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Part 1

Background






1

Vector Valued Integration Theory

[The reader interested in integrals of Hilbert valued functions, may go di-
rectly to Section below and bypass the Bochner integral altogether.]

Let X be a Banach space and ({2, F, u) be a measure space. Given a “nice
enough” function, f : 2 — X, we would like to define |, o Jdu as an element in
X. Whatever integration theory we develop we minimally want to require that

@(Afd,u):/ggpofduforallcpe)(. (1.1)

Basically, the Pettis Integral developed below makes definitions so that there
is an element |, o fdp € X such that Eq. 1) holds. There are some subtleties
to this theory in its full generality which we will avoid for the most part. For
many more details see [18H21] and especially [74]. Other references are Pettis
Integral (See Craig Evans PDE book?) also see

http : / /en.wikipedia.org/wiki/ Pettis_integral
and

http = / Jwww.math.umn.edu/” garrett/m/ fun/Notes/07_vv_integrals.pdf

1.1 Pettis Integral

Remark 1.1 (Wikipedia quote). In mathematics, the Pettis integral or Gelfand—
Pettis integral, named after I. M. Gelfand and B.J. Pettis, extends the definition
of the Lebesgue integral to functions on a measure space which take values in
a Banach space, by the use of duality. The integral was introduced by Gelfand
for the case when the measure space is an interval with Lebesgue measure. The
integral is also called the weak integral in contrast to the Bochner integral,
which is the strong integral.

We start by describing a weak form of measurability and integrability

Definition 1.2. Let X be a Banach space and (2, F, ) be a measure space.
We say a function u : 2 — X is weakly measurable if fou : 2 — C is
measurable for all f € X*.

Definition 1.3. A weakly measurable function u : 2 — X s said to be weakly
L' if there exists U € L' (£2, F, 1) such that |u (w)| < U (w) for u-a.e. w € 0.
We denote the weakly L' functions by L' (u: X) and for u € L' (u: X) we
define,

fully=int { [ U@ du):0 3 Ol U0 ac.}.

Remark 1.4. 1t is easy to check that L' (2, F, ) is a vector space and that ||-||;
satisfies

lzully = |z[ |Jull, and

[u+lly < lully + [lvll,

for all z € F and u,v € L' (u: X). As usual ||ul|; = 0 iff u (w) = 0 except for
w in a p-null set. Indeed, if ||u||, = 0, there exists U,, such that |lu ()| < U, (-)
a.e. and [, Undp | 0 as n — co. Let E be the null set, £ = U,E,, where
E, is a null set such that ||u(w)| < U, (w) for w ¢ E. Now by replacing U,
by ming<, U, if necessary we may assume that U, is a decreasing sequence
such that |lu| < U := limy_0 Uy, off of E and by DCT [, Udyu = 0. This
shows {U # 0} is a null set and therefore ||u (w)|| = 0 if w is not in the null set,
EU{U #0}.

To each u € L (1 : X) let

() ::/ngoudu (1.2)

which is well defined since ¢ o u is measurable and | o u| < [|¢| - [Ju ()] <
lloll ¢« U () a.e. Moreover it follows that

()] < llollx- /Q Udp = |i ()] < llglx- llul,

which shows @ € X** and
]| e < el - (1.3)



4 1 Vector Valued Integration Theory

Definition 1.5. We say u € L' (u: X) is Pettis integrable (and write u €
L., (X)) if there exists (a mecessarily unique) x,, € X such that (o) =
o (xy) for all p € X*. We say that x,, is the Pettis integral of u and denote
T, by fn udp. Thus the Pettis integral of u, if it exists, is the unique element

Joudp € X such that
® </ ud,u> :/ (pou)dpu. (1.4)
7 17

Let us summarize the easily proved properties of the Pettis integral in the
next theorem.

Theorem 1.6 (Pettis Integral Properties). The space, L: , (n: X), is a
vector space, the map,

L};et(u:X)Su%/nfduGX

is linear, and

H/ uduH < |lull, for allu € Lpy, (p: X). (1.5)
2 X

Moreover, if X is reflexive then L' (n: X) = L%, (u: X).

Proof. These assertions are straight forward and will be left to the reader
with the exception of Eq. (1.5). To verify Eq. we recall that the map
X 52— &€ X* (where Z (¢) := ¢ (x)) is an isometry and the Pettis integral,
T, is defined so that %, = 4. Therefore,

H / uduH — zuly = leullger = [llxer < Jlul, - (1.6)
(] X

wherein we have used Eq. (1.3) for the last inequality.
|

Exercise 1.1. Suppose ({2, F, ) is a measure space, X and Y are Banach
spaces, and T € B(X,Y). Ifu e Lh,, (u;X) then Tou € L}, (1;Y) and

/Toudu:T/ udjs. (1.7)
2 7

When X is a separable metric space (or more generally when u takes values
in a separable subspace of X), the Pettis integral (now called the Bochner
integral) is a fair bit better behaved, see Theorem below. As a warm up
let us consider Riemann integrals of continuous integrands which is typically all
we will need in these notes.
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1.2 Riemann Integrals of Continuous Integrands

In this section, suppose that —oco < a < b < oo and f € C([a,b],X) and for
6 >0 let

oscs (f) := max {||f (c) — f ()] : ¢, € [a,b] with |c— (| < §}.

By uniform continuity, we know that oscs (f) — 0 as ¢ J 0. It is easy to check
that f € L' (m: X) where m is Lebesgue measure on [a,b] and moreover in
this case t — || f (t)|| x is continuous and hence measurable.

Theorem 1.7. If f € C ([a,b], X), then f € LL_, (m; X). Moreover if
IIT'={a=ty <ty <--- <ty =0} Clab],

{e;}i_, are arbitrarily chosen so that t;—1 < ¢; < t; for all i, and |II| :=
max; [t; — t;—1| denotes the mesh size of let I, then

Proof. Using the notation in the statement of the theorem, let

< (b—a)oscig (f)- (1.8)
X

b n
JRECLED S OICET Y
a =1

n

S (f):=>_ fei) (ti —tin).
i=1
Ifti1=s0<s1 <---<sp=t; and ;1 Sc; <sj for 1 < j <k, then
k

Fle)(ti—tis) = > f(c)) (sj—sj-1)

j=1

= Zf(ci) — [ (<)) (sj —55-1)

k
< oscip) (f) Z (s —sj-1) = osci (f) (ti —ti—1).

So if IT’ refines II, then by the above argument applied to each pair, t;_1,t;, it
follows that
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1S (f) = Si (Il < oseyr () (i — tima) = oseig (f) - (b—a).  (1.9)
i=1

Now suppose that {II,} - ; is a sequence of increasing partitions (i.e. IT,, C
II,+1 ¥ n € N) with |II,,| — 0 as n — oo. Then by the previously displayed
equation it follows that

1S, (f) = Sm,. (DIl < 0s¢jm,, ., (f) - (b= a).

As the latter expression goes to zero as m,n — oo, it follows that
lim,, 00 Sp7,, (f) exists and in particular,

b
o (1m S, () = lim S, (sDOf)=/ o (f(B)dtY o€ X*.

n—oo a

Since the right member of the previous equation is the standard real variable
Riemann or Lebesgue integral, it is independent of the choice of partitions,
{II,,} , and of the corresponding ¢’s and we may conclude lim,,_,o, Sz, (f) is also
independent of any choices we made. We have now shown that f € L}get (m; X)
and that

b
[ r@de=tim Su, ().

To prove the estimate in Eq. (1.8)), simply choose {Hn}ff:l as above so that
IT C II; and then from Eq. (1.9) it follows that

1S (f) = S, (f)I < oscjm (f) - (b—a) VneN.
Letting n — oo in this inequality gives the estimate in Eq. (|L.8]). ]

Remark 1.8. Let f € C (R, X). We leave the proof of the following properties
to the reader with the caveat that many of the properties follow directly from
their real variable cousins after testing the identities against a p € X*.

/:f(t)dt/abf(t)dtjt/bcf(t)dt

and moreover this result holds independent of the ordering of a,b,c € R
provided we define,

1. Fora<b<e,

/Cf(t)dt:—/af(t)dtwhenc<a.

2. For all a € R,
d t
%/ f(s)ds= f(t) for all t € R.
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1.2 Riemann Integrals of Continuous Integrands 5

3.1f f € C* (R, X), then

f(t)—f(s)=/ fr)drvsteR

vhere Pt - ()
@ .—ilg%feX.
4. Again the triangle inequality holds,
b b
/ f@d < / IIf )|l xdt| Va,beR.
a X a

Exercise 1.2. Suppose that (X, ||-||) is a Banach space, J = (a,b) with —oco <
a <b<ooand f,:J— X are continuously differentiable functions such that
there exists a summable sequence {a, }, ., satisfying

1 (0] + |

fn (t)H <ayforalteJandnecN. (1.10)

Show:

Losup { | 2RO (1 h) e TxR 5 t+heand h£0} < an.
2. The function F': R — X defined by

F(t):=> fa(t) forallte.J
n=1
is differentiable and for ¢t € J,
F(t)y=> fal(t).
n=1

Definition 1.9. A function f from an open set 2 C C to a complex Banach
space X is analytic on {2 if

o) et LD )

exists V z € 2
h—0 h

and is weakly analyticon 2 if L o f is analytic on §2 for every ¢ € X*.

Analytic functions are trivially weakly analytic and next theorem shows the
converse is true as well. In what follows let

D (29,2) :={2€C: |z — 2| < p}

be the open disk in C centered at zy of radius p > 0.
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6 1 Vector Valued Integration Theory

Theorem 1.10. If f: 2 — X is a weakly analytic function then f is analytic.
Moreover if zg € 2 and p > 0 is such that D (z9,p) C 2, then for all w €

D (207[)) ;

_ 1 f(z)
f(w) = 31 Sopian 7 — o (1.11)
n ' f
£ (w) = :mygmw) (z_(;){lﬂdz, and (1.12)
% 4(n) (,
f(w)= ZfT(O)(w—zo)n. (1.13)
n=0 :

Proof. Let K C {2 be a compact set and € > 0 such that z + h € 2 for all
|h| < e. Since £ o f is analytic we know that

V(f@+2—f@»’:VOf@+2—€mH@

< My < oo

for all z € K and 0 < |h| < ¢ where

M, = sup ‘(EOf)/(z—i—h)‘.
z€K and |h|<e

Therefore by the uniform boundedness principle,

fz+h) - f(2)
h

sup < 00

z€K,0<|h|<e

‘ = sup
X z€K,0<|h|<e

[f@+2—f@qA

X

from which it follows that f is necessarily continuous.

If D(20,p) C 2 and £ € X*, then for all w € D (z,p) we have by the
standard theory of analytic functions that

gof(w)ziﬁ o f@ a0 Lf FAOFRY
211 OD(z0,p) 2 — W 211 OD(z0,p) 2 — W

As this identity holds for all £ € X* it follows that Eq. is valid. Equation
now follows by repeated differentiation past the integral and in particular
it now follows that f is analytic. The power series expansion for f in Eq.
now follows exactly as in the standard analytic function setting. Namely we
write

1 1 1 1

_ oy — — T _ w=—=z0
z—w z—z—(w—20) 2z—201 F—

1 = fw—z\"
o — <0
_ZZOZ(ZZO>

n=0
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and plug this identity into Eq. (1.11)) to discover,

flw) =" an(w—z)"

where

1 f(z) (n)
n=— 74 ——dz = .
¢ aD(z0.,p) ( )n+1 F (z0)

211 Z— 20
]

Remark 1.11. If X is a complex Banach space, J is an open subset of C, and
fn +J — X are analytic functions such that Eq. holds, then the results of
the Exercise |1.2| continues to hold provided f, (t) and f (t) is replaced by f/, (2)
and f’(z) everywhere. In particular, if {a,} C X and p > 0 are such that

oo
f(z):= Z an (2 — 20)" is convergent for |z — zo| < p,
n=0
then f is analytic in on D (z, z) and
o0
(z) = Z nan (z —20)" "
n=1

Corollary 1.12 (Liouville’s Theorem). Suppose that f : C — X is a
bounded analytic function, then f(z) = xy for some xo € X.

Proof. Let M := sup,cc ||f (2)| which is finite by assumption. From Eq.
(1.12) with zy = 0 and simple estimates it follows that

1 [ (2)
— I g
2mi faD(O,p) (z —w)® ’

g 0
1 / ‘/:(L)Qipeif)dg

2mi ) (pei? —w)

1f" (w)ll =

< = S
= 2 ol |pei® — w|*’

Letting p 1 oo in this inequality shows ||f’ (w)|| = 0 for all w € C and hence

f is constant by FTC or by noting the that power series expansion is f (w) =

Alternatively: one can simply apply the standard Liouville’s theorem to

Eo f for £ € X* in order to show o f (z) = o f(0) for each z € C. As £ € X*

was arbitrary it follows that f(z) = f (0) = xq for all z € C. |

Exercise 1.3 (Conway, Exr. 4, p. 198 cont.). Let H be a separable Hilbert
space. Give an example of a discontinuous function, f : [0,00) — H, such that
t — (f (t),h) is continuous for all ¢ > 0.
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1.3 Bochner Integral (integrands with separable range)

The main results of this section are summarized in the following theorem.
Theorem 1.13. If we suppose that X is a separable Banach space, then;

1. The Borel o — algebra (Bx) on X is the same as o (X*) — the o — algebra
generated X *.

2. The ||-|| ¢ is then of course Bx = o (X*) measurable.

3. A function, u : (2, F) — X, is weakly measurable iff if is F /Bx measurable
and in which case ||u(-)| y is measurable.

4. The Pettis integrable functions are now easily describe as

Lpe (1;X) = L' (115 X)

:{u:Q—>X| u is F/Bx - meas. & / u(~)||du<oo}.
7}

D

. LY (u; X) is complete, i.e. L' (u; X) is a Banach space.

6. The dominated convergence theorem holds, i.e. if {u,} C L'(w;X) is
such that u(w) = lmy,_eouy (W) exists for p-a.e. x and there exists
g € L' (n) such that ||uy|lx < g a.e. for all n, then u € L' (u; X) and
limy, o0 |u — uyn|l; =0 and in particular,

For the rest of this section, X will always be a separable Banach space.

/ud,u/unduH <|lu—upll; = 0 as n — oo.
i) ) X

Exercise 1.4 (Differentiate past the integral). Suppose that J = (a,b) C
R is a non-empty open interval, f : J x {2 — X is a function such that;

1. foreach t € J, f (t,-) € L' (u; X),
2. for each w, J >t — f (t,w) is a C'-function.

3. There exists g € L' (u) such that Hf(t,w)HX < g(w) for all w where
fltw)=24f(tw).
Then F : J — X defined by

F(t):= Qf(tM) dpt (w)

is a Cl-function with

Py = [ Ftw)du).

The rest of this section is now essentially devoted to the proof of Theorem
INE
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1.3 Bochner Integral (integrands with separable range) 7
1.3.1 Proof of Theorem [L.13]

Proposition 1.14. If X is a separable Banach space, there exists {¢n},; C
X* such that
lz|| = sup |@n (z)| for allz € X. (1.14)

Proof. If ¢ € X*, then ¢ : X — R is continuous and hence Borel mea-
surable. Therefore o(X*) C B. For the converse. Choose z, € X such that
||zn]| =1 for all n and

@l =S={reXx:|x] =1}

By the Hahn Banach Theorem ?? (or Corollary ?? with z = z,, and M = {0}),
there exists p,, € X* such that i) ¢, (x,) =1 and ii) ||¢n|x+ = 1 for all n.

As |on (2)| < ||z|| for all n we certainly have sup, ¢, (z)| < ||z||. For
the converse inequality, let z € X \ {0} and choose {n;};—,; C N such that
x/ ||z|| = limg—y00 Tn, . It then follows that

X X
Pre \ 777 | — 1] = Pre \ 77— Tne <
k4l ]

ie. limg o0 [, ()| = ||z|| which shows sup,, |¢n ()| > ||z . |

— 0 as k — oo,

— =T
™

Corollary 1.15. If X is a separable Banach space, then Borel o — algebra of
X and the o — algebra generated by ¢ € X* are the same, i.e. 0(X*) = Bx —
the Borel o-algebra on X.

Proof. Since every ¢ € X* is continuous it Bx — measurable and hence
o (X*) C Bx. For the converse inclusion, let {¢,},-; C X* be as in Proposition
?7?. We then have for any zo € X that

| - —zoll = sup |pn(- — z0)| = sup [pn(-) — ¢n (z0)|-
n n

This shows || - —x¢]| is o(X*)—measurable for each o € X and hence
{z: ||z — ol <6} € o(X™).

Hence o(X™*) contains all open balls in X. As X is separable, every open set may
be written as a countable union of open balls and therefore we may conclude
o (X*) contains all open sets and hence Bx C o(X™*). |

Corollary 1.16. If X is a separable Banach space, then a function u: 2 — X
is F/Bx — measurable iff Aow : 2 = T is measurable for all A € X*.

Proof. This follows directly from Corollary of the appendix which
asserts that o(X*) = Bx when X is separable. ]
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8 1 Vector Valued Integration Theory

Corollary 1.17. If X is separable and u, : 2 — X are measurable functions
such that u (w) 1= limy, 00 uy, (w) exists in X for allw € 2, thenu: 2 — X is
measurable as well.

Proof. We need only observe that for any A € X*, Aou = limy,, 00 A 0 Uy,
is measurable and hence the result follows from Corollary [T.16} |

Corollary 1.18. If (2, F, u) is a measure space and X is a separable Banach
space, a function u : 2 — X is weakly integrable iff u : 2 — X is F/Bx -

measurable and
Il due) < o

Corollary 1.19. Suppose that (2, F, ) is a measure space and F,G : 2 — X
are F/Bx — measurable functions. Then F (w) = G (w) for p — a.e. w € 2 iff
poF(w)=9oG(w) for u — a.e. w € 2 and every p € X*.

Proof. The direction, “ =", is clear. For the converse direction let {¢,} C
X* be as in Proposition [I.14] and for n € N, let

E,={weR:p,0F (w)# ppoGW)}.

By assumption u (F,,) = 0 and therefore F := U2 1 F, is a p — null set as well.
This completes the proof since ¢, (F — G) = O on E° and therefore, by Eq.
(T.14)

|F' — G|| =sup |, (F—G)| =0 on E°.

L]

Recall that we have already seen in this case that the Borel o — field B on X

is the same as the o — field (o(X*)) which is generated by X* — the continuous

linear functionals on X. As a consequence F : 2 — X is F/B measurable iff

poF: 2 — Ris F/B(R) — measurable for all ¢ € X*. In particular it follows

that if F,G : 2 — X are measurable functions then so is F' 4+ G and AF for

all A € F and it follows that {F # G} = {F — G # 0} is measurable as well.

Also note that [|-|| : X — [0, 00) is continuous and hence measurable and hence

w — ||F (w) ||x is the composition of two measurable functions and therefore
measurable.

Definition 1.20. For 1 < p < oo let LP(u; X) denote the space of measurable
functions F : 2 — X such that [ |F||Pdu < oo. For F € LP(u; X), define
o)

1

1Pl = / VP dp

As usual in LP — spaces we will identify two measurable functions, F,G : 2 —
X, if F=G a.e.

Page: 8 job: 241Functional_2020s

oo
Lemma 1.21. Suppose a, € X and ||apt1 — an| < en and Y £, < co. Then
n=1

[e.e]
lim a, =a € X exists and ||a — ay|| < 6, 1= Y, €.
k=

n—00

Proof. Let m > n then

< E laks1 — ax| < Z e =0,. (1.15)

||am—an|—H S (arss - an)
=n k=n

S0 [|aym — an|| < Omin(m,n) — 0 as ,m,n — oo, i.e. {a,} is Cauchy. Let m — oo
in (1.15)) to find [ja — an|| < 0. |

Lemma 1.22. Suppose  that {F,} is Cauchy in  measure, i.e.
limy, psoo b (| Fn — Fi|l =€) = 0 for all € > 0. Then there exists a sub-
sequence G = F,, such that F := lim;_, G; exists [t — a.e. and moreover

Fo B F asn — oo, i.e. limy, o0 it (| Fyy — F|| > €) = 0 for all € > 0.

(&)
Proof. Let ¢, > 0 such that > &, < 0o (g, = 27" would do) and set

n=1
dn = Y €k Choose Gj = F,,; where {n;} is a subsequence of N such that
k=n

p({l|Gip1 — Gyl > e5}) < e
Let
An = Uj>n {[|Gj1 — Gyl > &5} and
E .= ﬁjovozlAN = {||Gj+1 — GJ” > €5 10}
Since p(An) < dn < oo and Ay | E it followd]| that 0 = pu(E) =

limy oot (An). For w ¢ E, ||Gj11 (w) — G (w)|| < ¢; for a.a. j and hence
by Lemma [1.21} F'(w) := lim G;(w) exists for w ¢ E. Let us define F'(w) =0
Jj—o0

forallwe F.
Next we will show Gy & F as N — oo where F and Gy are as above. If

we ANy =Ni>n {IIGj+1 — G| < g5},
then
[Gj1 (w) — Gj (w)[| < g forall j > N.

Another application of Lemma shows ||F(w) — G;(w)|| < 6; for all j > N,

ie.

! Alternatively, u(F) = 0 by the first Borel Cantelli lemma and the fact that
e bQlG i = Gill > 65}) <3272, &5 < oo
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AN C NN {IIF = Gyl < 6;} CH{IF - Gn| <N}

Therefore, by taking complements of this equation, {||F  — Gn| > dn} C An
and hence

/.L(HF — GN” > 6N) < /.L(AN) <déy -0as N — ¢

and in particular, G A Fas N — .
With this in hand, it is straightforward to show F, 5 F. Indeed, by the
usual trick, for all j € N,

p({l[Fn = Fl > e}) < p({lIF = Gjll > €/2}) + p(l|G5 = Full > €/2).
Therefore, letting j — oo in this inequality gives,

p{l[Fn = F| > e}) <limsup u([|Gj — Ful| > €/2) — 0 as n — oo,

J]—00

wherein we have used {F,} - is Cauchy in measure and G; 5 F ]

Theorem 1.23. For each p € [0,00), the space (LP(p; X), || - ||ze) is a Banach
space.

Proof. It is straightforward to check that [|-||,, is a norm. For example,

P

£+ Gllr = | 17+ Gl | < | [l + 167
0 (0}

IN

1l ze + |Gl -

So the main point is to prove completeness of the norm.

Let {F,} —, C LP(u) be a Cauchy sequence. By Chebyshev’s inequality
{F,} is Cauchy in measure and by Lemma there exists a subsequence
{G;} of {F,} such that G; — F a.e. By Fatou’s Lemma,

16~ Flp = [t inf G, ~ Gull i < lim it [ G, — Gl d

= lim inf[|G; — Gi|[) — 0 as j — oo.
k—o00

In particular, |F||, < [|G; — F|l, + [|G,llp < oo so the F' € L? and Gj R
The proof is finished because,

HFn_FHPS||Fn_Gij"'||Gj_F||p_>035jan_>oo-
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1.3 Bochner Integral (integrands with separable range) 9

Definition 1.24 (Simple functions). We say a function F : 2 — X is a
simple function if F is measurable and has finite range. If F also satisfies,
w(F #£0) < oo we say that F is a p — simple function and let S (u; X) denote
the vector space of u — simple functions.

Proposition 1.25. For each 1 < p < oo the p — simple functions, S (u; X),
are dense inside of LP (p; X) .

Proof. Let D := {z,,} -, be a countable dense subset of X \ {0}. For each
€ >0and n €N let

1
B o= {o e X sllo —aall < min (=5 )}

and then define A% := B¢ \ (Up_, B;). Thus {A%} 7, is a partition of X \ {0}
with the added property that ||y — x| < & and § [|z,[ < ||yl < 3 [lz,[|for all
y € A;.

Given F € LP (1; X) let

o0 oo
FE = E xn'lFeAi: E ‘"En'lp—l(A%).
n=1 n=1

Forw € F71(AY), i.e. F (w) € A5, we have
[Fe (@)l = llanl| < 2||F (w)]| and
[Fe (w) = F (w)]| = [lzn — F (W) <&
Putting these two estimates together shows,
[Fe = F|| <€ and |[Fe — F|| < |[Fe[| + [|[F|| < 3[F] .
Hence we may now apply the dominated convergence theorem in order to show

i |5 = Fell 1o i) = 0-

As the F. — have countable range we have not yet completed the proof. To
remedy this defect, to each N € N let

N
FEN = Zl‘n . 1F*1(A$L)-
n=1

Then it is clear that limy_,o FY = F. and that |[FN|| < ||F.|| < 2| F]| for
all N. Therefore another application of the dominated convergence theorem
implies, limpy 00 ||FEN — FEHLP(/L;X) = 0. Thus any F' € LP (u; X) may be arbi-
trarily well approximated by one of the FN € & (u; X) with ¢ sufficiently small
and N sufficiently large. ]

For later purposes it will be useful to record a result based on the partitions
{45} of X\ {0} introduced in the above proof.
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10 1 Vector Valued Integration Theory

Lemma 1.26. Suppose that F : 2 — X is a measurable function such that
w(F #0) > 0. Then there exists B € F and ¢ € X* such that u(B) > 0 and
inf,egpoF(w) > 0.

Proof. Let € > 0 be chosen arbitrarily, for example you might take ¢ = 1
and let {A,, := A%} | be the partition of X \ {0} introduced in the proof of
Propositionabove. Since {F #0} =02 | {F € A,} and p(F #0) > 0, it
follows that that u (F € A,,) > 0 for some n € N. We now let B := {F € A,,} =
F~1(A,) and choose ¢ € X* such that ¢ (z,) = |z,| and ||¢|/yx. = 1. For
w € B we have F (w) € A, and therefore || F (w) — 2, | < 3 ||@,|| and hence,

o (F (@) = llznlll = ¢ (F (W) = ¢ (@n)] < llellx-

1
F(w) = znll < 5 llzall-

From this inequality we see that ¢ (F (w)) > 3 [|@,]| > 0 for all w € B. |

Definition 1.27. To each F' € S (11; X) , let

[(F) = Y ap(F ' ({z})) = 3 ap({F = «})

reX reX
= Z zu(F=x) e X.
TEF(Q)

The following proposition is straightforward to prove.

Proposition 1.28. The map I : S(u; X) — X s linear and satisfies for all
Feds(pmX),

1) < [ 1F)du and (1.16)
(9]

@(I(F)):/gpoquVgoeX*. (1.17)

Q

More generally, if T € B (X,Y) where Y is another Banach space then
TI(F)=1(TF).

Proof. If 0 #c€ R and F € S (1; X), then

I(cF) =) au(cF=2)=") ap (F - %)

zeX xeX
=Y ey w(F =y) = cI(F)
yeX

and if c =0, I(0F) =0 = 0I(F). If F,G € S (1; X)

Page: 10 job: 241Functional_2020s

I(F+G)=> au(F +G =x)
:ix ; wF =y,G=z)
= Z(yy+ ;)u(F= y,G =2)
=yz:yu(F=y)+Zw(G=Z)=I(F)+I(G)-

Equation (|1.16]) is a consequence of the following computation:

reX zeX

HF)x =Y zu(F =2)| < Y llaf p(F = 2) = / 1| dp
2

and Eq. follows from:
P(I(F)) = (D zp({F = z}))

;w(fv)u({Fx})/Qsooqu-

]

The next elementary theorem (referred to as the bounded linear transfor-

mation theorem, or B.L.T. theorem for short) is often useful when constructing
bounded linear transformations.

Theorem 1.29 (B. L. T. Theorem). Suppose that Z is a normed space, X
is a Banach space, and S C Z is a dense linear subspace of Z. If T : S — X is a
bounded linear transformation (i.e. there exists C < oo such that ||Tz| < C ||z]]
for all z € S), then T has a unique extension to an element T € L(Z, X) and
this extension still satisfies

HTZH <C|z|| forallz € S.
Proof. The proof is left to the reader. ]

Theorem 1.30 (Bochner Integr_al). There is a unique continuous linear map
I: LY, F, 15 X) = X such that I|s(,x) = I where I is defined in Definition
. Moreover, for all F € L*(£2, F,u; X),

1) < [ Il (1.18)
o
and I(F) is the unique element in X such that
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o(I(F)) = /Q poF duVpe X*. (1.19)

The map I(F) will be denoted suggestively by [, Fdu or ji (F) so that Eq.

may be written as
go(/ qu)—/gpoquchGX* or
Q Q

p(u(F)=p(poF) Voe X~

It is also true that if T € B(X,Y) where Y is another Banach space, then

/Tqu:T/ Fdu
(9] 2

where one should interpret TF : 2 — TX which is a separable subspace of Y
even is Y 1is not separable.

Proof. The existence of a continuous linear map I : L'(2,F, u; X) — X

such that I|s(;x) = I and Eq. (1.18) holds follows from Propositions

and and the bounded linear transformation Theorem If p € X* and
F e LY(02, F,u; X), choose F,, € S (; X) such that F,, = F in L'(2, F, ji; X)
as n — 0o. Then I(F) = lim, . I(F,) and hence by Eq. (1.17),

P(I(F)) = ¢(lim I(F,)) = lim o(I(F,)) = lim | woFudp.

n—oo n—oo n— oo

This proves Eq. (1.19)) since

/((poF—gpan)du §/|<poF—goan|d,u
(0]

0
< / lellx-
(93

= |lellx*|F = FnllLr — 0 as n — oo.

poF —poF,|xdu

The fact that I(F) is determined by Eq. (1.19)) is a consequence of the Hahn —
Banach theorem. n

Ezample 1.31. Suppose that x € X and f € L' (u;R), then F (w) = f (w)x
defines an element of L' (4; X) and

/Qqu = (/Q fdu) x. (1.20)
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1.4 Strong Bochner Integrals 11
To prove this just observe that ||[F|| = |f| ||z|| € L* (1) and for ¢ € X* we have

(([59)7)- ) w0
([re@an)= [ ooran

Since ¢ ([, Fdu) = [, oo F d for all ¢ € X* it follows that Eq. (1.20) is

correct.

Definition 1.32 (Essential Range). Suppose that (£2,F,u) is a measure
space, (Y, p) is a metric space, and q : 2 — Y is a measurable function. We
then define the essential range of q to be the set,

essrany, (¢) ={y €Y : p({p(q,y) <e}) >0 Ve >0}.

In other words, y € Y is in essran, (q) iff ¢ lies in B, (y,e) with positive (1 —
measure.

Remark 1.33. The separability assumption on X may be relaxed by assuming
that ' : {2 — X has separable essential range. In this case we may still define
/. o F'du by applying the above formalism with X replaced by the separable Ba-

nach space, Xy := span(essran, (F')). For example if {2 is a compact topological
space and F : 2 — X is a continuous map, then |, o Fd is always defined.

Theorem 1.34 (DCT). If {u,} < L' (uX) is such that u(w) =
lim,, o0 un (w) exists for p-a.e. x and there exists g € L'(u) such that
llunllx < g a.e. for all n, then u € L* (4; X) and lim,_,o0 |u — up ||, = 0 and
in particular,

/udu/unduH <|lu—unl|l; = 0 as n — oo.
0 2 X

Proof. Since ||u (w)|| y = limy o0 [[un (w)]] < g (w) for a.e. w, it follows that
uw € L' (u, X) . Moreover, |[u — uy,| x < 2g a.e. and lim, o0 [|[u — up ||y = 0 ae.
and therefore by the real variable dominated convergence theorem it follows
that

lu —unll, :/ lw — upl|lx du — 0 as n — oo.
o

1.4 Strong Bochner Integrals

Let us again assume that X is a separable Banach space but now suppose that
C : 2 — B(X) is the type of function we wish to integrate. As B (X) is
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12 1 Vector Valued Integration Theory

typically not separable, we can not directly apply the theory of the last section.
However, there is an easy solution which will briefly describe here.

Definition 1.35. We say C : 2 — B (X) is strongly measurable if 2 5 w —
C (w) z is measurable for all x € X.

Lemma 1.36. If C : 2 — B (X) is strongly measurable, then 2 > w —
[C (W)l is measurable.

Proof. Let D be a dense subset of the unit vectors in X. Then

1C (W)ll,, = sup [|[C' (w) z[| x
zeD

is measurable. ]

Lemma 1.37. Suppose that u : 2 — X is measurable and C : 2 — B (X) is
strongly measurable, then 25 w — C (w)u (w) € X is measurable.

Proof. Using the ideas in Proposition we may find simple functions
Up : 2 = X so that u = lim,— o uy,. It is easy to verify that C (-)u, (+) is
measurable for all n and that C' () u (-) = limy 00 C (+) up, (+) . The result now
follows Corollary m

Corollary 1.38. Suppose C,D : 2 — B(X) are strongly measurable, then
N3w— C(w)D(w) € X is strongly measurable.

Proof. For z € X, let u (w) := D (w) x which is measurable by assumption.
Therefore, C (-) D (-) x = C'(-) u(+) is measurable by Lemma [[.37] ]

Definition 1.39. We say C : 2 — B(X) is integrable and write C' €
L' (u: B (X)) if C is strongly measurable and

Il = /Q IC (@)l dp (w) < o0

In this case we further define 1 (C) = [, C (w)du (w) to be the unique element

B (X) such that

u(C)mz/ﬂC(w)xdu(w) forallz € X.

It is easy to verify that this integral again has all of the usual properties of
integral. In particular,

[l (C x||</ 1C (W) 2| dp (w /IIC )Hlzl s (w) = (ICT]y (||

from which it follows that [[u (C)][,, < [|C]]; -
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Theorem 1.40. Suppose that (fZ,V) is another measure space and D €
L' (fi: B(X)). Then

p(C)v (D) =pov(CoD)
where @ v is product measure and
C®D(w,w):=Cw)D ).

Proof. Let 7y : 2 x 2 — 2 and 7 : 2 x 2 — 2 be the natural projection
maps. Since C ® D = [C o m][D o], we conclude from Corollary [1.38] that
C ® D is measurable on the product space. We further have

/ C® D (w,@)l,, dyt () dv (@)
2%
— / € (@) D @), dyt () dv (@)
N2x 0
</ 1€ @)l 1D @), di () dv (&)
.O><_Q
/||c e /||D Mo, dv (@) < o0

and therefore p ® v (C ® D) is well defined.
Now suppose that z € X and let u, be simple function in L' (fZ, 1/) such

that limp o0 lun — D () 2l 11, = 0. If uy = 224;0 arla, with {Ak}i\i"l being
disjoint subsets of 2 and aj, € X, then

M,
w) = ZlAk (@) C (w) ag
k=0

After another approximation argument for w — C (w) aj, we find,

M,

| @ @dnen@s) =Y r 4 [ € adiw)

§2 k=0

My,
=Y v (A p(C)ay
k=0

M,
= ()Y v (A ar = 1 (C) v (un)
k=0
(1.21)
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Since,
/ NC W) un (@) = C(w) D (@) x| d[p®v](w,@)
< / 1C (@)l llun (@) = D (@) x| dp (w) dv (@)
%0

= C|l; - [Jun — D(~)x||L1(V) — 0 asn — oo,

we may pass to the limit in Eq. (1.21]) in order to find

M@I/(C’@D)x:/Q ﬁC(w)D(@)xd[u@u](w,(D)

=umy@Dwmmwm=u«nme.

As x € X was arbitrary the proof is complete. [

Exercise 1.5. Suppose that U is an open subset of Ror Cand F': U x 2 — X
is a measurable function such that;

1.U 3 z — F (z,w) is (complex) differentiable for all w € 2.
2. F(z,-)€ L' (u: X) for all z € U.
3. There exists G € L' (i : R) such that

<G (w) for all (z,w) e U x £2.

OF (z,w)
0z

Show
UBZ—)/ F(z,w)du(w) e X
2

is differentiable and
d F(
£AF(zwdu /3 % W) w(w) .

1.5 Weak integrals for Hilbert Spaces

This section may be read independently of the previous material of this chapter.
Although you should still learn about the fundamental theorem of calculus in
Section 77 above at least for Hilbert space valued functions.

In this section, let F be either R or C, H be a separable Hilbert space over
F, and (X, M, ) and (Y, N, v) be two o — finite measures spaces.
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1.5 Weak integrals for Hilbert Spaces 13

Definition 1.41. A function v : X — H is said to be weakly measurable if
X >z — (h,¢(z)) €F is M — measurable for all h € H.

Notice that if ¢ is weakly measurable, then |4 (-)|| is measurable as well.
Indeed, if D is a countable dense subset of H \ {0}, then

. )]

1= 5 =

Definition 1.42. A function ¢ : X — H is weakly-integrable if i is weakly
measurable and

[l = [ 1 @)l din(e) <o
We let L' (X, : H) denote the space of weakly integrable functions.

For ¢ € L' (X,pu: H), let

mwwaéww@mwm

and notice that fy, € H* with

foml < [ 1ih

Thus by the Riesz theorem, there exists a unique element 1) € H such that

x))| dp () <||hHH/||¢ )|l g dpe () = ¢l - 1ol -

(h,¥) = fy (h) = /X (h, 9 (z)) du (z) for all h € H.

We will denote this element, v, as

*=Awwwm

Theorem 1.43. There is a unique linear map,

LX) 30 [ b(@)du() € B,
X

<h,/X1/J(x)d,u(x)>_/X<h,w(x)>du(x) for all h € H.

Moreover this map satisfies;

such that
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14 1 Vector Valued Integration Theory

H [ v@adut)

2.If Be L(H,K) is a bounded linear operator from H to K, then

B/¢ )du (z /sz )dp (x

3. If {en},—, is any orthonormal basis for H, then

/wa)du(x):i[/X<w<x>,en>du<x>]e

Proof. We take each item in turn.

SNl gy -
H

1. We have

H | v@adut)

= sup
H r]=1

(n [ v@au)

/X (o (2)) dps ()] < ]

= sup
lIhll=1

- fomornr) an
/Bw() ) dpe =</

and this suffices to verify item 2.

3. Lastly,
a5 ([ oermin )

n=

S [ [ e ean] e

n—=

2. If k € K, then

(o o

=

=

Definition 1.44. A function C : (X, M,u) — B(H) is said to be a weakly
measurable operator if © — (C (x) v,w) € C is measurable for all v,w € H.
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Again if C' is weakly measurable, then

g C@RE)

Xsz—||C -
72 10 @My = b R

op

is measurable as well.

Definition 1.45. A function C : X — B (H) is weakly-integrable if C is
weakly measurable and

Il = [ 1€ @ldu@) < o0
We let L' (X,u: B(H)) denote the space of weakly integrable B (H)-valued

functions.

Theorem 1.46. If C € L' (u: B(H)), then there exists a unique C € B (H)
such that

Cv= /X [C (x)v]du(z) for allve H (1.22)
and ||C|| < [IC]|; -

Proof. By very definition, X 3 z — C (z)v € H is weakly measurable for
each v € H and moreover

| le@oldna

Therefore the integral in Eq. (1.22)) is well defined. By the linearity of the weak
integral on H — valued functions one easily checks that C' : H — H defined by

Eq. (1.22)) is linear and moreover by Eq. (1.23)) we have

coll < [ 10 @vlaut) <l o]

)< [ IC@Heldat@ = Il el <. (123

which implies ||C|| < [|C]]; - |

Notation 1.47 (Weak Integrals) We denote the C in Theorem by ei-
ther 1 (C) or [ C(x)dp(x).

Theorem 1.48. Let C € L' (u: B(H)). The weak integral, u(C), has the
following properties;

L Alp (O)l,p = M€l -
2. For all v,w € H,

(1(C) vy ) = </Xc<x>du<x>v,w> - [ C@vwdna.
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51O = ()i
[ e - [/Xo<x>du<x>r.

4. If {e;};2, is an orthonormal basis for H, then

oo

p(Co=>" (/X (C(x)v,e;)dp (x)) e; VveH. (1.24)

i=1
5 IfDe L' (v:B(H)), then
pw(Cyv(D)=pov(C®D) (1.25)

where u®v is the product measure on X xY and C®D € L' (u®@v : B (H))
is the operator defined by

C®D(z,y)=C(x)D(y) VeeX andy €Y.
6. Forv,w € H,

(1 (C)v,v(D)w) = /X . dp () dv (y) (C (x) v, D (y) w) -

Proof. We leave the verifications of items 1., 2., and 4. to the reader.
Item 3. For v,w € H we have,

(1(©) vw) =Ta(CT ] = [ (C@)w,v)duo)

X

~ [ C@wadute) = [ 0.€ @) whdu(a)

X
= [ (€ @vwduta) = (€ v,).
Item 5. First observe that for v,w € H,
(C®D(z,y)v,w) = (C(x) D (y) v,w) = Z (D (y) v, e:) (C (x) ei,w) (1.26)

i=1

where {e;};~, is an orthonormal basis for H. From this relation it follows that
C ® D is still weakly measurable. Since

[ Ic® D@l dute) v )
XxY
[ @D W,y dn @) v )
XXY

=< /X y 1C (@) llop 1D W)l At () dv (y) = (ICll L1 1) 1Dl 1y < 00,
X
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wesee C®D € L' (u®@v: B(H)) and hence up® v (C ® D) is well defined. So
it only remains to verify the identity in Eq. (1.25)). However, making use of Eq.

(1.26) and the estimates,

=1
SJ Y UD(y)v,en)* Y 1C (x) esw)]?

—\ID @) ol | C () w]
D)., I1C* (@), o]l 1]
= 1D @), IC @), o] ]l

IN

it follows that g € L' (1 ® v) . Using this observations we may easily justify the
following computation,

(n@v(C®D)v,w) =/ dp () dv (y) (C (x) D (y) v, w)

XXY
= [ v ) 3 (D ) vne) (€ (a) e
XY i=1

=3 [ @) ) (D () v.e) (€ (o) i)
= Z (v(D)v,e;) (u(C)ei,w) = (u(C)v(D)v,w).
Item 6. By the definition of x (C) and v (D),

(1 (C)o,v (D) w) = /Xdu () (C (z) v, v (D) w)

:/Xdu(x)/ydz/(y) (C(x)v, D (y)w).
]

Exercise 1.6. Let us continue to use the notation in Theorem If B €
B(H) is a linear operator such that [C (z),B] = 0 for y — a.e. x, show
(1 (C), B] = 0.
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Part 11

Basics of Banach and C*-Algebras






In this part, we will only begin to scratch the surface on the topic of Banach
algebras. For an encyclopedic view of the subject, the reader is referred to
Palmer [41/[42].For general Banach and C*-algebra stuff have a look at [38,80].
Also see the lecture notes in . Putnam’s file looked quite good. For a very
detailed statements see See bottom of p. 45]






2

Banach Algebras and Linear ODE

2.1 Basic Definitions, Examples, and Properties

Definition 2.1. An associative algebra over a field is a vector space over with
a bilinear, associative multiplication: i.e.,

(ab)e = a(be)
a(b+c) =ab+ ac
(a+b)e=ac+ bc

a(Ae) = (Aa)c = Mac).

As usual, from now on we assume that F is either R or C. Later in this
chapter we will restrict to the complex case.

Definition 2.2. A Banach Algebra, A, is an F — Banach space which is an
associative algebra over F satisfying,

labll < fla]l [l ¥ a,b€ A.

[It is typically the case that if A has a unit element, 1, then ||1|| = 1. I will bake
this into the definition!]

Exercise 2.1 (The unital correction). Let A be a Banach algebra with a
unit, 1, with 1 # 0. Suppose that we do not assume ||1]| = 1. Show;

1)1 > 1.
2. For a € A, let L, € B(A) be left multiplication by a, i.e. Loz = az for all
x € A. Now define

lal = [|Lall g4y = sup {[laz| : v € A with [lz]| = 1}.

Show )
Lall < Jal < lal for all a € A,
c

|1] =1 and (A, |-|) is again a Banach algebra.

Examples 2.3 Here are some examples of Banach algebras. The first example
is the prototype for the definition.

1. Suppose that X is a Banach space, B(X) denote the collection of bounded
operators on X. Then B(X) is a Banach algebra in operator norm with
identity. B(X) is not commutative if dim X > 1.

2. Let X be a topological space, BC' (X, F) be the bounded F-valued, continuous
functions on X, with ||f|| = sup,ex |f ()| BC(X,F) is a commutative
Banach algebra under pointwise multiplication. The constant function 1 is
an identity element.

3. If we assume that X is a locally compact Hausdorff space, then Cqy (X,F) -
the space of continuous F — valued functions on X wvanishing at infinity is
a Banach sub-algebra of BC (X,F). If X is non-compact, then BC (X,TF)
is a Banach algebra without unit.

4. If (22, F,p) is a measure space then L™ (p) := L™ (2, F,u: C) is a com-
mutative complex Banach algebra with identity. In this case || f|| = || f|| Lo,
is the essential supremum of |f| defined by

[fllpoe(y = f{M >0 [f| < M p-a.e}.

5. A= LYRY) with multiplication being convolution is a commutative Banach
algebra without identity.

6. If A = (1(Z) with multiplication given by convolution is a commutative
Banach algebra with identity which is this case is the function

_Jlifn=0
%o (n) := {0 ifn#0
This example is generalized and expanded on in the next proposition.
Proposition 2.4 (Group Algebra). Let G be a discrete group (i.e. finite or
countable), A := (' (G), and for g € G let §, € A be defined by
_Jlife=gyg
dg (x) := {O ifrtg

Then there exists a unique multiplication () on A which makes A into a Banach
algebra with unit such that 64 ® 0, = 041, for all g,k € G which is given by

(u®v) (z) = Zu(g)v(g_lx) = Zu(wk_l)v(l@). (2.1)
geG keG

[The unit in A is 6. where e is the identity element of G.]
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Proof. If u,v € ! (G) then

u= Zu(g)ég and v = Zv(k)Sk

geG keG

where the above sums are convergent in A. As we are requiring (®) to be
continuous we must have

uev=3 u(g)v(k)d8 =3 ulg)v(k) .
9,k€G 9,k€G

1

Making the change of variables z = gk, i.e. ¢ = k~! or k = g~ ' then shows,

UV = Z u(g)v (97 'z) 6, = Z u (zk™") v (k) b,

9,2€G k,xeG

This leads us to define u ® v as in Eq. (2.1). Notice that

S5 Ju (k™) o (B)] = [full, o]l

z€G keG

which shows that u® v is well defined and satisfies, ||u ® v||; < [Jul|, [|v||; . The
reader may now verify that (A, ®) is a Banach algebra. ]

Remark 2.5. By construction, we have d; ® 0 = dg5 and so (A, ®) is commu-
tative iff G is commutative. Moreover for k € G and u € ¢! (G) we have,

0, ®u= Z u(g) Okg = Z U (kj_lg) 0g=u (k—l ())
geG geG

and

U® 0 = Zu(g) dgie = Zu(gk‘l) Sg=u(()k").

geG geG

In particular it follows that . ® u = u = u ® . where e € G is the identity
element.

Proposition 2.6. Let A be a (complex) Banach algebra without identity. Let
B={(a,a):a€e A,acC} =AaC.

Define
(a,a)(b, B) = (ab+ ab+ Ba, af)

and
[(a, )| = [lall + [af. (2:2)

Then B is a Banach algebra with identity e = (0,1), and the map a — (a,0) is
an isometric isomorphism onto a closed two sided ideal in B.
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Proof. Straightforward. [

Remark 2.7. If A is a C*-algebra as in Definition below it is better to
defined the norm on B by

|(a,@)|| = sup{||ab+ ab| : b € A with [|b]| < 1} (2.3)

rather than Eq. . The above definition is motivated by the fact that a €
A — L, € B(A) is an isometry, where L,b = ab for all a,b € A. Indeed,
[Labll = [ladl| < [[a]| [[b] with equality when b = a* so that ||La|l g4y = [lall-
The definition in Eq. has been crafted so that

(@, )|l = [ Lo + el g 4)

which shows ||(a, )| is a norm and a € A < (a,0) € B — B(A) are all
isometric embeddings.
The advantage of this choice of norm is that B is still a C*-algebra. Indeed

lab + ab||* = || (ab+ ab)” (ab + ab) || = || (b*a* + ab*) (ab + ab) ||
= ||b*a*ab + ab*ab + ab*a*b + |of* b*b||
< [6°[1l (a*a + Ga + aa”) b+ |af* Bl
and so taking the sup of this expression over ||b|| < 1 implies
Il < || (a*a+ da+ aa*,Jaf) | = (@, 0)* (@,0) | < lI(a,0)" | (0, )]
(2.4)
Eq. (2.4) implies ||(a, )] < ||(a,@)*|| and by symmetry ||(a,a)*| < ||(a, )] .
Thus the inequalities in Bq. (2.4) are equalities and this shows ||(a,)|> =

(@, @)*(a, )| . Moreover A is still embedded in B isometrically. because for

a€ A,

lall =

a IIaaIH < sup{[lab] : b € A with [|b]| <1} < |all

which combined with Eq. (2.3)) implies ||(a,0)|| = ||a]| -

Definition 2.8. Let A be a Banach algebra with identity, 1. If a € A, then a is
right (left) invertible if there exists b € A such that ab =1 (ba = 1) in which
case we call b a right (left) inverse of a. The element a is called invertible
if it has both a left and a right inverse.

Note if ab = 1 and ca = 1, then ¢ = cab = b. Therefore if a has left and right
inverses then they are equal and such inverses are unique. When a is invertible,
we will write a=! for the unique left and right inverse of a. The next lemma
shows that notion of inverse given here is consistent with the notion of algebraic
inverses when A = B (X) for some Banach space X.

macro: svmonob.cls date/time: 21-Jan-2020/7:08



Lemma 2.9 (Inverse Mapping Theorem). If X, Y are Banach spaces and
T € L(X,Y) is invertible (i.e. a bijective linear transformation) then the in-
verse map, T, is bounded, i.c. T~' € B (Y, X). (Note that T~ is automati-
cally linear.) In other words algebraic invertibility implies topological invertibil-
ity.

Proof. If T is surjective, we know by the open mapping theorem that T'
is an open mapping and form this it follows that the algebraic inverse of T is
continuous. [ |

Corollary 2.10 (Closed ranges). Let X and Y be Banach spaces and T €
L(X,Y). Then Nul(T') = {0} and Ran (T) is closed in Y iff

¢:= inf |Tz|, >0. (2.5)
llzll =1

Proof. If Nul (T') = {0} and Ran (T') is closed then T thought of an operator
in B (X,Ran (7)) is an invertible map with inverse denoted by S : Ran (T") —
X. Since Ran (T) is a closed subspace of a Banach space it is itself a Banach
space and so by Corollary we know that S is a bounded operator, i.e.

15yllx < IS1lo, - lylly ¥y € Ran(T).
Taking y = T'x in the above inequality shows,

12l x < 11Sllop - I Tzlly ¥ 2 € X

. -1
from which we learn € = ||S]|,, > 0.
Conversely if € > 0 (¢ as in Eq. (2.5))), then by scaling, it follows that

ITally > ezl ¥ € X.
This last inequality clearly implies Nul (T) = {0} . Moreover if {z,} C X is a
sequence such that y := lim,_,, Tx, exists in Y, then
1 1
[z — 2wl < - 1T (0 — 2m)ly = - [Tan —Tom|y

1
—>g||y—y||Y:0asm,n—>oo.

Therefore = := lim,_,~ , exists in X and y = lim,_,., T, = Tz which shows
Ran (7)) is closed. |

Ezample 2.11. Let X = (1 (Ng) and T : X — C([0,1]) be defined by
Ta = Y2 anz™ Now let Y := Ran(T) so that T : X — Y is bi-
jective. The inverse map is again not bounded. For example consider a =
(1,-1,1,—1,...,£1,0,0,0,...) so that
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n n+1 n 1
r ()" =1 14 (=1)"2"t
Ta=) (2" = —z—-1 1+ '

We then have ||Ta||, < 2 while |la| y =n+1. Thus HT‘1||OP = 0o. This shows
that range space in the open mapping theorem must be complete as well.

The next elementary proposition shows how to use geometric series in order
to construct inverses.

Proposition 2.12. Let A be a Banach algebra with identity and a € A. If
Yoot lla™|| < oo then 1 — a is invertible and

[ —a)7H < > lla”] -
n=0

In particular, if ||la|| < 1, then 1 — a is invertible and

1
1—lall’

I —a)7} <

Proof. Let b = >, a™ which, by assumption, is absolutely convergent
and so satisfies, ||b]| < 07 [la™|| . It is easy to verify that (1—a)b = b(1—a) =
1 which implies (1 —a)”" = b which proves the first assertion. Then second
assertion now follows from the first and the simple estimates, ||a™|| < ||a]|", and
geometric series identity, Y o [la||" =1/ (1 — [|a]|). [

Notation 2.13 Let A;,, denote the invertible elements for A and by con-
vention we write A instead of Al.

Remark 2.14. The invertible elements, A;,,, form a multiplicative system, i.e.
if a,b € A, then ab € A;p,. As usual we have (ab)f1 =b"la7! as is easily
verified.

Corollary 2.15. If x € A;n, and h € A satisfy H:v_th <1, showx+h € Ajny

and
1

— [z Al
In particular this shows A, of invertible is an open subset of A. We further
have

|@+ w7 < a1l (2.6)

oo
(x4 h)~ Z *1h
=0
=o'~z hat et he T ha T —a the T ha T T ha T 4L
N
= Z _1h '+ Ry
n=0
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24 2 Banach Algebras and Linear ODE

where

—1\N _ 1
IRN] < || @)Y [l ==y

Proof. By the assumptions and Proposition both z and 1+ x~1h are
invertible with

1
-1
270l < ==y

As (x4 h) =z (1+x'h), it follows that  + h is invertible and

(x+h)" = (1+ aflh)_1 zh

Taking norms of this equation then gives the estimate in Eq. (2.6]). The series
expansion now follows from the previous equation and the geometric series rep-
resentation in Proposition Lastly the remainder estimate is easily obtained
as follows;

Ry =Y (~a'n)"a~t = (—a~tn)" " [f: (—mlh)n] !

n>N n=0
= (—J;*lh)N—F1 (1 + aflh)_l z !

so that
It < e o =) ™|
— N+1 _ 1
<[ b ey

(]
In the sequel the following simple identity is often useful; if b, ¢ € A;p,,, then

bl—ct=bt(c-b)ct (2.7)

This identity is the non-commutative form of adding fractions by using a com-
mon denominator. Here is a simple (redundant in light of Corollary [2.15)) ap-
plication.

Corollary 2.16. The map,Ainy > ® — 371 € Ay is continuous. [This map
s in fact C*°, see Exercise below.]

Proof. Suppose that x € A;,, and h € A is sufficiently small so that
lz='h|| < ||z=![| Ih]] < 1. Then @ + h is invertible by Corollary [2.15| and we
find the identity,

(z+h) =z =@+h) @—(z+h))ze =—(x+h) That. (2.8)
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From Eq. (2.8) and Corollary it follows that

@+ w7 =t < o ||+ 7| Al < 27— 1M g as 0.

2= Al

2.2 Calculus in Banach Algebras

Exercise 2.2. Show that the inversion map f : Aijny — Aine C A defined by
f (z) = 71 is differentiable with

[ (@) h = (Onf) (x) = =2~ tha™!
for all x € A;p, and h € A. Hint: iterate the identity
(x+h) =2 = (@+h) T ha! (2.9)

that was derived in the lecture notes. [Again this exercise is somewhat redundant
in light of light of Corollary [2.15]]

Exercise 2.3. Suppose that a € 4 and t € R (or C if A is a complex Banach
algebra). Show directly that:

1. eta =32 Lra™ is an absolutely convergent series and [[efe| < el*lllel.
2. e is differentiable in ¢ and that 4 e'® = ae'® = e'“a. [Suggestion; you could

prove this by scratch or make use of Exercise [L.2]]
Corollary 2.17. For a,b € A commute, i.e. ab = ba, then e®e® = e*t0 = ebe?.

Proof. In the proof to follows we will use e/®b = be'® for all ¢ € R. [Proof is
left to the reader.] Let f (t) := e~ **e!(?) then by the product rule,

f(t) — _e—taaet(a+b)+e—ta (a + b) et(a—i—b) _ e—tabet(a—i-b) _ be—taet(a—i-b) _ bf (t) )

Therefore, 4 [e=*f (t)] = 0 and hence e ® f (t) = e~%f (0) = 1. Altogether
we have shown,
e—tbe—taet(a-i-b) _ e—tbf (t) = 1.

Taking ¢ = +1 and b = 0 in this identity shows e™%e® = 1 = e%™¢, i.e.
(e“)_1 = e~ %. Knowing this fact it then follows from the previously displayed
equation that e!(?t?) = etae!® which at t = 1 gives, e%e® = e, Interchanging

the roles of a and b then completes the proof. [
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Corollary 2.18. Suppose that A € A, then the solution to

§(t) = Ay (t) withy(0) =1

is given by y (t) = e where
tA " n
=Y A, (2.10)
n=0
Moreover,
(94 — otAesA for gl 5.t € R. (2.11)

We also have the following converse to this corollary whose proof is outlined
in Exercise [2.16] below.

Theorem 2.19. Suppose that Ty € A for t > 0 satisfies

1. (Semi-group property.) To =1 € A and TyTs = Ty4s for all s,t > 0.
2. (Norm Continuity) t — Ty is continuous at 0, i.e. || Ty —I|| 4, — 0 ast | 0.

Then there exists A € A such that T, = et4 where et is defined in Eq.
12.10).

Exercise 2.4. Let a,b € A and f (t) := et — ¢teet® and then show
f(0) = ab — ba.

[Therefore if e!(¢10) = ete?® for ¢ near 0, then ab = ba.]

Exercise 2.5. If Ay is a unital commutative Banach algebra, show exp (a) = e*

is a differentiable function with differential,
exp’ (a) b= eb = be”.

Exercise 2.6. If t — c(t) € A is a C'-function such that [c(s),c(t)] = 0 for

all s,t € R, then show

9 ge®) — ¢ (1) eot®).

dt
Notation 2.20 Fora € A, let ad, € B (A) be defined by ad, b = ab — ba.

Notice that
lada bl < 2all [|b]] Vb€ A

and hence |ladg||, < 2]a|l -

op —
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Proposition 2.21. If a,b € A, then

ebe™ = i ad”

ada js computed by working in the Banach algebra, B (A) .

where e
Proof. Let f(t) := e!®be™t®, then
f(t) = aet®be ™ — e'®be'q = ad, f (t) with f(0) =
Thus it follows that

D[ f ()] =0 = e ™o f (1) = 0% f (0) =,

From this we conclude,
etbe™ = f(t) = e'*a (b).
]
Corollary 2.22. Let a,b € A and suppose that [a,b] :== ab — ba commutes with

both a and b. Then

1
€a€b — €a+b+ 5 [a,b] )

Proof. Let u (t) := e*®e'® and then compute,
u(t) = aet®et? & etopett = getoeth 4 ptape—tagtath

= [a+ e ()] u(t) =c(t)u(t) withu(0)=1, (2.12)

where
c(t) = a + et2de (b)y=a+b+t[a,b

because
ad2 b = [a, [a,b]] = 0 by assumption.

Furthermore, our assumptions imply for all s,z € R that

[c(t),c(s))]=[a+b+t[a,b],a+ b+ s]a,b]]
= [t]a,b],a+ b+ s[a,b]] = st][a,b],]a,b]] =0.

Therefore the solution to Eq. (2.12) is given by
u(t) = ef e(r)dr _ et(a+b)+%t2[a,b].

Taking t = 1 complete the proof. ]
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26 2 Banach Algebras and Linear ODE

Remark 2.23 (Baker-Campbell-Dynkin-Hausdorff formula). In general the
Baker-Campbell-Dynkin-Hausdorff formula states there is a function
I’ (a,b) € A defined for ||al| 4 + ||b]| 4 sufficiently small such that

6aeb _ 61—'(0,,b)

where

1 1
I'(a,b)=a+b+ §[a,b]+ﬁ(adib+ad§a)+...

where all of the higher order terms are linear combinations of terms of the form
ady, ...ady, xo with z; € {a,b} for 0 <i <n and n > 3.

Exercise 2.7. Suppose that a(s,t) € A is a C*-function (s,t) near (so,to) €
R?, show (s,t) — e?(5%) € A is still C2. Hints:

1. Let f,, (s,t) := a(snif)n and then verify

; 1 —1.
ful|| < 1) lal™™ llall,
1 n—1
152l < ;'
r 1 n—2 .2 1 n—1 ..
n|| < v TR
ol < gy el 1l + gl
; 1 n—2 . 1 n—1.
Il < m—2) llall™™= flall fla"]| + =1 llall™ " [la"]]
1 2 2 1 —1
1" < n / n 1
1201 gy el 117 + g el )

where f :=8f/0t and f = %.
2. Use the above estimates along with repeated applications of Exercise[I.2]in
order to conclude that f (s,t) = e**% is C? near (s, o).

Theorem 2.24 (Differential of e*). For any a,b € A,
d 1
pe® 1= —[oe T = e“/ et hetadt.
dS 0

Proof. The function, u (s, ) := e(@+5%) is C? by Exercise and therefore
we find,

s (0,6) = 1ot (5,6) = -fo [(a+ ) u s, )

= bu (s,t) + aus (0,t) with us(0,0) = 0.

To solve this equation we consider,
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4
dt

which upon integration,

[e " u, (0,1)] = e "bu (0,t) = e **be*

1
e [0pe?] = e %us (0,1) = / e betedt
0

and hence L
Ope® = ea/ e~ petadt.
0

Corollary 2.25. The map a — e® is differentiable. More precisely,
et = e — apet|| = 0 (o).
Proof. From Theorem

1
ieaJrsb _ i|06a+8b+5b _ ea+sb/ eft(a+sb)bet(a+sb)dt

ds de 0

and therefore,
1 1 1
ettt et _ Gpet = / dse‘”“/ dte—tatsb)petlatsh) ea/ e~ tapeteqt
0 0 0
1 1
_ / ds/ dt {6(14)(a+sb)bet(a+sb) B e(lft)abeta}
0 0

and so

1 1
Hea+b e — abeaH < / dS/ dt "6(17t)(a+5b)b€t(a+5b) _ 6(17t)ab€ta
0 0

To estimate right side, let

g (S,t) — e(l—t)(a+sb)bet(a+sb) _ e(l—t)abeta.

Then by Theorem

d — a-—+s a-—r+s
”g/ (s,t)” _ Hds {6(1 t)(a+sb)p t(at b)} H <C ||b||2

and since ¢ (0,t) = 0, we conclude that ||g (s, )| < C||b]|*. Hence it follows
that
et — e — e = 0 (1))
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2.3 General Linear ODE in A

There is a bit of change of notation in this section as we use both capital
and lower case letters for possible elements of A. Let us now work with more
general linear differential equations on A where again A is a Banach algebra
with identity. Further let J = (a,b) C R be an open interval. Further suppose
that h,A € C(J,A), s € J, and z € A are give then we wish to solve the
ordinary differential equation,

yt)=A{)y(t)+h(t) with y(s) =z € A, (2.13)

for a function, y € C* (J,.A) . This equation may be written in its equivalent (as
the reader should verify) integral form, namely we are looking for y € C (J,.A)
such that

/A d7+x+/:h()d7. (2.14)

Notation 2.26 For ¢ € C(J,A), let |||, := maxies|l¢(t)] € [0,00]. We
further let
BC(J,A) :=={p € C(J,A): llgll < oo}

denote the bounded functions in C (J,A) .

The reader should verify that BC' (J, A) with ||-||  is again a Banach algebra.
If we let

(Auy) (1) = (A2y) (1) = / A(r)y (7) dr and (2.15)
o (t) ::x+/ h(7)dr

then these equations may be written as
y=Ay+o = T—-A)y=¢.

Thus we see these equations will have a unique solution provided (Z — Ag)~
is invertible. To simplify the exposition without real loss of generality we are
going to now assume

IA]l, = /] 1A (7)]| dr < oo. (2.16)

The point of this assumption if A is defined as in Eq. (2.15), then for y €
BC (J,A) and t € J,
[ 1a@ian
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Wl < [ 1A drlyl.
(2.17)

ol <| [ 14yl ir] <

2.3 General Linear ODE in A 27

This inequality then immediately implies A5 : BC (J, A) — BC(J, A) is a
bounded operator with || 4s]|,, < [|A[;. In fact we will see below in Corollary
[2:29) that more generally we have

148 llop < — (l4]l)"

which is the key to showing (Z — A,)~" is invertible.

Lemma 2.27. For alln € N,

An / dTn/ dTp_1- / dTlA(Tn)...A(Tl)(p(Tl).
Proof. The proof is by induction with the induction step being,
(AFhe) (1) = (A7 Asp) (1)

_ /d / " e / Y dnA(m) . A(n) (Ae) (1)

t Tn T2 T1

= / dTn/ drp_1--- drA(m,)... A (7'1)/ A (10) ¢ (10) d7o
St ST,L T °

= / dTn/ dTn_1~~~/ droA (1) ... A(11) A (70) ¢ (10) -

Lemma 2.28. Suppose that 1) € C (J,R), then

/:dTn/ST"dTn1.,,/ST2d71¢(Tn)...¢ 71)271!(/:1,&(7)%)”. (2.18)

Proof. The proof Wlll go by induction on n with n = 1 assertion obviously
being true. Now let ¥ (¢ f ¢ (1) dr so that the right side of Eq. l) is

@ (t)" /n! and ¥ (t) = w( ) . We now complete the induction step;

/: dr, / - / " (1) 16 (7o)
_ /dmm ()] n'/c” o

= T O = e o
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28 2 Banach Algebras and Linear ODE
Corollary 2.29. For alln € N,

" 1 n_ 1 "
1421, < 2 1417 = | [ 14 ar]
and therefore (T — As) is invertible with
|@—a07 <expliaf) =ex ( J1ami dr) :

Proof. This follows by the simple estimate along with Lemma [2.27 that for
any t € J,

1(A5e) (D < dTn/ 7y / dry [[A(7n) ... (7'1)@(7'1)”‘

dr [ [Can ||A<rn>...A<n>|] ol

el < ([ 1a@lar) 1o

Taking the supremum over ¢t € J then shows

450l < 3 ([ 1a@Nar) el

which completes the proof. ]

)| dr

Theorem 2.30. For all ¢ € BC (J, A), there exists a unique solution, y €
BC (J,A), toy = Asy + ¢ which is given by

y(t) = (@-1)7"¢) )
t)+iLthn/sTndTn_1~-~/ST2d71A(Tn)...A(Tl)ga(ﬁ).

Notation 2.31 For s,t € J, let uf (t,s) =1 and for n € N let

t Tn T2
= / dTn/ dTn_1~'~/ drA(ry) ... A(m). (2.19)

Definition 2.32 (Fundamental Solutions). For s,t € J, let

A@ﬁyz(a Ay) ) }:u (t, s) (2.20)

ﬂ+ilmlumpxdﬂm%Aw.(mU
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Equivalently u? (t,s) is the unique solution to the ODE,

L
"

(t,s) = A(t)u® (t,s) with u?(s,s) = 1.
Proposition 2.33 (Group Property). For all s,0,t € J we have
At,s)ul (s,0) =ut (t,0). (2.22)
Proof. Both sides of Eq. satisfy the same ODE, namely the ODE
J(t) = Ay (1) with y(s) = v (s,0).
The uniqueness of such solutions completes the proof. [

Lemma 2.34 (A Fubini Result). Let s,t € J,n € N and f (7,...,71,70) be
a continuous function with values in A, then

/dTn/ dTp—1- / dTl/ drof (Tn, -, 71,70)
/dTo/ dTn/ dr_1- / dri f (T, ..., 11, 70) -

Proof. We simply use Fubini’s theorem to change the order of integration
while referring to Figure (2.1)) in order to work out the correct limits of inte-
gration. [ |

Fig. 2.1. This figures shows how to find the new limits of integration when ¢ > s and
t < s respectively.

Lemma 2.35. If n € Ny and s,t € J, then in general,

t
(AZ'HQD) (t) = / u;;‘ (t,o) A(o) ¢ (o) do. (2.23)
and if H (t) := [ h(7)dr, then
t
(ATH) (t) = / u’t (t,0) h (o) do. (2.24)
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Proof. Using Lemma [2.34] shows,

(A1) (t):/s dTn.../Szdﬁ/s 1dTOA(Tn)...A(ﬁ)A(To)c/?(To)

:/: i {/T: . /Tom dTnl_../T:2 dTlA(Tn)...A(Tl):| A (10) ¢ (10)

- / ul (t,0) [A (o) ¢ (0)] do

Similarly,

(A:}H)():/tdm / dﬁ/ droA (1) ... A(m / h (10) dmo
/d’TO [/ d’Tn/ drp_1- /ZdTlA(Tn)...A(Tl):| h (19)

:/S WA (£ 0) h (o) do.

Proposition 2.36 (Dual Equation). The fundamental solution, u? also sat-
isfies

t
u? (t,s) = 1+/ u? (t,0) A (o) do (2.25)
which is equivalent to solving the ODE,
j u (t,5) = —u? (t,5) A(s) with u” (t,t) = 1. (2.26)
s
Proof. Summing Eq. (2.23) on n shows,
[e'e) 0 t
S ) 0= [ ut o) Ao (o) do
n=0 n=0""%

:/ Zu;?(t,o)A(a)go(a)dU
S n=0
:/ u? (t,0) A(0) ¢ (o) do

and hence

(=207 0) ) =+ Y (A29) (1)
n=0

= (t)+ / u? (t,0) A (o) p (o) do (2.27)
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which specializes to Eq. when ¢ (t) = 1.Differentiating Eq. on s
then gives Eq. . Another proof of Eq. (2.26)) may be given using Propo-
sition to conclude that w(t,s) = w(s,t)”" and then differentiating this
equation shows

d d -1 1 (d -1
gu(t,s) = U (s,t)” = —u(s,t) (dsu (s,t)) u(s,t)

—u(s,t) P A u(s, ) u(s,t) = —u(s, ) A(s).
]

Theorem 2.37 (Duhamel’s principle). The unique solution to Eq. 18
y(t) = uA (£ 5) 2+ / " (o) h (o) do (2.28)
s
Proof. First Proof. Let
w(t)=x+ H (t) with H (t) :/th(T)dT.

Then we know that the unique solution to Eq. (2.13) is given by

y=(T- AS)71 p=(T- AS)71 r+ (T - /15)71
s)x+ ZAZH,
n=0

where by summing Eq. ,
(-a)"m) - Z
= / Zu (t,0)

and the proof is complete.

Second Proof. We need only verify that y defined by Eq. satisfies
Eq. . The main point is that the chain rule, FTC, and differentiation past
the integral implies

Z/;ﬁ} (o) do

o)do = / A(t,0)h(o)do (2.29)
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30 2 Banach Algebras and Linear ODE
d t

a A
o Su (t,o)h(o)do

d t+e d t
:%b/ uA(t7a)h(J)dJ+%\o/ u (t+¢,0)h(0)do

=ut (t,t) h(t) —I—/ %UA (t,o0) h(o)do
h(t)Jr/tA(t)uA(t,a)h(a)da

— b +A(t)/ WA (£ o) h (o) do.

Thus it follows that
g (t) = A(t)ut (t,s)erA(t)/ u? (t,0) h (o) do + h(t)
=A@)y(t)+h(t) with y(s) ==z.

|
The last main result of this section is to show that u? (t, s) is a differentiable
function of A.

Theorem 2.38. The map, A — u? (t,s) is differentiable and moreover,
t
opu’ (t,s) = / u? (t,0) B (o) u” (0, s) do. (2.30)
S

Proof. Since 9pA4 = AP and

ut (-,8) = (T - /1;4)71 1

we conclude form Exercise [2.2] that
Opu? (5) = (T— A2) " AB (T - 2271
Equation (2.30) now follows from Eq. (2.29) with & (¢) = B (¢) u” (0, s) so that

and

H(t) = /:B(o)uA (0,5)do = (Af (I—Af)’11) (t).

Remark 2.39 (Constant coefficient case). When A (t) = A is constant, then

t Tn T ‘. n
ui (t,s) = / dTn/ dTp_1-- / dr A" = #An
s S s n:
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and hence u® (t,s) = e*=9)4, In this case Egs. (2.28) (2.30) reduce to

¢
y(t) =et=4z + / =4 (5) do,

S

and for B € A,
t
opget=94 = / elt=9)Ap (o) el7=9)4 g,

Taking s = 0 in this last equation gives the familiar formula,

¢
Opett = / =B (g) e do.
0

2.4 Logarithms

Our goal in this section is to find an explicit local inverse to the exponential
function, A — e for A near zero. The existence of such an inverse can be
deduced from the inverse function theorem although we will not need this fact
here. We begin with the real variable fact that

1 1
d _
In(1+x) :/ —In (14 sx)ds =/ z(1+sz) " ds.
o ds 0
Definition 2.40. When A € A satisfies 1 + sA is invertible for 0 < s < 1 we
define

1
In(L+ A) = / A(1 +sA)" ds, (2.31)

0

The invertibility of 1 4+ sA for 0 < s < 1 is satisfied if;

1. A is nilpotent, i.e. AN =0 for some N € N or more generally if
2. > o IIA™]] < oo (for example assume that ||A]| < 1), of
3. if X is a Hilbert space and A* = A with A > 0.

In the first two cases

o0

(1+s4)7 =) (—s)" A"

n=0

Proposition 2.41. If 1 + sA is invertible for 0 < s <1, then
1
Opn(1+ A) = / (1+5A)""B(1+sA)" " ds. (2.32)
0
If0=[A,B] := AB — BA, Eq. reduces to

Opln(1+A)=B(1+A)"". (2.33)
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Proof. Differentiating Eq. (2.31)) shows
1
dpln(1+ A) :/ [B(1+3A)—1 —A(1+5A)""sB(1+sA)"" ds
0

= /1 [B— sA(1 +sA)*1B} (1+sA) " ds.
0

Combining this last equality with
SAQ+5sA) ' =(14+sA-1)(1+sA) '=1—(1+s4)""
gives Eq. (2.32). In case [4, B] =0,
(1+sA) " B(14+sA) ' =B(1+s4)"°

= B% [—A7 (14 s4)7]

and so by the fundamental theorem of calculus
1 s=1
Opln(1+ A) = B/ (1+sA) 2ds=B [-A*l 1+ SA)—l] i
0 5=
~-B [A‘l AT+ A)—l} — BA™! [1 1+ A)_l}
=B[AT'1+A) -AT1+A) T =BO+A)".
]

Corollary 2.42. Suppose that t — A(t) € A is a C' — function 1 + sA(t) is
invertible for 0 < s <1 forallt € J = (a,b) CR. Ifg(t):=1+A(t) and t € J,
then

d ! 1, _
T In(g(t)) = / (I-s4+sg(t)) Ly ) (1—s+sg(t)) Y ds. (2.34)
0
Moreover if [A(t),A(7)] =0 for all t,7 € J then,
d . _
Zng®) =A@ 1 +A®) ' (2.35)
Proof. Differentiating past the integral and then using Eq. (2.32)) gives

%lnw (t) = / (1+sA (1) A@) (L+sA @) ds

1
:/0 (L4s(g(t) — 1) g() (L +s(g () — 1) ds

:/0 (1—s+sg(8) " g(t)(1— 5+ s9(8) " ds.
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For the second assertion we may use Eq. (2.33) instead Eq. (2.32) in order
to immediately arrive at Eq. (2.35]). [

Theorem 2.43. If A € A satisfies, 1 4+ sA is invertible for 0 < s < 1, then
MU+ — 14 A (2.36)

If C € A satisfies Y oy S |C™|" < 1 (for ezample assume ||C|| < In2, i.e.
ell€ll < 2), then
Ine® =C. (2.37)

This equation also holds of C' is nilpotent or if X is a Hilbert space and C = C*-
with C' > 0.

Proof. For 0 <t <1 let
1
C(t):ln(I—HA):t/ A1+ stA) " ds.
0

Since [C (), C (1)] = 0 for all 7, € [0,1], if we let g (¢) := e“®), then

d . _
g(t) = aeC“) =Ct)e’D = A1 +tA) " g(t) with g(0) = 1.
Noting that g (t) = 1 + tA solves this ordinary differential equation, it follows
by uniqueness of solutions to ODE’s that e“(Y) = g(t) = 1 + tA. Evaluating
this equation at ¢ = 1 implies Eq. (2.36)).
Now let C' € A as in the statement of the theorem and for ¢ € R set

oo

_ tC _ n
n=1
Therefore,
X in
— n
1+sA(t) = 1+SZ;HC
with

t" n
n
SSE —n!||C I"<1for0<s,t<1.

n=1

e} o
n
n=1

Because of this observation, In (') :=In (1 + A (t)) is well defined and because
[A(t),A(T)] =0 for all 7 and ¢ we may use Eq. (2.35) to learn,
d

i (ef€) = A(t) 1+ A(t) " = Ce!Ce ¢ = O with In (e°€) = 0.

The unique solution to this simple ODE is In (etc) = tC' and evaluating this at

t =1 gives Eq. (2.37). |
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32 2 Banach Algebras and Linear ODE
2.5 C*-algebras

We now are going to introduce the notion of “star” structure on a complex
Banach algebra. We will be primarily motivated by the example of closed *-
sub-algebras of the bounded linear operators on (in) a Hilbert space. For the
rest of this section and essentially the rest of these notes we will assume that
B is a complex Banach algebra.

Definition 2.44. An involution on a complex Banach algebra, B, is a map
a € B— a* € B satisfying:

*

. tnvolutory  a™ =a

. additive (a4 b)* = a* +b*

. conjugate homogeneous  (A\a)* = Aa*
. anti—automorphic  (ab)* = b*a*.

Bl WO~

If * is an involution on B and 1 € B, then automatically we have 1* = 1.
Indeed, applying the involution to the identity, 1* =1 - 1* gives

1=1"=(1-1")"=1"-1"=1-1"=1"
For the rest of this section we let B be a Banach algebra with involution, *.

Definition 2.45. If a € B we say;

1. a is hermitian if a = a*.
2. a is normal if a*a = aa*, i.e. [a,a*] =0 where [a,b] := ab — ba.
3. a is unitary if a* = a~ "

Ezample 2.46. Let G be a discrete group and B = ¢! (G, C) as in Proposition
We define x on B so that §; = d,-1. In more detail if f =37 . f(g)dy,
the

=3 5@ => @) = [ (9)=7F(gD.

geG geG

Notice that
((596h)* = (5;h = 5(gh)_1 = 0p-14-1 = Op-104-1 = 5;(5;.

Using this or by direct verification one shows (f-h)* = h* - f*. The other
properties of x — are now easily verified.

Definition 2.47 (C*-condition). A Banach * algebra B is

1. x multiplicative if ||a*al|| = ||a*|| |lal|
2. x isometric if ||a*|| = ||a|
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3. % quadratic if ||a*a|| = ||a|?.
We refer to item 3. as the C*-condition.

Lemma 2.48. Conditions 1) and 2) in Definition are equivalent to con-
dition 3), i.e. * is multiplicative & isometric iff * is quadratic.

Proof. Clearly * is multiplicative & isometric implies that * is quadratic.
For the reverse implication; if ||a*a|| = ||a]|® for all a € B, then

2
lall™ < lla*[[lall = llall < fla™]-

Replacing a by a* in this inequality shows ||a|| = ||a*|| and hence Thus ||a*a| =
2 *
llall™ = llall fla”]| u

Remark 2.49. Tt is fact the case that seemingly weaker condition 1. in Definition
by itself implies condition 3 but the implication 1. = 3. is quite non-
trivial. See Theorem 16.1 on page 45 of |11]. [That this result holds under the
additional assumption that B is commutative and “symmetric” is contained
in Theorem ?? below.] Historically condition 1. is called the C*-condition on a
norm and condition 3. is called the B* — condition on a norm, see the WikipediaEI
article for information about B*-algebras being the same as C*-algebras.

Definition 2.50. A C*-algebra is a * quadratic algebra, i.e. B is a C*-algebra
if B is a Banach algebra with involution * such that ||a*a|| = |ja||* for all a € B.

The next proposition gives the primary motivating examples of C*-algebras.

Proposition 2.51. Let H be a Hilbert space and BB be a x — closed and operator
norm-closed sub-algebra of B (H) , where A* is the adjoint of A € B(H). Then
(B, *) is a C*—algebra.

Proof. From the basic properties of the adjoint, B (H), is a %-algebra so
the main point is to verify the C*-condition, which we now do in two steps.

1. If K € H, then

Akl = sup [(A"k,h)[ = sup [(k, Ah)]

1Al =1 Il =1
< sup |kl ARl g = [[Allop 1+l -
1Al =1

From this inequality it follows that ||A*[|,, < [[A]|,, . Applying this inequal-
ity with A replaced by A* shows [[A]|,, < [|4*|,, and hence ||A*|| = [|A]
which prove that * is an isometry.

! https://en.wikipedia.org/wiki/C*-algebra
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2. Given item 1., we find the inequality,
1A Al < A" All = [|A]1>.
However we also have for any € H that
|Az||* = (A" Az,z) < | A" A ||lz]* = [|A]* < | A" AJ.

Combining the last two displayed inequalities verifies the C*-condition,

| A=Al = [l A]>.

Alternate proof. Using the Rayleigh quotient in Theorem we have
for any A € B(H),

|AI2, = sup |[Af|* = sup (Af,Af)= sup (A*Af,f) =[|A"Al,,
17l1=1 17l=1 17l=1

Remark 2.52. Irvine Segal’s original definition of C'*-algebra was in fact a *-
Closed sub-algebra of B (H) for some Hilbert space H. The letter “C ” used here
indicated that the sub-algebra was closed under the operator norm topology.
Later, the definition was abstracted to the C*-algebra definition we have given
above. It is however a (standard) fact that by the “GNS construction,” every
abstract C*-algebra may be “represented” by a “concrete” (i.e. sub-algebra of
B (H)) C*-algebra. The “GNS construction” along with appropriate choices of
states shows that in fact every abstract C*-algebra has a faithful representation
as a C*-subalgebra in the sense of Segal, see Conway |9, Theorem 5.17, p. 253].
The B*-terminology has fallen out of favour. [Incidentally, a von Neumann
algebra is a w.o.t. (or s.o.t.) closed *-subalgebra of B (H) and is often called
a W* — algebra.|] See the Appendix to this section for some examples of
embedding commutative C*-algebras into B (H).

2.5.1 Examples

Here are a few more examples of C*-algebras.

Ezample 2.53. If X is a compact Hausdorff space then B := C(X,C) with

[f1l = sup | f (x)| and f* (z) := f (z)
reX

is a C*-algebra with identity. If X is only locally compact, then B := Cy(X,C)
is a C*-algebra without identity. We will see that these are, up to isomorphism,
all of the commutative C*-algebras.
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Ezample 2.54. Let B be a C*-subalgebra of B (H) and then set

81:{(6121) :AEB}CB(H@H).

Clearly,

A0
BBA—><0A>631

is a C*-isomorphism. This example shows that B and B; are the same as abstract
C*-algebras. This example shows that the C*-algebra structure of B is not
necessarily the whole story when one cares about how B is embedded inside of
the bounded operators on a Hilbert space.

Ezample 2.55. If (£2, F, ) is a measure space then L (p) := L (2,
is a commutative complex C*-algebra with identity. Again we let f* (w)
The C*-condition is

1 £ = sup {M >0+ |f* < M ae. |
=sup {M?>0:[f| <M ae. }=|f].

Fou:C)
= f(w).

Notation 2.56 (Bounded Multiplication Operators) Given a mea-
sure space (£2,F,u) and a bounded measurable function q : 2 — C, let
M, : L*(p) — L*(u) denote the operation of multiplication by g, i.e.
M, : L? (p) — L*(p) is defined by My f = qf for all f € L* (u).

Definition 2.57 (Atoms). Let (£2,F,u) be a measure space. A set A € F
is said to be an atom of p if p(A) > 0 and p(ANB) is either p(A) or 0
for every B € F. We say A is an infinite atom if it is an atom such that
1 (A) = oo.

Theorem 2.58. Let (2, F, ) be a measure space with no infinite atoms and
B= {Mf :fe L™ (p,)} = MLN(M) (238)

which we view as a *-subalgebra of B (L2 (p)) Then B is a C*-subalgebra of
B (L?(n)) and the map,

M.
L=(u)>f -3 M;eB (2.39)
is a C*-isometric isomorphism. FExplicitly that isometry condition means,

1Ml = 1fllo for all f € L% (n). (2.40)
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34 2 Banach Algebras and Linear ODE

Proof. Given f,g € L* (1) and X\ € C, one readily shows,
Mf +Mg = Mf+g, M)\f = )\Mf, MfMg = Mfg, and M; = Mf>

ie. My : L* (u) = B (L? (1)) is a x-algebra homomorphism. Since | M;g||, =
19l < Wfllo llglly, it follows that [[Myll,, < [l with equality when
lflloo = 0. For the reverse inequality we may assume that |f[|, > 0. If
0 < k < ||flloo, then p(|f| > k) > 0 and since p has not infinite atoms
we may find A C {|f| > k} such that 0 < u(A) < oo. It then follows that

[Lall, = \/m € (0,00) and

I£1all
ITall

As this holds for all & < ||f[|,, we conclude that [[M(|,, = [|f]., and so Eq.
(2.40) has been proved.

Since B is the image of M.y, M(.y is a linear isometry, and L> () is com-
plete, it follows that B is complete and hence closed in B (L? (u)) . Thus B is a
C*-subalgebra of B (L? (1)) and the proof is done. ]

1My, >

Ezample 2.59. 1t Th,...,T,, € B(H), let A(T4,...,T,) be the smallest sub-
algebra of B (H) containing {T},...,T,}, i.e. A consists of linear combination
of words in {T1,...,T,}. With this notation, A (T1,..., T, Ty, ..., T) is the

smallest * -sub-algebra of B (H) which contains {T1,...,T,}. We let

C*(Ty,...,T,) == A(Tl,...,Tn,Tl*,...,T;)”'”“”
be the C*-algebra generated by {T1,...,T,}.
Ezample 2.60. T, ..., T, € B(H) are commuting self-adjoint operators, then
A(Ty,....,T,) ={p(T1,....,T,) :p€Clz1,...,2,) 2 p(0) =0}
is a commutative * — sub-algebra of B (H). We also have
ATy, ... 7)) ={p(Th,...,T0) :p€Clz1,...,2n]}

where if p (21,...2,) =po + ¢ (21, ... 2,) with ¢(0) =0 we let

p(Th,....Tn) =pol +q(Th,...,Ty).

For most of this chapter we will mostly interested in the commutative *-sub-
algebra, A(I,T) where T € B (H) with T* = T.
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Proposition 2.61. Let (£2,F, 1) be a measure space, B = L™ () be the C*-
algebra of essentially bounded functions, {fj};;l cB, f=(f1,-.-,fn) : 2 —
(9", and essran,, (f) be the essential range of £ (see Definition . Then
f:C (essran,, (f)) — L™ (n) defined by f (1) = o (£) for all ¢ € C (essran,, (f))
is an isometric C*-isomorphism onto C* (f,1).

Proof. Let us first show that

v ()|l = ||1/JHC(essmnu(f)) for all ¢ € C (essran,, (f)). (2.41)

It is clear that [[¢ (f)[|, < ||z/1|\c(essmnu(f)) M < ||z/1|\c(essmnu(f)) , then there

exists z €essran,, (f) so that M < |¢ (z)| and for this z, p (||f — z|| < &) > 0 for
all € > 0. By the continuity of 1 there exists ¢ > 0 so that |[¢) (w)| > M for
|lw — z|| < e and hence

p(l (E) > M) = p(f -zl <€) >0

from which it follows that || ()]l = M. As M < [[¥]¢(essran, (r)) Was arbi-
trary, it followsA that ||y (f)[|, > ||1/}HC(essran“(f)) aI}d Eq. 1) is proved.

Let By := f(C (essran, (f))) be the image of £ which, as f is a isometric
C*-homomorphism, is a closed *-subalgebra of B. To finish the proof we must
show By = C* (f,1).

Given 1 € C (essran,, (f)), there exists pr, € Clz1,...,2n, Z1,..., Zs) such
that

li —pn (2,2)| = 0.
am max 11 (2) — pn (2, 2)]
Using ~ ~ -
p(f7f) ::p(flv"'7fnaf17"'afn) € cr (fal)a

along with the isometry property in Eq. (2.41]), it follows that
Hzﬂ(f)—pk (f,f)”oo: max | (z) —pi (2,2)] = 0 as k — oo,

z€essran,, (f)

which implies ¢ (f) € C* (f,1), i.e. By € C*(f,1). For the opposite inclusion
simply observe that if we let 1; (z) = 2 for i € [n], then f; = f (¢;) € By for
each i € [n]. As By is a C*-algebra we must also have that C* (f,1) C By and
the proof is complete. [

Remark 2.62. Tt is also easy to verify that
C* (£) = {4 (£) : ¥ € C (essran,, () > ¢ (0,...,0) =0}
and that
{p € C (essran, (f)) 2 ¢ (0,...,0) =0} = ¢ (fi,..., fn) € C*(f)

is a isomorphism of C*-algebras.” We leave the details to the reader.
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The next result is a direct corollary of Theorem and Proposition [2.61

Corollary 2.63. Let (2, F, ) be a measure space with no infinite atoms, B =

M o0y as in Theorem {fj}?zl CL™®(p),andf = (f1,...,fn): 2—C".
Then the map

C (essrany, (f)) 3¢ — My € C* (My,,..., My, ,1) C B

is an isometric isomorphism of C*-algebras.

2.5.2 Some Consequences of the C*-condition

Let us now explore some of the consequence of the C*-condition. The following
simple lemma turns out to be a very important consequence of the C*-condition
which will be used in Proposition [4.3|in order to show;

la]| = sup{|A| : A € 0 (a)} when a is normal.

Lemma 2.64. If B is a C*-algebra and b is a normal element of B, then HbQH =
[

Proof. This is easily proved as follows;

Hb2H2 C*ignd.H(bz)*bQH Normal

[GON i o B U
u

Lemma 2.65. If B is a unital C*-algebra and u € B is unitary, then |u|| = 1.

Moreover, if u,v € B are unitary, then ||uav|| = ||a|| for all a € B.
Proof. Since 1 = w*u, it follows by the C*-condition that 1 = ||1]| =
[u*u| = |jul|® from which it follows that ||ul| = 1. If @ € B, then
[uav]| < [ull llal lo]| = o] -

By replacing a by w*av* in the above inequality we also find that [ja| <
|lu*av*||. We may replace u by u* and v by v* in the last inequality in or-
der to show ||a|| < |Juav| which along with the previously displayed equation
completes the proof. [

Example 2.66. If A € Bis a C*-algebra, then using the fact that * is an isometry,
it follows that
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Thus if A* = A, we find

(eiA)* o iAT _ miA (eiA)*l’

which shows ¢4

tion.

is unitary. This result is generalized in the following proposi-

Proposition 2.67. Suppose that B is a C*-algebra with identity and t —
A (t) € B is continuous and A (t)* = —A(t) for all t € R. If u (t) is the unique
solution to

w(t)=A@)u(t) withu(0)=1 (2.42)

then u (t) is unitary.
Proof. Let u (¢, s) denote the solution to

w(tys) =A(t)u(t,s) with u(s,s) =1

so that u (t) = u (¢,0) . From Proposition it follows that u (t)™" = u (0,¢)
and from Proposition [2.36] we conclude that
d —1_ d _ _ -1 _ -1 *
%u(t) = %U(O,t) =—u(0,t) At)=—u(®t) " A@)=u(l) A@®)".
On the other hand taking the adjoint of Eq. (2.42]) shows
w* (t) =u(t)" A(t)" with u* (0) = 1.
So by uniqueness of solutions we conclude that u* (t) = u (£) . |

Theorem 2.68 (Fuglede-Putnam Theorem, see Conway, p. 278). Let B
be a C*-algebra with identity and M and N be normal elements in B and B € B
satisfy NB = BM, then N*B = BM?*. In particular, taking M = N implies
[N, B] = 0 implies [N*, B] = 0. [Note well that B is not assumed to be normal
here.]

Proof. Given w € C let
u (t) := !N BemtwM,
Then u (0) = B and
@ (t) = we'™N [NB — BM]e ™M =0

and hence u (t) = B for all t, i.e. e*N Be "M = B for all w € C.
Now for z € C let f: C —B be the analytic function,
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36 2 Banach Algebras and Linear ODE

f(Z) _ eizN*Be—izM*.

Using what we have just proved and the normality assumptionﬂ on N and M
we have for any w € C that

f (Z) — eizN*ewNBefwMefinV[* _ e[izN*quN]Bef[wMJrizM*].
We now take w = iZ to find,
f (z) _ ei[zN*+2N]Be—i[2M+zM*]
and hence by Example [2.66] and Lemma [2.65]

Hf(z)ll — ‘ ei[zN*+2N]Be—i[2M+zM*] _ ||B||

wherein we have used both, zN* 4+ ZN and zM + zM™* are Hermitian ele-
ments. By an application of Liouville’s Theorem (see Corollary [1.12)) we con-
clude f(z) = f(0) = B for all z € C, i.e.

6izN*BefizM* - B.
Differentiating this identity at z = 0 then shows N*B = BM*. ]

Corollary 2.69. Again suppose B is a unital C*-algebra, M € B is normal and
B € B is arbitrary. If [M, B] =0, then [{M,M*},B] = {0} = [{M,M*},B*].

Proof. By Theorem we know that 0 = [M*, B] and taking adjoints of

this equation then shows 0 = —[M, B*]. Finally by one more application of
Theorem it follows that [M*, B*] = 0 as well. |

Note well that under the assumption that M is normal and [M,B] = 0,
C* (M, B, I) will be commutative iff B is normal.

Definition 2.70. If B is a C*-algebra and S C B is a non-empty set, we define
C* (8) to be the smallest C*-subalgebra of B. [Please note that we require C* (S)
to be closed under A — A*\]

Corollary 2.71. Suppose that B is a unital C*-algebra with identity and T :=
{Tj};zl C B are commuting normal operators, then T UT" := {Tj,ij“}?:l
is a list of pairwise commuting operators and C* (T,1) is the norm closure
of all elements of B of the form p (T, T") where p(z1,...,2p, W1,...,Wy) 1S @
polynomial in 2n-variables. Moreover, C* (T, 1) is a commutative C*-subalgebra

of B.

A% -
2 The normality assumptions allows us to conclude elizN"+wN] _ gizN* qwN
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Remark 2.72. For the fun of it, here are two elementary proofs of Theorem [2.68
for B = B(H) when dim H < oo.

First proof. The key point here is that H = @ieCEi” where EYf =
Nul (M — XI) and for u € EY we have for v € EX that

(M*u,v) = (u, Mv) = & (u,v)

from which it follows that (M*u,v) = 0 if o # A or if = X and u L wv.
Thus we may conclude that M*u = Au for all u € E;\VI . With this preparation,
NBu = BMu = B \u = ABu and therefore Bu € EY . Therefore it follows that

N*Bu = ABu = BA\u = BM*u.

Asu € EM was arbitrary and A € C was arbitrary it follows that N*B = BM*.

Second proof. A key point of M being normal is that for all A € C and
u € H,

(M = A) ul|* = (M = A, (M = A\ u) = (u, (M = X\)" (M = \) )
= (u, (M = X) (M = X)"u) = ((M = X)"u, (M = X)"u)
w112

= = .
Thus if {u, };h:n;H is an orthonormal basis of eigenvectors of M with Mu; = Aju;
then M*u; = Xjuj. Thus if we apply NB = BM to u; we find,

NBUj = BMUj = /\jBU,j
and therefore as IV is normal, N*Bu; = XjBuj. Since M is normal we also have
N*BUJ' = BS\]‘UJ' = BM*UJ'.

As this holds for all j, we conclude that N*B = BM*.

2.5.3 Symmetric Condition

Definition 2.73. An involution * in a Banach algebra B with unit is symmet-
ric if 1 + a*a is invertible for all a € B.

Lemma 2.74. If H is a complex Hilbert space, then B(H), then B(H) is
symmetric. [It is in fact true that any C*-subalgebra, B, of B (H) is symmetric
but this requires more proof than we can give at this time. See Theorem 77 below
for the missing ingredient.]
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Proof. It clearly suffices to show B (H) is symmetric, i.e. that [ + A*A is
invertible for any A € B (H). The key point is that for any h € H,

1R]* < [IAI* + | AR[* = (T + A*A) h,h) < ||(I + A*A) h|| ||
and hence
(I + A" A) || = [|n]|. (2.43)
This inequality clearly shows Nul (I + A*A) = {0} and that I+ A* A has closed
range, see Corollary Therefore we conclude that
Ran (I + A*A) =Ran (I + A*A) = Nul (I + A*A)" = H

and so I + A*A is algebraically invertible and hence invertible in B (H)

by Lemma In fact, because of Eq. (2.43) we have the estimate,
H(IJFA*A)‘1 <1.
op
If we have Theorem 7?7 at our disposal, then we may conclude that
(I4+A*A)"" e C*(A4*A,I) C C*(A,I) and with this result we may assert
that theorem holds for any C*-subalgebra, B, of B (H). ]

Example 2.75. Referring to Example with G = Z, we claim that ¢! (Z)
with convolution for multiplication is an abelian *-Banach algebra which is not
a C*-algebra. For example, let f := §y — §; — d2, then

f5f =00 —6_1—05_2) (0o — 61 — d2)
=0g— 01 — 0z + (—5_1 + &g + 51) + (—5_2 +d0_1+ 50)
=300 — 02 —0_o
and hence
IFfll=3+1+1=5<9=3=|f|*.

As a consequence of Lemma[2.74]and assuming Remark[2:52] every C*-algebra is
symmetricﬁ and so this example implies ¢! (Z) is not a C*-algebra. See Remark
7?7 below for some more information about the symmetry condition on a Banach
algebra. See Exercise 7?7 for more on this example.

2.5.4 Appendix: Embeddings of function C*-algebras into B (H)

The next example is a special case of the GNS construction in disguise. See
Remark for more comments and references in this direction.

3 We will explicitly prove this fact for commutative C*-algebras below in Lemma ?7?.

Page: 37 job: 241Functional_2020s

2.6 Exercises 37

Example 2.76. Suppose that X is a compact Hausdorfl space, p is counting
measure on X, and H = L? (X, u) . Then

C:={M;eB(H): feC(X):=C(X,C)}C B(H)

is a C*-algebra. Indeed C is a * — algebra since, My + kMg = My g, MM, =
My, and M7 = My for all f,g € C'(X). Moreover, we have

Ml = sup | f (@) = [IfI],, (2.44)
zeX

from which it follows that C is closed in B (H) in the operator norm. In this
case H may be a highly non-separable Hilbert space. However the above con-
struction also works for any measure no infinite atom measure, 1 on By, such
that supp (¢) = X. In particular p is a o-finite measure on open sets and X is
separable, then L? (X, 1) will be separable as well.

For an explicit choice of measure, D = {x,,},-_, is a countable dense subset

of X, let
W= Z Oz,

n=1

in which case supp (1) = X and take H = H = L?(X,Bx,u) in the above
construction. In this special case one directly checks Eq. (2.44) using,

[Myll,, = sup | f (z)| = sup [f (z)| = || f[|, V fe€C(X).
xeD zeX

2.6 Exercises

Exercise 2.8. To each A € A, we may define L4, Rs : A — A by
LB =AB and RyB = BA for all B € A.
Show L4, R4 € L(A) and that

1Lallpa = IAlLy = 1Rall ) -

Exercise 2.9. Suppose that A : R — A is a continuous function and U,V :
R — A are the unique solution to the linear differential equations

V(t)=A(t)V (t) with V (0) =1 (2.45)

and
U(t)=-U(t)A(t) with U (0) =1. (2.46)
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38 2 Banach Algebras and Linear ODE

Prove that V (¢) is invertible and that V=1 (¢) = U (t), where by abuse of no-
tation T am writing V= (¢) for [V (t)]”". Hints: 1) show LBV )] =0
(which is sufficient if dim(X) < oo) and 2) show y (t) := V (¢) U (¢) solves a
linear differential ordinary differential equation that has y = I as an obvious
solution. (The results of Exercise 2.8/ may be useful here.) Then use the unique-

ness of solutions to linear O.D.E.s

Exercise 2.10. Suppose that A € A and v € X is an eigenvector of A with
eigenvalue ), i.e. that Av = A\v. Show e!4v = e**v. Also show that if X = R”
and A is a diagonalizable n x n matrix with

A= 8SDS™! with D = diag(\1,...,\,)

then ef4 = SetP?S~1 where e'P = diag(et™, ..., et*). Here diag(Ai,...,\,)
denotes the diagonal matrix A such that A; = \; for i =1,2,...,n.

Exercise 2.11. Suppose that A, B € Alet adyB = [A, B] :== AB — BA. Show
etABe t4 = etada (B) . In particular, if [A, B] = 0 then ¢4 Be™*4 = B for all
teR.

Exercise 2.12. Suppose that A,B € A and [4,B] :== AB — BA = 0. Show
that e(A+5) = eAeh,

Exercise 2.13. Suppose A € C(R, A) satisfies [A (1), A(s)] =0 for all s,t € R.
Show .

Y (t) = e(fo A(T)dT)[E
is the unique solution to g (t) = A (¢) y () with y (0) = .

Exercise 2.14. Compute e when

01
(%)
and use the result to prove the formula

cos(s +t) = cosscost — sin ssint.

tAgsA e(t+s)

Hint: Sum the series and use e 4. Alternatively, compute

> tA _ _

e e*4 and then solve this equation.

Exercise 2.15. Compute e when

Oab
A=|00c
000

with a,b, ¢ € R. Use your result to compute e**+4) where A € R and I is the
3 x 3 identity matrix. Hint: Sum the series.
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Exercise 2.16 (L. Garding’s trick I.). Prove Theorem i.e. suppose
that T; € A for ¢t > 0 satisfies;

1. (Semi-group property.) Ty = Idx and T;Ts = Ty for all s,t > 0.
2. (Norm Continuity at 0+) ¢ — T} is continuous at 0, i.e. | Ty — I|| 4, — 0 as
t10.

Then show there exists A € A such that T; = et where e!4 is defined in
Eq. (2.10). Here is an outline of a possible proof based on L. Garding’s “trick.”

1. Using the right continuity at 0 and the semi-group property for 73, show
there are constants M and C such that || T3] , < MC* for all t > 0.
2. Show ¢t € [0,00) — T} € A is continuous.
3. For € > 0, let E
S, = 1/ T.dr € A.
€Jo
Show S. — I as € | 0 and conclude from this that S. is invertible when
€ > 0 is sufficiently small. For the remainder of the proof fix such a small
e > 0.
4. Show

1 t+8
TtSE = g/ T—,—dT = SETt
t

and conclude using the fundamental theorem of calculus that

d 1
—TS
dt toe

d .
%|0+Tt5.e = 1t1f(f)1 (

[Tt+6 — Tt} for ¢t > 0 and

T, — 1
t

3

)ngim_f].

5. Using the fact that S. is invertible, conclude A = lim; ot~ (T; — I) exists

in A and that )
A= g(TE—I)S;1

and moreover,

d
%Tt = ATt for t > 0.

6. Using step 5., show Le *AT, = 0 for all ¢ > 0 and therefore e *4T; =
€_OAT0 =1.

Exercise 2.17 (Duhamel’ s Principle). Suppose that A : R — A is a con-
tinuous function and V : R — A is the unique solution to the linear differential
equation (2.45)) which we repeat here;

V(t)=A@)V (t) with V (0) = I.
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Let Wy € A and H € C(R,.A) be given. Show that the unique solution to the
differential equation:

W (t)=A(t)W (t) + H (t) with W (0) = W, (2.47)

is given by .
W) = V () Wo +V (¢) /0 V()" H (r) dr. (2.48)

Hint: compute %[V =1 (t) W (¢)].






3

Spectrum of a Single Element

Convention. Henceforth all Banach algebras, B, are complex and have an
identity.

Definition 3.1. For a € B;
1. The spectrumof a is
o(a):={x € C:a— X is not invertible},
2. the resolvent set of a is
p(a) :=={X€C:a— X is invertible} = o (a)°,

and
3. the spectral radius of a is

r(a) :==sup{|A|: A€o (a)}.
We will see later in Corollary that o (a) # 0.
Proposition 3.2. For all a € B, o (a) is compact and r (a) < ||a]| .

Proof. Since A € C — a—\ € Bis continuous and p (a) = {\: a—\ € Binv},
p (a) is open by Corollary and hence o (a) = p (a)° is closed. If |A| > ||a]|,
then |A~!al| < 1 and hence

a—A=X(A"a—1) € Bin.

Therefore if |A| > |la|]| then A € p(a) from which we conclude that r (a) <
|la]| and so o (a) is compact.

Lemma 3.3. If B is a *-algebra with unit then
o(@)=o(a)={A:Aeo(a)}.

Proof. The point is that a € B is invertible iff a* is invertible since [a*]_1 =
(ail)* . Thus A € p(a) iff a— A1 is invertible iff a* — A1 = (a — A1)” is invertible
ifft Aep(a®). |

Notation 3.4 If B is a Banach subalgebra of A with 1 € B and a is an element
of B, then we let o4 (a) and og (a) be the spectrum of a computed in A and B
respectively.

Remark 3.5. Continuing the notation above, we always have op (a) C o4 (a)
for all a € A. Indeed, if A ¢ 0.4 (a), then a — A is invertible in A and hence
also in B, i.e. A ¢ op(a). See Proposition and Theorem to see that
o (a) & o4 (a) is possible.

Proposition 3.6. Let 1 € A C B be as in Notation|3.4l Then o4 (a) = og(a)
for all a € A iff AN Bipw = Ainw iff AN Biny C Ainw. Put another way,
o4 (a) = op(a) if whenever a € A is invertible in B, then a is also invertible

mn A.

Proof. Suppose that o4 (a) = o5 (a) for all a € A. Then if a € AN Biny,
we have a ¢ op (a) = 0.4 (a), i.e. a € Ajp, which shows AN By, C Ajpy. The
opposite inclusion is trivial.

Conversely, suppose that AN Bjy, = A;ny. Because of Remark [3.5 we must
show for any a € Athat 04 (a) Cop(a).If A ¢ op(a), thena— X € ANB;y, =
Ainy and hence A\ ¢ 0.4 (a) and the proof is complete. ]

3.1 Spectrum Examples

Before continuing the formal development it may be useful to consider a few
examples and some more properties of the spectrum of elements of a Banach
algebra, B.

3.1.1 Finite Dimensional Examples

Exercise 3.1. Let X be a finite set and B = CX denote the functions, f : X —
C. Clearly f is invertible in B iff 0 ¢ f(X) in which case (f)”" = % Show
that 1/f = p(f) for some p € C|z] and hence 1/f is in the subalgebra of B
generated by f and 1. Use this to conclude that o5 (f) = o4s1) (f) = f(X)
where A (f, 1) is the algebra generated by f and 1.
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Remark 3.7 (Be careful in infinite dimensions). An easy consequence of Exer-
cise [B.1]is that
op (f) =08, (f) = [ (X)
where is By is any unital sub-algebra of B which contains f. This result does

not necessarily extrapolate to infinite dimensional settings as demonstrated in
Proposition [3.14] below, see also Theorem [3.12] and Remark [3.13]

A similar result holds for finite dimensional matrix algebras as well. In this
case we will need to use the following Cayley Hamilton theorem.

Theorem 3.8 (Cayley Hamilton Theorem). Let B be an n x n matriz and
p(A) :=det (A — B) ijw

be it characteristic polynomial. Then p (B) = 0 where 0 is the zero n xn matriz.

Proof. This result is easy to understand if B has a basis {v; }?:1 of eigen-

vectors with respective eigenvalues {/\j}?zl . Since p (A;) = 0 for all j it follows
that
p(B)v; =p(Aj)v; =0 for all j

which implies p (B) is the zero matrix. For completeness we give a proof of the
general case below.

For the general case, let adj (M) be the classical adjoint of M which is the
transpose of the cofactor matrix. This matrix satisfies,

adj (M) M = M adj (M) = det (M) I.

Taking M = AI — B in this equation shows,

(AT — B)adj (\I — B)

NI = ijw

Writing out

n—1
adj (M — B) = Y _ A*Cy where C; € F™",
k=0

we have
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n n—1
> piIN = (M= B) Y _ MGy
j= k=0
n—1 n—1
= Z Nty — Z N BCy,
k=0 k=0
n n—1
=> MNCr1 =) ABG
k=1 k=0

n—1

=M\"Ch_1+ Y A [Cro1 — BCy] - BCy.
k=1

Comparing coefficients of A/ then implies,

pnI = Cn—h
prl =[Cr—1 — BCy] for 1 <k <n-1,
pol = —BCy

and hence

B"p,I = B"C,,_1,
BrppI = B¥[C),_1 — BC}] for 1 <k<n—1,
poI = —BC().
Summing these identities then shows,

n—1

p(B)=p(P)I=B"C,_1+»_ B*[Cy_y — BCy] - BCy
k=1
n—1 n—1
=B"Ch 1+ »_ B*Cvo1 = > BM'Ci - BG
k=1 k=1
n n—1
= ZB’“C,f_1 - Z BFtIC, = 0.
k=1 k=0

Lemma 3.9. Let B be an invertible n xn matriz, then there exists a degree n—1
polynomial, q, such that B~! = q(B) . In other words B! is in the sub-algebra
of End (C™) generated by B and I.

Proof. Let p be the characteristic polynomial of B, i.e.
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p(\) :=det (\ — B) Za]AJ_Ar ) + ag

where a,, = 1, ag = (—1)" det B, and

A=Y a; N
j=1

By the Cayley Hamilton Theorem, which means explicitly that
0=p(B)=Br(B)+apl

and so 1
B™'=——r(B)=q(B).
ao

Corollary 3.10. Let n € N and suppose that B is any subalgebra of B (F™
which contains I. (As usual F is either R or C.) Then for all S € B, o5 (S)
oy (S) is the set of eigenvalues of S.

3.1.2 Function Space and Multiplication Operator Examples

Lemma 3.11. Let B := C' (X) where X is a compact Hausdorff space. Then
f € Biny iff 0 ¢ Ran(f) = f(X) and in this case f~1 = 1/f € C*(f,1).
Consequently, o (f) = [ (X) = oc-(f1) (f)-

Proof. If f € Bin, and g = f~! € B, then f(z)g(x) =1 forall z € X
which implies f (z) # 0 for all z, i.e. 0 ¢ Ran (f). Conversely if 0 ¢ Ran (f),
then € := mingex |f (z)] > 0 and hence 1/f € B from which it follows that
f € Biny. By the Weierstrass approximation theorem, there exists p,, € C|z, 2]
such that p, (z,2) — L uniformly on & < |z| < || f||, and therefore

=M = Jim pu (£.1) = F€C° (1)

|

[
We now are going to take X = S = {z € C: |z| = 1} in the next couple of
results.

Theorem 3.12. Let B = C (S*;C) and A be the Banach subalgebra (not C*-
subalgebra) generated by u (z) = z, i.e.

A=Tp():peCH} .

Then

s

A= {f €B: £ () e®do =0 for alln € N} . (3.1)

—T
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Proof. Let Ay denote the right side of Eq. (3.1). It is clear that if p (z) =
> h_oPrz" is a polynomial in z, then

/ P (ew) em0dh = Zpk/ e*em0dg = 0 for all n € N
k=0 -

—T

which shows that p € Ap. As Ap is a closed subspace of B we may conclude
that A C AQ.
To prove the reverse inclusion, suppose that f € Ag and let

1 T
Pk = 5=

o f (ew) e~ ™90 for all k € Z

and then, for each n € Ny, let
ZMﬂ—Zmz
|k|<n

wherein we have used p_; = 0 for all £ € N becasue f € A. By the theory of
the Fourier series (using the Féjer kernel) we know that

1
2N +1

qn (2) = an — f(2) uniformly in z,

which shows that f € A.
Alternatively: we can easily show, for any 0 < r < 1, that

oo N

g prert2F = lim E prrtk
N—o0

k=0 k=0

is a uniform limit and hence Y.~ prr¥z? € A. However it is well know that

Zpkrz Zpkrz = (pr ) (2)

k=—0o0

where p,. is the Poisson kernel. This kernel had the property that (p, x f) (z) —
f(2) as 7 1 1, uniformly in z, for any continuous function on S*. Thus we again
find f € A. Incidentally, this proof shows that every f € A is the boundary
value of an analytic function in D = D (0,1). |

Remark 3.13. Notice that B = C (S*;C) = C* (u,1) while A is “holomorphic”
subalgebra of B, i.e. is the Banach algebra generated by wu.
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44 3 Spectrum of a Single Element

Proposition 3.14. Continuing the notation above we have
op(u)=5'¢D=0a(u).

[See Conway [9], p.p. 205- 207 and in particular Theorem 5.4 for some related
general theory. We will come back to this example again in Example 7?7 below.]

Proof. We know that o5 (u) = u (S*) = S* by Lemma Let us not
work out o4 (u). Since |Jul| < 1, we know that S' = o5 (u) C 04 (u) C D. So
to complete the proof we must show D C o4 (u).

Let A € D and 1
v :z(u—/\)_lzu_)\EB.

For sake of contradiction assume that vy € A, i.e. there exists polynomials,
{pn},2; such that

unif.

P (2) — vy (2) =

as n — oco.
zZ—A

Under this assumption we find, by basic complex analysis, that

1
2m':7{ dz = lim pn (2)dz= lim 0=0
S1 z—A

n—oo [g1 n— 00

which is a contradiction. Thus we have shown vy ¢ A and hence A € o4 (u). m
The following definition is a special case of Definition above.

Definition 3.15. If ¢ € L*> (2, F, 1), the essential range of q is the subset
of C defined by

essran,, (q) = {w € C: u(g ' (D(w,))) > 0 for all £ > 0}.

Here, as usual,
D(w,e) ={z€C:|z—w| <¢e}
for allw € C and € > 0.

Lemma 3.16. Suppose that (£2,F, ) is a measure space and f : 2 — C is
a measurable map such that pu(f =0) = 0 and M = H%H < 00. Then
w(lfl <1/(2M)) =0 and in particular O ¢ essran,, (f).

Proof. If M = “%H then for every C' > M, u( H ) = 0 or equiva-
lently p (|f| <1/C)=0. ]

Theorem 3.17. Suppose that (2, F,u) is a measure space and f € L™ (u).
Then

essran,, (f) = 0L (1) (f) = 0C+(f,1) (f)- (3.2)
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Proof. We start with the proof of the first equality in Eq. (3.2). If A ¢
essran, (f) iff there exists € > 0 so that u({|f —A| <e}) = 0. Thus if X ¢

essran, (f), then u (‘f—i/\‘ > %) = 0 and hence,
<t
=Ml €
which implies (f — ) ™" = 7o exists in L™ (u) and s0 A ¢ oo (f) -

Conversely, suppose that A & o) (f) so that (f — )\)71 = ¢ exists in
L (u) . Then, by definition, we have g (f — \) = 1, p-a.e. and therefore,

1
f=A

By Lemma [3.16] we conclude that u (|f — A] < 1/(2M)) = 0 and in particular
A ¢ essran, (f).
As we automatically know that opec(, (f) C oc«(g,1) (f) it suffices to show

oc(f,1) (f) C opeeuy (f) . So suppose that A & ope(,) (f) = essran, (f) which
implies there exists € > 0 such that u (|f — A] <€) =0 and therefore,

=g a.e. and Hf )\H = |lgll.. = M < .

e<|f =A< fll F 1A = M ae.

Following the proof of Lemma there exists p,, € C [z, w] such that

. = < 1
e
from which it follows that (f —A)™" € C* (f,1). This shows \ ¢ ac=f,1) (f)
and the proof is complete. [

Remark 3.18. By Corollary 7?7 below or by the spectral theorem, if B is a unital
commutative C*-subalgebra of B (H), then

ooy (T) =05 (T) = o) (T)

for all T € B. The real content here is the statement that if T € B (H) is a
normal operator which is invertible, then 7= € C* (I, T).

Theorem 3.19. Let (2, F, ) be a measure space with no infinite atoms and
1 <p< oo and let

B={My e IP (1) f € 1 ()} € B(LP ()
be the multiplication function subalgebra of B (LP (i) . If My € B is invertible
in B iff it is invertible in B (LP (p)) .
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Proof. Suppose that T' = M;l exists in B (L? (u)). Then for g € LP () we
have

f-Tg=g=T]fg] ae. (3.3)
If 4(]f|=0) > 0, then (by the no infinite atoms assumption) we may find
A C {|f| = 0} such that 0 < s (A) < co. Taking g = 14 in Eq. (3.3) implies,
f-(T1la)=14 = 1=f-(T14)=0-(T14) =0 p-a.e. on A,

which is a contradiction. Thus we conclude that in fact p (f = 0) = 0, and so
from Eq. |j it follows that T'g = %g a.e. and moreover,

=ITgll, < I, llgll, for all g € LP (). (3.4)
p

H ;
-9
f
To finish the proof we need only show 1/f € L™ (u).

If0< M < ooand u(|1/f| > M) > 0, there exists A C {(|]1/f] > M)} such
that 0 < p (A) < co. Then taking g = 14 in Eq. (3.4) shows,

<17l gll,
p

1
M g, < Hf“’

and hence M < [|T'[|,,, < oc. As this is true for all M such that p (|1/f] > M) >
0, we conclude that H%H < |[7,, <ocoandsoT = Mf—1 = M,y € B and

the proof is complete. [

Corollary 3.20. Continuing the notation in Theorem|3.19 with p = 2, we have
for every f € B= L™ (u) that

oBL2(u)) (My) = o5 (My) = opee ) (f) = 0c=(s,1) (f) = essran, (f).
Moreover C* (f,1) and C* (My, 1) are isomorphic as C*-algebras and therefore,
gc+(f,1) (f) = 0C*(My,1) (Mf) = essrang, (f) .

Proof. This is a combination of Theorems [2.58], [3.17] and [3.19] The details
are left to the reader. ]

Ezample 3.21. Let q = (¢1, . - -, ¢n) be a vector of bounded measurable functions
on some probability space (2, F, ). Let B be the C*-algebra generated by
{1} U {qu };L:l . Then

C (essran, (q)) > f = Myoq € BC B (L* (1))

is an isometric *—isomorphism of Banach algebras. Therefore we conclude and
in particular

0 (Myoq) = f (essrany, (q)) .
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3.1.3 Operators in a Banach Space Examples

For the next couple of definitions and results, let X be a complex Banach space.
Recall, by the open mapping theorem, if T € B (X) is invertible then 771 is
bounded, see Lemma and Corollary

Definition 3.22. Let X be a complex Banach space and T € B (X). The set,
oap (T) C C, of approximate eigenvalues of T is defined by

Gap (T) = {)\ €C: inf |(T—N)z| = 0}.

llzll=1

Alternatively stated; N € C is 04y (T) iff there exists {xn},, C X with
llznllx =1 such that lim,, oo (T — \) z,, = 0. We call such a sequence {x,}o
an approximate eigensequence for T.

Proposition 3.23. If T € B(X), then g4y (T) is a closed subset of o (T').

Proof. If A ¢ o (T), then (T — AI)~" exists as a bounded operator and

therefore with M := H(T — )\I)_lH < oo we have,
op

H(T Y xH <Mlz|| VaeX.
Replacing « by (T — M) z in this equation shows,
T =A)z|>e|z|| Ve e X

where € := M ~!. This clearly shows A ¢ 0., (T) and hence o, (T') C o (T).
Moreover, if X ¢ o4, (T'), then there exists € > 0 so that

|(T - AT > elle]l Vo e X.
So if h € C, then
(T = A+ ) D) all = (T = A)x = ha|| = [[(T = A) z|| — [[a]]
> ¢ ||zl — Al l=] = (e — |A]) [|=]] -

Hence we conclude that if |h| < ¢, then (A + h) ¢ 04, (T') which shows C\oy, (T')
is open and hence o4, (T') is closed. ]

Ezample 3.24. Let D := {2 € C: |z| < 1} and S : 2 — (2 be the shift operator,
S(wi,wa,...) = (0,w1,wa,...). It is easy to see that S is an isometry, the
adjoint, S*, of S is the left shift operator,

S*(wl,wg,.. ) = (CUQ,LLJ;),,...),

macro: svmonob.cls date/time: 21-Jan-2020/7:08



46 3 Spectrum of a Single Element
and [|S]],, = 1 = [|S*[|,, - Thus we conclude that o (S) C D, and for any A € D,

1S =A@l = [15% = Ml = [[[S9ll = ALl = (L= AD [l

The latter inequality shows og, (S) C C\ D.
Moreover we can find eigenvectors of S* as follows;

(S* —)\) (wl,wg,...) = (OJQ —/\wl,LU3 —)\o.)z,...)

which is zero when ws = Awy, w3 = dws = Aw1,... wy = A" lw;. Therefore
we have produced an eigenvector, namely

SHL,AAZ ) = A1, N2,

Since (1,A\,A%,...) € £2if [\ < 1, it follows that D C 0.,(S*) C 04y (5*) and
since 0,4, (5*) is closed, D C 04,(S*) C 0 (S*) C D, i.e.

o0up(S*) =0 (S*)=D=0(9).

We may now further conclude that o,, (S) € D\ D = S! and in particular
Tap (S) g a(S).
Notice that for A € S' that w¥ := (1,\A2,...A",0,0,...) satisfy

|7 = N + 1 while

S* N — AN = AV — AN = AN len .
Therefore
wN 1
(8" —=X\) NS = —mAN+1eN+1 —0as N = o0

while [|w /V/N + 1||€2 = 1, which shows directly that S* C o, (S*).
Exercise 3.2. Continuing then notation used in Example show o4y (S) =
St

3.1.4 Spectrum of Normal Operators
Lemma 3.25. If H and K be Hilbert spaces and A € L (H, K), then;

1. Nul(A*) = Ran (A)", and

2. Ran (A) = Nul(A*)*,

3. If we further assume that K = H, and V C H is an A — invariant subspace
(i.e. A(V) C V), then V* is A* — invariant.
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Proof. 1. We have y € Nul(A*) < A*y=0 < (y,A4h) = (0,h) =0
forall h € H <= y € Ran (A)*

2. By Exercise ??, Ran (A) = Ran (A)"", and so Ran (A) = Ran (4)™" =
Nul(A*)*+.

3. Now suppose that K = H and AV C V.If y € V+ and z € V, then

(A*y,z) = (y,Az) =0 forallz € V =— A*yecV*.

]
For this section we always assume that H is a separable complex Hilbert
space.

Lemma 3.26. If C € B(H) and (C,¢) =0 for ally) € H, then C = 0.
Proof. If ¢, € H, then
0=(C[W+¢), ¥+

= (CY,¥) + (Cp, ) + (CY, ) + (Cp,¥)
= (CY,p) + (Cp, 1) .

Replacing v by 41 in this identity also shows

0=i[(Cy,p) — (Cop, )]

which combined with the previous equation easily gives, (C,¢) = 0. Since
1, € H are arbitrary we must have C' = 0. [ |

Lemma 3.27. If C € B(H), then;

1.C* =C iff (CY,v) €R for allyp € H and
2.C* = =C iff (C,¢) € iR for all ¢p € H.

Proof. If C' = C*, then

(CY, ) = (¥, C) = (C*,¢) = (CY, ¥)
which (Cv, 1) € R. Conversely if (Ci,¢) € R for all ¢ € H then
(CY, ) = (CY, ) = (¥, CY) = (C™, )

from which it follows that ((C'— C*),4¢) = 0 for all ¢y € H. Therefore, by
Lemma [3:26] C' — C* = 0 which completes the proof of item 1. Item 2. follows
from item 1. since, C* = —C iff (iC)" = iC iff (iC, ) € R iff (Crp,v)) € iR. m

Definition 3.28 (Normal operators). An operator A € B(H) is normal
iff [A,A*] =0, d.e. A*A=AA*.
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Lemma 3.29. An operator A € B (H) is normal iff
[AY| = [|A™¢[| V¢ € H. (3.5)
Proof. If A is normal and ¢ € H, then
14| = (A7 A, ) = (AA™,9) = (A"9, A7) = [ A7y

Conversely if Eq. (3.5)) holds and C := [A, A*] = AA* — A*A, then the above
computation shows (C, 1) = 0 for all ¢» € H. Thus by Lemma 0=C=
[A, A*], i.e. A is normal. ]

Lemma 3.30. If B,C € B(H) are commuting self-adjoint operators, then
I(B +iC)|I” = |BY|” +|C¥|* ¥ v € H.
Proof. Simple manipulations show,

(B +iC) | = || BY|)* + | C¥|* + 2Re (By, iCy)
= [|BY|)* + [|[C¥|* + 2Im (C B, )
= | By|” + |C¥|?

where the last equality follows from Lemma because,
(CB)" = B*C* = BC = CB.
[

Remark 3.31. Here is another way to understand Lemma If A is normal
then A = B + iC where

1 1

%
are two commuting self-adjoint operators. Therefore by Lemma [3.30}
2 1 2 2
JAYI? = 7 [I(A4+ A7) 9] + (A - A7) v
which is symmetric under the interchange of A with A*.

Corollary 3.32. If A € B(H) is a normal operator and \ € o¢, (A) then;

1. Nul(A) = Nul (A*) and B
2.Nul (A —X) = Nul (4* = X), i.e. Au=u iff A*u= Au.
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Lemma 3.33. Suppose that A € B (H) is a normal operator, i.e. [A, A*] = 0.
Then o (A) = 04y (A) and
c(A)={AeC:0e€0((A=N"(A=N)}. (3.6)
[In other words, (A — \) is invertible iff (A — \)* (A — \) is invertible.]

Proof. By Proposition Oap (A) C o (A). If X & 04y (M), then there
exists € > 0 so that

e:= inf ||[(A—- )1 >0
nf (A= A1y

or equivalently
I(A= A0 > el ¥ o € A.

As A — \I is normal we also know (see Lemma [3.29)) that
[(A =AD" = [[(A=AD[| Zellyll VY e H
and in particular,
Nul (A — XI) = {0} = Nul ((4 = AI)").

By Corollary Ran (A — AI) is closed. Using these comments along with
Lemma [3:25] allows us to conclude,

Ran (A — AT) = Ran (A — M) = Nul (A= AD)")" = {0}* = H

and hence A — A is invertible and therefore A ¢ o (A). Thus we have shown
0 (A) C 0gp (A) and hence o4, (A) =0 (A).

We now prove Eq. . If A\ ¢ 0(A) then A— Al and (A — \I)" are both
invertible and hence so is (A — A)" (A —A),ie. 0¢ o ((A—X)" (A —A)). Con-
versely if 0 ¢ o ((A— )" (A= X)), then T = [(A — X\)*(A — A)] 7! exists. With
this notation and using the fact that A is normal gives,

I=TA-XN"(A-X) and
(A=XNA-XN'T=(A-N"(A-\NT =1

These equations show that A — AI has both a left and a right inverse and hence
(A — X) is invertible, i.e. A ¢ o (A). ]

Ezample 3.34. Let S be the shift operator as in Example [3.24] Then S*S = I
while S5* # I since

SS*(wl,wg,wg,...) = (O,WQ,(U?,,...).
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48 3 Spectrum of a Single Element

Thus S is not normal and by Example oap (S) G o (S). Moreover, S*S

is invertible even though neither S nor S* is invertible, i.e. 0 € o (S) while
0¢o(S*S).

Note: if A,B € B(H) are commuting operators so that AB is invertible
then both A and B are invertible. Indeed,

[(AB)*1 A} B=(AB) 'AB=1

and B [A (AB)*} —AB(AB) ' =1

which shows B has both a left and a right inverse and hence is invertible. This
example shows that we can not drop the assumption that [A, B] = 0 in this last
assertion.

Lemma 3.35. If A € B (H) is self-adjoint (i.e. A= A*), then o (A) C R. This

is generalized in Lemma[{.5
Proof. Let A = a+i8 with o, § € R, then
I(A+a+iB)$lI* = [(A+ )y |* + |8 %] + 2Re (A + ) ¥, iBy)
= [(A+a)el® + 8P lel® > 18 1wl (3.7)

wherein we have used Lemma [3.27 to conclude, Re (4 + a) 1, i) = 0. [Equa-

tion (3.7) is a simply a special case of Lemma [3.30]] Equation (3.7) along with
Lemma shows that A\ ¢ o (A) if 8#0, i.e. 0 (A) CR. |

Remark 3.36. It is not true that o (4) C R implies A = A*. For example, let

A= (8 (1)) on C?, then o (A4) = {0} yet A # A*. This result is true if we

require A to be normal.

3.2 Basic Properties of o (a)
Definition 3.37. The resolvent (operators) of a is the function,
pla)3A—= Ry =(a—A\)"" € Aino.
Lemma 3.38 (Resolvent Identity). If a € A andu, X € p(a), then
Ry—R,=(\—pu)R\R, (3.8)

and in particular by interchanging the roles of v and X it follows that [Rx, R,,] =
0.

Page: 48 job: 241Functional_2020s

Proof. Apply Eq. (2.7) with b= (a — ) and ¢ = (a — ) to find

Ry~ Ry =Ry [(a—p) — (@~ N)] Ry = By (A\— ) Ry = (A~ 1) RaRye

Equation (3.8) is easily remembered by the following heuristic;

1 1 (a—p)—(a—A)
R - R == — =
TN e @ Na—p)
Corollary 3.39. Let A be a complex Banach algebra with identity and let a €
A. Then the function, p(a) > A = Ry € A is analytic with %R,\ = R3 and
IRAll = 0 as A — oc.

= (A — p) RAR,,.

Proof. For h € C small,
Ryyn — By = (A+h—X) RyynRy = hRy Ry

and therefore,

1
h

wherein we have used Corollary in order to see that Ry, — Ry as h — 0.
Since

(R)\+h — R)\) = R)\Jth)\ — Ri as h — 0

Ry=(a—N""=-A"1(1-X"Ta)7,

if [A| > |la]l (i.e. [|A"tal| < 1) it follows that

IR = o7 0= 7 < =

1
_:o() S 0as A = oo,
NToTta - O\ |

Corollary 3.40. Let A be a complex Banach algebra with unit. Then o (x) # 0
for every x € A.

Proof. Suppose o (z) is empty. Then for any £ € A*, A — &((z —A)7Y)
is an entire function which vanishes as A — oo. So by Liouville’s theorem,
E[(x—N)"" =0 for all £ € A* and X € C. Taking A = 0, we conclude that
27! = 0 which is impossible. [Again we could avoid applying linear functionals
simply by making use of the Cauchy integral formula (see Theorem [1.10) to
reprove Liouville’s theorem in the Banach space context.] ]

Remark 3.41. Suppose that a,b are commuting elements of A, then ab € A;,,
iff a,b € A;p,. More generally if a; € A for i = 1,2,...,n are commuting
elements then []_, a; € Aiyp iff a; € Ajp, for all 4. To prove this suppose
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that ¢ := ab € Ajp,,, then ¢ commutes with both ¢ and b and hence ¢! also
commutes with a¢ and b. Therefore 1 = (c‘la) b=1> (c‘la) which shows that
b € Ainy and b~! = ¢ 'a. Similarly one shows that a € A, as well and

a~! = ¢~ 'b. The more general version is easily proved in the same way or by

induction on n.

Theorem 3.42 (Spectral Mapping Theorem). Ifp : C — C is a polynomial
and a € A then p(o (a)) = o(p(a)).

Proof. Given zy € C, factor p (A) — zg as
pA)—zo=aA=X1)---(A=Ap)

where o € C* and {\;};_, C C are the solutions (with multiplicity) to p () =
zp. Since
pla)—zp=ala—X ) ---(a—A\,)

we may conclude using Remark that zp € o (p(a)) iff A; € o (a) for some
i, Le. iff zo = p(A) for some X € o (a), i.e. iff zy € p(o(a)).

L]
Corollary 3.43. If p € C[z] and a € A, then
r(p(a) = S P N = 11Pllso,0(a) (3.9)
and in particular, r(a™) =r(a)" for allm € N.
Proof. Using Theorem and the definition of r,
r(p(a)) = sup{lz[: z € a(p(a))} = sup{lp(N)| : A € o (a)}
which proves Eq. (3.9). Taking p(z) = 2™ in this equation shows,
r(a”) =sup{\|": A€o (a)} =[sup{|A|: A€o (a)}]" =7(a)".
|

Corollary 3.44. The function, A — (1 —Xa)~ ", is analytic on |\ < 1/r (a)
and moreover admits the power series representation,

(1—xa)" ' = i A"q™ (3.10)
n=0

which is valid for |\| < 1/r (a).
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Proof. If |A| |la|| = ||Aa]] < 1, we know that Eq. (3.10) is valid and hence
(1- )\a)fl is analytic near 0 as well, see Remark [Alternatively we may
compute by the chain rule that

4 (1-Xxa) '=1=X) a1 =2a)"" ]
X '
For \ # 0,

_ 1 -t
(1—Xa) ' =a"" (A - a) = ARy

which is valid provided 1/X € p (a) which will hold if ﬁ >7r(a),le if0 < |Al <
-1

1/r (a). So we have shown (1 — Aa)™  is analytic near 0 and also, by Corollary
for 0 < |A| < 1/r(a). Thus it follows that (1 — Xa)” " is analytic on for
|A| < 1/r(a) and hence by Theorem the expansion in Eq. is valid
for |A\| < 1/r(a).

|
Corollary 3.45. The spectral radius r (a) may be computed by taking the fol-
lowing limit,

T nil/n
r(@) = lim """,

Proof. By Corollary [3.43
It n n nil
r(a)" =r@") < a"| = r(a) < """
Passing to the limit as n — oo in this inequality shows
r(a) < liminf [|a”]|"/" . (3.11)
n—roo

For the opposite we conclude from Eq. (3.10) that lim, , ||[(Aa)"|| = 0
when |A| < 1/7 (a). This assertion then implies,

I\ limsup [|a™[|/™ = limsup |[(Aa)" /" < 1V |A| < 1/7 (a)
n— 00 n—oo

and hence limsup,,_, ||a”H1/ " < r(a) which along with Eq. |i completes
the proof.
|

Theorem 3.46 (Gelfand — Mazur). If A is a complex Banach algebra (A)
with unit which is a division algebnﬂ then A is isomorphic to C. In more detail
we have A =C-14.

! Recall that A is a division algebra iff every non-zero element is invertible.
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Proof. Let x € A and A € o (x). Then & — Al is not invertible. Thus
2 — A1l = 0 so x = Al. Therefore every element of A is a complex multiple of 1,
ie. A=C-1. ]

Exercise 3.3 (Compare with Proposition ??). Let B be a complex Banach
algebra with unit, then for any a,b € B which commute, show;

1. r(ab) < r(a)r(b) and
2.r(a+b)<r(a)+r(b).

Proposition 3.47 (Optional). Ifa € A and X € p(a), then

=272 (0= 57) > Sy

Proof. If A € p(a) and 8 € C, then
(a=(A+8) =(a=N=B=(a-N)[I-Ba-N"

is invertible if
oo

< 00.

y [

n=

n 1/n
The latter condition is implied by requiring lim sup,, , .o H [ﬂ (a— )\)71] <
1, ie.
1 n 1/77,
|ﬂ|1imsupH[(a—)\) } <1
n—oo

n

~1/n B 1
r ((a - )\)_1)

< |f| < limsup H [(a - )\)_1}

n—roo

and hence

1 1

dist (A, o (a)) > m = r(e-n")2 o)



4

Functional Calculus I

In this chapter we wish to consider two methods for defining functions of a
given element of a Banach algebra, B. The first method allows us to define f (T')
for almost any T' € B provided that f is analytic on an open neighborhood of
the spectrum of T'. Later we will specialize to the case where B is a C*-algebra
and a € B is Hermitian. In this case we will make sense of f (a) for any bounded
measurable function, f: o (a) — C.

4.1 Holomorphic Functional Calculus

Let B be a unital Banach algebra and T' € B. Suppose that o (T) is a disjoint
union of sets { X },_,; which are surrounded by contours {Cj},_, and {2 is an
open subset of C which contains the contours and their interiors, see Figure

Fig. 4.1. The spectrum of T is in red, the counter clockwise contours are in black,
and (2 is the union of the grey sets.

Given a holomorphic function, f, on {2 we let
f(2) =~ 1 ?{ f(2)
T):=— dz = — d
F@)=5n ¢ ook kzilm' o 2T

=(z=T)""and C = U}_,Cy.

1 .
z=T

where

Let us observe that f (T) is independent of the possible choices of contours
C as described above. One way to prove this is to choose ¢ € B (X)* and notice

that )
() = 5 fc FE (-1 d

where f(z)¢ ((z - T)71> is a holomorphic function on 2\ o (T"). Therefore

% §C z) 4 ((z - T)fl) dz remains constant over deformations of C which

f(z)

remain in 2\ o (T). As ¢ is arbitrary it follows that $o 25 dz remains

constant over such deformations as well.

Theorem 4.1. The map H (£2) > f — f(T) € B(X) is an algebra homomor-
phism satisfying the consistency criteria; if f (z) = ZN

m=0
then
N
- g
m=0
More generally, p > 0 is chosen so that ||T|| < p and f € H (D (0,p)), then
Sy
m=0 m

Proof. It is clear that H (2) > f — f(T) € B(X) is linear in f. Now
suppose that f,g € H (£2) and for each k let C, be another contour around Xy,
which is inside C}, for each k. Then

f(T)g(T)=<271Ti>2k§j:1 3 fo)de f()T

N <2m> kz::]{ fgl C O'
- () E

Using the resolvent formula,

am2™ is a polynomial
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1 1 (—z

z2=T ¢(-T (-T)(-T)

A izj{c'dzfé dng(z)ﬂ(g(c;
:ﬁkdzjgldc“f(zm(f)glz (le_clT)

If K # [ then for z € Ck, ¢ — g(¢) iz Z_IT is analytic for ¢ inside C; and
therefore )

we find

éldCQ(C)C_ZZ_T

=0. (4.1)

Similarly if ¢ € Cy, then z — f (2) Ciz 1= is analytic inside of C, and therefore

1 1
jikdzf(z)CZZT:O.

From these last two identities and Fubini’s theorem it follows that Ay ; = 0 if

k #1.
Now suppose that k = [ so that

Ak’k:fckdz édef(Z)g(C)CiZ (z—lT_C—lT)'

ForzEC’k7C—>g(§)
. ) holds for I = k and

Apr = % dC (O j{Ck dz;ff’zh = 2mi %C‘k ng (CO fiﬁo.

ﬁ is still analytic for ¢ inside C; and therefore Eq.

—Zz

Thus we have shown

which shows that 7" — f (') is an algebra homomorphism

If f (2) is an entire function of z we may replace the contour C by z = pe®
for any p sufficiently large so that o (T') C D (0, p) . Since |z| = p with p > || T
we have
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o0

1 1 1 1
Z—T_21—T/z_2n_ 2n _Zznﬂ ’
it now follows that
1 1 f(2)
T) = d
F(T) 27 T 27rz sz—TZ

1 o0
= j{ g_ g de
= 0( Zm+)1 )T :Z m!()

m= m=0

Theorem 4.2 (Spectral Mapping Theorem). Keeping the same notation
as above, f (o (T)) =0 (f(T)).

Proof. Suppose that u € o (T') and define

INECE Oy
g<z)"{ Py ita=p

so that g € H(U) and f (2) — f (u) = (z — p) g () . Therefore f (T) — f(u) =
(T —u)g(T) and so if f(u) ¢ o(f(T)) then f(T) — f(u) is invertible and
therefore T'— p would be invertible contradicting p € o (T'). Thus We have
shown f (o (T)) C o (f(T)). Conversely if « ¢ f (o (T)) then g(2):= f(z) = i
holomorphic on a neighborhood of o (T'). Since (f (2) —a)g(z) =1 it follows
that (f(T) —«)g(T) = I and therefore o ¢ o (f (T )) and we have shown

[f (e (T)]" C [o (£ (D)), ie. o (f(T)) C o (f(T)). u

\/—\/\

4.2 Hermitian Continuous Functional Calculus

For the remainder of this chapter let B be a unital C'*-algebra.

Proposition 4.3. If B is a C*-algebra with unit, then r(a) = ||a|| whenever
a € B is normal, i.e. [a,a*] = 0. [We will give another proof of this result in
Lemmas ?7? and 7?7 below that r (a) = ||a|| when a is any normal element of B.

]

Proof. We start by showing, for a € B which is normal and n € N, that

. .
2| = llal™". (4.2)
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We will prove Eq. by induction on n € N. By Lemma we know
that ||b2H = ||b]|> whenever b € B is normal. Taking b = a gives Eq. for
n = 1 and then applying the identity with b = a2" while using the induction
hypothesis shows,

n+t1

2 n 2 n
- (||a||2 ) = fla|*"*" for n € N.

The statement that r (a) = ||la|| now follows from Eq. (4.2]) and Corollary
which allows us to compute r (a) as

= lim_[Ja]| = [l

= o

Ezample 4.4. Let N be an n x n complex matrix such that IV;; = 0 if ¢ < j,
i.e. N is upper triangular with zeros along the diagonal. Then o (N) = {0}
while |[N]| # 0. Thus (V) = 0 < ||N||. On the other hand, N™ = 0 so

limy, o0 |N7Y™ =0 =r (N).

Lemma 4.5 (Reality). Let B be a unital C*-algebra. If a € B is Hermitian,
then o (a) C R. [See Lemma ?? for related results.]

Proof. We must show a — A € B;,, whenever Im A £ 0. We first consider
A = i. For sake of contradiction, suppose that ¢ € o (a).Then by the spectral
mapping theorenﬂ with p(z) = A — iz implies

A+1=p(i)€o(p(a)) =0c(A—ia) for all A € R.

Therefore using the fact that r (z) < ||z|| for all z € B along with the C*-identity
shows,
A+ 1) < [r (A —ia))” < A~ dal|”

wherein

1A —ia]> T (A = ia)* (A —ia)|| = [|(A+ia) (A —ia)]|

2 H C*—éond )\2

=W+’ <3+ a + llall*.

Combining the last two displayed equation leads to the nonsensical inequality,
2A + 1 < |ja||® for all A\ € R, and we have arrived at the desired contradiction
and hence i ¢ o (a).

! More directly,
At+l—(A—ia)=14+ia=1i(a—1)

is not invertible by assumption and hence A +1 € (A — ia) .
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For general A = x + iy with y # 0, we have then
af)\:afxfiy:y[yfl(afx)fi]

which is invertible by step 1. with a replaced by y~! (a — ) which shows \ ¢
o (a). As this was valid for all A with Im A # 0, we have shown o (a) CR. m

Corollary 4.6. If a € B is a Hermitian element of a unital C*-algebra, then

Ip (a)ll = sul(o)lp(m)l VpeClal.
xE€o(a

Proof. Since p (a) is normal, it follows that ||p (a)|| = r (p (a)) which by the
spectral mapping theorem may be computed as,

— N = .
7 (p(a)) Aerg(%))ll Arggé)lp(w)l

Theorem 4.7 (Continuous Functional Calculus). If a € B is a Hermi-
tian element of a unital C*-algebra, then there exists a unique C*-algebra iso-
morphism, ¢, @ C (o (a)) = C*(a,1) such that v, (x) = a ore equivalently,
va (p) =p(a) for all p € Clx]. [We usually write o, (f) as f (a) ]

Proof. By the classical Stone-Weiersrtass theorem, {p|y(q) :p € C[z]} is
dense in C (o (a)) and so because of Corollary there exists a unique lin-
ear map, ¢, : C (o (a)) = C*(a,1), such that ¢, (p) = p(a) for all p € C|x]
and [[oq ()l = [1fll = (o(a)) - It is now easily verified that ¢, is a homomor-
phism with dense closed range and hence ¢, is an isomorphism. Moreover,
using p(a)® = p(a) we easily conclude by a simple limiting argument that
‘Pa(f)zwa(f)*' u

For the rest of this chapter we will explore the ramifications of having a C*-
algebra isomorphism of the form in Theorem [£.7 We will work more generally
at this stage so that the results derived here will be applicable later when we
have more general forms of Theorem [4.7] at our disposal.

4.3 Cyclic Vector and Subspace Decompositions

The first point we need to deal with is that understanding the structure of a C*-
subalgebra (B) of B (H) does not fully describe how B is embedded in B (H).
To understand the embedding problem we need to introduce the notation of
cyclic vector and cyclic subspaces of H.
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54 4 Functional Calculus I

Definition 4.8 (Cyclic vectors). If A is a sub-algebra of B (H) a vector x
in H is called a cyclicvector for A if Ax = {Ax : A € A} is dense in H. We
further say that an A — invariant subspace, M C H, is an A — cyclic subspace
of H if there exists x € M such that Av := {Ax : A € A} is dense in M.

Lemma 4.9. If A is a * — sub-algebra of B (H) and M C H is an A — invariant
subspace, then M and M+ are A — invariant subspaces.

Proof. If m € M and m* € M, then
<AmL,m> = <mL,A*m> =0

for all A € Aas A* € A (Ais a % — subalgebra). In other words, (AM*, M) =
{0} and hence AM+ C M. The assertion that M is also A-invariant follows
by a simple continuity argument. [

Theorem 4.10. Let H be a separable Hilbert space and A be a unital * — sub-
algebra of B (H) with identity. Then H may be decomposed into an orthogonal
direct sum, H = ®N_,H,, (N = oo possible) such that H,, is a cyclic subspace
of A. [This cyclic decomposition is typically highly non-unique.]

Proof. Let {ex},-, be an orthonormal basis for H and let
vy := e; and Hy := Av;.
Then let ks = min{k € N: e, ¢ H;} and let
Vg 1= PHliek2 and Hs := Avy C Hf
Now let k3 := minmin{k € N: e, ¢ H; ® Ha} and let

vy = P[Hl@HZ]J_ek3 and Hsz := Avg

and continue this way inductively forever or until {e;},—, C Hy for some
N < oco. ]

Exercise 4.1. Show that Theorem [4.10| holds without the assumption that H
is separable. In this case the second item should be replaced by the statement
that there exists an index set I and {(va,Ha)},c; Where H, is a closed A
in variant subspace of H, v, # 0 is an A-cyclic vector, and H = @ycrH,
(orthogonal direct sum).

Before leaving this topic let us explore the meaning of cyclic vectors by
looking at the finite dimensional case.
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Proposition 4.11. Let T be a n x n-diagonal matriz, T = diag (A1,...,\,) for
some A\; € C and set o (T) :={A1,..., \n}. If u € C" is expressed as

u = Z ex (4.3)

A€o (T)
where ey € Nul (T — M) for each A € o (T), then
{p(T)u:peClz]} =span{er: A€o (T)}.

In particular, there is a cyclic vector for T iff # (o (T)) = n, i.e. all eigenvalues
of T have multiplicity 1. In this case, one may take u = ZAEU(T) ex where
ex € Nul(T — AI) \ {0} for all X\ € o(T). [Moral, the ezistence of a cyclic
vector is equivalent to T having no repeated eigenvalues.]

Proof. If u is as in Eq. (4.3) and p € C|z], then

p(Mu= Y pMex= > pNen

A€o (T) A€o (T)

As usual, given A\g € o (T'), we may choose p € C[z] such that p (\) = dy,.» for
all A € o (T'). For this p we have p (T) u = ey, and hence we learn

{p(T)u:pe Clz]} =spanfey: A€o (T)}.

From this relation we see that maximum possible dimension of
{p(M)u:peClz]} is #(o(T)) which is equal to n iff #(c(T)) = n.
]

4.4 The Diagonalization Strategy

Proposition 4.12. Suppose thatY is a compact Hausdorff space, H is a Hilbert
space, B is a commutative unital C*-subalgebra of B(H), and ¢ : C(Y) — B
is a given C*-isomorphism of C*-algebras. Then for each v € H \ {0}, there
exists a unique finite radon measure, p,, on (Y, By) such that

(o (F)v,0) = /Y fdun ¥ f € C(Y). (4.4)

Proof. For fe C(Y),let A(f):= (¢ (f)v,v) which is a linear functional
on C (Y). Moreover if f >0, then g = +/f € C(Y) and hence

A(f)=A(g°) = (¢ (g%) v,0) = (p(9) ¥ (9) v,v)
= (p(g)v.(9)" v) = (¢ (9) v, (@) v) = ¢ (g)v]* > 0.
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Thus A is a positive linear functional on C (V') and hence by the Riesz-Markov
theorem there exists a unique finite radon measure, p,, on (Y, By) such that

<so<f>v,v>:A<f>:/yfduvvfec<Y>.
| |

Proposition 4.13. Continue the notation and assumptions in Proposition[].13
and for each v € H\ {0}, let

H,:=Bv" c H. (4.5)

Then there exists a unique unitary isomorphism, U, : L? (u,) — H, which is
uniquely determined by requiring

U f=p(f)ve H, foradl feC((Y). (4.6)
Moreover, this unitary map satisfies,
Uy (f)|,Us = My on L? (o) ¥ feC(Y). (4.7)
Proof. Since

U717 = (o (e ()0 = (o () 0 (D v,)
= (e (Do) = (o () o) = [ 177 diss = 1l

and C (V) is dense in L? (1) , it follows that U, extends uniquely to an isometry
from L? (u,) to H,. Clearly U, has dense range and the range is closed since
U, is isometric, therefore Ran (U,) = H, and hence U, is unitary.

Let us further note that for f,g € C'(Y),

Uso () Uvg =Use (f)p(g)v=Usp(fg)v=fg= Msg. (4.8)

If g € L? (1), we may choose {g,} € C(Y) so that g, — g in L? (). So
by replacing g by ¢, in Eq. (4.8) and then passing to the limit as n — oo we
conclude It then follows that

Usp (f)Ung = fg= MgV g € L* ()
which proves Eq. (4.7). ]

Theorem 4.14. Continue the notation and assumptions in Proposition [{.13.
Then there exist N € NU{oo}, a probability measure p measure on 2 := Ay X
Y C An xR equipped with the product o — algebra (here Ay = {1,2,..., N}NN),
and a unitary map U : L? (u) — H such that

U ()U = Myor on L2 (1)
where w: 2 — C is defined by 7 (j,w) =w for all j € Ay and w €Y.
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Proof. By Theorem there exists an N € NU{cco} so that we may
decompose H into an orthogonal direct sum, ®;ca, H;, of cyclic subspaces for
A. Choose a cyclic vector, v; € H;, for all i € A := Ay and normalize the

{vi};ca so that
2
D luill* =

€A
Let p; = p,, be the measure in Proposition and let 2 := A x Y which we
equip with the product o — algebra, F, and the probability measure p defined as
follows. Every G € F may be written (see Remarkbelow) may be uniquely
written as
G =) {i} x G, for some {Gi},c, C By
€A

and if we let

)=y i (Gi),

i€
then p is a measure on F. For this measure,
/ gdp = Z/ 9liiyxydp = Z/ ) dps;
€A i€

From which it easily follows that the map,

L2 (Qau) > g — {g (Z? ')}iGA € @iEALQ <Y7 /J'l)

is a unitary. For g € L? (§2, 1) we define,

Ug=> Ug(i

€A

@ZEA H H

where U,, is the unitary map in Proposition Since

10l =S Ui ()%, = /|gzw| dpis (w /|g\ i,

€A €A

U is an isometry and since U has dense range it is in fact unitary. Lastly if
feC(Y)and g € L? (1), we have

UMfOﬂ'g - Z le f o 7T Z le fg
€A €A
= U [Myg (i,)] =D e (f) i,) =@ (f)Ug.
€A €A
This completes the proof. [
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56 4 Functional Calculus I

Remark 4.15. The product o-algebra on A x Y is given by the collection of sets

Fi={> ({i} xGy): {G;};2, C By

jea

If is clear that every element in F is in the product o-algebra and hence it
suffices to shows F is a o-algebra. The main point is to notice that if G =

Zje/l ({5} x Gj), then
(i,y) € G° <= (i,y) ¢ G <= y ¢ G; < (i,y) € {i} x GS.

This shows G¢ = ), 4 ({i} x Gf) which is graphically easy to understand.
To see that y is a measure on F, first observe that if H = >, {i} x Hj,
then
HNG=> {i} x [Gin Hj]
i€
and so if {G(n)=Y,.,{i} xG; (n)}nGA are pairwise disjoint then
{Gi(n)},c, must be pairwise disjoint for each i € A. Hence it follows

that
IR TR POL)

neN €A neN

and therefore,

(Zew) - Tu (Tem) - X T u@om)

neN i€/ neN i€A neN
=Y i (G ) = S (G ().
neNieA neN

Corollary 4.16 (Spectral Theorem I). Let H be a separable Hilbert space
and A € B(H) be a self-adjoint operator. Then there ezists a finite measure
space, (£2,F,un), a bounded function, a : 2 — o (A), and a unitary map,
U:L?(u) — H, such that A =UM,U*.

Proof. Let B = C*(A,I) C B(H) and then by Theorem there exists
C*-isomorphism, @4 : C (0 (4)) — B such that p4 (p) = p (A4) . To complete the
proof of the theorem, we apply Theorem with ¢ = ¢4 and take a =idow
where id : 0 (A) — o (A) is the identity map. as in the language of Theorem

|
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4.5 Measurable Functional Calculus

For general measurable functional calculus, see Theorem ?77.

Theorem 4.17 (Measurable Functional Calculus). Let H be a separable
Hilbert space and A be a self-adjoint element of B (H). Then there exists a
unique map P4 : B* (0 (A)) = B (H) such that;

1. 94 is a x — homomorphism, i.e. ¥4 is linear, Ya(fg) = Ya(f)al(g) and
Ga(F) = 6alf)* for all f,g € B (o (A).
2 94 (F)lly < Il for all £ € B (o (4)).
3. 94 (p) =p(A) for all p € Clz]. [Equivalently ¢ (1) = I and ¢4 (x) = A
where x : 0 (A) — o (A) is the identity map.]
4. If fr, € B>® (0 (A)) and f, — f pointwise and boundedly, then pa(fn) —
Ya(f) strongly.
Moreover this map has the following properties.
f f >0 then pa(f) > 0.
. If Ah = Ah for some h € H and X € R, then Y4 (f)h = f (\) h.
7.If Be€ B(H) and [B,A] =0, then [B,va(f)] =0 for all f € B> (o (A)).

D O

Proof. Uniqueness. Suppose that ¢ : B* (¢ (A)) — B (H) is another map
satisfying (1) — (4). Let

H:={feB*(c(A),C):v(f) =valf)}.

Then H is a vector space of bounded complex valued functions which by prop-
erty 4. is closed under bounded convergence and by property 1. is closed under
conjugation. Moreover H contains

M = {plo(a) : p € C[z]}

and therefore also C'(o (A), C) because of the Stone — Weierstrass approxima-
tion theorem. Therefore it follows from Theorem that H = B> (o (A)), i.e.
Y =1va.

Existence. Let U : L? (2, u) — H be as in Corollary and then define

Ga(f) = UMoaU* V¥ f € B® (0 (A)).

One easily verifies that ¢4 satisfies items 1. — 4. Moreover we can easily verify
items 5-7 as well.

5.1f f >0, then f = (\/f)2 and hence ¥4 (f) =4 (\/f)2 > 0.

6. If Ah = MAh and g := U*h, then M,g = Ag from which it follows that
(a—X)g=0 p—ae. which implies a = A g — a.e. on {g # 0} . Thus it follows
that foa = f(\) u — a.e. on {g # 0} and this implies Myoq9 = f (\) g which
then implies,
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Ya(f)h=a(f)Ug=UMsoag =Uf(X)g=f () h.
7. Let
H:={f € B> (c(A),C) : [B,a(f)] =0}

which is vector space closed under conjugatimﬂ and bounded convergence. It
is easily deduced from [B, A] = 0 that [B,p (A)] = 0 for all p € C[x], the result
follows by an application of the multiplicative system Theorem [A-9] applied
using the multiplicative system,

M = {ploa) : p € C[a]}.

2 Again we use Theorem and the fact that ¥4 (f) is normal for all f.
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A

Miscellaneous Background Results

A.1 Multiplicative System Theorems

Notation A.1 Let {2 be a set and H be a subset of the bounded real valued

functions on 2. We say that H is closed under bounded convergence if; for
(o] . .

every sequence, { fn},_, C H, satisfying:

1. there exists M < oo such that |f, (w)| < M for allw € 2 and n € N,
2. f(w):=limy oo [ (w) exists for all w € 2, then f € H.

Notation A.2 For any o-algebra, B C 29, let B(£2,B;R) be the bounded
B/Br-measurable functions from §2 to R.

Notation A.3 IfM is any subset of B ((2, 292, R) , let H(M) denote the small-
est subspace of bounded functions on 2 which contains MU{1}. (As usual such
a space exists by taking the intersection of all such spaces.)

Definition A.4. A subset, M C B (Q, 2, R) , 18 called a multiplicative sys-
tem if M is closed under finite products, i.e. f,g € M, then f-g € M.

The following result may be found in Dellacherie [10, p. 14]. The style of
proof given here may be found in Janson 30, Appendix A., p. 309].

Theorem A.5 (Dynkin’s Multiplicative System Theorem). Suppose that
H is a vector subspace of bounded functions from §2 to R which contains the
constant functions and is closed under bounded convergence. If Ml C H is a mul-
tiplicative system, then H contains all bounded o (M) — measurable functions,
i.e. H contains B (2,0 (M);R).

Proof. We are going to in fact prove: if M C B (Q, PALE R) is a multiplicative
system, then H (M) = B ({2, (M);R). This suffices to prove the theorem as
H (M) C H is contained in H by very definition of H (M) . To simplify notation
let us now assume that H = H (M) . The remainder of the proof will be broken
into five steps.

Step 1. (H is an algebra of functions.) For f € H, let Hf :=
{g € H:gf € H}. The reader will now easily verify that H/ is a linear sub-
space of H, 1 € Hf, and H/ is closed under bounded convergence. Moreover if
f € M, since M is a multiplicative system, M C HY. Hence by the definition of
H, H=H/, ie. fg € Hforall f e M and g € H. Having proved this it now

follows for any f € H that M C H/ and therefore as before, Hf = H. Thus we
may conclude that fg € H whenever f,g € H, i.e. H is an algebra of functions.

Step 2. (B:={AC2:14 € H} is a 0 — algebra.) Using the fact that H
is an algebra containing constants, the reader will easily verify that B is closed
under complementation, finite intersections, and contains (2, i.e. B is an algebra.
Using the fact that H is closed under bounded convergence, it follows that B is
closed under increasing unions and hence that B is o — algebra.

Step 3. (B(£2,8;R) C H) Since H is a vector space and H contains 14 for
all A € B, H contains all B — measurable simple functions. Since every bounded
B — measurable function may be written as a bounded limit of such simple
functions, it follows that H contains all bounded B — measurable functions.

Step 4. (o (M) C B.) Let ¢, (z) = 0V [(nz) A1] (see Figure below)
so that ¢, (z) T 1z50. Given f € M and a € R, let F,, := ¢, (f —a) and
M :=sup,cq |f (w) — a|. By the Weierstrass approximation theorem, we may
find polynomial functions, p; () such that p; — ¢, uniformly on [—M, M].
Since p; is a polynomial and H is an algebra, p; (f — a) € H for all I. Moreover,
pro(f —a) — F, uniformly as [ — oo, from with it follows that F,, € H for all
n. Since, Fj, T 1if54y it follows that 1(ssq) € H, ie. {f > a} € B. As the sets
{f > a} with a € R and f € M generate o (M), it follows that o (M) C B.

1o
}r

i
2
X

Fig. A.1. Plots of 1, 2 and @3 which are continuous functions used to approximate,
T — 1120.
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Step 5. (H(M)=B(£2,0(M);R).) By step 4., o (M) C B, and so
B (2,0 (M);R) C B(£2,B;R) which combined with step 3. shows,

B (2,0 (M);R) C B(£2,B;R) C H(M).

However, we know that B (2,0 (M);R) is a subspace of bounded measurable
functions containing M and therefore H (M) C B (2,0 (M) ;R) which suffices
to complete the proof.

|

Corollary A.6. Suppose H is a subspace of bounded real valued functions such
that 1 € H and H is closed under bounded convergence. If P C 2% is a mul-
tiplicative class such that 14 € H for all A € P, then H contains all bounded
o(P) — measurable functions.

Proof. Let M = {1}U{14 : A € P}. Then M C H is a multiplicative system
and the proof is completed with an application of Theorem [AZ5] |

Ezample A.7. Suppose p and v are two probability measure on (§2, B) such that

/Qfd,u:/gfdl/ (A1)

for all f in a multiplicative subset, M, of bounded measurable functions on 2.
Then g = v on o (M) . Indeed, apply Theorem with H being the bounded
measurable functions on {2 such that Eq. olds. In particular if M =
{1} U{l4 : A € P} with P being a multiplicative class we learn that = v on
o(M)=0(P).

Exercise A.1. Let 2 :={1,2,3,4} and M := {14,15} where A := {1,2} and
B:={2,3}.

a) Show o (M) = 29.
b) Find two distinct probability measures, 4 and v on 2 such that p(A) =
v(A) and p(B) =v(B), i.e. Eq. (A.1) holds for all f € M.

Moral: the assumption that M is multiplicative can not be dropped from
Theorem [A5l

Proposition A.8. Suppose p and v are two measures on (£2,8), P C B is a
multiplicative system (i.e. closed under intersections as in Definition ??) such
that 1 (A) = v (A) for all A € P. If there exists 2, € P such that 2, T 2 and
w(02,) =v(2,) < oo, then p=v on o (P).
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Proof. Step 1. First assume that u(2) = v(£2) < oo and then apply
Example [A.7] with M = {14 : A € P} in order to find = v on o (M) = o (P).

Step 2. For the general case let p, (B) = p(BN§2,) and v, (B) =
v(BnN{2,) for all B € B. Then p,, = v, on P (because 2, € P) and

pin (£2) = 11 (2n) = v (2n) = v (£2)..

Therefore by step 1, p, = v, on o (P). Passing to the limit as n — oo then
shows

w(B)= lim p(BN2,) = lim u, (B)
n—oo n—oo
= lim v, (B)= lim v(BN{,)=v(B)

n—oo n—oo
for all B € o (P). |
Here is a complex version of Theorem

Theorem A.9 (Complex Multiplicative System Theorem). Suppose H
is a complex linear subspace of the bounded complex functions on 2,1 € H, H is
closed under complex conjugation, and H is closed under bounded convergence.
If M C H is multiplicative system which is closed under conjugation, then H
contains all bounded complex valued o(M)-measurable functions.

Proof. Let My = spangs(M U {1}) be the complex span of M. As the reader
should verify, M is an algebra, My C H, M is closed under complex conjuga-
tion and o (M) = o (M) . Let

HE .= {f € H: f is real valued} and
M = {f € My : f is real valued} .

Then HR is a real linear space of bounded real valued functions 1 which is closed
under bounded convergence and M C HF. Moreover, M is a multiplicative
system (as the reader should check) and therefore by Theorem [A.5] H® contains
all bounded o (M) — measurable real valued functions. Since H and M are
complex linear spaces closed under complex conjugation, for any f € H or
f € My, the functions Re f = %(f—i—f) and Im f = %(f—f) are in H or
M respectively. Therefore My = M + iM§, o (M§) = o (M) = o (M), and
H = HF + H®. Hence if f : £2 — C is a bounded ¢ (M) — measurable function,
then f = Re f +iIm f € H since Re f and Im f are in HE. [

Lemma A.10. If —c0 < a < b < o0, there exists f, € C.(R,[0,1]) such that
lim,, s o0 fn = ]-(a,b]'

Proof. The reader should verify lim,, o fn = 1(4,5) Where f,, € C. (R, [0,1])
is defined (for n sufficiently large) by
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0 on (—oo,a] U [b+ +,00)
_ n(x—a) if anSa—F}l
fa (@) := 1 if a+l<a<b

1—-n(b-—2) if beSb—F%

1.0 —
}r
0.0+ t t t t |
1] 1 ) 3 4 5

Fig. A.2. Here is a plot of f2 (z) when a = 1.5 and b = 3.5.

Lemma A.11. For each A > 0, let ey (x) := e*. Then
Bp=o(ex:A>0)=0 (e (W):A>0, W e Bg).
Proof. Let S':={2€C:|z|=1}.For —r <a < B <7 let
A(a,ﬁ):={ew:a<9<ﬁ}=Slﬂ{r6w:a<9<ﬁ, 7">0}

which is a measurable subset of C (why). Moreover we have e (z) € A (a, )
iff \x € 7y [(o, B) + 27n] and hence

ey (A, B) = Kix) +27rﬂ co(ex:A>0).

neZ

Hence if —co < a < b < 0o and A > 0 sufficiently small so that —7 < Aa <
Ab < 7, we have

1 o n
et (ARa ) =Y [(a, b) + 27rﬂ
neZ
and hence
(a,b) = Masoey ' (A(Aa, Ab)) € o (ex : A > 0).

This shows Bg C o (e) : A > 0). As ey, is continuous and hence Borel measurable
for all A > 0 we automatically know that o (ey : A > 0) C Bg. ]

Remark A.12. A slight modification of the above proof actually shows if {\,} C
(Oa OO) with hmn—>oo >\n = 0, then o (6)\n tn e N) = BR-
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Corollary A.13. Each of the following o — algebras on R¢ are equal to Bga;

1. My = U(U?:1 {SU — f(fUz) 1 feC. (R)}),

2. My:=0(x— fi1(x1)...fa(za): fi € Cc(R))
S Ms=oc (CC (Rd)) , and

4. My:=0 ({x —erT e Rd}) .

Proof. As the functions defining each M; are continuous and hence Borel
measurable, it follows that M; C Bga for each i. So to finish the proof it suffices
to show Bra C M, for each 1.

M, case. Let a,b € R with —00 < a < b < co. By Lemma [AT0] there
exists f, € C.(R) such that lim, ,o fn = 1(ap). Therefore it follows that
 — 1(qy) (25) is My — measurable for each i. Moreover if —oco < a; < b; < 00
for each 4, then we may conclude that

d
2 = [ Ltasba) (@) = Lay by} x-x (agsbal (2)
i=1
is M; — measurable as well and hence (a1,b1] x -+ X (ag,bq] € M. As such
sets generate Bra we may conclude that Bra C M;.
and therefore My = Bpa.
My case. As above, we may find f; , — 1(4,,) asn — oo foreach 1 <i <d
and therefore,

Liay,bi]x-x(aa,ba] (T) = nh_)rréo fin (x1) .. fan (zq) for all x € R4,

This shows that 1(4, ,]x---x (au,bs] 18 M2 — measurable and therefore (ay,b;1] x
- X (ag,bq] € Ma.
M3 case. This is easy since Bra = My C M3 C Bga.
My case. Let 7 : R? — R be projection onto the j* — factor, then for
A >0, eyomj(z) = e, It then follows that

o(exom; : A>0) :0'((6,\071']')71 (W): A>0,W 68@)
=0 (’n'j_l (6;\1 (W)) A>0,W e Bc)
= 773‘_1 (0’ ((6;1 (W)) :A>0,W e Bc)) = 71']-_1 (Br)
wherein we have wused Lemma for the last equality. Since
o(exomj: A>0)C M,y for each j we must have
d times

—f
Bra =Br® - @Br=0(m;: 1 <j<d) C My

Alternative proof. By Lemma ?? below there exists g, €Trig(R) such
that lim,, o0 gn = 14, Since  — g, (7;) is in the span {x ST )€ Rd}
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for each n, it follows that & — 1(44) (7;) is My — measurable for all —oo < a <

b < oo. Therefore, just as in the proof of case 1., we may now conclude that
B]Rd C M4. | ]

Corollary A.14. Suppose that H is a subspace of compler valued functions on
R? which is closed under complex conjugation and bounded convergence. If H
contains any one of the following collection of functions;

1. M:={x— fi(x1)... fa(za): fi € C.(R)}
2.M:=C. (R), or
3. M:= {z —e*: X e R}

then H contains all bounded complex Borel measurable functions on R<.

Proof. Observe that if f € C, (R) such that f(z) = 1 in a neighborhood
of 0, then f, (z) := f(z/n) — 1 as n — oo. Therefore in cases 1. and 2., H
contains the constant function, 1, since

In case 3, 1 € M C H as well. The result now follows from Theorem and
Corollary [

Proposition A.15 (Change of Variables Formula). Suppose that —
a<b<ooandu: [a,b — R is a continuously differentiable function which
is not necessarily invertible. Let [c,d] = u ([a,b]) where ¢ = minwu ([a,b]) and
d = maxu ([a,b]). (By the intermediate value theorem u ([a,b]) is an interval.)
Then for all bounded measurable functions, f : [c,d] = R we have

u(b) b
/ f(@)de = / F(u ()i () dt. (A.2)
u(a) a

Moreover, Eq. is also valid if f : [c,d] — R is measurable and

/ \F (u ()] i (8)] dt < 0. (A.3)

Proof. Let H denote the space of bounded measurable functions such that
Eq. holds. It is easily checked that H is a linear space closed under bounded
convergence. Next we show that M = C ([¢,d],R) € H which coupled with
Corollary will show that H contains all bounded measurable functions
from [c,d] to R.

If f:[c,d] — R is a continuous function and let F be an anti-derivative of
f- Then by the fundamental theorem of calculus,
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/Qf< B dt = /F i (t) dt

:/a SF (u(t) dt = F (u () ;

u(b) u(b)
=F(u®) - F(u(a)) = F’(x)dm:/ f(z)da.

u(a) u(a)

Thus M C H and the first assertion of the proposition is proved.
Now suppose that f : [¢,d] — R is measurable and Eq. (A.3) holds. For M <
oo, let fas (x) = f(2) - 1f(a)j<m — & bounded measurable function. Therefore

applying Eq. (A.2) with f replaced by |fas| shows,

u(b)
/|fM Dl () dt

Using the MCT, we may let M 1 oo in the previous inequality to learn

u(b)
/ x)| dx
u(a)

Now apply Eq. (A.2)) with f replaced by fas to learn

u(b) b
/ fu (z) dx =/ far (u () (t)dt.

Using the DCT we may now let M — oo in this equation to show that Eq.

(A.2) remains valid. -

Exercise A.2. Suppose that v : R — R is a continuously differentiable function
such that @ (¢) > 0 for all ¢ and lim;_, 1+ u (t) = +00. Use the multiplicative
system theorem to prove

/f(x) dx = / flu(t)u(t)dt (A.4)
R R

for all measurable functions f : R — [0, 00]. In particular applying this result
to u (t) = at + b where a > 0 implies,

/Rf(x)d;z::a/Rf(at+b)dt

Definition A.16. The Fourier transform or characteristic function of a
finite measure, [, on (Rd, BRd) , is the function, i : R* — C defined by

|foar (2)| dw| =
u(a)

/ [ Far ()] i () d.

</|f W[ i ()] dt < oo.

()= / eNdu (z) for all X € RY
Rd
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Corollary A.17. Suppose that p and v are two probability measures on
(Rd,BRd) . Then any one of the next three conditions implies that u = v;

1. éRd(fl)(xl) o fa(za)dv(x) = [pa fr(x1) ... fa(za)dp(x) for all fi €
' (R).

2. [pa [ (x)dv () = [pu f(x)dp(x) for all f € C. (R?).

3.0 = .

Item 3. asserts that the Fourier transform is injective.

Proof. Let H be the collection of bounded complex measurable functions
from R? to C such that

/R fdp= /]R fdv. (A.5)

It is easily seen that H is a linear space closed under complex conjugation and
bounded convergence (by the DCT). Since H contains one of the multiplicative
systems appearing in Corollary it contains all bounded Borel measurable
functions form R? — C. Thus we may take f = 14 with A € By« in Eq.
to learn, u (A) = v (A) for all A € Bga. |

A.2 Weak, Weak*, and Strong topologies

Another collection of examples of topological vector spaces comes from putting
different (weaker) topologies on familiar Banach spaces.

Definition A.18 (Weak and weak-* topologies). Let X be a normed vector
space and X* its dual space (all continuous linear functionals on X ).

1. The weak topology on X is the X* topology of X, i.e. the smallest topology
on X such that every element f € X* is continuous. This topology is often
denoted by o(X, X*).

2. The weak-x topology on X* is the topology generated by X, i.e. the smallest
topology on X* such that the maps f € X* — f () € C are continuous for
all x € X. In other words it is the topology o(X*, X) where X is the image
of X 32— & € X**. [The weak topology on X* is the topology generated
by X** which is may be finer than the weak-* topology on X*.]

Definition A.19 (Operator Topologies). Let X and Y be be a normed vec-
tor spaces and B (X,Y) the normed space of bounded linear transformations
from X to Y.

1. The strong operator topology (s.o.t.) on B (X,Y) is the smallest topol-
ogy such that T € B(X,Y) — Tx €Y is continuous for all x € X.
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2. The weak operator topology (w.o.t.) on B (X,Y) is the smallest topology

such that T € B(X,Y) — f(Tx) € C is continuous for all x € X and f € Y*.

Remark A.20. Let us be a little more precise about the topologies described in
the above definitions.

1. The weak topology on X has a neighborhood base at o € X consisting
of sets of the form

N=n{z € X :|f;(x) — fi(zo)| <e}

where f; € X* and € > 0.
2. The weak-* topology on X* has a neighborhood base at f € X* consisting
of sets of the form

Ni=nli{g € X7 |f(zi) — g(zi)] < e}

where z; € X and € > 0.
3. The strong operator topology on B (X,Y’) has a neighborhood base at
T € X* consisting of sets of the form

N = ﬂizl{S S L(X,Y) : ||SJ?Z —Tl‘zH < 6}

where x; € X and € > 0.
4. The weak operator topology on B (X,Y) has a neighborhood base at
T € X* consisting of sets of the form

N = ﬂ?zl{S S L(X, Y) : |fz (sz — Tl‘z)l < E}

where z; € X, f; € X* and ¢ > 0.

5. If we let 7,, — be the operator-norm topology, 75 be strong operator topol-
ogy, and 7, be the weak operator topology on B (X,Y),.then 7, C 75 C
Top- Consequently; if I' € B(X,Y) is a set, then ' ¢ T'° c T"'* and in
particular; a 7,-closed set is a 7, — closed set and a 7, — closed set is a 7,
— closed set.

Lemma A.21. Let us continue the same notation as in item 5. of Remark

A.20, Then A€ T iff for every A C; X x Y*, there exists A, € " such that

lim, 00 f (Anz) = f (Az) for all (f,x) € A and similarly A € T iff for every
A Cy X, there exists A,, € I' such that lim,_,o Apz = Ax for all x € A. [Note
well, the sequences {Ay,} C I' used here are allowed to depend on I'!]

Proof. This follows directly from Proposition ?? and the definitions of the
weak and strong operator topologies.
]
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A.3 Quotient spaces, adjoints, and reflexivity

Definition A.22. Let X and Y be Banach spaces and A : X — Y be a linear
operator. The transpose of A is the linear operator At : Y* — X* defined by
(ATf) (z) = f(Az) for f € Y* and & € X. The null space of A is the subspace
Nul(Ad):={zre X: Az =0} C X. For M C X and N C X* let

M°:={feX*: fl; =0} and
Nt:={zeX:f(z)=0 foral f e N}

Proposition A.23 (Basic properties of transposes and annihilators).

1. | Al = ||At|| and ATt = Az for all x € X.

2. M° and N+ are always closed subspaces of X* and X respectively.

3. (MO)" = .

4. N C (NL)O with equality when X is reflexive. (See Ezercise T7, FExample
?? above which shows that N # (NJ‘)O in general.)

5. Nul(A) = Ran(A?)L and Nul(A!) = Ran(A)°’. Moreover, Ran(A) =
Nul(AY)L and if X is reflezive, then Ran(AT) = Nul (4)°.

6. X is reflexive iff X* is reflexive. More generally X *** = X+ @ X0 where

X0O={AeX"™ :\(&)=0foralzecX}.

Proof.
1.
[All = sup [|[Az|| = sup sup |f(Az)]
llzll=1 lzll=1 ] fll=1
= s sup 4170 = sup A1) = 7).
ILFll=1 flz]|=1 Ifll=1

2. This is an easy consequence of the assumed continuity off all linear func-
tionals involved. N
3. If x € M, then f(z) = 0 for all f € M° so that € (M) . Therefore

M c (M°)".1f z ¢ M, then there exists f € X* such that f|5 = 0 while
f(z) #0,ie fe M®yet f(x)# 0. This shows z ¢ (MO)L and we have
shown (MO)J' C M.

4. It is again simple to show N C (Nl)o and therefore N C (Nl)o . Moreover,
as above if f ¢ N there exists ¢ € X** such that |5 = 0 while ¢ (f) # 0.

If X is reflexive, ¢ = & for some z € X and since g (x) = ¢ (g9) = 0 for
all g € N, we have x € N*. On the other hand, f(x) = ¥ (f) # 0 so

fé (NJ-)O. Thus again (NJ‘)O C N.
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o.
Nul(A)={ze X :Az=0}={ze X : f(Az)=0V fe X"}
={zeX:Alf(x)=0V fe X"}
={zeX:g(x) =0V g e Ran(4")} = Ran(A")".
Similarly,

Nul(AT):{fGY*ATfZO}:{fEY*(ATf)(x):OV$€X}
={feY": f(Az) =0V z e X}
={f €Y": flran(a) = 0} = Ran(4)".

6. Let ¢ € X*** and define fy, € X* by fy (x) = ¢ (%) for all z € X and set
Y =1 — fy. For x € X (so & € X**) we have

W (&) = (&) = fu (&) = fy (@) = 2(fy) = fu (2) = fu (x) = 0.

This shows ¢’ € X° and we have shown X*** = X* + X0, If y € X* N X©,

then ¢ = f for some f € X* and 0 = f(fc) =2(f)=f(x) foral x € X,

i.e. f =0s0% = 0. Therefore X*** = X*® X0 as claimed. If X is reflexive,

then X = X** and so X° = {0} showing X*** = X* ie. X* is reflexive.

Conversely if X* is reflexive we conclude that X° = {0} and therefore
1

X ={0}" = (XO) = X, so that X is reflexive.

Alternative proof. Notice that f, = Jtp, where J : X — X** is given
by Jx = z, and the composition

PN t ~
fexrsfexLyfexr

is the identity map since (JTf) (z) = f(Jx) = f(&) = & (f) = [ (z) for all

x € X. Thus it follows that X* — X*** is invertible iff JT is its inverse which
can happen iff Nul(JT) = {0}. But as above Nul(JT) = Ran (J)" which will
be zero iff Ran(J) = X** and since J is an isometry this is equivalent to
saying Ran (J) = X**. So we have again shown X* is reflexive iff X is
reflexive.

Theorem A.24 (Banach Space Factor Theorem). Let X be a Banach
space, M C X be a proper closed subspace, X/M the quotient space, m: X —
X /M the projection map 7 (x) = x+ M for x € X and define the quotient norm
on X/M by
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i (x)HX/M = |z + M”X/M = nirel;fw |z +mlx .
Then:

1|l xar s @ norm on X/M.

2. The projection map ©: X — X/M is has norm 1, ||| = 1.

8. Foralla€ X and e >0, 7 (B (a,¢)) = BXM (7 (a) &) and in particular
T 1§ an open mapping.

4- (X/M, ||l x/ar) is a Banach space.

5. If Y 1is another normed space and T : X — Y is a bounded linear transfor-
mation such that M C Nul(T), then there exists a unique linear transfor-

mation T : X/M — Y such that T =T o« and moreover ||T|| = HTH .
6. The map,

closed subspaces closed subspaces
{ of X containing M} >N m(N)e { of m(X/M) }

is a bijection. The inverse map is given by pulling back subspace of m (X /M)
by 7L, [The word closed may be removed above and the result still holds as
one learns in a linear algebra class.]

Proof. We take each item in turn.
1. Clearly ||z + M| > 0 and if ||z + M| = 0, then there exists m,, € M such

that ||z +my| — 0 as n — oo, i.e. v = — lim m, € M = M. Since x € M,

n—oo

x+M=0€ X/M.If cc C\ {0}, x € X, then
lez + M| = inf Jlcx+m| = |¢[ inf |lz+m/c| = |||z + M||
meM meM
because m/c runs through M as m runs through M. Let z1,22 € X and
my,mo € M then
|21 + 22 + M| < ||z + 22 + my + mal| < |21+ my| + [Jzg + mall.
Taking infimums over my, my € M then implies
21 4+ x2 + M| < [lz1 + M| + [lz2 + M]|.

and we have completed the proof the (X/M, || -||) is a normed space.

2. Since |7 (2)]] = infienm ||z +m| < |jz| for all z € X, ||n]] < 1. To see
I=ll = 1, let € X \ M so that 7 (x) # 0. Given « € (0,1), there exists
m € M such that

lz+mll < o™t ()]

Therefore,
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[m(z+m)ll _ llw @)l alzt+m| _
[z +ml e +m] — [lz+m]

which shows |7 > «. Since o € (0,1) is arbitrary we conclude that
I ()] = 1.

. Since ||7|| < 1 if & > 0 then 7 (BX (0,¢)) C BX/™ (0,¢). Conversely if y €

X and 7 (y) € BX/M (0,¢) then there exists m € M so that ||y +m| < e,
ie. y + m € BX(0,¢). Since 7 (y) = 7 (y +m), this shows that 7 (y) €
7 (BX (0,¢)) and so w (BX (0,£)) = BX/M (0,¢) for all £ > 0. For general
a € X and € > 0 we have
7 (B* (a,¢)) =7 (a+ BX (0,¢)) = 7 (a) + 7 (B~ (0,¢))
=7 (a) + BXM (0,¢) = BXM (1 (a) ,¢) .

. Let 7(z,,) € X/M be a sequence such that Y ||7(z,)|| < co. As above there

exists m, € M such that ||7(z,)|| > ||z, +m,| and hence Y ||z, +my, | <
o)
23 ||7(zn)]| < oo. Since X is complete, z := Y (x, +m,,) exists in X and

n=1
therefore by the continuity of ,

m(@) =) wlen+mn) =Y m(w)

n=1

showing X/M is complete.

. The existence of T' is guaranteed by the “factor theorem” from linear alge-

bra. Moreover

TH = ||T|| because

171l = || o x| < ]| 1l = || 7]

and
\ |7 @] |Ta
T) =sup ———— =
egr T (@)l e¢M ||IT ()]l
T T
g 172 _ o T
cgm 2l a0 [|2]]

. First we will shows that 7 (V) is closed whenever N is a closed subspace

of X containing M. To verify this, let {z,} C N be a sequence such that
{7 (zn)}.o, is Cauchy in m (X/M). As in the proof of item 3. we may find
my, € M such that x = lim,,_, o (z, + m,,) exists with x € N as N is closed.
Therefore

7 (x) = nhﬁrr;OW (X +myp) = nhﬁ\rréow(xn) en(N)
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which shows 7 (N) is closed. Moreover, z € 7! (7 (N)) iff m (x) € 7 (N)
which happens iff z+M C z+ N, i.e. iff z € N. This show 7! (7 (V)

N
Finally, if N is a closed subspace of m (X/M), then N := 7! ( V

closed (7 is continuous) subspace of X containing M such that 7 (N) =

=

Theorem A.25. Let X be a Banach space. Then
1. Identifying X with X C X**, the weak — * topology on X** induces the weak
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topology on X. More explicitly, the map x € X — & € X is a homeomor-
phism when X 1is equipped with its weak topology and X with the relative
topology coming from the weak-x topology on X™*.

. X C X** is dense in the weak-+ topology on X**.
. Letting C' and C** be the closed unit balls in X and X** respectively, then

C:={2eC*™:xe€C} is dense in C** in the weak — * topology on X**-.

. X s reflexive iff C is weakly compact.

(See Definition for the topologies being used here.)
Proof.

. The weak — * topology on X** is generated by

{firext}=wex"—v():rexy.
So the induced topology on X is generated by
{reX-2eX"52(f)=f(x): feX}=X"

and so the induced topology on X is precisely the weak topology.
A basic weak - * neighborhood of a point A € X** is of the form

N =Mz {e € X7 [0 (i) = A(fw)] < €} (A.6)

for some {f;};_; C X* and € > 0. be given. We must now find = € X such
that £ € N, or equivalently so that

[2(fk) = Afe)l = [fr (x) = A(fe)| < e for k=1,2,....n. (A7)
In fact we will show there exists © € X such that A(fx) = fx (z) for
k = 1,2,...,n. To prove this stronger assertion we may, by discarding

some of the fi’s if necessary, assume that {fi};_, is a linearly indepen-
dent set. Since the { fk}Z=1 are linearly independent, the map z € X —

(fi(x),..., fn(x)) € C™ is surjective (why) and hence there exists x € X
such that

(fi(@),..s fo (@) =Tex = (A(f1),-- -, A(fn)) (A.8)
as desired.
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. Let A € C** ¢ X** and NV be the weak - * open neighborhood of \ as in Eq.

(A.6). Working as before, given ¢ > 0, we need to find z € C such that Eq.
. It will be left to the reader to verify that it suffices again to assume
{fr};—, is alinearly independent set. (Hint: Suppose that {f1,..., fm} were
a maximal linearly dependent subset of {fi};_, , then each fi with k > m
may be written as a linear combination {fi,..., f;}.) As in the proof of
item 2., there exists x € X such that Eq. holds. The problem is that
x may not be in C. To remedy this, let N := N7_, Nul(fy) = Nul(T),
7: X — X/N = C" be the projection map and f € (X/N)* be chosen so
that fr = from for k = 1,2,...,n. Then we have produced z € X such
that

A (f)s- M) = (fL (@), fu (2)) = (fa(7 (@), fu( (2))).
Since {f1,..., fa} is a basis for (X/N)" we find

sup ’Z?ﬂgz‘f;(?ﬂ(ﬂﬁm . |Z?=nl a; A(fi)]
accm\f0}  ||>oiy o fil| accm\foy [12iey @i fill
~ s \ (anzlafﬂ
aecm\{0} |12 i1 ifill
o
aecn\{0} [122i=1 @i fill

[ (@)l

IN

1.

Hence we have shown |7 (z)[| < 1 and therefore for any a > 1 there
exists y = z +n € X such that ||y|| < a and (A(f1),...,A\(fr)) =
(fl (y) 3. '7fn (y)) Hence

IA(fi)) = fily/o)l < |fi ) —a " fily)| < A=) [fi (v)]

which can be arbitrarily small (i.e. less than €) by choosing « sufficiently
close to 1.

. Let € := {t:2eC}CC*™ C X* If X is reflexive, C = C** is weak - *

compact and hence by item 1., C' is weakly compact in X. Conversely if C
is weakly compact, then C' C C** is weak — % compact being the continuous
image of a continuous map. Since the weak — * topology on X** is Hausdorff,

N —weak—x* R
it follows that C'is weak — * closed and so by item 3, C** = C =C. So
if A€ X*, M [[A]| € C** = C, i.e. there exists x € C such that & = A/ [|A[].

This shows A = (|A||2) and therefore X = X**.

date/time: 21-Jan-2020/7:08



A.4 Operator Ordering and the Lattice of Orthogonal
Projections

See Definition ?? below and related material for operator ordering basics.

Definition A.26. If P and Q are two orthogonal projections on a Hilbert space
H, then we write P < Q to mean Ran (Q) C Ran (P). This defines a partial
ordering the collection of orthogonal projection on H. If P is an family of or-
thogonal projections on H then we an orthogonal projection, @), is an upper
bound (lower bound) for P if P < Q (Q < P) for all P € P.

Remark A.27. The notation P < @ is also consistent with the common meaning
of ordering of self-adjoint operators given by A < B iff (Av,v) < (Bv,v) for all
v € H. Indeed if Ran (P) C Ran (Q) and v € H then Qv = PQu+w = Pv+w
where w L Pv and hence,

(Qu,v) = |IQul* = [|Pv|* = (Pv,v).

Conversely if (Pv,v) < (Qu,v) for all v € H, then by taking v € Ran (Q)J‘ we
learn that
1Pv]|* = (Pv,v) < (Qu,v) =0

so that v € Ran (P)™, i.e. Ran(Q)" C Ran(P)". Taking orthogonal compli-
ments then shows Ran (P) C Ran (Q), i.e. P < @ as in Definition

Lemma A.28. If P is a family of orthogonal projections on a Hilbert space H,
then there exists unique orthogonal projections, Psyp and Pig, such that

1. Pyyp is an upper bound for P and if Q is any other upper bound for P then
Psup < Q

2. Pyt is a lower bound for P and if Q is any other lower bound for P then
Q < ]Dinf~

We write Poyp = sup P and Pps = inf P.
Proof. If @ is an upper bound for P (which exists, take Q = I) then
Ran (P) C Ran (@) for all P € P and hence
Mgy := Y Ran(P) C Ran(Q).
PeP

It is now easy to verify that Py, defined to be orthogonal projection onto Mgy
is the desired least upper bound for P.

If @ is an lower bound for P (which exists, take @ = 0) then Ran (Q) C
Ran (P) for all P € P and hence

Page: 73 job: 241Functional_2020s

A.4 Operator Ordering and the Lattice of Orthogonal Projections 73
Ran (Q) C Myt := Npep Ran (P).

It is now easy to verify that P,,s defined to be orthogonal projection onto Miy,¢
is the desired greatest lower bound for P. [

For the next result recall Lemma ?7 which states; If A is a * subalgebra of
L(H), K is a closed subspace of H, and P is the projection on K, then K is
and A — invariant subspace iff P ¢ A’

Lemma A.29. Let P be a family of orthogonal projections on a Hilbert space
H. IfAcP ie [A,P]=0 for all P € P’ then [A,inf P] =0 = [A,supP].

Proof. As AP = PA for all P € P, by taking adjoints we also have A*P =
PA* for all P € P. From these equation it follows that

ARan (P) C Ran (P) and A*Ran(P) C Ran(P) V P € P. (A.9)

By Eq. ,

AlNpep Ran (P)] C [Npep Ran (P)] and
A* [ﬂpe’p Ran (P)] C [ﬂpe'p Ran (P)]

and therefore both A and A* both preserve Ran (Pi,) , i.e.
APt = Pinp APy and A" Pyg = Pinp A" Pag.
Taking adjoints of these equations also shows,
Pint A™ = Ping A" Pint and Pipp A = Ping APt

and therefore [A, Py = 0.
Similarly by Eq. (A.9) we may conclude that

A Z Ran (P) C Z Ran (P) and A* Z Ran (P) C Z Ran (P)

PeP PeP PeP PeP

and then by taking closures we learn that A and A* both preserve Ran (Pyyp) -
The same argument as above then shows [A, Py,p] = 0. [

Lemma A.30. Let P be a family of orthogonal projections on a Hilbert space
H.

1. If there exists and orthogonal projection such @ such that (Qu,v) =
suppep (Pv,v) for allv € H, then Q = Payp.

2. If there exists and orthogonal projection such @ such that (Qu,v) =
inf pep (Pv,v) for all v € H, then Q = Piyt.
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Proof. Since P < P, for all P € P, it follows by Remark that

(Qu,v) = sup (Pv,v) < (Psypv,v) Vv e H
PeP

which then implies P < @ < Py, for all P € P and hence Q = Pyyp.
Similarly, since P,y < P for all P € P, it follows by Remark that

(Qu,v) (Pv,v) > (Ppgv,v) Vv e H

= inf
PeP

which then implies Py < Q < P for all P € P and hence Q = Pis. [

A.5 Rayleigh Quotient

Theorem A.31 (Rayleigh quotient). If H is a Hilbert space and T € B (H)
is a bounded self-adjoint operator, then

(75,5 71
M = e =T = =700
AT ( P f||>

Moreover, if there exists a non-zero element f € H such that

(TED

then f is an eigenvector of T with Tf = Af and X € {||T||}.

Proof. First proof. Applying Eq. (??) with Q (f,9) = (Tf,g) and Eq.
(??) with Q (f,9) = (f, g) along with the Cauchy-Schwarz inequality implies,

ARe(Tf,g) =(T(f+9).(f+9) —(T(f—9),(f—9))
<M [If +gl* + 1 = gl?] =20 117 + llgl®]

Replacing f by e f where @ is chosen so that ¢ (T'f, g) = |(T'f, g)| then shows

AKTS,9)] < 20 [I£1 + llgll’]

and therefore,
[T = sup [(f,Tg)| <M
I£l=llgll=1

and since it is clear M < ||T|| we have shown M = ||T|.
If f € H\ {0} and |T|| = (Tf, f)|/ ||f]|? then, using Schwarz’s inequality,
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1] 171l

This implies [(Tf, )| = |Tf] || f|| and forces equality in Schwarz’s inequality. So

by Theorem ?7, T'f and f are linearly dependent, i.e. Tf = Af for some A € C.
Substituting this into (A.10]) shows that |A| = ||T||. Since T is self-adjoint,

1T =

M= O£ = (TF f) = (LT = (FAF) = M f) = AP,

which implies that A € R and therefore, A\ € {£||T||}.

Second proof. By the spectral theorem for bounded operators of Chapter
?? below, it suffices to prove the theorem in the case where T' = M, € B (H)
where H = L? (2, 11), (2, F, ) is a finite measure space, and g : 2 — R is a
bounded measurable function. In this case,

2 2 2
TF, )| = \ [l du\ < lgllimgr [ 17 = Nl 1910

It m < |lgll () = T, then we can choose f = 14 and € € {1} so that
w1 (A) >0 and egly > mly. For this f it follows that

(1.5 = [ cgdnzm-u(4) = m s
A
Combining these last two assertions shows

(Tf, )

m < sup ———5= < ||T|
i | >

which completes this proof as m < ||T[,, was arbitrary.
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