Rn to Rn

rather than a point in Rn, i.e. if p = (p1, p2, . . . , pn)
tr

then xi (p) = pi. We still
however write

∂f

∂xi
(p) := ∂if (p) = (∂eif) (p)
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Example 8.16. We have for each i ∈ [n]

dxi (vp) = (∂vxi) (p) =
d

dt
|0xi (p+ tv) =

d

dt
|0 (pi + tvi) = vi.

Proposition 8.17. If f ∈ Ω0 (U) , then

df =

n∑
i=1

∂f

∂xi
dxi

where the right side of this equation evaluated at vp is by definition,(
n∑
i=1

∂f

∂xi
dxi

)
(vp) =

n∑
i=1

∂f

∂xi
(p) · dxi (vp)

Proof. By definition and the chain rule,

df (vp) = (∂vf) (p) =

n∑
i=1

∂f

∂xi
(p) vi =

n∑
i=1

∂f

∂xi
(p) · dxi (vp) .

Exercise 8.5. Using Proposition 8.17, find df when

f (x1, x2, x3) = x21 sin (ex2) + cos (x3) .

Lemma 8.18 (Product Rule). Suppose that f, g ∈ C∞ (U) , then d (fg) =
fdg + gdf which in more detail means,

d (fg) (vp) = f (p) dg (vp) + g (p) df (vp) for all vp ∈ TU.

[You are asked to generalize this result in Exercise 8.6.]

Proof. This is the product rule. Here are two ways to prove this result.

1. The first method used the product rule for directional derivatives,

d (fg) (vp) = (∂v (fg)) (p) = (∂vf · g + f∂vg) (p)

= g (p) df (vp) + f (p) dg (vp) .

2. For the second we use Proposition 8.17 and the product rule for partial
derivatives to find,

d (fg) =

n∑
j=1

∂j (fg) dxj =

n∑
j=1

[∂jf · g + f∂jg] dxj

= g

n∑
j=1

∂jfdxj + f

n∑
j=1

∂jgdxj = gdf + fdg.

Example 8.19 (Example 8.14 revisited). Let f (x1, x2) = x1x
2
2 be as in Example

8.14, then using the product rule,

df = x22dx1 + x1d
[
x22
]

= x22dx1 + 2x1x2dx2.

Proposition 8.20. If f ∈ Ω0 (U) and σ (t) is curve in U so that σ̇ (0) exists,
then

d

dt
|0f (σ (t)) = df

(
σ̇ (0)σ(0)

)
.

Proof. By the chain rule and the definition of df (vp) ,

d

dt
|0f (σ (t)) = f ′ (σ (0)) σ̇ (0) =

(
∂σ̇(t)f

)
(σ (0)) = df

(
σ̇ (0)σ(0)

)
.

Exercise 8.6. Let g1, g2, . . . , gn ∈ C1 (U,R) , f ∈ C1 (Rn,R) , and u =
f (g1, . . . , gn) , i.e.

u (p) = f (g1 (p) , . . . , gn (p)) for all p ∈ U.

Show

du =

n∑
j=1

(∂jf) (g1, . . . , gn) dgj

which is to be interpreted to mean,

du (vp) =

n∑
j=1

(∂jf) (g1 (p) , . . . , gn (p)) dgj (vp) for all vp ∈ TU.

Hint: For vp ∈ TU, let σ (t) = (g1 (p+ tv) , . . . , gn (p+ tv)) and then make use
of the chain rule (see Eq. (8.1)) to compute du (vp) .

Here is yet one more version of the chain rule. [This next version essentially
encompasses all of the previous versions.]

Exercise 8.7 (Chain Rule for Maps). Suppose that f : U → V and g :
V →W are C1-functions where U, V, and W are open subsets of Rn, Rm, and
Rp respectively and let g ◦ f : U →W be the composition map,

g ◦ f : U
f−→ V

g−→W.

Show
(g ◦ f)

′
(p) = g′ (f (p)) f ′ (p) for all p ∈ U. (8.3)

Hint: Let v ∈ Rn and σ (t) := f (p+ tv) – a differentiable curve in V. Then use
the chain rule in Theorem 8.6 twice in order to compute,

(g ◦ f)
′
(p) v =

d

dt
|0g (f (p+ tv)) =

d

dt
|0g (σ (t)) .
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8.3 Differential Forms 47

We now want to define a derivative map which fully keeps track of the base
points, unlike df which forgets the target base point.

Definition 8.21 ( f∗ : TU → TV ). If U ⊂o Rn and V ⊂o Rm and f : U → V
is a smooth function, i.e. f : U → Rm is smooth with f (U) ⊂ V, then we define
a map, f∗ : TU → TV by

f∗vp := [(∂vf) (p)]f(p) = [f ′ (p) v]f(p) for all (p, v) ∈ TU = U × Rn. (8.4)

We further let f∗p denote the restriction of f∗ to TpU in which case f∗p : TpU →
Tf(p)V which is seen to be linear by the formula in Eq. (8.4).

Fig. 8.1. Describing the differential in geometric context.

Proposition 8.22 (Chain rule again). Let f and g be as in Exercises 8.7.
Here are are last two reformulations of the chain rule.

1. If σ (t) is a curve in U such that σ̇ (0) = v and σ (0) = p, then

f∗vp = f∗

(
σ̇ (0)σ(0)

)
=

[
d

dt
|0f (σ (t))

]
f(σ(0))

.

2. The chain rule in Eq. (8.3) may be written in the following pleasing form,

(g ◦ f)∗ = g∗f∗.

Proof. We take each item in turn.

1. Let vp ∈ TU. By the chain rule,

d

dt
|0f (σ (t)) = f ′ (σ (0)) σ̇ (0) = f ′ (p) v

Fig. 8.2. The chain rule in pictures.

and therefore, [
d

dt
|0f (σ (t))

]
f(σ(0))

= [f ′ (p) v]p =: f∗vp.

2. By the chain rule in Exercise 8.7,

(g ◦ f)∗ vp =
[
(g ◦ f)

′
(p) v

]
(g◦f)(p) = [g′ (f (p)) f ′ (p) v]g(f(p)) .

On the other hand,

g∗f∗vp = g∗

(
[f ′ (p) v]f(p)

)
= [g′ (f (p)) f ′ (p) v]g(f(p))

and hence (g ◦ f)∗ vp = g∗f∗vp for all vp ∈ TU, i.e. (g ◦ f)∗ = g∗f∗.

8.3 Differential Forms

Standing notation: throughout this section, let {ei}ni=1 be the standard basis
on Rn, {εi}ni=1 be its dual basis, {xi}ni=1 be the standard coordinate functions

on Rn (so xi (v) = εi (v) = vi for all v = (v1, . . . , vn)
tr ∈ Rn) and U be an open

subset of Rn.

Definition 8.23 (Differential k-form). A 0-form on U is just a function,
f : U → R while (for k ∈ N) a differential k-form (ω) on U is an assignment;

U 3 p→ ωp ∈ Λk
(
[TpRn]

∗)
for all p ∈ U.
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The form ω is said to be Cr if for every fixed v1, . . . , vk ∈ Rn the function,

U 3 p→ ωp

(
[v1]p , . . . , [vk]p

)
∈ R

is a Cr function.

In order to simplify notation, I will usually just write

ω
(

[v1]p , . . . , [vk]p

)
for ωp

(
[v1]p , . . . , [vk]p

)
.

Notation 8.24 For an open subset, U ⊂ Rn and k ∈ [n] , we let Ωk (U) denote
the collection of C∞ (smooth) k-forms on U.

Example 8.25. If {fi}ki=0 are smooth functions on U, then ω = f0df1 ∧ · · · ∧ dfk
defined by

ω
(

[v1]p , . . . , [vk]p

)
= f0 (p)0 df1 ∧ · · · ∧ dfk

(
[v1]p , . . . , [vk]p

)
= f0 (p) det

[{
dfi

(
[vj ]p

)}k
i,j=1

]
= f0 (p) det

[{(
∂vjfi

)
(p)
}k
i,j=1

]
If f1 = xl1 , . . . , fk = xlk for some 1 ≤ l1 < l2 < · · · < lk ≤ n, then

ω
(

[v1]p , . . . , [vk]p

)
= f0 (p) det

[
{εli (vj)}ki,j=1

]
= f0 (p) εl1 ∧ · · · ∧ εlk (v1, . . . , vk)

Lemma 8.26. There is a one to one correspondence between k-forms (ω) on U
and functions ω̃ : U → Λk

(
[Rn]

∗)
. The correspondence is determined by;

ω̃ (p) (v1, . . . , vk) = ωp

(
[v1]p , . . . , [vk]p

)
for all p ∈ U and {vi}ki=1 ⊂ Rn.

Under this correspondence, ω is a Cr k-form iff ω̃ : U → Λk
(
[Rn]

∗)
is a Cr-

function.

Definition 8.27 (Multiplication Rules). If α ∈ Ωk (U) and β ∈ Ωl (U) , we
define α ∧ β ∈ Ωk+l (U) by requiring

[α ∧ β]p = αp ∧ βp ∈ Λk+l
(
[TpRn]

∗)
for all p ∈ U.

If α = f ∈ Ω0 (U) , then the above formula is to be interpreted as

[fβ]p = f (p)βb ∈ Λl
(
[TpRn]

∗)
for all p ∈ U.

Remark 8.28. Using the identification in Lemma 8.26, these multiplication rules
are equivalent to requiring

α̃ ∧ β (p) = α̃ (p) ∧ β̃ (b) for all p ∈ U.

Notation 8.29 For

J = {1 ≤ j1 < j2 < · · · < jk ≤ n} ⊂ [n] , (8.5)

let

dxJ := dxj1 ∧ · · · ∧ dxjk ∈ Ωk (Rn) and

εJ = εj1 ∧ · · · ∧ εjk ∈ Λk
(
[Rn]

∗)
Proposition 8.30. If ω is a k-form on U , there exist unique functions ωJ :
U → R such that

ω =
∑

J⊂[n]:|J|=k

ωJdxJ , (8.6)

and all possible functions ωJ : U → R may occur. Moreover, if J ⊂ [n] as in
Eq. (8.5), then ωJ is related to ω by

ωJ (p) := ω
(

[ej1 ]p , . . . , [ejk ]p

)
= ω̃ (p) (ej1 , . . . , ejk) for all p ∈ U.

Corollary 8.31. If ω is given as in Eq. (8.6) then

ω̃ (p) =
∑

J⊂[n]:|J|=k

ωJ (p) εJ

and ω is smooth iff the functions ωJ are smooth for each J ⊂ [n] with |J | = k.

Example 8.32. If ω ∈ Ω2 (U) , then

ω =
∑

1≤i<j≤n

ωijdxi ∧ dxj and ω̃ =
∑

1≤i<j≤n

ωijεi ∧ εj

for some functions ωij ∈ Ω0 (U) .

The following lemma is a direct consequence of our development of the
multi-linear algebra in the previous part.

Lemma 8.33. If {αi}ki=1 ⊂ Ω1 (U) , then α1 ∧ · · · ∧αk ∈ Ωk (U) and moreover

if
{
vip
}k
i=1
⊂ TpU, then

α1 ∧ · · · ∧ αk
(
v1p, . . . , v

k
p

)
= det

[{
αi
(
vjp
)}k
i,j=1

]
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where

[{
αi
(
vjp
)}k
i,j=1

]
=


α1 (v1) α1 (v2) . . . α1 (vk)
α2 (v1) α2 (v2) . . . α2 (vk)

...
... . . .

...
αk (v1) αk (v2) . . . αk (vk)


or its transpose if you prefer.

Remark 8.34 (Book Exercise 2.3.iii). Here is some help on Exercise 8.34 in the
book which asks you to show the following. Suppose U is an open subset of Rn
and fj ∈ C∞ (U) for each j ∈ [n] . Let F (p) = (f1 (p) , . . . , fn (p))

tr
, show

df1 ∧ · · · ∧ dfn = detF ′ · dx1 ∧ · · · ∧ dxn.

Well by Proposition 8.30, we know that

df1 ∧ · · · ∧ dfn = ω · dx1 ∧ · · · ∧ dxn

where

ωp = df1 ∧ · · · ∧ dfn
(

[e1]p , . . . , [en]p

)

= det


df1

(
[e1]p

)
df1

(
[e2]p

)
. . . df1

(
[en]p

)
df2

(
[e1]p

)
df2

(
[e2]p

)
. . . df2

(
[en]p

)
...

...
. . .

...

dfn

(
[e1]p

)
dfn

(
[e2]p

)
. . . dfn

(
[en]p

)


= det [F ′ (p)] .

Example 8.35. If

α = f0df1 ∧ · · · ∧ dfk ∈ Ωk (U) and

β = g0dg1 ∧ · · · ∧ dgl ∈ Ωl (U)

for some functions {fj}kj=0 ∪ {gi}
l
i=0 ⊂ Ω0 (U), then

α ∧ β = f0g0df1 ∧ · · · ∧ dfk ∧ dg1 ∧ · · · ∧ dgl ∈ Ωk+l (U) .

Exercise 8.8. Suppose that {xj}4j=1 are the standard coordinates on R4, p =

(1,−1, 2, 3)
tr ∈ R4, v1 = (1, 2, 3, 4)

tr
, v2 = (0, 1,−1, 1)

tr
, v3 = (1, 0, 3, 2) ,

α = x4 (dx1 + dx2) , β = x1x2 (dx3 + dx4) , and ω =
(
x21 + x23

)
dx3∧dx2∧dx4.

Compute the following quantities;

1. α
(
v1p
)
,

2. α ∧ α
(
v1p, v

2
p

)
,

3. α ∧ β
(
v1p, v

2
p

)
,

4. ω
(
v1p, v

2
p, v

3
p

)
.

Exercise 8.9. Let {xi}6i=1 be the standard coordinates on R6 and let

ω = dx1 ∧ dx2 + dx3 ∧ dx4 + dx5 ∧ dx6 ∈ Ω2
(
R6
)
.

Show
ω ∧ ω ∧ ω = cdx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ dx5 ∧ dx6,

for some c ∈ R which you should find.

8.4 Vector-Fields and Interior Products

Definition 8.36. A vector field on U ⊂o Rn, is an assignment to each p ∈
U to and element F (p) ∈ TpU. Necessarily, this means there exists a unique

function, f = (f1, . . . , fn)
tr

: U → Rn, such that F (p) = [f (p)]p for all p ∈ U.
We say F is smooth if f ∈ C∞ (U,Rn) . To simplify notation, we will often
simply identify f with F.

Definition 8.37 (Interior Product). For ω ∈ Ωk (U) and vp ∈ TpM, let

ivpωp := ωp (vp, . . . )

be the interior product of vp with ωp ∈ Λk
(
T ∗pU

)
as in Definition 7.11. If F

is a vector field as in Definition 8.36 we let iFω ∈ Ωk−1 (U) be defined by

[iFω]p = iF (p)ωp = if(p)pωp.

[We will abuse notation and often just (improperly) write ifω for iFω.]

Example 8.38. If ω = g0dg1 ∧ · · · ∧ dgk, then from Lemma 7.12,

iFω = g0

k∑
j=1

(−1)
j−1

dgj (Fj) dg1 ∧ . . . d̂gj ∧ · · · ∧ dgk

= g0

k∑
j=1

(−1)
j−1

(∂fgj) dg1 ∧ . . . d̂gj ∧ · · · ∧ dgk.

If g0 = 1 and gj = xj for 1 ≤ j ≤ k, then dxj (F ) = fj and the above formula
becomes,

iF (dx1 ∧ · · · ∧ dxk) =

k∑
j=1

(−1)
j−1

fjdx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxk. (8.7)
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8.5 Pull Backs

Definition 8.39 (Pull-Back). Suppose that V ⊂o Rm and U ⊂o Rn and ϕ :
V → U is a smooth function. Then for ω ∈ Ωp (U) we define ϕ∗ω ∈ Ωp (V ) by

(ϕ∗ω) (v1, . . . , vp) = ω (ϕ∗v1, . . . , ϕ∗vp) .

Lemma 8.40. If f ∈ Ω0 (V ) and ω = df ∈ Ω1 (V ) , then

ϕ∗df = d [ϕ∗f ] = d (f ◦ ϕ) . (8.8)

Proof. For vp ∈ TpV, let σ (t) = ϕ (p+ tv) and use the chain rule to find,

d

dt
|0f (ϕ (p+ tv)) =

d

dt
|0f (σ (t)) = df

(
σ̇ (0)σ(0)

)
= df (ϕ∗vp) .

Therefore,

(ϕ∗df) (vp) = df (ϕ∗vp) =
d

dt
|0f (ϕ (p+ tv))

=
d

dt
|0 [f ◦ ϕ (p+ tv)] = d (f ◦ ϕ) (vp) = d [ϕ∗f ] (vp) .

Proposition 8.41. If ω ∈ Ωk (U) , η ∈ Ωl (U) , and ϕ and ψ are maps such
that ψ ◦ ϕ makes sense, then

ϕ∗ψ∗ω = (ψ ◦ ϕ)
∗
ω (8.9)

and
ϕ∗ (ω ∧ η) = ϕ∗ω ∧ ϕ∗η. (8.10)

Proof. The first identity follows from Exercise 6.2 and the second from
Theorem 7.10.

Corollary 8.42. Suppose that V ⊂o Rm, U ⊂o Rn, ϕ : V → U is a smooth
function, gj ∈ C∞ (U) for 0 ≤ j ≤ k. Then

ϕ∗ [g0dg1 ∧ · · · ∧ dgk] = g0 ◦ ϕ · d [g1 ◦ ϕ] ∧ · · · ∧ d [gk ◦ ϕ] . (8.11)

Proof. Let α = g0dg1 ∧ · · · ∧ dgk.
First proof. Using Eq. (8.10) it follows that

ϕ∗α = ϕ∗ (g0dg1 ∧ · · · ∧ dgk) = ϕ∗g0 [ϕ∗dg1 ∧ · · · ∧ ϕ∗dgk] .

This result along with Lemma 8.40 completes the proof of Eq. (8.11).

Second proof. Let
{
vi
}k
i=1
⊂ Rm and q ∈ V, then

(ϕ∗α)
(
v1q , . . . , v

k
q

)
= αϕ(q)

(
ϕ∗v

1
q , . . . , ϕ∗v

k
q

)
= g0 (ϕ (q)) dg1 ∧ · · · ∧ dgk

(
ϕ∗v

1
q , . . . , ϕ∗v

k
q

)
= g0 (ϕ (q)) · det

[{
dgi
(
ϕ∗v

j
q

)}k
i,j=1

]
.

But finally we have by Lemma 8.40, that

dgi
(
ϕ∗v

j
q

)
= (ϕ∗dgi)

(
vjq
)

= (d [gi ◦ ϕ])
(
vjq
)

and so

det
[{
dgi
(
ϕ∗v

j
q

)}k
i,j=1

]
= (d [g1 ◦ ϕ] ∧ · · · ∧ d [gk ◦ ϕ])

(
v1q , . . . , v

k
q

)
and hence

(ϕ∗α)
(
v1q , . . . , v

k
q

)
= (g0 ◦ ϕ) (q) · (d [g1 ◦ ϕ] ∧ · · · ∧ d [gk ◦ ϕ])

(
v1q , . . . , v

k
q

)
which again proves Eq. (8.11).

Example 8.43. Suppose that f : R3 → R2 is given by f (x1, x2, x3) =(
x21e

x2 , x1x3
)

and ω = xdy and α = cos (xy) dx ∧ dy as forms on R2 where
(x, y) are the standard coordinates on R2. Here are the solutions;

f∗ω = x ◦ f · d [y ◦ f ] = x21e
x2 · d [x1x3] = x21e

x2 · (x3dx1 + x1dx3)

and

f∗α = cos
(
x21e

x2x1x3
) [
d
(
x21e

x2
)]
∧ [d (x1x3)]

= cos
(
x31x3e

x2
)
ex2 [2x1dx1 + dx2] ∧ (x3dx1 + x1dx3)

= cos
(
x31x3e

x2
)
ex2
[
2x21dx1 ∧ dx3 − x3dx1 ∧ dx2 + x1dx2 ∧ dx3

]
.

Basically in this case we need only let “x = x21e
x2” and y = x1x3 and then

follows our nose in computing ω = xdy and α = cos (xy) dx ∧ dy.

Example 8.44. Let ω = udv where u (x, y) = sin (x+ y) and v (x, y) = exy

and suppose again that f (x1, x2, x3) =
(
x21e

x2 , x1x3
)
. Again the rule is to let

x = x21e
x2 and y = x1x3 and then compute

f∗ω = sin
(
x21e

x2 + x1x3
)
· d exp

(
x21e

x2 · x1x3
)

= sin
(
x21e

x2 + x1x3
)
· d exp

(
x31x3e

x2
)

= sin
(
x21e

x2 + x1x3
)
· exp

(
x31x3e

x2
)
d
(
x31x3e

x2
)

= sin
(
x21e

x2 + x1x3
)
· exp

(
x31x3e

x2
) (

3x21x3e
x2dx1 + x31e

x2dx3 + x31x3e
x2dx2

)
= sin

(
x21e

x2 + x1x3
)
· exp

(
x31x3e

x2
)
x21e

x2 (3xdx1 + x1x3dx2 + x1e
x2dx3) .
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8.6 Exterior Differentiation

Now that we have defined forms it is natural to try to differentiate these forms.
We have already differentiated 0-forms, f, to get a 1-form df. So it is natural
to generalize this definition as follows.

Definition 8.45 (Exterior Differentiation). If ω =
∑
J ωJdxJ ∈ Ωk (U) ,

we define

dω :=
∑
J

dωJ ∧ dxJ ∈ Ωk+1 (U) (8.12)

or equivalently,

dω =

n∑
i=1

∑
J

(∂iωJ) dxi ∧ dxJ .

It turns out in order to compute dω you only need to use the Properties
of d explained in the next proposition. You may wish to skip the proof of this
proposition until after seeing examples of computing dω and doing the related
exercises.

Proposition 8.46 (Properties of d). The exterior derivative d satisfies the
following properties;

1. df (vp) = (∂vf) (p) for f ∈ Ω0 (U) .
2. d : Ωp (U)→ Ωp+1 (U) is a linear map for all 0 ≤ p < n.
3. d satisfies the product rule

d [ω ∧ η] = dω ∧ η + (−1)
p
ω ∧ dη

for all ω ∈ Ωp (U) and η ∈ Ωq (U) .
4. d2ω = 0 for all ω ∈ Ωp (U) .

Suggestion: rather than reading the proof on your first pass, instead jump
to Lemma 8.47 and continue reading from there. Come back to the proof
after you have some experience with computing with d.

Proof. In terms of the identification of ω ∈ Ωp (U) with
ω̃ ∈ C∞

(
U,Λk

(
[Rn]

∗))
in Lemma 8.26 we have

d̃ω =

n∑
i=1

∑
J

(∂iωJ) εi ∧ εJ =

n∑
i=1

εi ∧
∑
J

(∂iωJ) εJ

which may be written as

d̃ω = d̂ω̃ :=

n∑
i=1

εi ∧ ∂iω̃. (8.13)

This last equation describes dω without first expanding ω as a linear combi-
nation of the {dxJ} . This turns out to be quite convenient for deducing the
basic properties of the exterior derivative stated in this proposition. To simplify
notation in this proof we will not distinguish between ω and ω̃ and d and d̂ and
we will exclusively (in this proof) view forms as function from U to Λk

(
[Rn]

∗)
.

We now go to the proof proper.
The first item immediate from the linearity of the derivative operator. The

second item is consequence of the product rule for differentiation;

d [ω ∧ η] =

n∑
j=1

εj ∧
∂

∂xj
[ω ∧ η] =

n∑
j=1

εj ∧
[
∂ω

∂xj
∧ η + ω ∧ ∂η

∂xj

]

=

n∑
j=1

εj ∧
∂ω

∂xj
∧ η +

n∑
j=1

εj ∧ ω ∧
∂η

∂xj

= dω ∧ η + (−1)
p
ω ∧

 n∑
j=1

εj ∧
∂η

∂xj


= dω ∧ η + (−1)

p
ω ∧ dη.

Lastly,

d2ω =

n∑
i=1

εi ∧
∂

∂xi

 n∑
j=1

εj ∧
∂ω

∂xj


=

n∑
i,j=1

εi ∧ εj ∧
∂2ω

∂xi∂xj

=
1

2

n∑
i,j=1

[
εi ∧ εj ∧

∂2ω

∂xi∂xj
+ εj ∧ εi ∧

∂2ω

∂xj∂xi

]

=
1

2

n∑
i,j=1

[
εi ∧ εj ∧

∂2ω

∂xi∂xj
− εi ∧ εj ∧

∂2ω

∂xi∂xj

]
= 0,

wherein we have used the fact that mixed partial derivatives of C2-functions
(vector-valued or not) are equal.

Lemma 8.47. If {gj}pj=0 ⊂ Ω
0 (U) , then

d [g0 · g1 ∧ · · · ∧ dgp] = dg0 ∧ dg1 ∧ · · · ∧ dgp. (8.14)

This formula along with the knowing df for f ∈ Ω0 (U) completely determines
d on Ωp (U) .
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Proof. The proof is by induction on p. Rather than do the general induction
argument, let me explain the case p = 3 in detail so that ω = g0dg1 ∧ dg2 ∧ dg3.
Then using only the properties developed in Proposition 8.46,

dω = dg0 ∧ [dg1 ∧ dg2 ∧ dg3] + g0d [dg1 ∧ dg2 ∧ dg3]

where

d [dg1 ∧ dg2 ∧ dg3] = d [dg1 ∧ (dg2 ∧ dg3)]

= d2g1 ∧ (dg2 ∧ dg3)− dg1 ∧ d (dg2 ∧ dg3)

= 0− dg1 ∧
[
d2g2 ∧ dg3 − dg2 ∧ d2g3

]
= 0.

Thus we have shown
dω = dg0 ∧ dg1 ∧ dg2 ∧ dg3

as desired.
The next corollary shows that the properties in Proposition 8.46 actually

uniquely determines the exterior derivative, d.

Corollary 8.48. If d : Ω∗ (U)→ Ω∗+1 (U) is any linear operator satisfying the
four properties in Proposition 8.46, then d is in fact given as in Definition 8.45.

Proof. Let ω =
∑
J ωJdxJ ∈ Ωk (U) where the sum is over J ⊂ [n] with

|J | = k. By Lemma 8.47, which was proved using only the properties in Propo-
sition 8.46, we know that

d [ωJdxJ ] = d [ωJdxj1 ∧ · · · ∧ dxjk ] = dωJ ∧ dxj1 ∧ · · · ∧ dxjk
= dωJ ∧ dxJ .

Thus using the assumed linearity of d, it follows that

dω =
∑
J

dωJ ∧ dxJ

in agreement with the definition in Eq. (8.12).

Example 8.49. In this example, let x, y, z be the standard coordinates on R3

(actually any smooth function on R3 or Rk for that matter would work). If

α = xdy − ydx+ zdz,

then
dα = dx ∧ dy − dy ∧ dx+ dz ∧ dz = 2dx ∧ dy.

If β = ex+y
2+z3dx ∧ dy, then

dex+y
2+z3 = ex+y

2+z3 · d
(
x+ y2 + z3

)
= ex+y

2+z3 ·
(
dx+ 2ydy + 3z2dz

)
and therefore,

dβ = dex+y
2+z3 ∧ dx ∧ dy = ex+y

2+z3 ·
(
dx+ 2ydy + 3z2dz

)
∧ dx ∧ dy

= ex+y
2+z3 · 3z2dz ∧ dx ∧ dy = ex+y

2+z3 · 3z2dx ∧ dy ∧ dz.

Definition 8.50. A form ω ∈ Ωk (U) is closed if dω = 0 and it is exact if
ω = dµ for some µ ∈ Ωk−1 (U) .

Note that if ω = dµ, then dω = d2µ = 0, so exact forms are closed but the
converse is not always true.

Example 8.51. In this example, again x, y, z be the standard coordinates on R3

(actually any smooth function on R3 or Rk for that matter would work). If

α = ydx+ (z cos yz + x) dy + y cos yzdz

then

dα = dy∧dx+((cos yz − yz sin yz) dz + dx)∧dy+(cos yz − zy sin yz) dy∧dz = 0,

i.e. α is closed, see Definition 8.50.

Exercise 8.10. Let α = xdx − ydy, β = zdx ∧ dy + xdy ∧ dz and γ = zdy on
R3, calculate,

α ∧ β, α ∧ β ∧ γ, dα, dβ, dγ.

Exercise 8.11. Let (x, y) be the standard coordinates on R2, and define,

α :=
(
x2 + y2

)−1 · (xdy − ydx) ∈ Ω1
(
R2 \ {0}

)
.

Show α is closed. [We will eventually see that this form is not exact.]

Exercise 8.12 (Divergence Formula). Let f = (f1, f2, f3, . . . , fn) and ω =
dx1 ∧ · · · ∧ dxn. By Example 8.38 with k = n we have

ifω = iFω =

n∑
j=1

(−1)
j−1

fjdx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn.

Show

d [iFω] = (∇ · f)ω where ∇ · f =

n∑
i=1

∂ifi,

i.e. ∇ · f is the divergence of f from your vector calculus course.
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Exercise 8.13 (Curl Formula). Let f = (f1, f2, f3) ∈ C∞
(
R3,R3

)
,

ω = dx1 ∧ dx2 ∧ dx3, and

α = f · (dx1, dx2, dx3) := f1dx1 + f2dx2 + f3dx3.

Show dα = i∇×fω where ∇ × f is the usual vector calculus curl of f , see Eq.
(7.12) of Definition 7.19 with F replaced by f = (f1, f2, f3) .

Theorem 8.52 (d commutes with ϕ∗). Suppose that V ⊂o Rm and U ⊂o Rn
and ϕ : V → U is a smooth function. Then d commutes with the pull-back, ϕ∗.
In more detail, if 0 ≤ p ≤ m and α ∈ Ωp(V ) then d(ϕ∗α) = ϕ∗(dα).

Proof. We may assume that α = g0dg1 ∧ · · · ∧ dgp in which case

ϕ∗α = ϕ∗ (g0dg1 ∧ · · · ∧ dgp)
= ϕ∗g0 [d (ϕ∗g1) ∧ · · · ∧ d (ϕ∗gp)]

and so
dϕ∗α = d (ϕ∗g0) ∧ d (ϕ∗g1) ∧ · · · ∧ d (ϕ∗gp)

while from Lemma 8.47,

ϕ∗dα = ϕ∗dg0 ∧ ϕ∗dg1 ∧ · · · ∧ ϕ∗dgp
= d (ϕ∗g0) ∧ d (ϕ∗g1) ∧ · · · ∧ d (ϕ∗gp) = d [ϕ∗α] .





9

An Introduction of Integration of Forms

One of the main point of differential k-forms is that they may be integrated
over k-dimensional manifolds. Although we are not going to define the notation
of a manifold at this time, please do have a look at Chapter 6 starting on page
75 of Reyer Sjamaar’s notes: Manifolds and Differential Forms, for the notion of
a manifold and associated tangent spaces along with lots of pictures! (Pictures
is one thing in short supply in our book.)

9.1 Integration of Forms Over “Parametrized Surfaces”

Definition 9.1 (Basic integral). If D ⊂o Rk and α = fdx1 ∧ · · · ∧ dxk ∈
Ωk (D) , we define ∫

D

α :=

∫
D

fdm

provided the latter integral makes sense, i.e. provided
∫
D
|f | dm < ∞. Often

times we will guarantee this to be the case by assuming f ∈ C∞c (D) .

We now want elaborate on this basic integral.

Definition 9.2. Let D ⊂o Rk and U ⊂o Rn. We say a smooth function, γ :
D → U, is a parametrized k-surface in U.

Definition 9.3. If γ : D → U is a parametrized k-surface in U and ω ∈ Ωk (U)
is a k-form, then we define, ∫

γ

ω :=

∫
D

γ∗ω.

Example 9.4 (Line Integrals). Suppose that ω =
∑n
j=1 fjdxj ∈ Ω1 (U) and γ =

(γ1, . . . , γn)
tr

: [a, b] → U is a smooth curve, then letting t be the standard
coordinate on R (i.e. t (a) = a for all a ∈ R) we find,

γ∗f =

n∑
j=1

fj ◦ γ (t) d (xj ◦ γ (t)) =

n∑
j=1

fj (γ (t)) d (γj (t))

=

n∑
j=1

fj (γ (t)) γ̇j (t) dt

and hence ∫
γ

f =

∫
[a,b]

n∑
j=1

fj (γ (t)) γ̇j (t) dt =

∫ b

a

f (γ (t)) · γ̇ (t) dt

where f = (f1, . . . , fn)
tr

thought of as a vector files on U.

Example 9.5 (Integrals over surfaces). Suppose that D = (−1, 1)
2 ⊂ R2, U =

R3, and γ (x, y) =
(
x, y, 2− x2 − y2

)
as in Figure 9.1 and let

γ∗ω = fdx ∧ dy.

In this picture we have divided the base up into little square and then found
their images under γ. It is reasonable to assign a contribution to

∫
γ
ω from a

little base square, Qj := pj + ε [0, 1]
2

to be approximately,

ω
(
γ∗

(
[εe1]pj

)
, γ∗

(
[εe2]pj

))
= (γ∗ω)

(
[εe1]pj , [εe2]pj

)
= f (pj) ε

2 = f (pj) ·Area (Qj)

and therefore we should have∫
γ

ω ∼=
∑
j

f (pj) ·Area (Qj)→
∫
D

fdm as ε ↓ 0.

Theorem 9.6 (Stoke’s Theorem II). Suppose that D = H =
{(p1, . . . , pn) ∈ Rn : p1 ≤ 0} is the “lower half space”, U ⊂o Rm, γ : D → U
is a parametrized n-surface1, and µ ∈ Ωn−1 (U) , then assuming that γ∗µ is the
restriction of a smooth compactly supported n− 1-form on Rn−1, we have∫

γ

dµ =

∫
∂γ

µ

where ∂γ : Rn−1 → U is defined by

∂γ (t1, . . . , tn−1) = γ (0, t1, . . . , tn−1) .

1 We assume γ extends to a smooth function into U on an open neighborhood of H.

http://pi.math.cornell.edu/~sjamaar/manifolds/manifold.pdf
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Fig. 9.1. This is the plot of graph of γ (x, y) =
(
x, y, 2− x2 − y2

)
over D.

Proof. If, as in book Exercise 3.2viii (our first version of Stoke’s theorem),
we let i : Rn−1 → Rn be the inclusion map,

ι (t1, . . . , tn−1) := (0, t1, . . . , tn−1) ,

then ∂γ := γ ◦ ι : Rn−1 → U. Therefore, using pull-backs commute with d, the
definitions of integration we have given along with your book Exercise 3.2viii,
we find, ∫

γ

dµ :=

∫
H
γ∗dµ =

∫
H
d [γ∗µ] =

∫
Rn−1

ι∗ [γ∗µ]

=

∫
Rn−1

(γ ◦ ι)∗ µ =

∫
Rn−1

(∂γ)
∗
µ =:

∫
∂γ

µ.

9.2 The Goal:

In the end of the day we would really like to define an integral of the form,∫
γ(D)

ω, by which we mean we want the integral to depend only on the image of

γ and not on the particular choice of parametrization of this image. For example
of ϕ : D′ → D is a diffeomorphism, so that γ (D) = γ ◦ ϕ (D′) , we are going
to want, ∫

D

γ∗ω =

∫
γ

ω =

∫
γ◦ϕ

ω =

∫
D′

(γ ◦ ϕ)
∗
ω =

∫
D′
ϕ∗ (γ∗ω) .

In other words we would like to show if ϕ : D′ → D is a diffeomorphism that
the following change of variable theorem hold,∫

D

α =

∫
D′
ϕ∗α for all α ∈ Ωkc (D) . (9.1)

This last assertion will actually only be true up to sign ambiguity when D
is connected and we will have to take care of this sign ambiguity later by
introducing the notion of an orientation. Nevertheless, the next very important
step in our development of integration of forms is to find how to relate

∫
D′
ϕ∗α

to
∫
D
α. This will lead us to the deepest topic of this course, namely degree

theory and the change of variables theorem.

Page: 56 job: 150BNotes macro: svmonob.cls date/time: 13-Feb-2020/13:01


	Part  Homework Problems
	Math 150B Homework Problems: Winter 2020
	Homework 0, Due Wednesday, January 8, 2020 (Not to be collected)
	Homework 1. Due Thursday, January 16, 2020
	Homework 2. Due Thursday, January 23, 2020
	Homework 3. Due Thursday, January 30, 2020
	Homework 4. Due Thursday, February 6, 2020
	Homework 5. Due Thursday, February 13, 2020
	Homework 6. Due Thursday, February 20, 2020


	Part I Background Material
	Introduction
	Permutations Basics
	Integration Theory Outline
	Exercises
	*Appendix: Another approach to the linear change of variables theorem


	Part II Multi-Linear Algebra
	Properties of Volumes
	Multi-linear Functions (Tensors)
	Basis and Dual Basis
	Multi-linear Forms

	Alternating Multi-linear Functions
	Structure of n( V)  and Determinants
	Determinants of Matrices
	The structure of k( V) 

	Exterior/Wedge and Interior Products
	Consequences of Theorem 7.1
	Interior product
	Exercises
	*Proof of Theorem 7.1


	Part III Differential Forms on UoRn
	Derivatives, Tangent Spaces, and Differential Forms
	Derivatives and Chain Rules
	Tangent Spaces and More Chain Rules
	Differential Forms
	Vector-Fields and Interior Products
	Pull Backs
	Exterior Differentiation

	An Introduction of Integration of Forms
	Integration of Forms Over “Parametrized Surfaces”
	The Goal:



