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Part I

Background





1

Vector Valued Integration Theory

[The reader interested in integrals of Hilbert valued functions, may go di-
rectly to Section 1.5 below and bypass the Bochner integral altogether.]

Let X be a Banach space and (Ω,F , µ) be a measure space. Given a “nice
enough” function, f : Ω → X, we would like to define

∫
Ω
fdµ as an element in

X. Whatever integration theory we develop we minimally want to require that

ϕ

(∫
Ω

fdµ

)
=

∫
Ω

ϕ ◦ f dµ for all ϕ ∈ X∗. (1.1)

Basically, the Pettis Integral developed below makes definitions so that there
is an element

∫
Ω
fdµ ∈ X such that Eq. (1.1) holds. There are some subtleties

to this theory in its full generality which we will avoid for the most part. For
many more details see [15–18] and especially [48]. Other references are Pettis
Integral (See Craig Evans PDE book?) also see

http : //en.wikipedia.org/wiki/Pettis integral

and

http : //www.math.umn.edu/˜garrett/m/fun/Notes/07 vv integrals.pdf

1.1 Pettis Integral

Remark 1.1 (Wikipedia quote). In mathematics, the Pettis integral or Gelfand–
Pettis integral, named after I. M. Gelfand and B.J. Pettis, extends the definition
of the Lebesgue integral to functions on a measure space which take values in
a Banach space, by the use of duality. The integral was introduced by Gelfand
for the case when the measure space is an interval with Lebesgue measure. The
integral is also called the weak integral in contrast to the Bochner integral,
which is the strong integral.

We start by describing a weak form of measurability and integrability

Definition 1.2. Let X be a Banach space and (Ω,F , µ) be a measure space.
We say a function u : Ω → X is weakly measurable if f ◦ u : Ω → C is
measurable for all f ∈ X∗.

Definition 1.3. A weakly measurable function u : Ω → X is said to be weakly
L1 if there exists U ∈ L1 (Ω,F , µ) such that ‖u (ω)‖ ≤ U (ω) for µ-a.e. ω ∈ Ω.
We denote the weakly L1 functions by L1 (µ : X) and for u ∈ L1 (µ : X) we
define,

‖u‖1 := inf

{∫
Ω

U (ω) dµ (ω) : U 3 ‖u (·)‖ ≤ U (·) a.e.

}
.

Remark 1.4. It is easy to check that L1 (Ω,F , µ) is a vector space and that ‖·‖1
satisfies

‖zu‖1 = |z| ‖u‖1 and

‖u+ v‖1 ≤ ‖u‖1 + ‖v‖1

for all z ∈ F and u, v ∈ L1 (µ : X) . As usual ‖u‖1 = 0 iff u (ω) = 0 except for
ω in a µ-null set. Indeed, if ‖u‖1 = 0, there exists Un such that ‖u (·)‖ ≤ Un (·)
a.e. and

∫
Ω
Undµ ↓ 0 as n → ∞. Let E be the null set, E = ∪nEn, where

En is a null set such that ‖u (ω)‖ ≤ Un (ω) for ω /∈ E. Now by replacing Un
by mink≤n Un if necessary we may assume that Un is a decreasing sequence
such that ‖u‖ ≤ U := limn→∞ Un off of E and by DCT

∫
Ω
Udµ = 0. This

shows {U 6= 0} is a null set and therefore ‖u (ω)‖ = 0 if ω is not in the null set,
E ∪ {U 6= 0} .

To each u ∈ L1 (µ : X) let

ũ (ϕ) :=

∫
Ω

ϕ ◦ udµ (1.2)

which is well defined since ϕ ◦ u is measurable and |ϕ ◦ u| ≤ ‖ϕ‖X∗ ‖u (·)‖ ≤
‖ϕ‖X∗ U (·) a.e. Moreover it follows that

|ũ (ϕ)| ≤ ‖ϕ‖X∗
∫
Ω

Udµ =⇒ |ũ (ϕ)| ≤ ‖ϕ‖X∗ ‖u‖1

which shows ũ ∈ X∗∗ and
‖ũ‖X∗∗ ≤ ‖u‖1 . (1.3)
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Definition 1.5. We say u ∈ L1 (µ : X) is Pettis integrable (and write u ∈
L1
Pet (µ : X)) if there exists (a necessarily unique) xu ∈ X such that ũ (ϕ) =

ϕ (xu) for all ϕ ∈ X∗. We say that xu is the Pettis integral of u and denote
xu by

∫
Ω
udµ. Thus the Pettis integral of u, if it exists, is the unique element∫

Ω
udµ ∈ X such that

ϕ

(∫
Ω

udµ

)
=

∫
Ω

(ϕ ◦ u) dµ. (1.4)

Let us summarize the easily proved properties of the Pettis integral in the
next theorem.

Theorem 1.6 (Pettis Integral Properties). The space, L1
Pet (µ : X) , is a

vector space, the map,

L1
Pet (µ : X) 3 u→

∫
Ω

fdµ ∈ X

is linear, and ∥∥∥∥∫
Ω

udµ

∥∥∥∥
X

≤ ‖u‖1 for all u ∈ L1
Pet (µ : X) . (1.5)

Moreover, if X is reflexive then L1 (µ : X) = L1
Pet (µ : X) .

Proof. These assertions are straight forward and will be left to the reader
with the exception of Eq. (1.5). To verify Eq. (1.5) we recall that the map
X 3 x→ x̂ ∈ X∗∗ (where x̂ (ϕ) := ϕ (x)) is an isometry and the Pettis integral,
xu, is defined so that x̂u = ũ. Therefore,∥∥∥∥∫

Ω

udµ

∥∥∥∥
X

= ‖xu‖X = ‖x̂u‖X∗∗ = ‖ũ‖X∗∗ ≤ ‖u‖1 . (1.6)

wherein we have used Eq. (1.3) for the last inequality.

Exercise 1.1. Suppose (Ω,F , µ) is a measure space, X and Y are Banach
spaces, and T ∈ B (X,Y ) . If u ∈ L1

Pet (µ;X) then T ◦ u ∈ L1
Pet (µ;Y ) and∫

Ω

T ◦ udµ = T

∫
Ω

udµ. (1.7)

When X is a separable metric space (or more generally when u takes values
in a separable subspace of X), the Pettis integral (now called the Bochner
integral) is a fair bit better behaved, see Theorem 1.13 below. As a warm up
let us consider Riemann integrals of continuous integrands which is typically all
we will need in these notes.

1.2 Riemann Integrals of Continuous Integrands

In this section, suppose that −∞ < a < b < ∞ and f ∈ C ([a, b] , X) and for
δ > 0 let

oscδ (f) := max {‖f (c)− f (c′)‖ : c, c′ ∈ [a, b] with |c− c′| ≤ δ} .

By uniform continuity, we know that oscδ (f) → 0 as δ ↓ 0. It is easy to check
that f ∈ L1 (m : X) where m is Lebesgue measure on [a, b] and moreover in
this case t→ ‖f (t)‖X is continuous and hence measurable.

Theorem 1.7. If f ∈ C ([a, b] , X) , then f ∈ L1
Pet (m;X) . Moreover if

Π = {a = t0 < t1 < · · · < tn = b} ⊂ [a, b] ,

{ci}ni=1 are arbitrarily chosen so that ti−1 ≤ ci ≤ ti for all i, and |Π| :=
maxi |ti − ti−1| denotes the mesh size of let Π, then∥∥∥∥∥

∫ b

a

f (t) dt−
n∑
i=1

f (ci) (ti − ti−1)

∥∥∥∥∥
X

≤ (b− a) osc|Π| (f) . (1.8)

Proof. Using the notation in the statement of the theorem, let

SΠ (f) :=

n∑
i=1

f (ci) (ti − ti−1) .

If ti−1 = s0 < s1 < · · · < sk = ti and sj−1 ≤ c′j ≤ sj for 1 ≤ j ≤ k, then∥∥∥∥∥∥f (ci) (ti − ti−1)−
k∑
j=1

f
(
c′j
)

(sj − sj−1)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
k∑
j=1

f (ci)− f
(
c′j
)

(sj − sj−1)

∥∥∥∥∥∥
≤

k∑
j=1

∥∥f (ci)− f
(
c′j
)∥∥ (sj − sj−1)

≤ osc|Π| (f)

k∑
j=1

(sj − sj−1) = osc|Π| (f) (ti − ti−1) .

So if Π ′ refines Π, then by the above argument applied to each pair, ti−1, ti, it
follows that

Page: 4 job: 241Functional_2020s macro: svmonob.cls date/time: 13-Feb-2020/12:28



1.2 Riemann Integrals of Continuous Integrands 5

‖SΠ (f)− SΠ′ (f)‖ ≤
n∑
i=1

osc|Π| (f) (ti − ti−1) = osc|Π| (f) · (b− a) . (1.9)

Now suppose that {Πn}∞n=1 is a sequence of increasing partitions (i.e. Πn ⊂
Πn+1 ∀ n ∈ N) with |Πn| → 0 as n → ∞. Then by the previously displayed
equation it follows that

‖SΠn (f)− SΠm (f)‖ ≤ osc|Πm∧n| (f) · (b− a) .

As the latter expression goes to zero as m,n → ∞, it follows that
limn→∞ SΠn (f) exists and in particular,

ϕ
(

lim
n→∞

SΠn (f)
)

= lim
n→∞

SΠn (ϕ ◦ f) =

∫ b

a

ϕ (f (t)) dt ∀ ϕ ∈ X∗.

Since the right member of the previous equation is the standard real variable
Riemann or Lebesgue integral, it is independent of the choice of partitions,
{Πn} , and of the corresponding c’s and we may conclude limn→∞ SΠn (f) is also
independent of any choices we made. We have now shown that f ∈ L1

Pet (m;X)
and that ∫ b

a

f (t) dt = lim
n→∞

SΠn (f) .

To prove the estimate in Eq. (1.8), simply choose {Πn}∞n=1 as above so that
Π ⊂ Π1 and then from Eq. (1.9) it follows that

‖SΠ (f)− SΠn (f)‖ ≤ osc|Π| (f) · (b− a) ∀ n ∈ N.

Letting n→∞ in this inequality gives the estimate in Eq. (1.8).

Remark 1.8. Let f ∈ C (R, X) . We leave the proof of the following properties
to the reader with the caveat that many of the properties follow directly from
their real variable cousins after testing the identities against a ϕ ∈ X∗.

1. For a < b < c, ∫ c

a

f (t) dt =

∫ b

a

f (t) dt+

∫ c

b

f (t) dt

and moreover this result holds independent of the ordering of a, b, c ∈ R
provided we define,∫ c

a

f (t) dt := −
∫ a

c

f (t) dt when c < a.

2. For all a ∈ R,
d

dt

∫ t

a

f (s) ds = f (t) for all t ∈ R.

3. If f ∈ C1 (R, X) , then

f (t)− f (s) =

∫ t

s

ḟ (τ) dτ ∀ s, t ∈ R

where

ḟ (t) := lim
h→0

f (t+ h)− f (t)

h
∈ X.

4. Again the triangle inequality holds,∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥
X

≤

∣∣∣∣∣
∫ b

a

‖f (t)‖X dt

∣∣∣∣∣ ∀ a, b ∈ R.
Exercise 1.2. Suppose that (X, ‖·‖) is a Banach space, J = (a, b) with −∞ ≤
a < b ≤ ∞ and fn : J → X are continuously differentiable functions such that
there exists a summable sequence {an}∞n=1 satisfying

‖fn (t)‖+
∥∥∥ḟn (t)

∥∥∥ ≤ an for all t ∈ J and n ∈ N. (1.10)

Show:

1. sup
{∥∥∥ fn(t+h)−fn(t)

h

∥∥∥ : (t, h) ∈ J × R 3 t+ h ∈ J and h 6= 0
}
≤ an.

2. The function F : R→ X defined by

F (t) :=

∞∑
n=1

fn (t) for all t ∈ J

is differentiable and for t ∈ J,

Ḟ (t) =

∞∑
n=1

ḟn (t) .

Definition 1.9. A function f from an open set Ω ⊂ C to a complex Banach
space X is analytic on Ω if

f ′ (z) := lim
h→0

f (z + h)− f (z)

h
exists ∀ z ∈ Ω

and is weakly analyticon Ω if ` ◦ f is analytic on Ω for every ` ∈ X∗.

Analytic functions are trivially weakly analytic and next theorem shows the
converse is true as well. In what follows let

D (z0, z) := {z ∈ C : |z − z0| < ρ}

be the open disk in C centered at z0 of radius ρ > 0.
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6 1 Vector Valued Integration Theory

Theorem 1.10. If f : Ω → X is a weakly analytic function then f is analytic.
Moreover if z0 ∈ Ω and ρ > 0 is such that D (z0, ρ) ⊂ Ω, then for all w ∈
D (z0, ρ) ,

f (w) =
1

2πi

∮
∂D(z0,ρ)

f (z)

z − w
dz, (1.11)

f (n) (w) =
n!

2πi

∮
∂D(z0,ρ)

f (z)

(z − w)
n+1 dz, and (1.12)

f (w) =

∞∑
n=0

f (n) (z0)

n!
(w − z0)

n
. (1.13)

Proof. Let K ⊂ Ω be a compact set and ε > 0 such that z + h ∈ Ω for all
|h| ≤ ε. Since ` ◦ f is analytic we know that∣∣∣∣`(f (z + h)− f (z)

h

)∣∣∣∣ =

∣∣∣∣` ◦ f (z + h)− ` ◦ f (z)

h

∣∣∣∣ ≤M` <∞

for all z ∈ K and 0 < |h| ≤ ε where

M` = sup
z∈K and |h|≤ε

∣∣(` ◦ f)
′
(z + h)

∣∣ .
Therefore by the uniform boundedness principle,

sup
z∈K,0<|h|≤ε

∥∥∥∥f (z + h)− f (z)

h

∥∥∥∥
X

= sup
z∈K,0<|h|≤ε

∥∥∥∥∥
[
f (z + h)− f (z)

h

]ˆ
∥∥∥∥∥
X∗∗

<∞

from which it follows that f is necessarily continuous.
If D (z0, ρ) ⊂ Ω and ` ∈ X∗, then for all w ∈ D (z0, ρ) we have by the

standard theory of analytic functions that

` ◦ f (w) =
1

2πi

∮
∂D(z0,ρ)

` ◦ f (z)

z − w
dz = ` ◦

(
1

2πi

∮
∂D(z0,ρ)

f (z)

z − w
dz

)
.

As this identity holds for all ` ∈ X∗ it follows that Eq. (1.11) is valid. Equation
(1.12) now follows by repeated differentiation past the integral and in particular
it now follows that f is analytic. The power series expansion for f in Eq. (1.13)
now follows exactly as in the standard analytic function setting. Namely we
write

1

z − w
=

1

z − z0 − (w − z0)
=

1

z − z0

1

1− w−z0
z−z0

=
1

z − z0

∞∑
n=0

(
w − z0

z − z0

)n

and plug this identity into Eq. (1.11) to discover,

f (w) =

∞∑
n=0

an (w − z0)
n

where

an =
1

2πi

∮
∂D(z0,ρ)

f (z)

(z − z0)
n+1 dz = f (n) (z0) .

Remark 1.11. If X is a complex Banach space, J is an open subset of C, and
fn : J → X are analytic functions such that Eq. (1.10) holds, then the results of
the Exercise 1.2 continues to hold provided ḟn (t) and ḟ (t) is replaced by f ′n (z)
and f ′ (z) everywhere. In particular, if {an} ⊂ X and ρ > 0 are such that

f (z) :=

∞∑
n=0

an (z − z0)
n

is convergent for |z − z0| < ρ,

then f is analytic in on D (z0, z) and

f ′ (z) =

∞∑
n=1

nan (z − z0)
n−1

.

Corollary 1.12 (Liouville’s Theorem). Suppose that f : C → X is a
bounded analytic function, then f (z) = x0 for some x0 ∈ X.

Proof. Let M := supz∈C ‖f (z)‖ which is finite by assumption. From Eq.
(1.12) with z0 = 0 and simple estimates it follows that

‖f ′ (w)‖ =

∥∥∥∥∥ 1

2πi

∮
∂D(0,ρ)

f (z)

(z − w)
2 dz

∥∥∥∥∥
=

∥∥∥∥∥ 1

2πi

∫ π

−π

f
(
ρeiθ

)
(ρeiθ − w)

2 iρe
iθdθ

∥∥∥∥∥
≤ M

2π
max
|θ|≤π

ρ

|ρeiθ − w|2
.

Letting ρ ↑ ∞ in this inequality shows ‖f ′ (w)‖ = 0 for all w ∈ C and hence
f is constant by FTC or by noting the that power series expansion is f (w) =
f (0) = x0.

Alternatively: one can simply apply the standard Liouville’s theorem to
ξ ◦ f for ξ ∈ X∗ in order to show ξ ◦ f (z) = ξ ◦ f (0) for each z ∈ C. As ξ ∈ X∗
was arbitrary it follows that f (z) = f (0) = x0 for all z ∈ C.
Exercise 1.3 (Conway, Exr. 4, p. 198 cont.). Let H be a separable Hilbert
space. Give an example of a discontinuous function, f : [0,∞)→ H, such that
t→ 〈f (t) , h〉 is continuous for all t ≥ 0.

Page: 6 job: 241Functional_2020s macro: svmonob.cls date/time: 13-Feb-2020/12:28



1.3 Bochner Integral (integrands with separable range) 7

1.3 Bochner Integral (integrands with separable range)

The main results of this section are summarized in the following theorem.

Theorem 1.13. If we suppose that X is a separable Banach space, then;

1. The Borel σ – algebra (BX) on X is the same as σ (X∗) – the σ – algebra
generated X∗.

2. The ‖·‖X is then of course BX = σ (X∗) measurable.
3. A function, u : (Ω,F)→ X, is weakly measurable iff if is F/BX measurable

and in which case ‖u (·)‖X is measurable.
4. The Pettis integrable functions are now easily describe as

L1
Pet (µ;X) = L1 (µ;X)

=

{
u : Ω → X| u is F/BX - meas. &

∫
Ω

‖u (·)‖ dµ <∞
}
.

5. L1 (µ;X) is complete, i.e. L1 (µ;X) is a Banach space.
6. The dominated convergence theorem holds, i.e. if {un} ⊂ L1 (µ;X) is

such that u (ω) = limn→∞ un (ω) exists for µ-a.e. x and there exists
g ∈ L1 (µ) such that ‖un‖X ≤ g a.e. for all n, then u ∈ L1 (µ;X) and
limn→∞ ‖u− un‖1 = 0 and in particular,∥∥∥∥∫

Ω

udµ−
∫
Ω

undµ

∥∥∥∥
X

≤ ‖u− un‖1 → 0 as n→∞.

For the rest of this section, X will always be a separable Banach space.

Exercise 1.4 (Differentiate past the integral). Suppose that J = (a, b) ⊂
R is a non-empty open interval, f : J ×Ω → X is a function such that;

1. for each t ∈ J, f (t, ·) ∈ L1 (µ;X) ,
2. for each ω, J 3 t→ f (t, ω) is a C1-function.

3. There exists g ∈ L1 (µ) such that
∥∥∥ḟ (t, ω)

∥∥∥
X
≤ g (ω) for all ω where

ḟ (t, ω) := d
dtf (t, ω) .

Then F : J → X defined by

F (t) :=

∫
Ω

f (t, ω) dµ (ω)

is a C1-function with

Ḟ (t) =

∫
Ω

ḟ (t, ω) dµ (ω) .

The rest of this section is now essentially devoted to the proof of Theorem
1.13.

1.3.1 Proof of Theorem 1.13

Proposition 1.14. If X is a separable Banach space, there exists {ϕn}∞n=1 ⊂
X∗ such that

‖x‖ = sup
n
|ϕn (x)| for all x ∈ X. (1.14)

Proof. If ϕ ∈ X∗, then ϕ : X → R is continuous and hence Borel mea-
surable. Therefore σ(X∗) ⊂ B. For the converse. Choose xn ∈ X such that
‖xn‖ = 1 for all n and

{xn} = S = {x ∈ X : ‖X‖ = 1}.

By the Hahn Banach Theorem ?? (or Corollary ?? with x = xn and M = {0}),
there exists ϕn ∈ X∗ such that i) ϕn(xn) = 1 and ii) ‖ϕn‖X∗ = 1 for all n.

As |ϕn (x)| ≤ ‖x‖ for all n we certainly have supn |ϕn (x)| ≤ ‖x‖ . For
the converse inequality, let x ∈ X \ {0} and choose {nk}∞k=1 ⊂ N such that
x/ ‖x‖ = limk→∞ xnk . It then follows that∣∣∣∣ϕnk ( x

‖x‖

)
− 1

∣∣∣∣ =

∣∣∣∣ϕnk ( x

‖x‖
− xnk

)∣∣∣∣ ≤ ∥∥∥∥ x

‖x‖
− xnk

∥∥∥∥→ 0 as k →∞,

i.e. limk→∞ |ϕnk (x)| = ‖x‖ which shows supn |ϕn (x)| ≥ ‖x‖ .

Corollary 1.15. If X is a separable Banach space, then Borel σ – algebra of
X and the σ – algebra generated by ϕ ∈ X∗ are the same, i.e. σ(X∗) = BX –
the Borel σ-algebra on X.

Proof. Since every ϕ ∈ X∗ is continuous it BX – measurable and hence
σ (X∗) ⊂ BX . For the converse inclusion, let {ϕn}∞n=1 ⊂ X∗ be as in Proposition
??. We then have for any x0 ∈ X that

‖ · −x0‖ = sup
n
|ϕn(· − x0)| = sup

n
|ϕn(·)− ϕn (x0)| .

This shows ‖ · −x0‖ is σ(X∗)–measurable for each x0 ∈ X and hence

{x : ‖x− x0‖ < δ} ∈ σ(X∗).

Hence σ(X∗) contains all open balls in X. As X is separable, every open set may
be written as a countable union of open balls and therefore we may conclude
σ (X∗) contains all open sets and hence BX ⊂ σ(X∗).

Corollary 1.16. If X is a separable Banach space, then a function u : Ω → X
is F/BX – measurable iff λ ◦ u : Ω → F is measurable for all λ ∈ X∗.

Proof. This follows directly from Corollary 1.15 of the appendix which
asserts that σ(X∗) = BX when X is separable.
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8 1 Vector Valued Integration Theory

Corollary 1.17. If X is separable and un : Ω → X are measurable functions
such that u (ω) := limn→∞ un (ω) exists in X for all ω ∈ Ω, then u : Ω → X is
measurable as well.

Proof. We need only observe that for any λ ∈ X∗, λ ◦ u = limn→∞ λ ◦ un
is measurable and hence the result follows from Corollary 1.16.

Corollary 1.18. If (Ω,F , µ) is a measure space and X is a separable Banach
space, a function u : Ω → X is weakly integrable iff u : Ω → X is F/BX –
measurable and ∫

Ω

‖u (ω)‖ dµ (ω) <∞.

Corollary 1.19. Suppose that (Ω,F , µ) is a measure space and F,G : Ω → X
are F/BX – measurable functions. Then F (ω) = G (ω) for µ – a.e. ω ∈ Ω iff
ϕ ◦ F (ω) = ϕ ◦G (ω) for µ – a.e. ω ∈ Ω and every ϕ ∈ X∗.

Proof. The direction, “ =⇒ ”, is clear. For the converse direction let {ϕn} ⊂
X∗ be as in Proposition 1.14 and for n ∈ N, let

En := {ω ∈ Ω : ϕn ◦ F (ω) 6= ϕn ◦G (ω)} .

By assumption µ (En) = 0 and therefore E := ∪∞n=1En is a µ – null set as well.
This completes the proof since ϕn (F −G) = 0 on Ec and therefore, by Eq.
(1.14)

‖F −G‖ = sup
n
|ϕn (F −G)| = 0 on Ec.

Recall that we have already seen in this case that the Borel σ – field B on X
is the same as the σ – field (σ(X∗)) which is generated by X∗ – the continuous
linear functionals on X. As a consequence F : Ω → X is F/B measurable iff
ϕ ◦ F : Ω → R is F/B(R) – measurable for all ϕ ∈ X∗. In particular it follows
that if F,G : Ω → X are measurable functions then so is F + G and λF for
all λ ∈ F and it follows that {F 6= G} = {F −G 6= 0} is measurable as well.
Also note that ‖·‖ : X → [0,∞) is continuous and hence measurable and hence
ω → ‖F (ω) ‖X is the composition of two measurable functions and therefore
measurable.

Definition 1.20. For 1 ≤ p < ∞ let Lp(µ;X) denote the space of measurable
functions F : Ω → X such that

∫
Ω

‖F‖pdµ <∞. For F ∈ Lp(µ;X), define

‖F‖Lp =

∫
Ω

‖F‖pXdµ

 1
p

.

As usual in Lp – spaces we will identify two measurable functions, F,G : Ω →
X, if F = G a.e.

Lemma 1.21. Suppose an ∈ X and ‖an+1 − an‖ ≤ εn and
∞∑
n=1

εn < ∞. Then

lim
n→∞

an = a ∈ X exists and ‖a− an‖ ≤ δn :=
∞∑
k=n

εk.

Proof. Let m > n then

‖am − an‖ =

∥∥∥∥m−1∑
k=n

(ak+1 − ak)

∥∥∥∥ ≤ m−1∑
k=n

‖ak+1 − ak‖ ≤
∞∑
k=n

εk := δn . (1.15)

So ‖am − an‖ ≤ δmin(m,n) → 0 as ,m, n→∞, i.e. {an} is Cauchy. Let m→∞
in (1.15) to find ‖a− an‖ ≤ δn.

Lemma 1.22. Suppose that {Fn} is Cauchy in measure, i.e.
limm,n→∞ µ (‖Fn − Fm‖ ≥ ε) = 0 for all ε > 0. Then there exists a sub-
sequence Gj = Fnj such that F := limj→∞Gj exists µ – a.e. and moreover

Fn
µ→ F as n→∞, i.e. limn→∞ µ (‖Fn − F‖ ≥ ε) = 0 for all ε > 0.

Proof. Let εn > 0 such that
∞∑
n=1

εn < ∞ (εn = 2−n would do) and set

δn =
∞∑
k=n

εk. Choose Gj = Fnj where {nj} is a subsequence of N such that

µ({‖Gj+1 −Gj‖ > εj}) ≤ εj .

Let

AN := ∪j≥N {‖Gj+1 −Gj‖ > εj} and

E := ∩∞N=1AN = {‖Gj+1 −Gj‖ > εj i.o.} .

Since µ (AN ) ≤ δN < ∞ and AN ↓ E it follows1 that 0 = µ (E) =
limN→∞ µ (AN ) . For ω /∈ E, ‖Gj+1 (ω)−Gj (ω)‖ ≤ εj for a.a. j and hence
by Lemma 1.21, F (ω) := lim

j→∞
Gj(ω) exists for ω /∈ E. Let us define F (ω) = 0

for all ω ∈ E.
Next we will show GN

µ→ F as N →∞ where F and GN are as above. If

ω ∈ AcN = ∩j≥N {‖Gj+1 −G‖ ≤ εj} ,

then
‖Gj+1 (ω)−Gj (ω)‖ ≤ εj for all j ≥ N.

Another application of Lemma 1.21 shows ‖F (ω)−Gj(ω)‖ ≤ δj for all j ≥ N,
i.e.

1 Alternatively, µ (E) = 0 by the first Borel Cantelli lemma and the fact that∑∞
j=1 µ({‖Gj+1 −Gj‖ > εj}) ≤

∑∞
j=1 εj <∞.
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1.3 Bochner Integral (integrands with separable range) 9

AcN ⊂ ∩j≥N {‖F −Gj‖ ≤ δj} ⊂ {|F −GN | ≤ δN} .

Therefore, by taking complements of this equation, {‖F −GN‖ > δN} ⊂ AN
and hence

µ(‖F −GN‖ > δN ) ≤ µ(AN ) ≤ δN → 0 as N →∞

and in particular, GN
µ→ F as N →∞.

With this in hand, it is straightforward to show Fn
µ→ F. Indeed, by the

usual trick, for all j ∈ N,

µ({‖Fn − F‖ > ε}) ≤ µ({‖F −Gj‖ > ε/2}) + µ(‖Gj − Fn‖ > ε/2).

Therefore, letting j →∞ in this inequality gives,

µ({‖Fn − F‖ > ε}) ≤ lim sup
j→∞

µ(‖Gj − Fn‖ > ε/2)→ 0 as n→∞,

wherein we have used {Fn}∞n=1 is Cauchy in measure and Gj
µ→ F.

Theorem 1.23. For each p ∈ [0,∞), the space (Lp(µ;X), ‖ · ‖Lp) is a Banach
space.

Proof. It is straightforward to check that ‖·‖Lp is a norm. For example,

‖F +G‖Lp =

∫
Ω

‖F +G‖pXdµ

 1
p

≤

∫
Ω

(‖F‖X + ‖G‖X)pdµ

 1
p

≤ ‖F‖Lp + ‖G‖Lp .

So the main point is to prove completeness of the norm.
Let {Fn}∞n=1 ⊂ Lp(µ) be a Cauchy sequence. By Chebyshev’s inequality

{Fn} is Cauchy in measure and by Lemma 1.22 there exists a subsequence
{Gj} of {Fn} such that Gj → F a.e. By Fatou’s Lemma,

‖Gj − F‖pp =

∫
Ω

lim
k→∞

inf ‖Gj −Gk‖p dµ ≤ lim
k→∞

inf

∫
Ω

‖Gj −Gk‖p dµ

= lim
k→∞

inf ‖Gj −Gk‖pp → 0 as j →∞.

In particular, ‖F‖p ≤ ‖Gj − F‖p + ‖Gj‖p < ∞ so the F ∈ Lp and Gj
Lp−→ F.

The proof is finished because,

‖Fn − F‖p ≤ ‖Fn −Gj‖p + ‖Gj − F‖p → 0 as j, n→∞.

Definition 1.24 (Simple functions). We say a function F : Ω → X is a
simple function if F is measurable and has finite range. If F also satisfies,
µ (F 6= 0) <∞ we say that F is a µ – simple function and let S (µ;X) denote
the vector space of µ – simple functions.

Proposition 1.25. For each 1 ≤ p < ∞ the µ – simple functions, S (µ;X) ,
are dense inside of Lp (µ;X) .

Proof. Let D := {xn}∞n=1 be a countable dense subset of X \ {0} . For each
ε > 0 and n ∈ N let

Bεn :=

{
x ∈ X : ‖x− xn‖ ≤ min

(
ε,

1

2
‖xn‖

)}
and then define Aεn := Bεn \ (∪nk=1B

ε
k) . Thus {Aεn}

∞
n=1 is a partition of X \ {0}

with the added property that ‖y − xn‖ ≤ ε and 1
2 ‖xn‖ ≤ ‖y‖ ≤

3
2 ‖xn‖for all

y ∈ Aεn.
Given F ∈ Lp (µ;X) let

Fε :=

∞∑
n=1

xn · 1F∈Aεn =

∞∑
n=1

xn · 1F−1(Aεn).

For ω ∈ F−1 (Aεn) , i.e. F (ω) ∈ Aεn, we have

‖Fε (ω)‖ = ‖xn‖ ≤ 2 ‖F (ω)‖ and

‖Fε (ω)− F (ω)‖ = ‖xn − F (ω)‖ ≤ ε.

Putting these two estimates together shows,

‖Fε − F‖ ≤ ε and ‖Fε − F‖ ≤ ‖Fε‖+ ‖F‖ ≤ 3 ‖F‖ .

Hence we may now apply the dominated convergence theorem in order to show

lim
ε↓0
‖F − Fε‖Lp(µ;X) = 0.

As the Fε – have countable range we have not yet completed the proof. To
remedy this defect, to each N ∈ N let

FNε :=

N∑
n=1

xn · 1F−1(Aεn).

Then it is clear that limN→∞ FNε = Fε and that
∥∥FNε ∥∥ ≤ ‖Fε‖ ≤ 2 ‖F‖ for

all N. Therefore another application of the dominated convergence theorem
implies, limN→∞

∥∥FNε − Fε∥∥Lp(µ;X)
= 0. Thus any F ∈ Lp (µ;X) may be arbi-

trarily well approximated by one of the FNε ∈ S (µ;X) with ε sufficiently small
and N sufficiently large.

For later purposes it will be useful to record a result based on the partitions
{Aεn}

∞
n=1 of X \ {0} introduced in the above proof.
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10 1 Vector Valued Integration Theory

Lemma 1.26. Suppose that F : Ω → X is a measurable function such that
µ (F 6= 0) > 0. Then there exists B ∈ F and ϕ ∈ X∗ such that µ (B) > 0 and
infω∈B ϕ ◦ F (ω) > 0.

Proof. Let ε > 0 be chosen arbitrarily, for example you might take ε = 1
and let {An := Aεn}

∞
n=1 be the partition of X \ {0} introduced in the proof of

Proposition 1.25 above. Since {F 6= 0} =
∑∞
n=1 {F ∈ An} and µ (F 6= 0) > 0, it

follows that that µ (F ∈ An) > 0 for some n ∈ N. We now let B := {F ∈ An} =
F−1 (An) and choose ϕ ∈ X∗ such that ϕ (xn) = ‖xn‖ and ‖ϕ‖X∗ = 1. For
ω ∈ B we have F (ω) ∈ An and therefore ‖F (ω)− xn‖ ≤ 1

2 ‖xn‖ and hence,

|ϕ (F (ω))− ‖xn‖| = |ϕ (F (ω))− ϕ (xn)| ≤ ‖ϕ‖X∗ ‖F (ω)− xn‖ ≤
1

2
‖xn‖ .

From this inequality we see that ϕ (F (ω)) ≥ 1
2 ‖xn‖ > 0 for all ω ∈ B.

Definition 1.27. To each F ∈ S (µ;X) , let

I (F ) =
∑
x∈X

xµ(F−1({x})) =
∑
x∈X

xµ({F = x})

=
∑

x∈F (Ω)

xµ(F = x) ∈ X.

The following proposition is straightforward to prove.

Proposition 1.28. The map I : S (µ;X) → X is linear and satisfies for all
F ∈ S (µ;X) ,

‖I(F )‖X ≤
∫
Ω

‖F‖dµ and (1.16)

ϕ(I(F )) =

∫
Ω

ϕ ◦ F dµ ∀ϕ ∈ X∗. (1.17)

More generally, if T ∈ B (X,Y ) where Y is another Banach space then

TI (F ) = I (TF ) .

Proof. If 0 6= c ∈ R and F ∈ S (µ;X) , then

I(cF ) =
∑
x∈X

xµ(cF = x) =
∑
x∈X

xµ
(
F =

x

c

)
=
∑
y∈X

cy µ(F = y) = cI(F )

and if c = 0, I(0F ) = 0 = 0I(F ). If F,G ∈ S (µ;X) ,

I(F +G) =
∑
x

xµ(F +G = x)

=
∑
x

x
∑

y+z=x

µ(F = y,G = z)

=
∑
y,z

(y + z)µ(F = y,G = z)

=
∑
y

yµ(F = y) +
∑
z

zµ(G = z) = I(F ) + I(G).

Equation (1.16) is a consequence of the following computation:

‖I(F )‖X = ‖
∑
x∈X

xµ(F = x)‖ ≤
∑
x∈X
‖x‖µ(F = x) =

∫
Ω

‖F‖dµ

and Eq. (1.17) follows from:

ϕ(I(F )) = ϕ(
∑
x∈X

xµ({F = x}))

=
∑
x∈X

ϕ (x)µ({F = x}) =

∫
Ω

ϕ ◦ F dµ.

The next elementary theorem (referred to as the bounded linear transfor-
mation theorem, or B.L.T. theorem for short) is often useful when constructing
bounded linear transformations.

Theorem 1.29 (B. L. T. Theorem). Suppose that Z is a normed space, X
is a Banach space, and S ⊂ Z is a dense linear subspace of Z. If T : S → X is a
bounded linear transformation (i.e. there exists C <∞ such that ‖Tz‖ ≤ C ‖z‖
for all z ∈ S), then T has a unique extension to an element T̄ ∈ L(Z,X) and
this extension still satisfies∥∥T̄ z∥∥ ≤ C ‖z‖ for all z ∈ S̄.

Proof. The proof is left to the reader.

Theorem 1.30 (Bochner Integral). There is a unique continuous linear map
Ī : L1(Ω,F , µ;X)→ X such that Ī|S(µ;X) = I where I is defined in Definition
1.27. Moreover, for all F ∈ L1(Ω,F , µ;X),

‖Ī(F )‖X ≤
∫
Ω

‖F‖dµ (1.18)

and Ī(F ) is the unique element in X such that
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1.4 Strong Bochner Integrals 11

ϕ(Ī(F )) =

∫
Ω

ϕ ◦ F dµ ∀ϕ ∈ X∗. (1.19)

The map Ī(F ) will be denoted suggestively by
∫
Ω
Fdµ or µ (F ) so that Eq. (1.19)

may be written as

ϕ

(∫
Ω

Fdµ

)
=

∫
Ω

ϕ ◦ F dµ ∀ϕ ∈ X∗ or

ϕ (µ (F )) = µ (ϕ ◦ F ) ∀ϕ ∈ X∗

It is also true that if T ∈ B (X,Y ) where Y is another Banach space, then∫
Ω

TFdµ = T

∫
Ω

Fdµ

where one should interpret TF : Ω → TX which is a separable subspace of Y
even is Y is not separable.

Proof. The existence of a continuous linear map Ī : L1(Ω,F , µ;X) → X
such that Ī|S(µ;X) = I and Eq. (1.18) holds follows from Propositions 1.28
and 1.25 and the bounded linear transformation Theorem 1.29. If ϕ ∈ X∗ and
F ∈ L1(Ω,F , µ;X), choose Fn ∈ S (µ;X) such that Fn → F in L1(Ω,F , µ;X)
as n→∞. Then Ī(F ) = limn→∞ I(Fn) and hence by Eq. (1.17),

ϕ(Ī(F )) = ϕ( lim
n→∞

I(Fn)) = lim
n→∞

ϕ(I(Fn)) = lim
n→∞

∫
Ω

ϕ ◦ Fn dµ.

This proves Eq. (1.19) since∣∣∣∣∣∣
∫
Ω

(ϕ ◦ F − ϕ ◦ Fn)dµ

∣∣∣∣∣∣ ≤
∫
Ω

|ϕ ◦ F − ϕ ◦ Fn| dµ

≤
∫
Ω

‖ϕ‖X∗ ‖ϕ ◦ F − ϕ ◦ Fn‖X dµ

= ‖ϕ‖X∗‖F − Fn‖L1 → 0 as n→∞.

The fact that Ī(F ) is determined by Eq. (1.19) is a consequence of the Hahn –
Banach theorem.

Example 1.31. Suppose that x ∈ X and f ∈ L1 (µ;R) , then F (ω) := f (ω)x
defines an element of L1 (µ;X) and∫

Ω

Fdµ =

(∫
Ω

fdµ

)
x. (1.20)

To prove this just observe that ‖F‖ = |f | ‖x‖ ∈ L1 (µ) and for ϕ ∈ X∗ we have

ϕ

((∫
Ω

fdµ

)
x

)
=

(∫
Ω

fdµ

)
· ϕ (x)

=

(∫
Ω

fϕ (x) dµ

)
=

∫
Ω

ϕ ◦ F dµ.

Since ϕ
(∫
Ω
Fdµ

)
=
∫
Ω
ϕ ◦ F d for all ϕ ∈ X∗ it follows that Eq. (1.20) is

correct.

Definition 1.32 (Essential Range). Suppose that (Ω,F , µ) is a measure
space, (Y, ρ) is a metric space, and q : Ω → Y is a measurable function. We
then define the essential range of q to be the set,

essranµ (q) = {y ∈ Y : µ ({ρ (q, y) < ε}) > 0 ∀ ε > 0} .

In other words, y ∈ Y is in essranµ (q) iff q lies in Bρ (y, ε) with positive µ –
measure.

Remark 1.33. The separability assumption on X may be relaxed by assuming
that F : Ω → X has separable essential range. In this case we may still define∫
Ω
Fdµ by applying the above formalism with X replaced by the separable Ba-

nach space, X0 := span(essranµ(F )). For example if Ω is a compact topological
space and F : Ω → X is a continuous map, then

∫
Ω
Fdµ is always defined.

Theorem 1.34 (DCT). If {un} ⊂ L1 (µ;X) is such that u (ω) =
limn→∞ un (ω) exists for µ-a.e. x and there exists g ∈ L1 (µ) such that
‖un‖X ≤ g a.e. for all n, then u ∈ L1 (µ;X) and limn→∞ ‖u− un‖1 = 0 and
in particular,∥∥∥∥∫

Ω

udµ−
∫
Ω

undµ

∥∥∥∥
X

≤ ‖u− un‖1 → 0 as n→∞.

Proof. Since ‖u (ω)‖X = limn→∞ ‖un (ω)‖ ≤ g (ω) for a.e. ω, it follows that
u ∈ L1 (µ,X) . Moreover, ‖u− un‖X ≤ 2g a.e. and limn→∞ ‖u− un‖X = 0 a.e.
and therefore by the real variable dominated convergence theorem it follows
that

‖u− un‖1 =

∫
Ω

‖u− un‖X dµ→ 0 as n→∞.

1.4 Strong Bochner Integrals

Let us again assume that X is a separable Banach space but now suppose that
C : Ω → B (X) is the type of function we wish to integrate. As B (X) is
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12 1 Vector Valued Integration Theory

typically not separable, we can not directly apply the theory of the last section.
However, there is an easy solution which will briefly describe here.

Definition 1.35. We say C : Ω → B (X) is strongly measurable if Ω 3 ω →
C (ω)x is measurable for all x ∈ X.

Lemma 1.36. If C : Ω → B (X) is strongly measurable, then Ω 3 ω →
‖C (ω)‖op is measurable.

Proof. Let D be a dense subset of the unit vectors in X. Then

‖C (ω)‖op = sup
x∈D
‖C (ω)x‖X

is measurable.

Lemma 1.37. Suppose that u : Ω → X is measurable and C : Ω → B (X) is
strongly measurable, then Ω 3 ω → C (ω)u (ω) ∈ X is measurable.

Proof. Using the ideas in Proposition 1.25 we may find simple functions
un : Ω → X so that u = limn→∞ un. It is easy to verify that C (·)un (·) is
measurable for all n and that C (·)u (·) = limn→∞ C (·)un (·) . The result now
follows Corollary 1.17.

Corollary 1.38. Suppose C,D : Ω → B (X) are strongly measurable, then
Ω 3 ω → C (ω)D (ω) ∈ X is strongly measurable.

Proof. For x ∈ X, let u (ω) := D (ω)x which is measurable by assumption.
Therefore, C (·)D (·)x = C (·)u (·) is measurable by Lemma 1.37.

Definition 1.39. We say C : Ω → B (X) is integrable and write C ∈
L1 (µ : B (X)) if C is strongly measurable and

‖C‖1 :=

∫
Ω

‖C (ω)‖ dµ (ω) <∞.

In this case we further define µ (C) =
∫
Ω
C (ω) dµ (ω) to be the unique element

B (X) such that

µ (C)x =

∫
Ω

C (ω)xdµ (ω) for all x ∈ X.

It is easy to verify that this integral again has all of the usual properties of
integral. In particular,

‖µ (C)x‖ ≤
∫
Ω

‖C (ω)x‖ dµ (ω) ≤
∫
Ω

‖C (ω)‖ ‖x‖ dµ (ω) = ‖C‖1 ‖x‖

from which it follows that ‖µ (C)‖op ≤ ‖C‖1 .

Theorem 1.40. Suppose that
(
Ω̃, ν

)
is another measure space and D ∈

L1 (µ̃ : B (X)) . Then

µ (C) ν (D) = µ⊗ ν (C ⊗D)

where µ⊗ ν is product measure and

C ⊗D (ω, ω̃) := C (ω)D (ω̃) .

Proof. Let π1 : Ω × Ω̃ → Ω and π2 : Ω × Ω̃ → Ω̃ be the natural projection
maps. Since C ⊗ D = [C ◦ π1] [D ◦ π2], we conclude from Corollary 1.38 that
C ⊗D is measurable on the product space. We further have∫

Ω×Ω̃
‖C ⊗D (ω, ω̃)‖op dµ (ω) dν (ω̃)

=

∫
Ω×Ω̃

‖C (ω)D (ω̃)‖op dµ (ω) dν (ω̃)

≤
∫
Ω×Ω̃

‖C (ω)‖op ‖D (ω̃)‖op dµ (ω) dν (ω̃)

=

∫
Ω

‖C (ω)‖op dµ (ω) ·
∫
Ω̃

‖D (ω̃)‖op dν (ω̃) <∞

and therefore µ⊗ ν (C ⊗D) is well defined.

Now suppose that x ∈ X and let un be simple function in L1
(
Ω̃, ν

)
such

that limn→∞ ‖un −D (·)x‖L1(ν) = 0. If un =
∑Mn

k=0 ak1Ak with {Ak}Mn

k=1 being

disjoint subsets of Ω̃ and ak ∈ X, then

C (ω)un (ω̃) =

Mn∑
k=0

1Ak (ω̃)C (ω) ak.

After another approximation argument for ω → C (ω) ak, we find,∫
Ω×Ω̃

C (ω)un (ω̃) d [µ⊗ ν] (ω, ω̃) =

Mn∑
k=0

ν (Ak)

∫
Ω

C (ω) akdµ (w)

=

Mn∑
k=0

ν (Ak)µ (C) ak

= µ (C)

Mn∑
k=0

ν (Ak) ak = µ (C) ν (µn) .

(1.21)
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1.5 Weak integrals for Hilbert Spaces 13

Since, ∫
Ω×Ω̃

‖C (ω)un (ω̃)− C (ω)D (ω̃)x‖ d [µ⊗ ν] (ω, ω̃)

≤
∫
Ω×Ω̃

‖C (ω)‖op ‖un (ω̃)−D (ω̃)x‖ dµ (ω) dν (ω̃)

= ‖C‖1 · ‖un −D (·)x‖L1(ν) → 0 as n→∞,

we may pass to the limit in Eq. (1.21) in order to find

µ⊗ ν (C ⊗D)x =

∫
Ω×Ω̃

C (ω)D (ω̃)x d [µ⊗ ν] (ω, ω̃)

= µ (C)

∫
Ω̃

D (ω̃)xdν (ω̃) = µ (C) ν (D)x.

As x ∈ X was arbitrary the proof is complete.

Exercise 1.5. Suppose that U is an open subset of R or C and F : U ×Ω → X
is a measurable function such that;

1. U 3 z → F (z, ω) is (complex) differentiable for all ω ∈ Ω.
2. F (z, ·) ∈ L1 (µ : X) for all z ∈ U.
3. There exists G ∈ L1 (µ : R) such that∥∥∥∥∂F (z, ω)

∂z

∥∥∥∥ ≤ G (ω) for all (z, ω) ∈ U ×Ω.

Show

U 3 z →
∫
Ω

F (z, ω) dµ (ω) ∈ X

is differentiable and

d

dz

∫
Ω

F (z, ω) dµ (ω) =

∫
Ω

∂F (z, ω)

∂z
dµ (ω) .

1.5 Weak integrals for Hilbert Spaces

This section may be read independently of the previous material of this chapter.
Although you should still learn about the fundamental theorem of calculus in
Section ?? above at least for Hilbert space valued functions.

In this section, let F be either R or C, H be a separable Hilbert space over
F, and (X,M, µ) and (Y,N , ν) be two σ – finite measures spaces.

Definition 1.41. A function ψ : X → H is said to be weakly measurable if
X 3 x→ 〈h, ψ (x)〉 ∈ F is M – measurable for all h ∈ H.

Notice that if ψ is weakly measurable, then ‖ψ (·)‖ is measurable as well.
Indeed, if D is a countable dense subset of H \ {0} , then

‖ψ (x)‖ = sup
h∈D

|〈h, ψ (x)〉|
‖h‖

.

Definition 1.42. A function ψ : X → H is weakly-integrable if ψ is weakly
measurable and

‖ψ‖1 :=

∫
X

‖ψ (x)‖ dµ (x) <∞.

We let L1 (X,µ : H) denote the space of weakly integrable functions.

For ψ ∈ L1 (X,µ : H) , let

fψ (h) :=

∫
X

〈h, ψ (x)〉 dµ (x)

and notice that fψ ∈ H∗ with

|fψ (h)| ≤
∫
X

|〈h, ψ (x)〉| dµ (x) ≤ ‖h‖H
∫
X

‖ψ (x)‖H dµ (x) = ‖ψ‖1 · ‖h‖H .

Thus by the Riesz theorem, there exists a unique element ψ̄ ∈ H such that〈
h, ψ̄

〉
= fψ (h) =

∫
X

〈h, ψ (x)〉 dµ (x) for all h ∈ H.

We will denote this element, ψ̄, as

ψ̄ =

∫
X

ψ (x) dµ (x) .

Theorem 1.43. There is a unique linear map,

L1 (X,µ : H) 3 ψ →
∫
X

ψ (x) dµ (x) ∈ H,

such that 〈
h,

∫
X

ψ (x) dµ (x)

〉
=

∫
X

〈h, ψ (x)〉 dµ (x) for all h ∈ H.

Moreover this map satisfies;
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14 1 Vector Valued Integration Theory

1. ∥∥∥∥∫
X

ψ (x) dµ (x)

∥∥∥∥
H

≤ ‖ψ‖L1(µ:H) .

2. If B ∈ L (H,K) is a bounded linear operator from H to K, then

B

∫
X

ψ (x) dµ (x) =

∫
X

Bψ (x) dµ (x) .

3. If {en}∞n=1 is any orthonormal basis for H, then∫
X

ψ (x) dµ (x) =

∞∑
n=1

[∫
X

〈ψ (x) , en〉 dµ (x)

]
en.

Proof. We take each item in turn.

1. We have∥∥∥∥∫
X

ψ (x) dµ (x)

∥∥∥∥
H

= sup
‖h‖=1

∣∣∣∣〈h,∫
X

ψ (x) dµ (x)

〉∣∣∣∣
= sup
‖h‖=1

∣∣∣∣∫
X

〈h, ψ (x)〉 dµ (x)

∣∣∣∣ ≤ ‖ψ‖1 .
2. If k ∈ K, then〈

B

∫
X

ψ (x) dµ (x) , k

〉
=

〈∫
X

ψ (x) dµ (x) , B∗k

〉
=

∫
X

〈ψ (x) , B∗k〉 dµ (x)

=

∫
X

〈Bψ (x) , k〉 dµ (x) =

〈∫
X

Bψ (x) dµ (x) , k

〉
and this suffices to verify item 2.

3. Lastly, ∫
X

ψ (x) dµ (x) =

∞∑
n=1

〈∫
X

ψ (x) dµ (x) , en

〉
en

=

∞∑
n=1

[∫
X

〈ψ (x) , en〉 dµ (x)

]
en.

Definition 1.44. A function C : (X,M, µ) → B (H) is said to be a weakly
measurable operator if x→ 〈C (x) v, w〉 ∈ C is measurable for all v, w ∈ H.

Again if C is weakly measurable, then

X 3 x→ ‖C (x)‖op := sup
h,k∈D

|〈C (x)h, k〉|
‖h‖ · ‖k‖

is measurable as well.

Definition 1.45. A function C : X → B (H) is weakly-integrable if C is
weakly measurable and

‖C‖1 :=

∫
X

‖C (x)‖ dµ (x) <∞.

We let L1 (X,µ : B (H)) denote the space of weakly integrable B (H)-valued
functions.

Theorem 1.46. If C ∈ L1 (µ : B (H)) , then there exists a unique C̄ ∈ B (H)
such that

C̄v =

∫
X

[C (x) v] dµ (x) for all v ∈ H (1.22)

and
∥∥C̄∥∥ ≤ ‖C‖1 .

Proof. By very definition, X 3 x → C (x) v ∈ H is weakly measurable for
each v ∈ H and moreover∫

X

‖C (x) v‖ dµ (x) ≤
∫
X

‖C (x)‖ ‖v‖ dµ (x) = ‖C‖1 ‖v‖ <∞. (1.23)

Therefore the integral in Eq. (1.22) is well defined. By the linearity of the weak
integral on H – valued functions one easily checks that C̄ : H → H defined by
Eq. (1.22) is linear and moreover by Eq. (1.23) we have∥∥C̄v∥∥ ≤ ∫

X

‖C (x) v‖ dµ (x) ≤ ‖C‖1 ‖v‖

which implies
∥∥C̄∥∥ ≤ ‖C‖1 .

Notation 1.47 (Weak Integrals) We denote the C̄ in Theorem 1.46 by ei-
ther µ (C) or

∫
X
C (x) dµ (x) .

Theorem 1.48. Let C ∈ L1 (µ : B (H)) . The weak integral, µ (C) , has the
following properties;

1. ‖µ (C)‖op ≤ ‖C‖1 .
2. For all v, w ∈ H,

〈µ (C) v, w〉 =

〈∫
X

C (x) dµ (x) v, w

〉
=

∫
X

〈C (x) v, w〉 dµ (x) .

Page: 14 job: 241Functional_2020s macro: svmonob.cls date/time: 13-Feb-2020/12:28



1.5 Weak integrals for Hilbert Spaces 15

3. µ (C∗) = µ (C)
∗
, i.e.∫

X

C (x)
∗
dµ (x) =

[∫
X

C (x) dµ (x)

]∗
.

4. If {ei}∞i=1 is an orthonormal basis for H, then

µ (C) v =

∞∑
i=1

(∫
X

〈C (x) v, ei〉 dµ (x)

)
ei ∀ v ∈ H. (1.24)

5. If D ∈ L1 (ν : B (H)) , then

µ (C) ν (D) = µ⊗ ν (C ⊗D) (1.25)

where µ⊗ν is the product measure on X×Y and C⊗D ∈ L1 (µ⊗ ν : B (H))
is the operator defined by

C ⊗D (x, y) := C (x)D (y) ∀ x ∈ X and y ∈ Y.

6. For v, w ∈ H,

〈µ (C) v, ν (D)w〉 =

∫
X×Y

dµ (x) dν (y) 〈C (x) v,D (y)w〉 .

Proof. We leave the verifications of items 1., 2., and 4. to the reader.
Item 3. For v, w ∈ H we have,〈

µ (C)
∗
v, w

〉
= 〈µ (C)w, v〉 =

∫
X

〈C (x)w, v〉 dµ (x)

=

∫
X

〈C (x)w, v〉dµ (x) =

∫
X

〈v, C (x)w〉 dµ (x)

=

∫
X

〈C∗ (x) v, w〉 dµ (x) = 〈µ (C∗) v, w〉 .

Item 5. First observe that for v, w ∈ H,

〈C ⊗D (x, y) v, w〉 = 〈C (x)D (y) v, w〉 =

∞∑
i=1

〈D (y) v, ei〉 〈C (x) ei, w〉 (1.26)

where {ei}∞i=1 is an orthonormal basis for H. From this relation it follows that
C ⊗D is still weakly measurable. Since∫

X×Y
‖C ⊗D (x, y)‖op dµ (x) dν (y)

=

∫
X×Y

‖C (x)D (y)‖op dµ (x) dν (y)

≤
∫
X×Y

‖C (x)‖op ‖D (y)‖op dµ (x) dν (y) = ‖C‖L1(µ) ‖D‖L1(ν) <∞,

we see C ⊗D ∈ L1 (µ⊗ ν : B (H)) and hence µ⊗ ν (C ⊗D) is well defined. So
it only remains to verify the identity in Eq. (1.25). However, making use of Eq.
(1.26) and the estimates,

g (x, y) :=

∞∑
i=1

|〈D (y) v, ei〉| |〈C (x) ei, w〉|

≤

√√√√ ∞∑
i=1

|〈D (y) v, ei〉|2
∞∑
i=1

|〈C (x) ei, w〉|2

=

√
‖D (y) v‖2 ·

∥∥C (x)
∗
w
∥∥2

≤‖D (y)‖op ‖C
∗ (x)‖op ‖v‖ ‖w‖

= ‖D (y)‖op ‖C (x)‖op ‖v‖ ‖w‖ ,

it follows that g ∈ L1 (µ⊗ ν) . Using this observations we may easily justify the
following computation,

〈µ⊗ ν (C ⊗D) v, w〉 =

∫
X×Y

dµ (x) dν (y) 〈C (x)D (y) v, w〉

=

∫
X×Y

dµ (x) dν (y)

∞∑
i=1

〈D (y) v, ei〉 〈C (x) ei, w〉

=

∞∑
i=1

∫
X×Y

dµ (x) dν (y) 〈D (y) v, ei〉 〈C (x) ei, w〉

=

∞∑
i=1

〈ν (D) v, ei〉 〈µ (C) ei, w〉 = 〈µ (C) ν (D) v, w〉 .

Item 6. By the definition of µ (C) and ν (D) ,

〈µ (C) v, ν (D)w〉 =

∫
X

dµ (x) 〈C (x) v, ν (D)w〉

=

∫
X

dµ (x)

∫
Y

dν (y) 〈C (x) v,D (y)w〉 .

Exercise 1.6. Let us continue to use the notation in Theorem 1.48. If B ∈
B (H) is a linear operator such that [C (x) , B] = 0 for µ – a.e. x, show
[µ (C) , B] = 0.
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Part II

Basics of Banach and C∗-Algebras





In this part, we will only begin to scratch the surface on the topic of Banach
algebras. For an encyclopedic view of the subject, the reader is referred to
Palmer [27,28].For general Banach and C∗-algebra stuff have a look at [26,53].
Also see the lecture notes in [33,52]. Putnam’s file looked quite good. For a very
detailed statements see [9, See bottom of p. 45]





2

Banach Algebras and Linear ODE

2.1 Basic Definitions, Examples, and Properties

Definition 2.1. An associative algebra over a field is a vector space over with
a bilinear, associative multiplication: i.e.,

(ab)c = a(bc)

a(b+ c) = ab+ ac

(a+ b)c = ac+ bc

a(λc) = (λa)c = λ(ac).

As usual, from now on we assume that F is either R or C. Later in this
chapter we will restrict to the complex case.

Definition 2.2. A Banach Algebra, A, is an F – Banach space which is an
associative algebra over F satisfying,

‖ab‖ ≤ ‖a‖ ‖b‖ ∀ a, b ∈ A.

[It is typically the case that if A has a unit element, 1, then ‖1‖ = 1. I will bake
this into the definition!]

Exercise 2.1 (The unital correction). Let A be a Banach algebra with a
unit, 1, with 1 6= 0. Suppose that we do not assume ‖1‖ = 1. Show;

1. ‖1‖ ≥ 1.
2. For a ∈ A, let La ∈ B (A) be left multiplication by a, i.e. Lax = ax for all
x ∈ A. Now define

|a| = ‖La‖B(A) = sup {‖ax‖ : x ∈ A with ‖x‖ = 1} .

Show
1

c
‖a‖ ≤ |a| ≤ ‖a‖ for all a ∈ A,

|1| = 1 and (A, |·|) is again a Banach algebra.

Examples 2.3 Here are some examples of Banach algebras. The first example
is the prototype for the definition.

1. Suppose that X is a Banach space, B (X) denote the collection of bounded
operators on X. Then B (X) is a Banach algebra in operator norm with
identity. B (X) is not commutative if dimX > 1.

2. Let X be a topological space, BC (X,F) be the bounded F-valued, continuous
functions on X, with ‖f‖ = supx∈X |f (x) |. BC (X,F) is a commutative
Banach algebra under pointwise multiplication. The constant function 1 is
an identity element.

3. If we assume that X is a locally compact Hausdorff space, then C0 (X,F) –
the space of continuous F – valued functions on X vanishing at infinity is
a Banach sub-algebra of BC (X,F) . If X is non-compact, then BC (X,F)
is a Banach algebra without unit.

4. If (Ω,F , µ) is a measure space then L∞ (µ) := L∞ (Ω,F , µ : C) is a com-
mutative complex Banach algebra with identity. In this case ‖f‖ = ‖f‖L∞(µ)

is the essential supremum of |f | defined by

‖f‖L∞(µ) = inf {M > 0 : |f | ≤M µ-a.e.} .

5. A = L1(R1) with multiplication being convolution is a commutative Banach
algebra without identity.

6. If A = `1(Z) with multiplication given by convolution is a commutative
Banach algebra with identity which is this case is the function

δ0 (n) :=

{
1 if n = 0
0 if n 6= 0

.

This example is generalized and expanded on in the next proposition.

Proposition 2.4 (Group Algebra). Let G be a discrete group (i.e. finite or
countable), A := `1 (G) , and for g ∈ G let δg ∈ A be defined by

δg (x) :=

{
1 if x = g
0 if x 6= g

.

Then there exists a unique multiplication (·) on A which makes A into a Banach
algebra with unit such that δg ~ δk = δgk for all g, k ∈ G which is given by

(u~ v) (x) =
∑
g∈G

u (g) v
(
g−1x

)
=
∑
k∈G

u
(
xk−1

)
v (k) . (2.1)

[The unit in A is δe where e is the identity element of G.]
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Proof. If u, v ∈ `1 (G) then

u =
∑
g∈G

u (g) δg and v =
∑
k∈G

v (k) δk

where the above sums are convergent in A. As we are requiring (~) to be
continuous we must have

u~ v =
∑
g,k∈G

u (g) v (k) δgδk =
∑
g,k∈G

u (g) v (k) δgk.

Making the change of variables x = gk, i.e. g = xk−1 or k = g−1x then shows,

u~ v =
∑
g,x∈G

u (g) v
(
g−1x

)
δx =

∑
k,x∈G

u
(
xk−1

)
v (k) δx.

This leads us to define u~ v as in Eq. (2.1). Notice that∑
x∈G

∑
k∈G

∣∣u (xk−1
)∣∣ |v (k)| = ‖u‖1 ‖v‖1

which shows that u~ v is well defined and satisfies, ‖u~ v‖1 ≤ ‖u‖1 ‖v‖1 . The
reader may now verify that (A,~) is a Banach algebra.

Remark 2.5. By construction, we have δg ~ δk = δgk and so (A,~) is commu-
tative iff G is commutative. Moreover for k ∈ G and u ∈ `1 (G) we have,

δk ~ u =
∑
g∈G

u (g) δkg =
∑
g∈G

u
(
k−1g

)
δg = u

(
k−1 (·)

)
and

u~ δk =
∑
g∈G

u (g) δgk =
∑
g∈G

u
(
gk−1

)
δg = u

(
(·) k−1

)
.

In particular it follows that δe ~ u = u = u ~ δe where e ∈ G is the identity
element.

Proposition 2.6. Let A be a (complex) Banach algebra without identity. Let

B = {(a, α) : a ∈ A, α ∈ C} = A⊕ C.

Define
(a, α)(b, β) = (ab+ αb+ βa, αβ)

and
‖(a, α)‖ = ‖a‖+ |α|. (2.2)

Then B is a Banach algebra with identity e = (0, 1), and the map a→ (a, 0) is
an isometric isomorphism onto a closed two sided ideal in B.

Proof. Straightforward.

Remark 2.7. If A is a C∗-algebra as in Definition 2.50 below it is better to
defined the norm on B by

‖(a, α)‖ = sup {‖ab+ αb‖ : b ∈ A with ‖b‖ ≤ 1} (2.3)

rather than Eq. (2.2). The above definition is motivated by the fact that a ∈
A ↪→ La ∈ B (A) is an isometry, where Lab = ab for all a, b ∈ A. Indeed,
‖Lab‖ = ‖ab‖ ≤ ‖a‖ ‖b‖ with equality when b = a∗ so that ‖La‖B(A) = ‖a‖ .
The definition in Eq. (2.3) has been crafted so that

‖(a, α)‖ = ‖La + αI‖B(A)

which shows ‖(a, α)‖ is a norm and a ∈ A ↪→ (a, 0) ∈ B ↪→ B(A) are all
isometric embeddings.

The advantage of this choice of norm is that B is still a C∗-algebra. Indeed

‖ab+ αb‖2 = ‖ (ab+ αb)
∗

(ab+ αb) ‖ = ‖ (b∗a∗ + ᾱb∗) (ab+ αb) ‖

= ‖b∗a∗ab+ ᾱb∗ab+ αb∗a∗b+ |α|2 b∗b‖

≤ ‖b∗‖ ‖ (a∗a+ ᾱa+ αa∗) b+ |α|2 b‖

and so taking the sup of this expression over ‖b‖ ≤ 1 implies

‖(a, α)‖2 ≤
∥∥∥(a∗a+ ᾱa+ αa∗, |α|2

)∥∥∥ = ‖(a, α)∗(a, α)‖ ≤ ‖(a, α)∗‖ ‖(a, α)‖ .
(2.4)

Eq. (2.4) implies ‖(a, α)‖ ≤ ‖(a, α)∗‖ and by symmetry ‖(a, α)∗‖ ≤ ‖(a, α)‖ .
Thus the inequalities in Eq. (2.4) are equalities and this shows ‖(a, α)‖2 =
‖(a, α)∗(a, α)‖ . Moreover A is still embedded in B isometrically. because for
a ∈ A,

‖a‖ =

∥∥∥∥a a∗

‖a‖

∥∥∥∥ ≤ sup {‖ab‖ : b ∈ A with ‖b‖ ≤ 1} ≤ ‖a‖

which combined with Eq. (2.3) implies ‖(a, 0)‖ = ‖a‖ .

Definition 2.8. Let A be a Banach algebra with identity, 1. If a ∈ A, then a is
right (left) invertible if there exists b ∈ A such that ab = 1 (ba = 1) in which
case we call b a right (left) inverse of a. The element a is called invertible
if it has both a left and a right inverse.

Note if ab = 1 and ca = 1, then c = cab = b. Therefore if a has left and right
inverses then they are equal and such inverses are unique. When a is invertible,
we will write a−1 for the unique left and right inverse of a. The next lemma
shows that notion of inverse given here is consistent with the notion of algebraic
inverses when A = B (X) for some Banach space X.
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Lemma 2.9 (Inverse Mapping Theorem). If X,Y are Banach spaces and
T ∈ L (X,Y ) is invertible (i.e. a bijective linear transformation) then the in-
verse map, T−1, is bounded, i.e. T−1 ∈ B (Y,X) . (Note that T−1 is automati-
cally linear.) In other words algebraic invertibility implies topological invertibil-
ity.

Proof. If T is surjective, we know by the open mapping theorem that T
is an open mapping and form this it follows that the algebraic inverse of T is
continuous.

Corollary 2.10 (Closed ranges). Let X and Y be Banach spaces and T ∈
L (X,Y ) . Then Nul (T ) = {0} and Ran (T ) is closed in Y iff

ε := inf
‖x‖X=1

‖Tx‖Y > 0. (2.5)

Proof. If Nul (T ) = {0} and Ran (T ) is closed then T thought of an operator
in B (X,Ran (T )) is an invertible map with inverse denoted by S : Ran (T ) →
X. Since Ran (T ) is a closed subspace of a Banach space it is itself a Banach
space and so by Corollary 2.9 we know that S is a bounded operator, i.e.

‖Sy‖X ≤ ‖S‖op · ‖y‖Y ∀ y ∈ Ran (T ) .

Taking y = Tx in the above inequality shows,

‖x‖X ≤ ‖S‖op · ‖Tx‖Y ∀ x ∈ X

from which we learn ε = ‖S‖−1
op > 0.

Conversely if ε > 0 (ε as in Eq. (2.5)), then by scaling, it follows that

‖Tx‖Y ≥ ε ‖x‖X ∀ x ∈ X.

This last inequality clearly implies Nul (T ) = {0} . Moreover if {xn} ⊂ X is a
sequence such that y := limn→∞ Txn exists in Y, then

‖xn − xm‖ ≤
1

ε
‖T (xn − xm)‖Y =

1

ε
‖Txn − Txm‖Y

→ 1

ε
‖y − y‖Y = 0 as m,n→∞.

Therefore x := limn→∞ xn exists in X and y = limn→∞ Txn = Tx which shows
Ran (T ) is closed.

Example 2.11. Let X = `1 (N0) and T : X → C ([0, 1]) be defined by
Ta =

∑∞
n=0 anx

n. Now let Y := Ran (T ) so that T : X → Y is bi-
jective. The inverse map is again not bounded. For example consider a =
(1,−1, 1,−1, . . . ,±1, 0, 0, 0, . . . ) so that

Ta =

n∑
k=0

(−x)
k

=
(−x)

n+1 − 1

−x− 1
=

1 + (−1)
n
xn+1

1 + x
.

We then have ‖Ta‖∞ ≤ 2 while ‖a‖X = n+ 1. Thus
∥∥T−1

∥∥
op

=∞. This shows

that range space in the open mapping theorem must be complete as well.

The next elementary proposition shows how to use geometric series in order
to construct inverses.

Proposition 2.12. Let A be a Banach algebra with identity and a ∈ A. If∑∞
n=0 ‖an‖ <∞ then 1− a is invertible and

∥∥(1− a)−1
∥∥ ≤ ∞∑

n=0

‖an‖ .

In particular, if ‖a‖ < 1, then 1− a is invertible and∥∥(1− a)−1
∥∥ ≤ 1

1− ‖a‖
.

Proof. Let b =
∑∞
n=0 a

n which, by assumption, is absolutely convergent
and so satisfies, ‖b‖ ≤

∑∞
n=0 ‖an‖ . It is easy to verify that (1−a)b = b(1−a) =

1 which implies (1− a)
−1

= b which proves the first assertion. Then second
assertion now follows from the first and the simple estimates, ‖an‖ ≤ ‖a‖n, and
geometric series identity,

∑∞
n=0 ‖a‖

n
= 1/ (1− ‖a‖) .

Notation 2.13 Let Ainv denote the invertible elements for A and by con-
vention we write λ instead of λ1.

Remark 2.14. The invertible elements, Ainv, form a multiplicative system, i.e.
if a, b ∈ Ainv, then ab ∈ Ainv. As usual we have (ab)

−1
= b−1a−1 as is easily

verified.

Corollary 2.15. If x ∈ Ainv and h ∈ A satisfy
∥∥x−1h

∥∥ < 1, show x+h ∈ Ainv
and ∥∥∥(x+ h)

−1
∥∥∥ ≤ ∥∥x−1

∥∥ · 1

1− ‖x−1h‖
. (2.6)

In particular this shows Ainv of invertible is an open subset of A. We further
have

(x+ h)
−1

=

∞∑
n=0

(−1)
n (
x−1h

)n
x−1

= x−1 − x−1hx−1 + x−1hx−1hx−1 − x−1hx−1hx−1hx−1 + . . . .

=

N∑
n=0

(−1)
n (
x−1h

)n
x−1 +RN
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where

‖RN‖ ≤
∥∥∥(x−1h

)N+1
∥∥∥∥∥x−1

∥∥ 1

1− ‖x−1h‖
.

Proof. By the assumptions and Proposition 2.12, both x and 1 + x−1h are
invertible with ∥∥1 + x−1h

∥∥ ≤ 1

1− ‖x−1h‖
.

As (x+ h) = x
(
1 + x−1h

)
, it follows that x+ h is invertible and

(x+ h)
−1

=
(
1 + x−1h

)−1
x−1.

Taking norms of this equation then gives the estimate in Eq. (2.6). The series
expansion now follows from the previous equation and the geometric series rep-
resentation in Proposition 2.12. Lastly the remainder estimate is easily obtained
as follows;

RN =
∑
n>N

(
−x−1h

)n
x−1 =

(
−x−1h

)N+1

[ ∞∑
n=0

(
−x−1h

)n]
x−1

=
(
−x−1h

)N+1 (
1 + x−1h

)−1
x−1

so that

‖RN‖ ≤
∥∥x−1

∥∥ ∥∥∥(1 + x−1h
)−1
∥∥∥∥∥∥(x−1h

)N+1
∥∥∥

≤
∥∥∥(x−1h

)N+1
∥∥∥∥∥x−1

∥∥ 1

1− ‖x−1h‖
.

In the sequel the following simple identity is often useful; if b, c ∈ Ainv, then

b−1 − c−1 = b−1 (c− b) c−1. (2.7)

This identity is the non-commutative form of adding fractions by using a com-
mon denominator. Here is a simple (redundant in light of Corollary 2.15) ap-
plication.

Corollary 2.16. The map,Ainv 3 x → x−1 ∈ Ainv is continuous. [This map
is in fact C∞, see Exercise 2.2 below.]

Proof. Suppose that x ∈ Ainv and h ∈ A is sufficiently small so that∥∥x−1h
∥∥ ≤ ∥∥x−1

∥∥ ‖h‖ < 1. Then x + h is invertible by Corollary 2.15 and we
find the identity,

(x+ h)
−1 − x−1 = (x+ h)

−1
(x− (x+ h))x−1 = − (x+ h)

−1
hx−1. (2.8)

From Eq. (2.8) and Corollary 2.15 it follows that∥∥∥(x+ h)
−1 − x−1

∥∥∥ ≤ ∥∥x−1
∥∥ ∥∥∥(x+ h)

−1
∥∥∥ ‖h‖ ≤ ∥∥x−1

∥∥2· ‖h‖
1− ‖x−1h‖

→ 0 as h→ 0.

2.2 Calculus in Banach Algebras

Exercise 2.2. Show that the inversion map f : Ainv → Ainv ⊂ A defined by
f (x) = x−1 is differentiable with

f ′ (x)h = (∂hf) (x) = −x−1hx−1

for all x ∈ Ainv and h ∈ A. Hint: iterate the identity

(x+ h)
−1

= x−1 − (x+ h)
−1
hx−1 (2.9)

that was derived in the lecture notes. [Again this exercise is somewhat redundant
in light of light of Corollary 2.15.]

Exercise 2.3. Suppose that a ∈ A and t ∈ R (or C if A is a complex Banach
algebra). Show directly that:

1. eta :=
∑∞
n=0

tn

n!a
n is an absolutely convergent series and ‖eta‖ ≤ e|t|‖a‖.

2. eta is differentiable in t and that d
dte

ta = aeta = etaa. [Suggestion; you could
prove this by scratch or make use of Exercise 1.2.]

Corollary 2.17. For a, b ∈ A commute, i.e. ab = ba, then eaeb = ea+b = ebea.

Proof. In the proof to follows we will use etab = beta for all t ∈ R. [Proof is
left to the reader.] Let f (t) := e−taet(a+b), then by the product rule,

ḟ (t) = −e−taaet(a+b)+e−ta (a+ b) et(a+b) = e−tabet(a+b) = be−taet(a+b) = bf (t) .

Therefore, d
dt

[
e−tbf (t)

]
= 0 and hence e−tbf (t) = e−0bf (0) = 1. Altogether

we have shown,
e−tbe−taet(a+b) = e−tbf (t) = 1.

Taking t = ±1 and b = 0 in this identity shows e−aea = 1 = eae−a, i.e.
(ea)

−1
= e−a. Knowing this fact it then follows from the previously displayed

equation that et(a+b) = etaetb which at t = 1 gives, eaeb = ea+b. Interchanging
the roles of a and b then completes the proof.
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Corollary 2.18. Suppose that A ∈ A, then the solution to

ẏ (t) = Ay (t) with y (0) = 1

is given by y (t) = etA where

etA =

∞∑
n=0

tn

n!
An. (2.10)

Moreover,
e(t+s)A = etAesA for all s, t ∈ R. (2.11)

We also have the following converse to this corollary whose proof is outlined
in Exercise 2.16 below.

Theorem 2.19. Suppose that Tt ∈ A for t ≥ 0 satisfies

1. (Semi-group property.) T0 = 1 ∈ A and TtTs = Tt+s for all s, t ≥ 0.
2. (Norm Continuity) t→ Tt is continuous at 0, i.e. ‖Tt − I‖A → 0 as t ↓ 0.

Then there exists A ∈ A such that Tt = etA where etA is defined in Eq.
(2.10).

Exercise 2.4. Let a, b ∈ A and f (t) := et(a+b) − etaetb and then show

f̈ (0) = ab− ba.

[Therefore if et(a+b) = etaetb for t near 0, then ab = ba.]

Exercise 2.5. If A0 is a unital commutative Banach algebra, show exp (a) = ea

is a differentiable function with differential,

exp′ (a) b = eab = bea.

Exercise 2.6. If t → c (t) ∈ A is a C1-function such that [c (s) , c (t)] = 0 for
all s, t ∈ R, then show

d

dt
ec(t) = ċ (t) ec(t).

Notation 2.20 For a ∈ A, let ada ∈ B (A) be defined by ada b = ab− ba.

Notice that
‖ada b‖ ≤ 2 ‖a‖ ‖b‖ ∀ b ∈ A

and hence ‖ada‖op ≤ 2 ‖a‖ .

Proposition 2.21. If a, b ∈ A, then

eabe−a = eada (b) =

∞∑
n=0

1

n!
adna b.

where eada is computed by working in the Banach algebra, B (A) .

Proof. Let f (t) := etabe−ta, then

ḟ (t) = aetabe−ta − etabe−taa = ada f (t) with f (0) = b.

Thus it follows that

d

dt

[
e−t adaf (t)

]
= 0 =⇒ e−t adaf (t) = e−0 adaf (0) = b.

From this we conclude,

etabe−ta = f (t) = et ada (b) .

Corollary 2.22. Let a, b ∈ A and suppose that [a, b] := ab− ba commutes with
both a and b. Then

eaeb = ea+b+ 1
2 [a,b].

Proof. Let u (t) := etaetb and then compute,

u̇ (t) = aetaetb + etabetb = aetaetb + etabe−taetaetb

=
[
a+ et ada (b)

]
u (t) = c (t)u (t) with u (0) = 1, (2.12)

where
c (t) = a+ et ada (b) = a+ b+ t [a, b]

because
ad2
a b = [a, [a, b]] = 0 by assumption.

Furthermore, our assumptions imply for all s, t ∈ R that

[c (t) , c (s)] = [a+ b+ t [a, b] , a+ b+ s [a, b]]

= [t [a, b] , a+ b+ s [a, b]] = st [[a, b] , [a, b]] = 0.

Therefore the solution to Eq. (2.12) is given by

u (t) = e

∫ t
0
c(τ)dτ

= et(a+b)+ 1
2 t

2[a,b].

Taking t = 1 complete the proof.
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Remark 2.23 (Baker-Campbell-Dynkin-Hausdorff formula). In general the
Baker-Campbell-Dynkin-Hausdorff formula states there is a function
Γ (a, b) ∈ A defined for ‖a‖A + ‖b‖A sufficiently small such that

eaeb = eΓ (a,b) where

Γ (a, b) = a+ b+
1

2
[a, b] +

1

12

(
ad2
ab+ ad2

ba
)

+ . . .

where all of the higher order terms are linear combinations of terms of the form
adx1 . . . adxnx0 with xi ∈ {a, b} for 0 ≤ i ≤ n and n ≥ 3.

Exercise 2.7. Suppose that a (s, t) ∈ A is a C2-function (s, t) near (s0, t0) ∈
R2, show (s, t)→ ea(s,t) ∈ A is still C2. Hints:

1. Let fn (s, t) := a(s,t)n

n! and then verify∥∥∥ḟn∥∥∥ ≤ 1

(n− 1)!
‖a‖n−1 ‖ȧ‖ ,

‖f ′n‖ ≤
1

(n− 1)!
‖a‖n−1 ‖a′‖ ,∥∥∥f̈n∥∥∥ ≤ 1

(n− 2)!
‖a‖n−2 ‖ȧ‖2 +

1

(n− 1)!
‖a‖n−1 ‖ä‖∥∥∥ḟ ′n∥∥∥ ≤ 1

(n− 2)!
‖a‖n−2 ‖ȧ‖ ‖a′‖+

1

(n− 1)!
‖a‖n−1 ‖ȧ′‖

‖f ′′n‖ ≤
1

(n− 2)!
‖a‖n−2 ‖a′‖2 +

1

(n− 1)!
‖a‖n−1 ‖a′′‖

where ḟ := ∂f/∂t and f ′ = ∂f
∂s .

2. Use the above estimates along with repeated applications of Exercise 1.2 in
order to conclude that f (s, t) = ea(s,t) is C2 near (s0, t0) .

Theorem 2.24 (Differential of ea). For any a, b ∈ A,

∂be
a :=

d

ds
|0ea+sb = ea

∫ 1

0

e−tabetadt.

Proof. The function, u (s, t) := et(a+sb) is C2 by Exercise 2.7 and therefore
we find,

d

dt
us (0, t) =

∂

∂s
|0u̇ (s, t) =

∂

∂s
|0 [(a+ sb)u (s, t)]

= bu (s, t) + aus (0, t) with us (0, 0) = 0.

To solve this equation we consider,

d

dt

[
e−taus (0, t)

]
= e−tabu (0, t) = e−tabeta

which upon integration,

e−a [∂be
a] = e−aus (0, 1) =

∫ 1

0

e−tabetadt

and hence

∂be
a = ea

∫ 1

0

e−tabetadt.

Corollary 2.25. The map a→ ea is differentiable. More precisely,∥∥ea+b − ea − ∂bea
∥∥ = O

(
‖b‖2

)
.

Proof. From Theorem 2.24,

d

ds
ea+sb =

d

dε
|0ea+sb+εb = ea+sb

∫ 1

0

e−t(a+sb)bet(a+sb)dt

and therefore,

ea+b − ea − ∂bea =

∫ 1

0

dsea+sb

∫ 1

0

dte−t(a+sb)bet(a+sb) − ea
∫ 1

0

e−tabetadt

=

∫ 1

0

ds

∫ 1

0

dt
[
e(1−t)(a+sb)bet(a+sb) − e(1−t)abeta

]
and so∥∥ea+b − ea − ∂bea

∥∥ ≤ ∫ 1

0

ds

∫ 1

0

dt
∥∥∥e(1−t)(a+sb)bet(a+sb) − e(1−t)abeta

∥∥∥ .
To estimate right side, let

g (s, t) := e(1−t)(a+sb)bet(a+sb) − e(1−t)abeta.

Then by Theorem 2.24,

‖g′ (s, t)‖ =

∥∥∥∥ dds [e(1−t)(a+sb)bet(a+sb)
]∥∥∥∥ ≤ C ‖b‖2

and since g (0, t) = 0, we conclude that ‖g (s, t)‖ ≤ C ‖b‖2 . Hence it follows
that ∥∥ea+b − ea − ∂bea

∥∥ = O
(
‖b‖2

)
.
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2.3 General Linear ODE in A

There is a bit of change of notation in this section as we use both capital
and lower case letters for possible elements of A. Let us now work with more
general linear differential equations on A where again A is a Banach algebra
with identity. Further let J = (a, b) ⊂ R be an open interval. Further suppose
that h,A ∈ C (J,A) , s ∈ J, and x ∈ A are give then we wish to solve the
ordinary differential equation,

ẏ (t) = A (t) y (t) + h (t) with y (s) = x ∈ A, (2.13)

for a function, y ∈ C1 (J,A) . This equation may be written in its equivalent (as
the reader should verify) integral form, namely we are looking for y ∈ C (J,A)
such that

y (t) =

∫ t

s

A (τ) y (τ) dτ + x+

∫ t

s

h (τ) dτ. (2.14)

Notation 2.26 For ϕ ∈ C (J,A) , let ‖ϕ‖∞ := maxt∈J ‖ϕ (t)‖ ∈ [0,∞]. We
further let

BC (J,A) := {ϕ ∈ C (J,A) : ‖ϕ‖∞ <∞}
denote the bounded functions in C (J,A) .

The reader should verify thatBC (J,A) with ‖·‖∞ is again a Banach algebra.
If we let

(Λsy) (t) =
(
ΛAs y

)
(t) :=

∫ t

s

A (τ) y (τ) dτ and (2.15)

ϕ (t) := x+

∫ t

s

h (τ) dτ

then these equations may be written as

y = Λsy + ϕ ⇐⇒ (I − Λs) y = ϕ.

Thus we see these equations will have a unique solution provided (I − Λs)−1

is invertible. To simplify the exposition without real loss of generality we are
going to now assume

‖A‖1 :=

∫
J

‖A (τ)‖ dτ <∞. (2.16)

The point of this assumption if Λs is defined as in Eq. (2.15), then for y ∈
BC (J,A) and t ∈ J,

‖(Λy) (t)‖ ≤
∣∣∣∣∫ t

0

‖A (τ) y (τ)‖ dτ
∣∣∣∣ ≤ ∣∣∣∣∫ t

0

‖A (τ)‖ dτ
∣∣∣∣ ‖y‖∞ ≤ ∫

J

‖A (τ)‖ dτ ·‖y‖∞ .

(2.17)

This inequality then immediately implies Λs : BC (J,A) → BC (J,A) is a
bounded operator with ‖Λs‖op ≤ ‖A‖1 . In fact we will see below in Corollary
2.29 that more generally we have

‖Λns ‖op ≤
1

n!
(‖A‖1)

n

which is the key to showing (I − Λs)−1
is invertible.

Lemma 2.27. For all n ∈ N,

(Λnsϕ) (t) =

∫ t

s

dτn

∫ τn

s

dτn−1· · ·
∫ τ2

s

dτ1A (τn) . . . A (τ1)ϕ (τ1) .

Proof. The proof is by induction with the induction step being,

(Λn+1
s ϕ) (t) = (ΛnsΛsϕ) (t)

=

∫ t

s

dτn

∫ τn

s

dτn−1· · ·
∫ τ2

s

dτ1A (τn) . . . A (τ1) (Λsϕ) (τ1)

=

∫ t

s

dτn

∫ τn

s

dτn−1· · ·
∫ τ2

s

dτ1A (τn) . . . A (τ1)

∫ τ1

s

A (τ0)ϕ (τ0) dτ0

=

∫ t

s

dτn

∫ τn

s

dτn−1· · ·
∫ τ1

s

dτ0A (τn) . . . A (τ1)A (τ0)ϕ (τ0) .

Lemma 2.28. Suppose that ψ ∈ C (J,R) , then∫ t

s

dτn

∫ τn

s

dτn−1· · ·
∫ τ2

s

dτ1ψ (τn) . . . ψ (τ1) =
1

n!

(∫ t

s

ψ (τ) dτ

)n
. (2.18)

Proof. The proof will go by induction on n with n = 1 assertion obviously
being true. Now let Ψ (t) :=

∫ t
s
ψ (τ) dτ so that the right side of Eq. (2.18) is

Ψ (t)
n
/n! and Ψ̇ (t) = ψ (t) . We now complete the induction step;∫ t

s

dτn

∫ τn

s

dτn−1· · ·
∫ τ1

s

dτ0ψ (τn) . . . ψ (τ0)

=
1

n!

∫ t

s

dτnψ (τn) [Ψ (τn)]
n

=
1

n!

∫ t

s

dτ [Ψ (τ)]
n
Ψ̇ (τ)

=
1

(n+ 1)!
[Ψ (τ)]

n+1 |τ=t
τ=s =

1

(n+ 1)!
[Ψ (t)]

n+1
.
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Corollary 2.29. For all n ∈ N,

‖Λns ‖op ≤
1

n!
‖A‖n1 =

1

n!

[∫
J

‖A (τ)‖ dτ
]n

and therefore (I − Λs) is invertible with∥∥∥(I − Λs)−1
∥∥∥
op
≤ exp (‖A‖1) = exp

(∫
J

‖A (τ)‖ dτ
)
.

Proof. This follows by the simple estimate along with Lemma 2.27 that for
any t ∈ J,

‖(Λnsϕ) (t)‖ ≤
∣∣∣∣∫ t

s

dτn

∫ τn

s

dτn−1· · ·
∫ τ2

s

dτ1 ‖A (τn) . . . A (τ1)ϕ (τ1)‖
∣∣∣∣

≤
∣∣∣∣∫ t

s

dτn

∫ τn

s

dτn−1· · ·
∫ τ2

s

dτ1 ‖A (τn)‖ . . . ‖A (τ1)‖
∣∣∣∣ ‖ϕ‖∞

=
1

n!

∣∣∣∣∫ t

s

‖A (τ)‖ dτ
∣∣∣∣n ‖ϕ‖∞ ≤ 1

n!

(∫
J

‖A (τ)‖ dτ
)n
‖ϕ‖∞ .

Taking the supremum over t ∈ J then shows

‖Λnsϕ‖∞ ≤
1

n!

(∫
J

‖A (τ)‖ dτ
)n
‖ϕ‖∞

which completes the proof.

Theorem 2.30. For all ϕ ∈ BC (J,A) , there exists a unique solution, y ∈
BC (J,A) , to y = Λsy + ϕ which is given by

y (t) =
(

(I − Λs)−1
ϕ
)

(t)

= ϕ (t) +

∞∑
n=1

∫ t

s

dτn

∫ τn

s

dτn−1· · ·
∫ τ2

s

dτ1A (τn) . . . A (τ1)ϕ (τ1) .

Notation 2.31 For s, t ∈ J, let uA0 (t, s) = 1 and for n ∈ N let

uAn (t, s) :=

∫ t

s

dτn

∫ τn

s

dτn−1· · ·
∫ τ2

s

dτ1A (τn) . . . A (τ1) . (2.19)

Definition 2.32 (Fundamental Solutions). For s, t ∈ J, let

uA (t, s) :=
(

(I − Λs)−1
1
)

(t) =
∞∑
n=0

uAn (t, s) (2.20)

= 1 +

∞∑
n=1

∫ t

s

dτn

∫ τn

s

dτn−1· · ·
∫ τ2

s

dτ1A (τn) . . . A (τ1) . (2.21)

Equivalently uA (t, s) is the unique solution to the ODE,

d

dt
uA (t, s) = A (t)uA (t, s) with uA (s, s) = 1.

Proposition 2.33 (Group Property). For all s, σ, t ∈ J we have

uA (t, s)uA (s, σ) = uA (t, σ) . (2.22)

Proof. Both sides of Eq. (2.22) satisfy the same ODE, namely the ODE

ẏ (t) = A (t) y (t) with y (s) = uA (s, σ) .

The uniqueness of such solutions completes the proof.

Lemma 2.34 (A Fubini Result). Let s, t ∈ J, n ∈ N and f (τn, . . . , τ1, τ0) be
a continuous function with values in A, then∫ t

s

dτn

∫ τn

s

dτn−1· · ·
∫ τ2

s

dτ1

∫ τ1

s

dτ0f (τn, . . . , τ1, τ0)

=

∫ t

s

dτ0

∫ t

τ0

dτn

∫ τn

τ0

dτn−1· · ·
∫ τ2

τ0

dτ1f (τn, . . . , τ1, τ0) .

Proof. We simply use Fubini’s theorem to change the order of integration
while referring to Figure (2.1) in order to work out the correct limits of inte-
gration.

s s

τ0 τ1 τn τ0τ1τn

t t

Fig. 2.1. This figures shows how to find the new limits of integration when t > s and
t < s respectively.

Lemma 2.35. If n ∈ N0 and s, t ∈ J, then in general,

(
Λn+1
s ϕ

)
(t) =

∫ t

s

uAn (t, σ)A (σ)ϕ (σ) dσ. (2.23)

and if H (t) :=
∫ ·
s
h (τ) dτ, then

(ΛnsH) (t) =

∫ t

s

uAn (t, σ)h (σ) dσ. (2.24)
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Proof. Using Lemma 2.34 shows,(
Λn+1
s ϕ

)
(t) =

∫ t

s

dτn· · ·
∫ τ2

s

dτ1

∫ τ1

s

dτ0A (τn) . . . A (τ1)A (τ0)ϕ (τ0)

=

∫ t

s

dτ0

[∫ t

τ0

dτn

∫ τn

τ0

dτn−1· · ·
∫ τ2

τ0

dτ1A (τn) . . . A (τ1)

]
A (τ0)ϕ (τ0)

=

∫ t

s

uAn (t, σ) [A (σ)ϕ (σ)] dσ.

Similarly,

(ΛnsH) (t) =

∫ t

s

dτn· · ·
∫ τ2

s

dτ1

∫ τ1

s

dτ0A (τn) . . . A (τ1)

∫ τ1

s

h (τ0) dτ0

=

∫ t

s

dτ0

[∫ t

τ0

dτn

∫ τn

τ0

dτn−1· · ·
∫ τ2

τ0

dτ1A (τn) . . . A (τ1)

]
h (τ0)

=

∫ t

s

uAn (t, σ)h (σ) dσ.

Proposition 2.36 (Dual Equation). The fundamental solution, uA also sat-
isfies

uA (t, s) = 1+

∫ t

s

uA (t, σ)A (σ) dσ (2.25)

which is equivalent to solving the ODE,

d

ds
uA (t, s) = −uA (t, s)A (s) with uA (t, t) = 1. (2.26)

Proof. Summing Eq. (2.23) on n shows,

∞∑
n=0

(
Λn+1
s ϕ

)
(t) =

∞∑
n=0

∫ t

s

uAn (t, σ)A (σ)ϕ (σ) dσ

=

∫ t

s

∞∑
n=0

uAn (t, σ)A (σ)ϕ (σ) dσ

=

∫ t

s

uA (t, σ)A (σ)ϕ (σ) dσ

and hence (
(I − Λs)−1

ϕ
)

(t) = ϕ (t) +

∞∑
n=0

(
Λn+1
s ϕ

)
(t)

= ϕ (t) +

∫ t

s

uA (t, σ)A (σ)ϕ (σ) dσ (2.27)

which specializes to Eq. (2.25) when ϕ (t) = 1.Differentiating Eq. (2.25) on s
then gives Eq. (2.26). Another proof of Eq. (2.26) may be given using Propo-

sition 2.33 to conclude that u (t, s) = u (s, t)
−1

and then differentiating this
equation shows

d

ds
u (t, s) =

d

ds
u (s, t)

−1
= −u (s, t)

−1

(
d

ds
u (s, t)

)
u (s, t)

−1

= −u (s, t)
−1
A (s)u (s, t)u (s, t)

−1
= −u (s, t)

−1
A (s) .

Theorem 2.37 (Duhamel’s principle). The unique solution to Eq. (2.13) is

y (t) = uA (t, s)x+

∫ t

s

uA (t, σ)h (σ) dσ. (2.28)

Proof. First Proof. Let

ϕ (t) = x+H (t) with H (t) =

∫ t

s

h (τ) dτ.

Then we know that the unique solution to Eq. (2.13) is given by

y = (I − Λs)−1
ϕ = (I − Λs)−1

x+ (I − Λs)−1
H

= uA (·, s)x+

∞∑
n=0

ΛnsH,

where by summing Eq. (2.24),

((
I − ΛAs

)−1
H
)

(t) =

∞∑
n=0

(ΛnsH) (t) =

∞∑
n=0

∫ t

s

uAn (t, σ)h (σ) dσ

=

∫ t

s

∞∑
n=0

uAn (t, σ)h (σ) dσ =

∫ t

s

uA (t, σ)h (σ) dσ (2.29)

and the proof is complete.
Second Proof. We need only verify that y defined by Eq. (2.28) satisfies

Eq. (2.13). The main point is that the chain rule, FTC, and differentiation past
the integral implies

Page: 29 job: 241Functional_2020s macro: svmonob.cls date/time: 13-Feb-2020/12:28



30 2 Banach Algebras and Linear ODE

d

dt

∫ t

s

uA (t, σ)h (σ) dσ

=
d

dε
|0
∫ t+ε

s

uA (t, σ)h (σ) dσ +
d

dε
|0
∫ t

s

uA (t+ ε, σ)h (σ) dσ

= uA (t, t)h (t) +

∫ t

s

d

dt
uA (t, σ)h (σ) dσ

= h (t) +

∫ t

s

A (t)uA (t, σ)h (σ) dσ

= h (t) +A (t)

∫ t

s

uA (t, σ)h (σ) dσ.

Thus it follows that

ẏ (t) = A (t)uA (t, s)x+A (t)

∫ t

s

uA (t, σ)h (σ) dσ + h (t)

= A (t) y (t) + h (t) with y (s) = x.

The last main result of this section is to show that uA (t, s) is a differentiable
function of A.

Theorem 2.38. The map, A→ uA (t, s) is differentiable and moreover,

∂Bu
A (t, s) =

∫ t

s

uA (t, σ)B (σ)uA (σ, s) dσ. (2.30)

Proof. Since ∂BΛ
A
s = ΛBs and

uA (·, s) =
(
I − ΛAs

)−1
1

we conclude form Exercise 2.2 that

∂Bu
A (·, s) =

(
I − ΛAs

)−1
ΛBs
(
I − ΛAs

)−1
1.

Equation (2.30) now follows from Eq. (2.29) with h (σ) = B (σ)uA (σ, s) so that
and

H (t) =

∫ t

s

B (σ)uA (σ, s) dσ =
(
ΛBs
(
I − ΛAs

)−1
1
)

(t) .

Remark 2.39 (Constant coefficient case). When A (t) = A is constant, then

uAn (t, s) =

∫ t

s

dτn

∫ τn

s

dτn−1· · ·
∫ τ2

s

dτ1A
n =

(t− s)n

n!
An

and hence uA (t, s) = e(t−s)A. In this case Eqs. (2.28) (2.30) reduce to

y (t) = e(t−s)Ax+

∫ t

s

e(t−σ)Ah (σ) dσ,

and for B ∈ A,

∂Be
(t−s)A =

∫ t

s

e(t−σ)AB (σ) e(σ−s)Adσ.

Taking s = 0 in this last equation gives the familiar formula,

∂Be
tA =

∫ t

0

e(t−σ)AB (σ) eσAdσ.

2.4 Logarithms

Our goal in this section is to find an explicit local inverse to the exponential
function, A → eA for A near zero. The existence of such an inverse can be
deduced from the inverse function theorem although we will not need this fact
here. We begin with the real variable fact that

ln (1 + x) =

∫ 1

0

d

ds
ln (1 + sx) ds =

∫ 1

0

x (1 + sx)
−1
ds.

Definition 2.40. When A ∈ A satisfies 1 + sA is invertible for 0 ≤ s ≤ 1 we
define

ln (1 +A) =

∫ 1

0

A (1 + sA)
−1
ds. (2.31)

The invertibility of 1 + sA for 0 ≤ s ≤ 1 is satisfied if;

1. A is nilpotent, i.e. AN = 0 for some N ∈ N or more generally if
2.
∑∞
n=0 ‖An‖ <∞ (for example assume that ‖A‖ < 1), of

3. if X is a Hilbert space and A∗ = A with A ≥ 0.

In the first two cases

(1 + sA)
−1

=

∞∑
n=0

(−s)nAn.

Proposition 2.41. If 1 + sA is invertible for 0 ≤ s ≤ 1, then

∂B ln (1 +A) =

∫ 1

0

(1 + sA)
−1
B (1 + sA)

−1
ds. (2.32)

If 0 = [A,B] := AB −BA, Eq. (2.32) reduces to

∂B ln (1 +A) = B (1 +A)
−1
. (2.33)
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Proof. Differentiating Eq. (2.31) shows

∂B ln (1 +A) =

∫ 1

0

[
B (1 + sA)

−1 −A (1 + sA)
−1
sB (1 + sA)

−1
]
ds

=

∫ 1

0

[
B − sA (1 + sA)

−1
B
]

(1 + sA)
−1
ds.

Combining this last equality with

sA (1 + sA)
−1

= (1 + sA− 1) (1 + sA)
−1

= 1− (1 + sA)
−1

gives Eq. (2.32). In case [A,B] = 0,

(1 + sA)
−1
B (1 + sA)

−1
= B (1 + sA)

−2

= B
d

ds

[
−A−1 (1 + sA)

−1
]

and so by the fundamental theorem of calculus

∂B ln (1 +A) = B

∫ 1

0

(1 + sA)
−2
ds = B

[
−A−1 (1 + sA)

−1
]s=1

s=0

= B
[
A−1 −A−1 (1 +A)

−1
]

= BA−1
[
1− (1 +A)

−1
]

= B
[
A−1 (1 +A)−A−1

]
(1 +A)

−1
= B (1 +A)

−1
.

Corollary 2.42. Suppose that t → A (t) ∈ A is a C1 – function 1 + sA (t) is
invertible for 0 ≤ s ≤ 1 for all t ∈ J = (a, b) ⊂ R. If g (t) := 1+A (t) and t ∈ J,
then

d

dt
ln (g (t)) =

∫ 1

0

(1− s+ sg (t))
−1
ġ (t) (1− s+ sg (t))

−1
ds. (2.34)

Moreover if [A (t) , A (τ)] = 0 for all t, τ ∈ J then,

d

dt
ln (g (t)) = Ȧ (t) (1 +A (t))

−1
. (2.35)

Proof. Differentiating past the integral and then using Eq. (2.32) gives

d

dt
ln (g (t)) =

∫ 1

0

(1 + sA (t))
−1
Ȧ (t) (1 + sA (t))

−1
ds

=

∫ 1

0

(1 + s (g (t)− 1))
−1
ġ (t) (1 + s (g (t)− 1))

−1
ds

=

∫ 1

0

(1− s+ sg (t))
−1
ġ (t) (1− s+ sg (t))

−1
ds.

For the second assertion we may use Eq. (2.33) instead Eq. (2.32) in order
to immediately arrive at Eq. (2.35).

Theorem 2.43. If A ∈ A satisfies, 1 + sA is invertible for 0 ≤ s ≤ 1, then

eln(I+A) = I +A. (2.36)

If C ∈ A satisfies
∑∞
n=1

1
n! ‖C

n‖n < 1 (for example assume ‖C‖ < ln 2, i.e.

e‖C‖ < 2), then
ln eC = C. (2.37)

This equation also holds of C is nilpotent or if X is a Hilbert space and C = C∗-
with C ≥ 0.

Proof. For 0 ≤ t ≤ 1 let

C (t) = ln (I + tA) = t

∫ 1

0

A (1 + stA)
−1
ds.

Since [C (t) , C (τ)] = 0 for all τ, t ∈ [0, 1] , if we let g (t) := eC(t), then

ġ (t) =
d

dt
eC(t) = Ċ (t) eC(t) = A (1 + tA)

−1
g (t) with g (0) = I.

Noting that g (t) = 1 + tA solves this ordinary differential equation, it follows
by uniqueness of solutions to ODE’s that eC(t) = g (t) = 1 + tA. Evaluating
this equation at t = 1 implies Eq. (2.36).

Now let C ∈ A as in the statement of the theorem and for t ∈ R set

A (t) := etC − 1 =

∞∑
n=1

tn

n!
Cn.

Therefore,

1 + sA (t) = 1 + s

∞∑
n=1

tn

n!
Cn

with ∥∥∥∥∥s
∞∑
n=1

tn

n!
Cn

∥∥∥∥∥ ≤ s
∞∑
n=1

tn

n!
‖Cn‖n < 1 for 0 ≤ s, t ≤ 1.

Because of this observation, ln
(
etC
)

:= ln (1 +A (t)) is well defined and because
[A (t) , A (τ)] = 0 for all τ and t we may use Eq. (2.35) to learn,

d

dt
ln
(
etC
)

:= Ȧ (t) (1 +A (t))
−1

= CetCe−tC = C with ln
(
e0C
)

= 0.

The unique solution to this simple ODE is ln
(
etC
)

= tC and evaluating this at
t = 1 gives Eq. (2.37).
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32 2 Banach Algebras and Linear ODE

2.5 C∗-algebras

We now are going to introduce the notion of “star” structure on a complex
Banach algebra. We will be primarily motivated by the example of closed ∗-
sub-algebras of the bounded linear operators on (in) a Hilbert space. For the
rest of this section and essentially the rest of these notes we will assume that
B is a complex Banach algebra.

Definition 2.44. An involution on a complex Banach algebra, B, is a map
a ∈ B → a∗ ∈ B satisfying:

1. involutory a∗∗ = a
2. additive (a+ b)∗ = a∗ + b∗

3. conjugate homogeneous (λa)∗ = λa∗

4. anti–automorphic (ab)∗ = b∗a∗.

If ∗ is an involution on B and 1 ∈ B, then automatically we have 1∗ = 1.
Indeed, applying the involution to the identity, 1∗ = 1 · 1∗ gives

1 = 1∗∗ = (1 · 1∗)∗ = 1∗∗ · 1∗ = 1 · 1∗ = 1∗.

For the rest of this section we let B be a Banach algebra with involution, ∗.

Definition 2.45. If a ∈ B we say;

1. a is hermitian if a = a∗.
2. a is normal if a∗a = aa∗, i.e. [a, a∗] = 0 where [a, b] := ab− ba.
3. a is unitary if a∗ = a−1.

Example 2.46. Let G be a discrete group and B = `1 (G,C) as in Proposition
2.4. We define ∗ on B so that δ∗g = δg−1 . In more detail if f =

∑
g∈G f (g) δg,

then
f∗ =

∑
g∈G

f (g)δ∗g =
∑
g∈G

f (g)δg−1 =⇒ f∗ (g) := f (g−1).

Notice that

(δgδh)
∗

= δ∗gh = δ(gh)−1 = δh−1g−1 = δh−1δg−1 = δ∗hδ
∗
g .

Using this or by direct verification one shows (f · h)
∗

= h∗ · f∗. The other
properties of ∗ – are now easily verified.

Definition 2.47 (C∗-condition). A Banach ∗ algebra B is

1. ∗ multiplicative if ‖a∗a‖ = ‖a∗‖ ‖a‖
2. ∗ isometric if ‖a∗‖ = ‖a‖

3. ∗ quadratic if ‖a∗a‖ = ‖a‖2 .
We refer to item 3. as the C∗-condition.

Lemma 2.48. Conditions 1) and 2) in Definition 2.47 are equivalent to con-
dition 3), i.e. ∗ is multiplicative & isometric iff ∗ is quadratic.

Proof. Clearly ∗ is multiplicative & isometric implies that ∗ is quadratic.
For the reverse implication; if ‖a∗a‖ = ‖a‖2 for all a ∈ B, then

‖a‖2 ≤ ‖a∗‖ ‖a‖ =⇒ ‖a‖ ≤ ‖a∗‖ .

Replacing a by a∗ in this inequality shows ‖a‖ = ‖a∗‖ and hence Thus ‖a∗a‖ =

‖a‖2 = ‖a‖ ‖a∗‖

Remark 2.49. It is fact the case that seemingly weaker condition 1. in Definition
2.47 by itself implies condition 3 but the implication 1. =⇒ 3. is quite non-
trivial. See Theorem 16.1 on page 45 of [9]. [That this result holds under the
additional assumption that B is commutative and “symmetric” is contained in
Theorem 8.14 below.] Historically condition 1. is called the C∗-condition on a
norm and condition 3. is called the B∗ – condition on a norm, see the Wikipedia1

article for information about B∗-algebras being the same as C∗-algebras.

Definition 2.50. A C∗-algebra is a ∗ quadratic algebra, i.e. B is a C∗-algebra
if B is a Banach algebra with involution ∗ such that ‖a∗a‖ = ‖a‖2 for all a ∈ B.

The next proposition gives the primary motivating examples of C∗-algebras.

Proposition 2.51. Let H be a Hilbert space and B be a ∗ – closed and operator
norm-closed sub-algebra of B (H) , where A∗ is the adjoint of A ∈ B (H) . Then
(B, ∗) is a C∗–algebra.

Proof. From the basic properties of the adjoint, B (H) , is a ∗-algebra so
the main point is to verify the C∗-condition, which we now do in two steps.

1. If k ∈ H, then

‖A∗k‖H = sup
‖h‖H=1

|〈A∗k, h〉| = sup
‖h‖H=1

|〈k,Ah〉|

≤ sup
‖h‖H=1

‖k‖H ‖Ah‖H = ‖A‖op ‖k‖H .

From this inequality it follows that ‖A∗‖op ≤ ‖A‖op . Applying this inequal-
ity with A replaced by A∗ shows ‖A‖op ≤ ‖A∗‖op and hence ‖A∗‖ = ‖A‖
which prove that ∗ is an isometry.

1 https://en.wikipedia.org/wiki/C*-algebra
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2. Given item 1., we find the inequality,

‖A∗A‖ ≤ ‖A∗‖‖A‖ = ‖A‖2.

However we also have for any x ∈ H that

‖Ax‖2 = 〈A∗Ax, x〉 ≤ ‖A∗A‖ ‖x‖2 =⇒ ‖A‖2 ≤ ‖A∗A‖.

Combining the last two displayed inequalities verifies the C∗-condition,
‖A∗A‖ = ‖A‖2.

Alternate proof. Using the Rayleigh quotient in Theorem A.26, we have
for any A ∈ B (H) ,

‖A‖2op = sup
‖f‖=1

‖Af‖2 = sup
‖f‖=1

〈Af,Af〉 = sup
‖f‖=1

〈A∗Af, f〉 = ‖A∗A‖op .

Remark 2.52. Irvine Segal’s original definition of C∗-algebra was in fact a ∗-
Closed sub-algebra of B (H) for some Hilbert space H. The letter “C ” used here
indicated that the sub-algebra was closed under the operator norm topology.
Later, the definition was abstracted to the C∗-algebra definition we have given
above. It is however a (standard) fact that by the “GNS construction,” every
abstract C∗-algebra may be “represented” by a “concrete” (i.e. sub-algebra of
B (H)) C∗-algebra. The “GNS construction” along with appropriate choices of
states shows that in fact every abstract C∗-algebra has a faithful representation
as a C∗-subalgebra in the sense of Segal, see Conway [7, Theorem 5.17, p. 253].
The B∗-terminology has fallen out of favour. [Incidentally, a von Neumann
algebra is a w.o.t. (or s.o.t.) closed ∗-subalgebra of B (H) and is often called
a W ∗ – algebra.] See the Appendix 2.5.4 to this section for some examples of
embedding commutative C∗-algebras into B (H) .

2.5.1 Examples

Here are a few more examples of C∗-algebras.

Example 2.53. If X is a compact Hausdorff space then B := C(X,C) with

‖f‖ = sup
x∈X
|f (x)| and f∗ (x) := f (x)

is a C∗-algebra with identity. If X is only locally compact, then B := C0(X,C)
is a C∗-algebra without identity. We will see that these are, up to isomorphism,
all of the commutative C∗-algebras.

Example 2.54. Let B be a C∗-subalgebra of B (H) and then set

B1 =

{(
A 0
0 A

)
: A ∈ B

}
⊂ B (H ⊕H) .

Clearly,

B 3 A→
(
A 0
0 A

)
∈ B1

is a C∗-isomorphism. This example shows that B and B1 are the same as abstract
C∗-algebras. This example shows that the C∗-algebra structure of B is not
necessarily the whole story when one cares about how B is embedded inside of
the bounded operators on a Hilbert space.

Example 2.55. If (Ω,F , µ) is a measure space then L∞ (µ) := L∞ (Ω,F , µ : C)
is a commutative complex C∗-algebra with identity. Again we let f∗ (ω) = f (ω).
The C∗-condition is

‖f∗f‖ = sup
{
M > 0 : |f |2 ≤M a.e.

}
= sup

{
M2 > 0 : |f | ≤M a.e.

}
= ‖f‖2 .

Notation 2.56 (Bounded Multiplication Operators) Given a mea-
sure space (Ω,F , µ) and a bounded measurable function q : Ω → C, let
Mq : L2(µ) → L2(µ) denote the operation of multiplication by q, i.e.
Mq : L2 (µ)→ L2(µ) is defined by Mqf = qf for all f ∈ L2 (µ) .

Definition 2.57 (Atoms). Let (Ω,F , µ) be a measure space. A set A ∈ F
is said to be an atom of µ if µ (A) > 0 and µ (A ∩B) is either µ (A) or 0
for every B ∈ F . We say A is an infinite atom if it is an atom such that
µ (A) =∞.

Theorem 2.58. Let (Ω,F , µ) be a measure space with no infinite atoms and

B = {Mf : f ∈ L∞ (µ)} =: ML∞(µ) (2.38)

which we view as a ∗-subalgebra of B
(
L2 (µ)

)
. Then B is a C∗-subalgebra of

B
(
L2 (µ)

)
and the map,

L∞ (µ) 3 f
M(·)−→Mf ∈ B (2.39)

is a C∗-isometric isomorphism. Explicitly that isometry condition means,

‖Mf‖op = ‖f‖∞ for all f ∈ L∞ (µ) . (2.40)
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Proof. Given f, g ∈ L∞ (µ) and λ ∈ C, one readily shows,

Mf +Mg = Mf+g, Mλf = λMf , MfMg = Mfg, and M∗f = Mf̄ ,

i.e. M(·) : L∞ (µ)→ B
(
L2 (µ)

)
is a ∗-algebra homomorphism. Since ‖Mfg‖2 =

‖fg‖2 ≤ ‖f‖∞ ‖g‖2 , it follows that ‖Mf‖op ≤ ‖f‖∞ with equality when

‖f‖∞ = 0. For the reverse inequality we may assume that ‖f‖∞ > 0. If
0 < k < ‖f‖∞ , then µ (|f | ≥ k) > 0 and since µ has not infinite atoms
we may find A ⊂ {|f | ≥ k} such that 0 < µ (A) < ∞. It then follows that
‖1A‖2 =

√
µ (A) ∈ (0,∞) and

‖Mf‖op ≥
‖f1A‖2
‖1A‖2

≥ k.

As this holds for all k < ‖f‖∞ we conclude that ‖Mf‖op ≥ ‖f‖∞ and so Eq.

(2.40) has been proved.
Since B is the image of M(·), M(·) is a linear isometry, and L∞ (µ) is com-

plete, it follows that B is complete and hence closed in B
(
L2 (µ)

)
. Thus B is a

C∗-subalgebra of B
(
L2 (µ)

)
and the proof is done.

Example 2.59. If T1, . . . , Tn ∈ B (H) , let A (T1, . . . , Tn) be the smallest sub-
algebra of B (H) containing {T1, . . . , Tn} , i.e. A consists of linear combination
of words in {T1, . . . , Tn} . With this notation, A (T1, . . . , Tn, T

∗
1 , . . . , T

∗
n) is the

smallest ∗ -sub-algebra of B (H) which contains {T1, . . . , Tn} . We let

C∗ (T1, . . . , Tn) := A (T1, . . . , Tn, T ∗1 , . . . , T
∗
n)
‖·‖op

be the C∗-algebra generated by {T1, . . . , Tn} .

Example 2.60. If T1, . . . , Tn ∈ B (H) are commuting self-adjoint operators, then

A (T1, . . . , Tn) := {p (T1, . . . , Tn) : p ∈ C [z1, . . . , zn] 3 p (0) = 0}

is a commutative ∗ – sub-algebra of B (H) . We also have

A (I, T1, . . . , Tn) := {p (T1, . . . , Tn) : p ∈ C [z1, . . . , zn]}

where if p (z1, . . . zn) = p0 + q (z1, . . . zn) with q (0) = 0 we let

p (T1, . . . , Tn) = p0I + q (T1, . . . , Tn) .

For most of this chapter we will mostly interested in the commutative ∗-sub-
algebra, A (I, T ) where T ∈ B (H) with T ∗ = T.

Proposition 2.61. Let (Ω,F , µ) be a measure space, B = L∞ (µ) be the C∗-
algebra of essentially bounded functions, {fj}nj=1 ⊂ B, f = (f1, . . . , fn) : Ω →
Cn, and essranµ (f) be the essential range of f (see Definition 1.32). Then

f̂ :C (essranµ (f))→ L∞ (µ) defined by f̂ (ψ) = ψ (f) for all ψ ∈ C (essranµ (f))
is an isometric C∗-isomorphism onto C∗ (f , 1) .

Proof. Let us first show that

‖ψ (f)‖∞ = ‖ψ‖C(essranµ(f)) for all ψ ∈ C (essranµ (f)) . (2.41)

It is clear that ‖ψ (f)‖∞ ≤ ‖ψ‖C(essranµ(f)) . If M < ‖ψ‖C(essranµ(f)) , then there

exists z ∈essranµ(f) so that M < |ψ (z)| and for this z, µ (‖f − z‖ < ε) > 0 for
all ε > 0. By the continuity of ψ there exists ε > 0 so that |ψ (w)| > M for
‖w − z‖ < ε and hence

µ (|ψ (f)| > M) ≥ µ (‖f − z‖ < ε) > 0

from which it follows that ‖ψ (f)‖∞ ≥ M. As M < ‖ψ‖C(essranµ(f)) was arbi-

trary, it follows that ‖ψ (f)‖∞ ≥ ‖ψ‖C(essranµ(f)) and Eq. (2.41) is proved.

Let B0 := f̂ (C (essranµ (f))) be the image of f̂ which, as f̂ is a isometric
C∗-homomorphism, is a closed ∗-subalgebra of B. To finish the proof we must
show B0 = C∗ (f , 1) .

Given ψ ∈ C (essranµ (f)) , there exists pk ∈ C [z1, . . . , zn, z̄1, . . . , z̄n] such
that

lim
n→∞

max
z∈essranµ(f)

|ψ (z)− pn (z, z̄)| = 0.

Using
p
(
f , f̄
)

:= p
(
f1, . . . , fn, f̄1, . . . , f̄n

)
∈ C∗ (f , 1) ,

along with the isometry property in Eq. (2.41), it follows that∥∥ψ (f)− pk
(
f , f̄
)∥∥
∞ = max

z∈essranµ(f)
|ψ (z)− pk (z, z̄)| → 0 as k →∞,

which implies ψ (f) ∈ C∗ (f , 1) , i.e. B0 ⊂ C∗ (f , 1) . For the opposite inclusion
simply observe that if we let ψi (z) = zi for i ∈ [n] , then fi = f̂ (ψi) ∈ B0 for
each i ∈ [n] . As B0 is a C∗-algebra we must also have that C∗ (f , 1) ⊂ B0 and
the proof is complete.

Remark 2.62. It is also easy to verify that

C∗ (f) = {ψ (f) : ψ ∈ C (essranµ (f)) 3 ψ (0, . . . , 0) = 0}

and that

{ψ ∈ C (essranµ (f)) 3 ψ (0, . . . , 0) = 0} → ψ (f1, . . . , fn) ∈ C∗ (f)

is a isomorphism of C∗-algebras.” We leave the details to the reader.
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The next result is a direct corollary of Theorem 2.58 and Proposition 2.61.

Corollary 2.63. Let (Ω,F , µ) be a measure space with no infinite atoms, B =
ML∞(µ) as in Theorem 2.58, {fj}nj=1 ⊂ L

∞ (µ) , and f = (f1, . . . , fn) : Ω → Cn.
Then the map

C (essranµ (f)) 3 ψ →Mψ(f) ∈ C∗ (Mf1 , . . . ,Mfn , 1) ⊂ B

is an isometric isomorphism of C∗-algebras.

2.5.2 Some Consequences of the C∗-condition

Let us now explore some of the consequence of the C∗-condition. The following
simple lemma turns out to be a very important consequence of the C∗-condition
which will be used in Proposition 4.3 in order to show;

‖a‖ = sup {|λ| : λ ∈ σ (a)} when a is normal.

Lemma 2.64. If B is a C∗-algebra and b is a normal element of B, then
∥∥b2∥∥ =

‖b‖2 .

Proof. This is easily proved as follows;∥∥b2∥∥2 C∗-cond.
=

∥∥∥(b2)∗ b2∥∥∥ Normal
=

∥∥∥(b∗b)
2
∥∥∥ C∗-cond.

= ‖b∗b‖2 C∗-cond.
= ‖b‖4 .

Lemma 2.65. If B is a unital C∗-algebra and u ∈ B is unitary, then ‖u‖ = 1.
Moreover, if u, v ∈ B are unitary, then ‖uav‖ = ‖a‖ for all a ∈ B.

Proof. Since 1 = u∗u, it follows by the C∗-condition that 1 = ‖1‖ =

‖u∗u‖ = ‖u‖2 from which it follows that ‖u‖ = 1. If a ∈ B, then

‖uav‖ ≤ ‖u‖ ‖a‖ ‖v‖ = ‖a‖ .

By replacing a by u∗av∗ in the above inequality we also find that ‖a‖ ≤
‖u∗av∗‖ . We may replace u by u∗ and v by v∗ in the last inequality in or-
der to show ‖a‖ ≤ ‖uav‖ which along with the previously displayed equation
completes the proof.

Example 2.66. If A ∈ B is a C∗-algebra, then using the fact that ∗ is an isometry,
it follows that

(
eA
)∗

=

∞∑
n=0

(
1

n!
An
)∗

=

∞∑
n=0

1

n!
(A∗)

n
= eA

∗
.

Thus if A∗ = A, we find(
eiA
)∗

= e−iA
∗

= e−iA =
(
eiA
)−1

,

which shows eiA is unitary. This result is generalized in the following proposi-
tion.

Proposition 2.67. Suppose that B is a C∗-algebra with identity and t →
A (t) ∈ B is continuous and A (t)

∗
= −A (t) for all t ∈ R. If u (t) is the unique

solution to
u̇ (t) = A (t)u (t) with u (0) = 1 (2.42)

then u (t) is unitary.

Proof. Let u (t, s) denote the solution to

u̇ (t, s) = A (t)u (t, s) with u (s, s) = 1

so that u (t) = u (t, 0) . From Proposition 2.33 it follows that u (t)
−1

= u (0, t)
and from Proposition 2.36 we conclude that

d

dt
u (t)

−1
=

d

dt
u (0, t) = −u (0, t)A (t) = −u (t)

−1
A (t) = u (t)

−1
A (t)

∗
.

On the other hand taking the adjoint of Eq. (2.42) shows

u̇∗ (t) = u (t)
∗
A (t)

∗
with u∗ (0) = 1.

So by uniqueness of solutions we conclude that u∗ (t) = u (t)
−1
.

Theorem 2.68 (Fuglede-Putnam Theorem, see Conway, p. 278). Let B
be a C∗-algebra with identity and M and N be normal elements in B and B ∈ B
satisfy NB = BM, then N∗B = BM∗. In particular, taking M = N implies
[N,B] = 0 implies [N∗, B] = 0. [Note well that B is not assumed to be normal
here.]

Proof. Given w ∈ C let

u (t) := etwNBe−twM .

Then u (0) = B and

u̇ (t) = wetwN [NB −BM ] e−twM = 0

and hence u (t) = B for all t, i.e. ewNBe−wM = B for all w ∈ C.
Now for z ∈ C let f : C→B be the analytic function,
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f (z) = eizN
∗
Be−izM

∗
.

Using what we have just proved and the normality assumptions2 on N and M
we have for any w ∈ C that

f (z) = eizN
∗
ewNBe−wMe−izM

∗
= e[izN∗+wN ]Be−[wM+izM∗].

We now take w = iz̄ to find,

f (z) = ei[zN
∗+z̄N ]Be−i[z̄M+zM∗]

and hence by Example 2.66 and Lemma 2.65,

‖f (z)‖ =
∥∥∥ei[zN∗+z̄N ]Be−i[z̄M+zM∗]

∥∥∥ = ‖B‖

wherein we have used both, zN∗ + z̄N and z̄M + zM∗ are Hermitian ele-
ments. By an application of Liouville’s Theorem (see Corollary 1.12) we con-
clude f (z) = f (0) = B for all z ∈ C, i.e.

eizN
∗
Be−izM

∗
= B.

Differentiating this identity at z = 0 then shows N∗B = BM∗.

Corollary 2.69. Again suppose B is a unital C∗-algebra, M ∈ B is normal and
B ∈ B is arbitrary. If [M,B] = 0, then [{M,M∗} , B] = {0} = [{M,M∗} , B∗] .

Proof. By Theorem 2.68 we know that 0 = [M∗, B] and taking adjoints of
this equation then shows 0 = − [M,B∗] . Finally by one more application of
Theorem 2.68 it follows that [M∗, B∗] = 0 as well.

Note well that under the assumption that M is normal and [M,B] = 0,
C∗ (M,B, I) will be commutative iff B is normal.

Definition 2.70. If B is a C∗-algebra and S ⊂ B is a non-empty set, we define
C∗ (S) to be the smallest C∗-subalgebra of B. [Please note that we require C∗ (S)
to be closed under A→ A∗.]

Corollary 2.71. Suppose that B is a unital C∗-algebra with identity and T :=
{Tj}nj=1 ⊂ B are commuting normal operators, then T ∪T∗ :=

{
Tj , T

∗
j

}n
j=1

is a list of pairwise commuting operators and C∗ (T, 1) is the norm closure
of all elements of B of the form p (T,T∗) where p (z1, . . . , zn, w1, . . . , wn) is a
polynomial in 2n-variables. Moreover, C∗ (T, 1) is a commutative C∗-subalgebra
of B.
2 The normality assumptions allows us to conclude e[izN

∗+wN] = eizN
∗
ewN

Remark 2.72. For the fun of it, here are two elementary proofs of Theorem 2.68
for B = B (H) when dimH <∞.

First proof. The key point here is that H = ⊕⊥λ∈CEMλ where EMλ :=
Nul (M − λI) and for u ∈ EMλ we have for v ∈ EMα that

〈M∗u, v〉 = 〈u,Mv〉 = ᾱ 〈u, v〉

from which it follows that 〈M∗u, v〉 = 0 if α 6= λ or if α = λ and u ⊥ v.
Thus we may conclude that M∗u = λ̄u for all u ∈ EMλ . With this preparation,
NBu = BMu = Bλu = λBu and therefore Bu ∈ ENλ . Therefore it follows that

N∗Bu = λ̄Bu = Bλ̄u = BM∗u.

As u ∈ EMλ was arbitrary and λ ∈ C was arbitrary it follows that N∗B = BM∗.
Second proof. A key point of M being normal is that for all λ ∈ C and

u ∈ H,

‖(M − λ)u‖2 = 〈(M − λ)u, (M − λ)u〉 =
〈
u, (M − λ)

∗
(M − λ)u

〉
=
〈
u, (M − λ) (M − λ)

∗
u
〉

=
〈
(M − λ)

∗
u, (M − λ)

∗
u
〉

=
∥∥(M − λ)

∗
u
∥∥2
.

Thus if {uj}dimH
j=1 is an orthonormal basis of eigenvectors ofM with Muj = λjuj

then M∗uj = λ̄juj . Thus if we apply NB = BM to uj we find,

NBuj = BMuj = λjBuj

and therefore as N is normal, N∗Buj = λ̄jBuj . Since M is normal we also have

N∗Buj = Bλ̄juj = BM∗uj .

As this holds for all j, we conclude that N∗B = BM∗.

2.5.3 Symmetric Condition

Definition 2.73. An involution ∗ in a Banach algebra B with unit is symmet-
ric if 1 + a∗a is invertible for all a ∈ B.

Lemma 2.74. If H is a complex Hilbert space, then B (H) , then B (H) is
symmetric. [It is in fact true that any C∗-subalgebra, B, of B (H) is symmetric
but this requires more proof than we can give at this time. See Theorem 9.4
below for the missing ingredient.]
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Proof. It clearly suffices to show B (H) is symmetric, i.e. that I + A∗A is
invertible for any A ∈ B (H) . The key point is that for any h ∈ H,

‖h‖2 ≤ ‖h‖2 + ‖Ah‖2 = 〈(I +A∗A)h, h〉 ≤ ‖(I +A∗A)h‖ ‖h‖

and hence
‖(I +A∗A)h‖ ≥ ‖h‖ . (2.43)

This inequality clearly shows Nul (I +A∗A) = {0} and that I+A∗A has closed
range, see Corollary 2.10. Therefore we conclude that

Ran (I +A∗A) = Ran (I +A∗A) = Nul (I +A∗A)
⊥

= H

and so I + A∗A is algebraically invertible and hence invertible in B (H)
by Lemma 2.9. In fact, because of Eq. (2.43) we have the estimate,∥∥∥(I +A∗A)

−1
∥∥∥
op
≤ 1.

If we have Theorem 9.4 at our disposal, then we may conclude that
(I +A∗A)

−1 ∈ C∗ (A∗A, I) ⊂ C∗ (A, I) and with this result we may assert
that theorem holds for any C∗-subalgebra, B, of B (H) .

Example 2.75. Referring to Example 2.46 with G = Z, we claim that `1 (Z)
with convolution for multiplication is an abelian ∗-Banach algebra which is not
a C∗-algebra. For example, let f := δ0 − δ1 − δ2, then

f∗f = (δ0 − δ−1 − δ−2) (δ0 − δ1 − δ2)

= δ0 − δ1 − δ2 + (−δ−1 + δ0 + δ1) + (−δ−2 + δ−1 + δ0)

= 3δ0 − δ2 − δ−2

and hence
‖f∗f‖ = 3 + 1 + 1 = 5 < 9 = 32 = ‖f‖2 .

As a consequence of Lemma 2.74 and assuming Remark 2.52, every C∗-algebra
is symmetric3 and so this example implies `1 (Z) is not a C∗-algebra. See Re-
mark 8.13 below for some more information about the symmetry condition on
a Banach algebra. See Exercise 8.2 for more on this example.

2.5.4 Appendix: Embeddings of function C∗-algebras into B (H)

The next example is a special case of the GNS construction in disguise. See
Remark 2.52 for more comments and references in this direction.

3 We will explicitly prove this fact for commutative C∗-algebras below in Lemma
8.12.

Example 2.76. Suppose that X is a compact Hausdorff space, µ is counting
measure on X, and H = L2 (X,µ) . Then

C := {Mf ∈ B (H) : f ∈ C (X) := C (X,C)} ⊂ B (H)

is a C∗-algebra. Indeed C is a ∗ – algebra since, Mf + kMg = Mf+kg, MfMg =
Mfg, and M∗f = Mf̄ for all f, g ∈ C (X) . Moreover, we have

‖Mf‖op = sup
x∈X
|f (x)| = ‖f‖u (2.44)

from which it follows that C is closed in B (H) in the operator norm. In this
case H may be a highly non-separable Hilbert space. However the above con-
struction also works for any measure no infinite atom measure, µ on BX , such
that supp (µ) = X. In particular µ is a σ-finite measure on open sets and X is
separable, then L2 (X,µ) will be separable as well.

For an explicit choice of measure, D = {xn}∞n=1 is a countable dense subset
of X, let

µ :=

∞∑
n=1

δxn

in which case supp (µ) = X and take H = Ĥ = L2 (X,BX , µ) in the above
construction. In this special case one directly checks Eq. (2.44) using,

‖Mf‖op = sup
x∈D
|f (x)| = sup

x∈X
|f (x)| = ‖f‖u ∀ f ∈ C (X) .

2.6 Exercises

Exercise 2.8. To each A ∈ A, we may define LA, RA : A → A by

LAB = AB and RAB = BA for all B ∈ A.

Show LA, RA ∈ L (A) and that

‖LA‖L(A) = ‖A‖A = ‖RA‖L(A) .

Exercise 2.9. Suppose that A : R → A is a continuous function and U, V :
R→ A are the unique solution to the linear differential equations

V̇ (t) = A (t)V (t) with V (0) = I (2.45)

and
U̇ (t) = −U (t)A (t) with U (0) = I. (2.46)
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Prove that V (t) is invertible and that V −1 (t) = U (t), where by abuse of no-

tation I am writing V −1 (t) for [V (t)]
−1
. Hints: 1) show d

dt [U (t)V (t)] = 0
(which is sufficient if dim (X) < ∞) and 2) show y (t) := V (t)U (t) solves a
linear differential ordinary differential equation that has y ≡ I as an obvious so-
lution. (The results of Exercise 2.8 may be useful here.) Then use the uniqueness
of solutions to linear O.D.E.s

Exercise 2.10. Suppose that A ∈ A and v ∈ X is an eigenvector of A with
eigenvalue λ, i.e. that Av = λv. Show etAv = etλv. Also show that if X = Rn
and A is a diagonalizable n× n matrix with

A = SDS−1 with D = diag(λ1, . . . , λn)

then etA = SetDS−1 where etD = diag(etλ1 , . . . , etλn). Here diag(λ1, . . . , λn)
denotes the diagonal matrix Λ such that Λii = λi for i = 1, 2, . . . , n.

Exercise 2.11. Suppose that A,B ∈ A let adAB = [A,B] := AB −BA. Show
etABe−tA = etadA (B) . In particular, if [A,B] = 0 then etABe−tA = B for all
t ∈ R.

Exercise 2.12. Suppose that A,B ∈ A and [A,B] := AB − BA = 0. Show
that e(A+B) = eAeB .

Exercise 2.13. Suppose A ∈ C(R,A) satisfies [A (t) , A (s)] = 0 for all s, t ∈ R.
Show

y (t) := e

(∫ t
0
A(τ)dτ

)
x

is the unique solution to ẏ (t) = A (t) y (t) with y (0) = x.

Exercise 2.14. Compute etA when

A =

(
0 1
−1 0

)
and use the result to prove the formula

cos(s+ t) = cos s cos t− sin s sin t.

Hint: Sum the series and use etAesA = e(t+s)A. Alternatively, compute
d2

dt2 e
tA = −etA and then solve this equation.

Exercise 2.15. Compute etA when

A =

 0 a b
0 0 c
0 0 0


with a, b, c ∈ R. Use your result to compute et(λI+A) where λ ∈ R and I is the
3× 3 identity matrix. Hint: Sum the series.

Exercise 2.16 (L. G̊arding’s trick I.). Prove Theorem 2.19, i.e. suppose
that Tt ∈ A for t ≥ 0 satisfies;

1. (Semi-group property.) T0 = IdX and TtTs = Tt+s for all s, t ≥ 0.
2. (Norm Continuity at 0+) t → Tt is continuous at 0, i.e. ‖Tt − I‖A → 0 as
t ↓ 0.

Then show there exists A ∈ A such that Tt = etA where etA is defined in
Eq. (2.10). Here is an outline of a possible proof based on L. G̊arding’s “trick.”

1. Using the right continuity at 0 and the semi-group property for Tt, show
there are constants M and C such that ‖Tt‖A ≤MCt for all t > 0.

2. Show t ∈ [0,∞)→ Tt ∈ A is continuous.
3. For ε > 0, let

Sε :=
1

ε

∫ ε

0

Tτdτ ∈ A.

Show Sε → I as ε ↓ 0 and conclude from this that Sε is invertible when
ε > 0 is sufficiently small. For the remainder of the proof fix such a small
ε > 0.

4. Show

TtSε =
1

ε

∫ t+ε

t

Tτdτ = SεTt

and conclude using the fundamental theorem of calculus that

d

dt
TtSε =

1

ε
[Tt+ε − Tt] for t > 0 and

d

dt
|0+TtSε := lim

t↓0

(
Tt − I
t

)
Sε =

1

ε
[Tε − I] .

5. Using the fact that Sε is invertible, conclude A = limt↓0 t
−1 (Tt − I) exists

in A and that

A =
1

ε
(Tε − I)S−1

ε

and moreover,
d

dt
Tt = ATt for t > 0.

6. Using step 5., show d
dte
−tATt = 0 for all t > 0 and therefore e−tATt =

e−0AT0 = I.

Exercise 2.17 (Duhamel’ s Principle). Suppose that A : R → A is a con-
tinuous function and V : R→ A is the unique solution to the linear differential
equation (2.45) which we repeat here;

V̇ (t) = A (t)V (t) with V (0) = I.
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Let W0 ∈ A and H ∈ C(R,A) be given. Show that the unique solution to the
differential equation:

Ẇ (t) = A (t)W (t) +H (t) with W (0) = W0 (2.47)

is given by

W (t) = V (t)W0 + V (t)

∫ t

0

V (τ)
−1
H (τ) dτ. (2.48)

Hint: compute d
dt [V

−1 (t)W (t)].





3

Spectrum of a Single Element

Convention. Henceforth all Banach algebras, B, are complex and have an
identity.

Definition 3.1. For a ∈ B;

1. The spectrumof a is

σ (a) := {λ ∈ C : a− λ is not invertible},

2. the resolvent set of a is

ρ (a) := {λ ∈ C : a− λ is invertible} = σ (a)
c
,

and
3. the spectral radius of a is

r (a) := sup{|λ| : λ ∈ σ (a)}.

We will see later in Corollary 3.41 that σ (a) 6= ∅.

Proposition 3.2. For all a ∈ B, σ (a) is compact and r (a) ≤ ‖a‖ .

Proof. Since λ ∈ C→ a−λ ∈ B is continuous and ρ (a) = {λ : a−λ ∈ Binv},
ρ (a) is open by Corollary 2.15 and hence σ (a) = ρ (a)

c
is closed. If |λ| > ‖a‖ ,

then ‖λ−1a‖ < 1 and hence

a− λ = λ
(
λ−1a− 1

)
∈ Binv.

Therefore if |λ| > ‖a‖ then λ ∈ ρ (a) from which we conclude that r (a) ≤
‖a‖ and so σ (a) is compact.

Lemma 3.3. If B is a ∗-algebra with unit then

σ (a∗) = σ (a) =
{
λ̄ : λ ∈ σ (a)

}
.

Proof. The point is that a ∈ B is invertible iff a∗ is invertible since [a∗]
−1

=(
a−1

)∗
. Thus λ ∈ ρ (a) iff a−λ1 is invertible iff a∗− λ̄1 = (a− λ1)

∗
is invertible

iff λ̄ ∈ ρ (a∗) .

Notation 3.4 If B is a Banach subalgebra of A with 1 ∈ B and a is an element
of B, then we let σA (a) and σB (a) be the spectrum of a computed in A and B
respectively.

Remark 3.5. Continuing the notation above, we always have σB (a) ⊂ σA (a)
for all a ∈ A. Indeed, if λ /∈ σA (a) , then a − λ is invertible in A and hence
also in B, i.e. λ /∈ σB (a) . See Proposition 3.14 and Theorem 3.12 to see that
σB (a)  σA (a) is possible.

Proposition 3.6. Let 1 ∈ A ⊂ B be as in Notation 3.4. Then σA (a) = σB (a)
for all a ∈ A iff A ∩ Binv = Ainv iff A ∩ Binv ⊂ Ainv. Put another way,
σA (a) = σB (a) if whenever a ∈ A is invertible in B, then a is also invertible
in A.

Proof. Suppose that σA (a) = σB (a) for all a ∈ A. Then if a ∈ A ∩ Binv,
we have a /∈ σB (a) = σA (a) , i.e. a ∈ Ainv which shows A ∩ Binv ⊂ Ainv. The
opposite inclusion is trivial.

Conversely, suppose that A∩Binv = Ainv. Because of Remark 3.5 we must
show for any a ∈ A that σA (a) ⊂ σB (a) . If λ /∈ σB (a) , then a−λ ∈ A∩Binv =
Ainv and hence λ /∈ σA (a) and the proof is complete.

3.1 Spectrum Examples

Before continuing the formal development it may be useful to consider a few
examples and some more properties of the spectrum of elements of a Banach
algebra, B.

3.1.1 Finite Dimensional Examples

Exercise 3.1. Let X be a finite set and B = CX denote the functions, f : X →
C. Clearly f is invertible in B iff 0 /∈ f (X) in which case (f)

−1
= 1

f . Show

that 1/f = p (f) for some p ∈ C [z] and hence 1/f is in the subalgebra of B
generated by f and 1. Use this to conclude that σB (f) = σA(f,1) (f) = f (X)
where A (f, 1) is the algebra generated by f and 1.
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Remark 3.7 (Be careful in infinite dimensions). An easy consequence of Exer-
cise 3.1 is that

σB (f) = σB0 (f) = f (X)

where is B0 is any unital sub-algebra of B which contains f. This result does
not necessarily extrapolate to infinite dimensional settings as demonstrated in
Proposition 3.14 below, see also Theorem 3.12 and Remark 3.13.

A similar result holds for finite dimensional matrix algebras as well. In this
case we will need to use the following Cayley Hamilton theorem.

Theorem 3.8 (Cayley Hamilton Theorem). Let B be an n×n matrix and

p (λ) := det (λI −B) =

n∑
j=0

pjλ
j

be it characteristic polynomial. Then p (B) = 0 where 0 is the zero n×n matrix.

Proof. This result is easy to understand if B has a basis {vj}nj=1 of eigen-

vectors with respective eigenvalues {λj}nj=1 . Since p (λj) = 0 for all j it follows
that

p (B) vj = p (λj) vj = 0 for all j

which implies p (B) is the zero matrix. For completeness we give a proof of the
general case below.

For the general case, let adj (M) be the classical adjoint of M which is the
transpose of the cofactor matrix. This matrix satisfies,

adj (M)M = M adj (M) = det (M) I.

Taking M = λI −B in this equation shows,

(λI −B) adj (λI −B) = p (λ) I =

n∑
j=0

pjIλ
j .

Writing out

adj (λI −B) =

n−1∑
k=0

λkCk where Ck ∈ Fn×n,

we have

n∑
j=0

pjIλ
j = (λI −B)

n−1∑
k=0

λkCk

=

n−1∑
k=0

λk+1Ck −
n−1∑
k=0

λkBCk

=

n∑
k=1

λkCk−1 −
n−1∑
k=0

λkBCk

= λnCn−1 +

n−1∑
k=1

λk [Ck−1 −BCk]−BC0.

Comparing coefficients of λj then implies,

pnI = Cn−1,

pkI = [Ck−1 −BCk] for 1 ≤ k ≤ n− 1,

p0I = −BC0

and hence

BnpnI = BnCn−1,

BkpkI = Bk [Ck−1 −BCk] for 1 ≤ k ≤ n− 1,

p0I = −BC0.

Summing these identities then shows,

p (B) = p (P ) I = BnCn−1 +

n−1∑
k=1

Bk [Ck−1 −BCk]−BC0

= BnCn−1 +

n−1∑
k=1

BkCk−1 −
n−1∑
k=1

Bk+1Ck −BC0

=

n∑
k=1

BkCk−1 −
n−1∑
k=0

Bk+1Ck = 0.

Lemma 3.9. Let B be an invertible n×n matrix, then there exists a degree n−1
polynomial, q, such that B−1 = q (B) . In other words B−1 is in the sub-algebra
of End (Cn) generated by B and I.

Proof. Let p be the characteristic polynomial of B, i.e.
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p (λ) := det (λI −B) =

n∑
j=0

ajλ
j = λr (λ) + a0

where an = 1, a0 = (−1)
n

detB, and

r (λ) :=

n∑
j=1

ajλ
j−1.

By the Cayley Hamilton Theorem, which means explicitly that

0 = p (B) = Br (B) + a0I

and so

B−1 = − 1

a0
r (B) = q (B) .

Corollary 3.10. Let n ∈ N and suppose that B is any subalgebra of B (Fn)
which contains I. (As usual F is either R or C.) Then for all S ∈ B, σB (S) =
σB(Fn) (S) is the set of eigenvalues of S.

3.1.2 Function Space and Multiplication Operator Examples

Lemma 3.11. Let B := C (X) where X is a compact Hausdorff space. Then
f ∈ Binv iff 0 /∈ Ran (f) = f (X) and in this case f−1 = 1/f ∈ C∗ (f, 1) .
Consequently, σB (f) = f (X) = σC∗(f,1) (f) .

Proof. If f ∈ Binv and g = f−1 ∈ B, then f (x) g (x) = 1 for all x ∈ X
which implies f (x) 6= 0 for all x, i.e. 0 /∈ Ran (f) . Conversely if 0 /∈ Ran (f) ,
then ε := minx∈X |f (x)| > 0 and hence 1/f ∈ B from which it follows that
f ∈ Binv. By the Weierstrass approximation theorem, there exists pn ∈ C [z, z̄]
such that pn (z, z̄)→ 1

z uniformly on ε ≤ |z| ≤ ‖f‖u and therefore

1

f
= ‖·‖∞ − lim

n→∞
pn
(
f, f̄
)

=⇒ 1

f
∈ C∗ (f, 1)

We now are going to take X = S = {z ∈ C : |z| = 1} in the next couple of
results.

Theorem 3.12. Let B = C
(
S1;C

)
and A be the Banach subalgebra (not C∗-

subalgebra) generated by u (z) = z, i.e.

A = {p (z) : p ∈ C [z]}
B
.

Then

A =

{
f ∈ B :

∫ π

−π
f
(
eiθ
)
einθdθ = 0 for all n ∈ N

}
. (3.1)

Proof. Let A0 denote the right side of Eq. (3.1). It is clear that if p (z) =∑n
k=0 pkz

k is a polynomial in z, then∫ π

−π
p
(
eiθ
)
einθdθ =

n∑
k=0

pk

∫ π

−π
eikθeinθdθ = 0 for all n ∈ N

which shows that p ∈ A0. As A0 is a closed subspace of B we may conclude
that A ⊂ A0.

To prove the reverse inclusion, suppose that f ∈ A0 and let

pk :=
1

2π

∫ π

−π
f
(
eiθ
)
e−ikθdθ for all k ∈ Z

and then, for each n ∈ N0, let

pn (z) :=
∑
|k|≤n

pkz
k =

n∑
k=0

pkz
k

wherein we have used p−k = 0 for all k ∈ N because f ∈ A. By the theory of
the Fourier series (using the Féjer kernel1) we know that

qN (z) :=
1

N + 1

N∑
n=0

pn (z)→ f (z) uniformly in z,

which shows that f ∈ A.
Alternatively: we can easily show, for any 0 < r < 1, that

∞∑
k=0

pkr
kzk = lim

N→∞

N∑
k=0

pkr
kzk

is a uniform limit and hence
∑∞
k=0 pkr

kzk ∈ A. However it is well know that

∞∑
k=0

pkr
kzk =

∞∑
k=−∞

pkr
kzk = (pr ∗ f) (z)

where pr is the Poisson kernel.2 This kernel had the property that (pr ∗ f) (z)→
f (z) as r ↑ 1, uniformly in z, for any continuous function on S1. Thus we again
find f ∈ A. Incidentally, this proof shows that every f ∈ A is the boundary
value of an analytic function in D = D (0, 1) .

1 Google Fejér kernel and find the corresponding Wikipedia site for the required
details.

2 Google Poisson kernel and find the corresponding Wikipedia site for the required
details.
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Remark 3.13. Notice that B = C
(
S1;C

)
= C∗ (u, 1) while A is “holomorphic”

subalgebra of B, i.e. is the Banach algebra generated by u.

Proposition 3.14. Continuing the notation above we have

σB (u) = S1  D̄ = σA (u) .

[See Conway [7], p.p. 205- 207 and in particular Theorem 5.4 for some related
general theory. We will come back to this example again in Example 8.18 below.]

Proof. We know that σB (u) = u
(
S1
)

= S1 by Lemma 3.11. Let us not
work out σA (u) . Since ‖u‖ ≤ 1, we know that S1 = σB (u) ⊂ σA (u) ⊂ D̄. So
to complete the proof we must show D ⊂ σA (u) .

Let λ ∈ D and

vλ := (u− λ)
−1

=
1

u− λ
∈ B.

For sake of contradiction assume that vλ ∈ A, i.e. there exists polynomials,
{pn}∞n=1 such that

pn (z)
unif.−→ vλ (z) =

1

z − λ
as n→∞.

Under this assumption we find, by basic complex analysis, that

2πi =

∮
S1

1

z − λ
dz = lim

n→∞

∮
S1

pn (z) dz = lim
n→∞

0 = 0

which is a contradiction. Thus we have shown νλ /∈ A and hence λ ∈ σA (u) .
The following definition is a special case of Definition 1.32 above.

Definition 3.15. If q ∈ L∞ (Ω,F , µ) , the essential range of q is the subset
of C defined by

essranµ (q) = {w ∈ C : µ(q−1(D(w, ε))) > 0 for all ε > 0}.

Here, as usual,
D(w, ε) = {z ∈ C : |z − w| < ε}

for all w ∈ C and ε > 0.

Lemma 3.16. Suppose that (Ω,F , µ) is a measure space and f : Ω → C is

a measurable map such that µ (f = 0) = 0 and M :=
∥∥∥ 1
f

∥∥∥
∞

< ∞. Then

µ (|f | < 1/ (2M)) = 0 and in particular 0 /∈ essranµ (f) .

Proof. If M :=
∥∥∥ 1
f

∥∥∥
∞

then for every C > M, µ
(∣∣∣ 1
f

∣∣∣ ≥ C) = 0 or equiva-

lently µ (|f | ≤ 1/C) = 0.

Theorem 3.17. Suppose that (Ω,F , µ) is a measure space and f ∈ L∞ (µ) .
Then

essranµ (f) = σL∞(µ) (f) = σC∗(f,1) (f) . (3.2)

Proof. We start with the proof of the first equality in Eq. (3.2). If λ /∈
essranµ (f) iff there exists ε > 0 so that µ ({|f − λ| < ε}) = 0. Thus if λ /∈
essranµ (f) , then µ

(∣∣∣ 1
f−λ

∣∣∣ > 1
ε

)
= 0 and hence,∥∥∥∥ 1

f − λ

∥∥∥∥
∞
≤ 1

ε
<∞

which implies (f − λ)
−1

= 1
f−λ exists in L∞ (µ) and so λ /∈ σL∞(µ) (f) .

Conversely, suppose that λ /∈ σL∞(µ) (f) so that (f − λ)
−1

= g exists in
L∞ (µ) . Then, by definition, we have g (f − λ) = 1, µ-a.e. and therefore,

1

f − λ
= g a.e. and

∥∥∥∥ 1

f − λ

∥∥∥∥
∞

= ‖g‖∞ =: M <∞.

By Lemma 3.16, we conclude that µ (|f − λ| < 1/ (2M)) = 0 and in particular
λ /∈ essranµ (f) .

As we automatically know that σL∞(µ) (f) ⊂ σC∗(f,1) (f) it suffices to show
σC∗(f,1) (f) ⊂ σL∞(µ) (f) . So suppose that λ /∈ σL∞(µ) (f) = essranµ (f) which
implies there exists ε > 0 such that µ (|f − λ| ≤ ε) = 0 and therefore,

ε ≤ |f − λ| ≤ ‖f‖∞ + |λ| =: M a.e.

Following the proof of Lemma 3.11, there exists pn ∈ C [z, w] such that

lim
n→∞

∥∥∥∥pn (f − λ, f̄ − λ̄)− 1

f − λ

∥∥∥∥
∞

= 0

from which it follows that (f − λ)
−1 ∈ C∗ (f, 1) . This shows λ /∈ σC∗(f,1) (f)

and the proof is complete.

Remark 3.18. By Theorem 7.35 or Corollary ?? below or by the spectral theo-
rem, if B is a unital commutative C∗-subalgebra of B (H) , then

σC∗(T ) (T ) = σB (T ) = σB(H) (T )

for all T ∈ B. The real content here is the statement that if T ∈ B (H) is a
normal operator which is invertible, then T−1 ∈ C∗ (I, T ) .

Theorem 3.19. Let (Ω,F , µ) be a measure space with no infinite atoms and
1 ≤ p <∞ and let
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B = {Mf ∈ Lp (µ) : f ∈ L∞ (µ)} ⊂ B (Lp (µ))

be the multiplication function subalgebra of B (Lp (µ)) . If Mf ∈ B is invertible
in B iff it is invertible in B (Lp (µ)) . [When p = 2, this is a special case of
Theorem 7.35 below.]

Proof. Suppose that T = M−1
f exists in B (Lp (µ)). Then for g ∈ Lp (µ) we

have
f · Tg = g = T [fg] a.e. (3.3)

If µ (|f | = 0) > 0, then (by the no infinite atoms assumption) we may find
A ⊂ {|f | = 0} such that 0 < µ (A) <∞. Taking g = 1A in Eq. (3.3) implies,

f · (T1A) = 1A =⇒ 1 = f · (T1A) = 0 · (T1A) = 0 µ-a.e. on A,

which is a contradiction. Thus we conclude that in fact µ (f = 0) = 0, and so
from Eq. (3.3) it follows that Tg = 1

f g a.e. and moreover,∥∥∥∥ 1

f
g

∥∥∥∥
p

= ‖Tg‖p ≤ ‖T‖op ‖g‖p for all g ∈ Lp (µ) . (3.4)

To finish the proof we need only show 1/f ∈ L∞ (µ) .
If 0 < M <∞ and µ (|1/f | ≥M) > 0, there exists A ⊂ {(|1/f | ≥M)} such

that 0 < µ (A) <∞. Then taking g = 1A in Eq. (3.4) shows,

M ‖g‖p ≤
∥∥∥∥ 1

f
g

∥∥∥∥
p

≤ ‖T‖op ‖g‖p

and hence M ≤ ‖T‖op <∞. As this is true for all M such that µ (|1/f | ≥M) >

0, we conclude that
∥∥∥ 1
f

∥∥∥
∞
≤ ‖T‖op < ∞ and so T = M−1

f = M1/f ∈ B and

the proof is complete.

Corollary 3.20. Continuing the notation in Theorem 3.19 with p = 2, we have
for every f ∈ B = L∞ (µ) that

σB(L2(µ)) (Mf ) = σB (Mf ) = σL∞(µ) (f) = σC∗(f,1) (f) = essranµ (f) .

Moreover C∗ (f, 1) and C∗ (Mf , 1) are isomorphic as C∗-algebras and therefore,

σC∗(f,1) (f) = σC∗(Mf ,1) (Mf ) = essranµ (f) .

Proof. This is a combination of Theorems 2.58, 3.17 and 3.19. The details
are left to the reader.

Example 3.21. Let q = (q1, . . . , qn) be a vector of bounded measurable functions
on some probability space (Ω,F , µ) . Let B be the C∗-algebra generated by
{1} ∪

{
Mqj

}n
j=1

. Then

C (essranµ (q)) 3 f →Mf◦q ∈ B ⊂ B
(
L2 (µ)

)
is an isometric ∗−isomorphism of Banach algebras. Therefore we conclude and
in particular

σ (Mf◦q) = f (essranµ (q)) .

3.1.3 Operators in a Banach Space Examples

For the next couple of definitions and results, let X be a complex Banach space.
Recall, by the open mapping theorem, if T ∈ B (X) is invertible then T−1 is
bounded, see Lemma 2.9 and Corollary 2.10.

Definition 3.22. Let X be a complex Banach space and T ∈ B (X) . The set,
σap (T ) ⊂ C, of approximate eigenvalues of T is defined by

σap (T ) =

{
λ ∈ C : inf

‖x‖=1
‖(T − λI)x‖ = 0

}
.

Alternatively stated; λ ∈ C is σap (T ) iff there exists {xn}∞n=1 ⊂ X with
‖xn‖X = 1 such that limn→∞ (T − λ)xn = 0. We call such a sequence {xn}∞n=1

an approximate eigensequence for T.

Proposition 3.23. If T ∈ B (X) , then σap (T ) is a closed subset of σ (T ) .

Proof. If λ /∈ σ (T ) , then (T − λI)
−1

exists as a bounded operator and

therefore with M :=
∥∥∥(T − λI)

−1
∥∥∥
op
<∞ we have,∥∥∥(T − λI)

−1
x
∥∥∥ ≤M ‖x‖ ∀ x ∈ X.

Replacing x by (T − λI)x in this equation shows,

‖(T − λI)x‖ ≥ ε ‖x‖ ∀ x ∈ X

where ε := M−1. This clearly shows λ /∈ σap (T ) and hence σap (T ) ⊂ σ (T ) .
Moreover, if λ /∈ σap (T ) , then there exists ε > 0 so that

‖(T − λI)x‖ ≥ ε ‖x‖ ∀ x ∈ X.

So if h ∈ C, then

‖(T − (λ+ h) I)x‖ = ‖(T − λ)x− hx‖ ≥ ‖(T − λ)x‖ − ‖hx‖
≥ ε ‖x‖ − |h| ‖x‖ = (ε− |h|) ‖x‖ .

Hence we conclude that if |h| < ε, then (λ+ h) /∈ σap (T ) which shows C\σap (T )
is open and hence σap (T ) is closed.
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Example 3.24. Let D := {z ∈ C : |z| < 1} and S : `2 → `2 be the shift operator,
S(ω1, ω2, . . . ) = (0, ω1, ω2, . . . ). Then

σap (S∗) = σ (S∗) = σ (S) = D̄ and σap (S) ⊂ S1 ⊂ D̄ = σ (S)

and hence it can happen that σap (S) $ σ (S) . [See Exercise 3.2 where you are
asked to show σap (S) = S1.]

Proof. It is easy to see that S is an isometry, the adjoint, S∗, of S is the
left shift operator,

S∗(ω1, ω2, . . . ) = (ω2, ω3, . . . ),

and ‖S‖op = 1 = ‖S∗‖op . Thus we conclude that σ (S) ⊂ D̄, and for any λ ∈ D,

‖(S − λ)ψ‖ = ‖Sψ − λψ‖ ≥ |‖Sψ‖ − |λ| ‖ψ‖| = (1− |λ|) ‖ψ‖ .

The latter inequality shows σap (S) ⊂ C \D.
For λ ∈ D, vλ := (1, λ, λ2, . . . ) ∈ `2 and

S∗vλ = S∗(1, λ, λ2, . . . ) = λ(1, λ, λ2, . . . ) = λvλ

which shows D ⊂ σev(S
∗) ⊂ σap (S∗) . Because σap(S

∗) is closed, D̄ ⊂
σap(S

∗) ⊂ σ (S∗) ⊂ D̄, i.e.

σap(S
∗) = σ (S∗) = D̄ = σ (S) .

Since we have already seen that σap (S) ⊂ C \ D, it follows that σap (S) ⊂
D̄ \D = S1.

Remark. We may directly show that S1 ⊂ σap (S∗) as follows. Let λ ∈ S1

and then set ωN := (1, λ, λ2, . . . λN , 0, 0, . . . ). We then have
∥∥ωN∥∥2

`2
= N + 1

while
S∗ωN − λωN = λωN−1 − λωN = −λN+1eN+1

and therefore,

(S∗ − λ)
ωN√
N + 1

= − 1√
N + 1

λN+1eN+1 → 0 as N →∞

while
∥∥ωN/√N + 1

∥∥
`2

= 1.

Exercise 3.2. Continuing then notation used in Example 3.24, show σap (S) =
S1.

Exercise 3.3. Let H = L2 ([0, 1] ,m) , g ∈ L∞ ([0, 1]) , and define T ∈ B (H)
by

(Tf) (x) =

∫ x

0

g (y) f (y) dy.

Show;

1. σ (T ) = {0},
2. σev (T ) 6= ∅ iff m {{g = 0}} > 0.
3. Show σap (T ) = {0} .

3.1.4 Spectrum of Normal Operators

Exercise 3.4. If T is a subset of H, show T⊥⊥ = span(T ) where span (T )
denotes all finite linear combinations of elements from T.

Lemma 3.25. If H and K be Hilbert spaces and A ∈ L (H,K) , then;

1. Nul(A∗) = Ran (A)
⊥
, and

2. Ran (A) = Nul(A∗)⊥,
3. If we further assume that K = H, and V ⊂ H is an A – invariant subspace

(i.e. A(V ) ⊂ V ), then V ⊥ is A∗ – invariant.

Proof. 1. We have y ∈ Nul(A∗) ⇐⇒ A∗y = 0 ⇐⇒ 〈y,Ah〉 = 〈0, h〉 = 0

for all h ∈ H ⇐⇒ y ∈ Ran (A)
⊥
.

2. By Exercise 3.4, Ran (A) = Ran (A)
⊥⊥

, and so Ran (A) = Ran (A)
⊥⊥

=
Nul(A∗)⊥.

3. Now suppose that K = H and AV ⊂ V. If y ∈ V ⊥ and x ∈ V, then

〈A∗y, x〉 = 〈y,Ax〉 = 0 for all x ∈ V =⇒ A∗y ∈ V ⊥.

For this section we always assume that H is a complex Hilbert space.

Lemma 3.26. If C ∈ B (H) and 〈Cψ,ψ〉 = 0 for all ψ ∈ H, then C = 0.

Proof. If ψ,ϕ ∈ H, then

0 = 〈C (ψ + ϕ) , ψ + ϕ〉
= 〈Cψ,ψ〉+ 〈Cϕ,ϕ〉+ 〈Cψ,ϕ〉+ 〈Cϕ,ψ〉
= 〈Cψ,ϕ〉+ 〈Cϕ,ψ〉 .

Replacing ψ by iψ in this identity also shows

0 = i [〈Cψ,ϕ〉 − 〈Cϕ,ψ〉]

which combined with the previous equation easily gives, 〈Cψ,ϕ〉 = 0. Since
ψ,ϕ ∈ H are arbitrary we must have C ≡ 0.

Lemma 3.27. If C ∈ B (H) , then;

1. C∗ = C iff 〈Cψ,ψ〉 ∈ R for all ψ ∈ H and
2. C∗ = −C iff 〈Cψ,ψ〉 ∈ iR for all ψ ∈ H.
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Proof. If C = C∗, then

〈Cψ,ψ〉 = 〈ψ,Cψ〉 = 〈C∗ψ,ψ〉 = 〈Cψ,ψ〉

which 〈Cψ,ψ〉 ∈ R. Conversely if 〈Cψ,ψ〉 ∈ R for all ψ ∈ H then

〈Cψ,ψ〉 = 〈Cψ,ψ〉 = 〈ψ,Cψ〉 = 〈C∗ψ,ψ〉

from which it follows that 〈(C − C∗)ψ,ψ〉 = 0 for all ψ ∈ H. Therefore, by
Lemma 3.26, C − C∗ = 0 which completes the proof of item 1. Item 2. follows
from item 1. since, C∗ = −C iff (iC)

∗
= iC iff 〈iCψ, ψ〉 ∈ R iff 〈Cψ,ψ〉 ∈ iR.

Definition 3.28 (Normal operators). An operator A ∈ B (H) is normal
iff [A,A∗] = 0, i.e. A∗A = AA∗.

Lemma 3.29. An operator A ∈ B (H) is normal iff

‖Aψ‖ = ‖A∗ψ‖ ∀ ψ ∈ H. (3.5)

Proof. If A is normal and ψ ∈ H, then

‖Aψ‖2 = 〈A∗Aψ,ψ〉 = 〈AA∗ψ,ψ〉 = 〈A∗ψ,A∗ψ〉 = ‖A∗ψ‖2 .

Conversely if Eq. (3.5) holds and C := [A,A∗] = AA∗ − A∗A, then the above
computation shows 〈Cψ,ψ〉 = 0 for all ψ ∈ H. Thus by Lemma 3.26, 0 = C =
[A,A∗] , i.e. A is normal.

Corollary 3.30. If A ∈ B (H) is a normal operator, then Nul (A) = Nul (A∗)
and σev (A∗) = cong (σev (A)) where for any Ω ⊂ C,

cong (Ω) =
{
λ̄ ∈ C : λ ∈ Ω

}
.

Proof. If λ ∈ C, then Nul (A− λ) = Nul
(
A∗ − λ̄

)
, i.e. Au = λu iff A∗u =

λ̄u.

Lemma 3.31. If B,C ∈ B (H) are commuting self-adjoint operators, then

‖(B + iC)ψ‖2 = ‖Bψ‖2 + ‖Cψ‖2 ∀ ψ ∈ H.

Proof. Simple manipulations show,

‖(B + iC)ψ‖2 = ‖Bψ‖2 + ‖Cψ‖2 + 2 Re 〈Bψ, iCψ〉

= ‖Bψ‖2 + ‖Cψ‖2 + 2 Im 〈CBψ,ψ〉

= ‖Bψ‖2 + ‖Cψ‖2

where the last equality follows from Lemma 3.27 because,

(CB)
∗

= B∗C∗ = BC = CB.

Remark 3.32. Here is another way to understand Lemma 3.29. If A is normal
then A = B + iC where

B =
1

2
(A+A∗) and C =

1

2i
(A−A∗)

are two commuting self-adjoint operators. Therefore by Lemma 3.31,

‖Aψ‖2 =
1

4

[
‖(A+A∗)ψ‖2 + ‖(A−A∗)ψ‖2

]
which is symmetric under the interchange of A with A∗.

Remark 3.33. Suppose that a, b are commuting elements of A, then ab ∈ Ainv
iff a, b ∈ Ainv. More generally if ai ∈ A for i = 1, 2, . . . , n are commuting
elements then

∏n
i=1 ai ∈ Ainv iff ai ∈ Ainv for all i. To prove this suppose

that c := ab ∈ Ainv, then c commutes with both a and b and hence c−1 also
commutes with a and b. Therefore 1 =

(
c−1a

)
b = b

(
c−1a

)
which shows that

b ∈ Ainv and b−1 = c−1a. Similarly one shows that a ∈ Ainv as well and
a−1 = c−1b. The more general version is easily proved in the same way or by
induction on n.

Lemma 3.34. Suppose that A ∈ B (H) is a normal operator, i.e. [A,A∗] = 0.
Then σ (A) = σap (A) and

σ (A) =
{
λ ∈ C : 0 ∈ σ

(
(A− λ)

∗
(A− λ)

)}
. (3.6)

[In other words, (A− λ) is invertible iff (A− λ)
∗

(A− λ) is invertible.]

Proof. By Proposition 3.23, σap (A) ⊂ σ (A) . If λ /∈ σap (A) , then there
exists ε > 0 so that

ε := inf
‖ψ‖=1

‖(A− λ1)ψ‖ > 0

or equivalently
‖(A− λ1)ψ‖ ≥ ε ‖ψ‖ ∀ ψ ∈ H.

As A− λI is normal we also know (see Lemma 3.29) that

‖(A− λ1)∗ψ‖ = ‖(A− λ1)ψ‖ ≥ ε ‖ψ‖ ∀ ψ ∈ H

and in particular,

Nul (A− λI) = {0} = Nul
(
(A− λI)

∗)
.

By Corollary 2.10, Ran (A− λI) is closed. Using these comments along with
Lemma 3.25 allows us to conclude,

Ran (A− λI) = Ran (A− λI) = Nul
(
(A− λI)

∗)⊥
= {0}⊥ = H
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and hence A − λI is invertible and therefore λ /∈ σ (A) . Thus we have shown
σ (A) ⊂ σap (A) and hence σap (A) = σ (A) .

We now prove Eq. (3.6). First note that because A is normal, A−λ is normal
and also A − λ is invertible iff (A− λ)

∗
is invertible. Therefore by Remark

3.33, (A− λ)
∗

(A− λ) iff both (A− λ)
∗

and (A− λ) are invertible iff A− λ is
invertible. This is the contrapositive of Eq. (3.6).

Example 3.35. Let S be the shift operator as in Example 3.24. Then S∗S = I
while SS∗ 6= I since

SS∗(ω1, ω2, ω3, . . . ) = (0, ω2, ω3, . . . ).

Thus S is not normal and by Example 3.24, σap (S) $ σ (S) . Moreover, S∗S
is invertible even though neither S nor S∗ is invertible, i.e. 0 ∈ σ (S) while
0 /∈ σ (S∗S) . This example shows that we can not drop the assumption that
[a, b] = 0 in Remark 3.33.

Lemma 3.36. If A ∈ B (H) is self-adjoint (i.e. A = A∗), then σ (A) ⊂ R. This
is generalized in Lemma 4.5.

Proof. Let λ = α+ iβ with α, β ∈ R, then

‖(A+ α+ iβ)ψ‖2 = ‖(A+ α)ψ‖2 + |β|2 ‖ψ‖2 + 2 Re 〈(A+ α)ψ, iβψ〉

= ‖(A+ α)ψ‖2 + |β|2 ‖ψ‖2 ≥ |β|2 ‖ψ‖2 (3.7)

wherein we have used Lemma 3.27 to conclude, Re 〈(A+ α)ψ, iβψ〉 = 0. [Equa-
tion (3.7) is a simply a special case of Lemma 3.31.] Equation (3.7) along with
Lemma 3.34 shows that λ /∈ σ (A) if β 6= 0, i.e. σ (A) ⊂ R.

Remark 3.37. It is not true that σ (A) ⊂ R implies A = A∗. For example, let

A =

(
0 1
0 0

)
on C2, then σ (A) = {0} yet A 6= A∗. This result is true if we

require A to be normal.

3.2 Basic Properties of σ (a)

Definition 3.38. The resolvent(operators) of a is the function,

ρ (a) 3 λ→ Rλ = (a− λ)
−1 ∈ Ainv.

Lemma 3.39 (Resolvent Identity). If a ∈ A andµ, λ ∈ ρ (a) , then

Rλ −Rµ = (λ− µ)RλRµ (3.8)

and in particular by interchanging the roles of µ and λ it follows that [Rλ, Rµ] =
0.

Proof. Apply Eq. (2.7) with b = (a− λ) and c = (a− µ) to find

Rλ −Rµ = Rλ [(a− µ)− (a− λ)]Rµ = Rλ (λ− µ)Rµ = (λ− µ)RλRµ.

Equation (3.8) is easily remembered by the following heuristic;

Rλ −Rµ =
1

a− λ
− 1

a− µ
=

(a− µ)− (a− λ)

(a− λ) (a− µ)
= (λ− µ)RλRµ.

Corollary 3.40. Let A be a complex Banach algebra with identity and let a ∈
A. Then the function, ρ (a) 3 λ → Rλ ∈ A is analytic with d

dλRλ = R2
λ and

‖Rλ‖ → 0 as λ→∞.

Proof. For h ∈ C small,

Rλ+h −Rλ = (λ+ h− λ)Rλ+hRλ = hRλ+hRλ

and therefore,

1

h
(Rλ+h −Rλ) = Rλ+hRλ → R2

λ as h→ 0

wherein we have used Corollary 2.16 in order to see that Rλ+h → Rλ as h→ 0.
Since

Rλ = (a− λ)
−1

= −λ−1
(
1− λ−1a

)−1
,

if |λ| > ‖a‖ (i.e.
∥∥λ−1a

∥∥ < 1) it follows that

‖Rλ‖ =
1

|λ|

∥∥∥(1− λ−1a
)−1
∥∥∥ ≤ 1

|λ|
1

1− ‖λ−1a‖
= O

(
1

|λ|

)
→ 0 as |λ| → ∞.

Corollary 3.41. Let A be a complex Banach algebra with unit, 1 6= 0 (as we
have assumed that ‖1‖ = 1.) Then σ (a) 6= ∅ for every a ∈ A.

Proof. If σ (a) = ∅, then Rλ = (a− λ)
−1

is analytic on all of C and moreover

‖Rλ‖ = O
(

1
|λ|

)
as λ → ∞. Therefore by Liouville’s theorem (Corollary 1.12),

Rλ is constant and in fact must be 0 by letting λ→∞. Therefore

1 = Rλ (a− λ) = 0 (a− λ) = 0

which is a contradiction and therefore σ (a) 6= ∅.
Remark, if we only want to use the classical Liouville’s theorem, just apply

it to λ → ξ (Rλ) for all ξ ∈ A∗ to find ξ (Rλ) = ξ (R0) . As this holds for all
ξ ∈ A∗ it follows again that Rλ = R0.
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Theorem 3.42 (Spectral Mapping Theorem). If p : C→ C is a polynomial
and a ∈ A then p(σ (a)) = σ(p (a)).

Proof. Let p be a non-constant polynomial (otherwise there is nothing to
prove) and let µ ∈ C be given. Then factor p (λ)− µ as

p (λ)− µ = α (λ− λ1) · · · (λ− λn)

where α ∈ C× and {λi}ni=1 ⊂ C are the solutions (with multiplicity) to p (λ) =
µ. Since

p (a)− µ = α (a− λ1) · · · (a− λn)

we may conclude using Remark 3.33 that µ ∈ σ (p (a)) iff λi ∈ σ (a) for some i,
i.e. iff µ = p (λ) for some λ ∈ σ (a) , i.e. iff µ ∈ p (σ (a)) .

Corollary 3.43. If p ∈ C [z] and a ∈ A, then

r (p (a)) = sup
λ∈σ(a)

|p (λ)| = ‖p‖∞,σ(a) (3.9)

and in particular, r(an) = r (a)
n

for all n ∈ N.

Proof. Using Theorem 3.42 and the definition of r,

r(p (a)) = sup{|z| : z ∈ σ(p (a))} = sup{|p (λ)| : λ ∈ σ (a)}

which proves Eq. (3.9). Taking p (z) = zn in this equation shows,

r (an) = sup {|λ|n : λ ∈ σ (a)} = [sup {|λ| : λ ∈ σ (a)}]n = r (a)
n
.

Corollary 3.44. The function, λ → (1− λa)
−1
, is analytic on |λ| < 1/r (a)

and moreover admits the power series representation,

(1− λa)
−1

=

∞∑
n=0

λnan (3.10)

which is valid for |λ| < 1/r (a) .

Proof. If |λ| ‖a‖ = ‖λa‖ < 1, we know that Eq. (3.10) is valid and hence

(1− λa)
−1

is analytic near 0 as well, see Remark 1.11. [Alternatively we may
compute by the chain rule that

d

dλ
(1− λa)

−1
= (1− λa)

−1
a (1− λa)

−1
.]

For λ 6= 0,

(1− λa)
−1

= λ−1

(
1

λ
− a
)−1

= λ−1Rλ−1

which is valid provided 1/λ ∈ ρ (a) which will hold if 1
|λ| > r (a) , i.e. if 0 < |λ| <

1/r (a) . So we have shown (1− λa)
−1

is analytic near 0 and also, by Corollary

3.40, for 0 < |λ| < 1/r (a) . Thus it follows that (1− λa)
−1

is analytic on for
|λ| < 1/r (a) and hence by Theorem 1.10, the expansion in Eq. (3.10) is valid
for |λ| < 1/r (a) .

Corollary 3.45. The spectral radius r (a) may be computed by taking the fol-
lowing limit,

r (a) = lim
n→∞

‖an‖1/n .

Proof. By Corollary 3.43,

r (a)
n

= r(an) ≤ ‖an‖ =⇒ r (a) ≤ ‖an‖1/n .

Passing to the limit as n→∞ in this inequality shows

r (a) ≤ lim inf
n→∞

‖an‖1/n . (3.11)

For the opposite we conclude from Eq. (3.10) that limn→∞ ‖(λa)
n‖ = 0

when |λ| < 1/r (a) . This assertion then implies,

|λ| lim sup
n→∞

‖an‖1/n = lim sup
n→∞

‖(λa)
n‖1/n ≤ 1 ∀ |λ| < 1/r (a)

and hence lim supn→∞ ‖an‖
1/n ≤ r (a) which along with Eq. (3.11) completes

the proof.

Exercise 3.5 (Compare with Proposition 8.3). Let B be a complex Banach
algebra with unit, then for any a, b ∈ B which commute, show;

1. r (ab) ≤ r (a) r (b) and
2. r (a+ b) ≤ r (a) + r (b) .

Proposition 3.46 (Optional). If a ∈ A and λ ∈ ρ (a) , then∥∥∥(a− λ)
−1
∥∥∥ ≥ r ((a− λ)

−1
)
≥ 1

dist (λ, σ (a))
.
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Proof. If λ ∈ ρ (a) and β ∈ C, then

(a− (λ+ β)) = (a− λ)− β = (a− λ)
[
I − β (a− λ)

−1
]

is invertible if
∞∑
n=1

∥∥∥[β (a− λ)
−1
]n∥∥∥ <∞.

The latter condition is implied by requiring lim supn→∞

∥∥∥[β (a− λ)
−1
]n∥∥∥1/n

<

1, i.e.

|β| lim sup
n→∞

∥∥∥[(a− λ)
−1
]n∥∥∥1/n

< 1

⇐⇒ |β| < lim sup
n→∞

∥∥∥[(a− λ)
−1
]n∥∥∥−1/n

=
1

r
(

(a− λ)
−1
)

and hence

dist (λ, σ (a)) ≥ 1

r
(

(a− λ)
−1
) ⇐⇒ r

(
(a− λ)

−1
)
≥ 1

dist (λ, σ (a))
.



4

Holomorphic and Continuous Functional Calculus

In this chapter we wish to consider two methods for defining functions of a
given element of a Banach algebra, B. The first method allows us to define f (a)
for almost any a ∈ B provided that f is analytic on an open neighborhood of
the spectrum of a. Later we will specialize to the case where B is a C∗-algebra
and a ∈ B is Hermitian. In this case we will make sense of f (a) for any bounded
measurable function, f : σ (a)→ C.

4.1 Holomorphic (Riesz) Functional Calculus

The material in this section was probably taken from M. Taylor [49, pages
576-578]. Let B be a unital Banach algebra and a ∈ B. Suppose that σ (a) is a
disjoint union of sets {Σk}nk=1 which are surrounded by contours {Ck}nk=1 and
Ω is an open subset of C which contains the contours and their interiors, see
Figure 4.1.

C1

C2

C3

Σ1 Σ2

Σ3

C̃1

Fig. 4.1. The spectrum of a is in red, the counter clockwise contours are in black,
and Ω is the union of the grey sets.

Given a holomorphic function, f, on Ω we let

f (a) :=
1

2πi

∮
C

f (z)

z − a
dz :=

n∑
k=1

1

2πi

∮
Ck

f (z)

z − a
dz,

where 1
z−a := (z − a)

−1
and C = ∪nk=1Ck.

Let us observe that f (a) is independent of the possible choices of contours
C as described above. One way to prove this is to choose ` ∈ B (X)

∗
and notice

that

` (f (a)) =
1

2πi

∮
C

f (z) `
(

(z − a)
−1
)
dz

where f (z) `
(

(z − a)
−1
)

is a holomorphic function on Ω \ σ (a) . Therefore

1
2πi

∮
C
f (z) `

(
(z − a)

−1
)
dz remains constant over deformations of C which

remain in Ω \ σ (a) . As ` is arbitrary it follows that 1
2πi

∮
C
f(z)
z−adz remains

constant over such deformations as well.

Theorem 4.1. The map H (Ω) 3 f → f (a) ∈ B is an algebra homomorphism

satisfying the consistency criteria; if f (z) =
∑N
m=0 cmz

m is a polynomial then

f (a) =

N∑
m=0

cma
m.

More generally, ρ > 0 is chosen so that r (a) < ρ and f ∈ H (D (0, ρ)) , then

f (a) =

∞∑
m=0

fm (0)

m!
am. (4.1)

Proof. It is clear that H (Ω) 3 f → f (a) ∈ B is linear in f. Now suppose
that f, g ∈ H (Ω) and for each k let C̃k be another contour around Σk which is
inside Ck for each k. Then

f (a) g (a) =

(
1

2πi

)2 n∑
k,l=1

∮
Ck

f (z)

z − a
dz

∮
C̃l

g (ζ)

ζ − a
dζ

=

(
1

2πi

)2 n∑
k,l=1

∮
Ck

dz

∮
C̃l

dζ
f (z)

z − a
g (ζ)

ζ − a
.

=:

(
1

2πi

)2 n∑
k,l=1

Akl
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Using the resolvent formula,

1

z − a
− 1

ζ − a
=

ζ − z
(z − a) (ζ − a)

,

we find (using Fubini-Tonelli) that

Akl :=

∮
Ck

dz

∮
C̃l

dζ
f (z)

z − a
g (ζ)

ζ − a

=

∮
Ck

dz

∮
C̃l

dζf (z) g (ζ)
1

ζ − z

(
1

z − a
− 1

ζ − a

)
=

∮
Ck

dz
f (z)

z − a

∮
C̃l

dζ
g (ζ)

ζ − z

−
∮
C̃l

dζ
g (ζ)

ζ − a

∮
Ck

dz
f (z)

ζ − z
. (4.2)

For z ∈ Ck, ζ → g (ζ) 1
ζ−z is analytic for ζ inside C̃l no matter the l and

therefore, ∮
C̃l

dζg (ζ)
1

ζ − z
= 0 (4.3)

and Eq. (4.2) simplifies to

Akl = −
∮
C̃l

dζ
g (ζ)

ζ − a

∮
Ck

dz
f (z)

ζ − z
.

If k 6= l, we still have z → f(z)
ζ−z is analytic inside of Ck and for each ζ ∈ C̃l and

so ∮
Ck

dz
f (z)

ζ − z
= 0

which implies Akl = 0. On the other hand when k = l∮
Ck

dz
f (z)

ζ − z
= −2πif (ζ) for all ζ ∈ C̃k.

Hence we have shown,

Ak,k = 2πi ·
∮
C̃l

dζ
g (ζ) f (ζ)

ζ − a

and therefore,

f (a) g (a) =

(
1

2πi

)2 n∑
k=1

Ak,k

=

n∑
k=1

1

2πi

∮
C̃l

dζ
g (ζ) f (ζ)

ζ − a
= (f · g) (a)

which shows that a→ f (a) is an algebra homomorphism.
If f ∈ H (D (0, ρ)) , then for every 0 < r < ρ, there exists C (r) < ∞ such

that
∣∣∣ fm(0)

m!

∣∣∣ rm ≤ C (r) . Therefore choosing r (a) < r < ρ, we have∥∥∥∥fm (0)

m!
am
∥∥∥∥ ≤ C (r)

‖am‖
rm

and hence

lim sup
m→∞

∥∥∥∥fm (0)

m!
am
∥∥∥∥1/m

≤ lim sup
m→∞

[
C (r)

1/m

(
‖am‖
rm

)1/m
]

= r (a) /r < 1.

It now follows by the root test that the sum in Eq. (4.1) is absolutely convergent.
[Technically we could skip this convergence argument but it is nice to verify
directly that the sum is convergent.]

We now verify the equality in Eq. (4.1). Suppose that f ∈ H (D (0, ρ)) where
ρ > r (a) . From Corollary 3.44, we know that

1

1− λa
=

∞∑
n=0

λnan is convergent for |λ| < 1

r (a)

and therefore

1

z − a
=

1

z

1

1− a/z
=

1

z

∞∑
n=0

(a
z

)n
=

∞∑
n=0

anz−(n+1) for |z| > r (a) .

Let r ∈ (r (a) , ρ) as above and let C be the contour, z = reiθ with −π ≤ θ ≤ π.
Then

f (a) =
1

2πi

∮
C

f (z)

z − a
dz =

1

2πi

∮
C

∞∑
n=0

anz−(n+1)f (z) dz =

∞∑
n=0

cna
n

where, by the residue theorem or by differentiating the Cauchy integral formula,

cn =
1

2πi

∮
C

z−(n+1)f (z) dz =
f (n) (0)

n!
.

Theorem 4.2 (Spectral Mapping Theorem). Keeping the same notation
as above, f (σ (a)) = σ (f (a)) .

Proof. Suppose that µ ∈ σ (a) and define
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g (z) :=

{
f(z)−f(µ)

z−µ if z 6= µ

f ′ (µ) if z = µ

so that g ∈ H (U) and f (z) − f (µ) = (z − µ) g (z) . Therefore f (a) − f (µ) =
(a− µ) g (a) and so if f (µ) /∈ σ (f (a)) then f (a) − f (µ) is invertible and
therefore a − µ would be invertible contradicting µ ∈ σ (a) . Thus we have
shown f (σ (a)) ⊂ σ (f (a)) . Conversely if α /∈ f (σ (a)) then g (z) := 1

f(z)−α
is holomorphic on a neighborhood of σ (a) . Since (f (z)− α) g (z) = 1 it fol-
lows that (f (a)− α) g (a) = I and therefore α /∈ σ (f (a)) and we have shown
[f (σ (a))]

c ⊂ [σ (f (a))]
c
, i.e. σ (f (a)) ⊂ σ (f (a)) .

Exercise 4.1. Continue the notation used in Theorem 4.1 but now assume that
B is a C∗-algebra or is at least equipped with a continuous involution, ∗. Show
f (a)

∗
= f∗ (a∗) where where f∗ (z) := f (z̄) is holomorphic on

cong (Ω) =
{
λ̄ ∈ C : λ ∈ Ω

}
.

Recall that σ (a∗) = cong (σ (a)) =
{
λ̄ ∈ C : λ ∈ σ (a)

}
⊂ cong (Ω) so that g is

holomorphic on a neighborhood of σ (a∗) .

See the Section ?? (yet to be written) on perturbation theory for appli-
cations of this formalism.

4.2 Hermitian Continuous Functional Calculus

For the remainder of this chapter let B be a unital C∗-algebra.

Proposition 4.3. If B is a C∗-algebra with unit, then r (a) = ‖a‖ whenever
a ∈ B is normal, i.e. [a, a∗] = 0. [We will give another proof of this result in
Lemmas ?? and 8.11 below that r (a) = ‖a‖ when a is any normal element of
B. ]

Proof. We start by showing, for a ∈ B which is normal and n ∈ N, that∥∥∥a2n
∥∥∥ = ‖a‖2

n

. (4.4)

We will prove Eq. (4.4) by induction on n ∈ N. By Lemma 2.64, we know

that
∥∥b2∥∥ = ‖b‖2 whenever b ∈ B is normal. Taking b = a gives Eq. (4.4) for

n = 1 and then applying the identity with b = a2n while using the induction
hypothesis shows,∥∥∥a2n+1

∥∥∥ =
∥∥∥a2n

∥∥∥2

=
(
‖a‖2

n
)2

= ‖a‖2
n+1

for n ∈ N.

The statement that r (a) = ‖a‖ now follows from Eq. (4.4) and Corollary
3.45 which allows us to compute r (a) as

r (a) = lim
n→∞

∥∥∥a2n
∥∥∥1/2n

= lim
n→∞

‖a‖ = ‖a‖ .

Example 4.4. Let N be an n × n complex matrix such that Nij = 0 if i ≤ j,
i.e. N is upper triangular with zeros along the diagonal. Then σ (N) = {0}
while ‖N‖ 6= 0. Thus r (N) = 0 < ‖N‖ . On the other hand, Nn = 0 so

limn→∞ ‖Nn‖1/n = 0 = r (N) .

Lemma 4.5 (Reality). Let B be a unital C∗-algebra. If a ∈ B is Hermitian,
then σ (a) ⊂ R. [This generalizes Lemma 3.36 above. Also see Lemma 8.12
below for related results.]

Proof. We must show a − λ ∈ Binv whenever Imλ 6= 0. We first consider
λ = i. For sake of contradiction, suppose that i ∈ σ (a) .Then by the spectral
mapping Theorem 3.421 with p (z) = λ− iz implies

λ+ 1 = p (i) ∈ σ (p (a)) = σ (λ− ia) for all λ ∈ R.

Therefore using the fact that r (x) ≤ ‖x‖ for all x ∈ B along with the C∗-identity
shows,

(λ+ 1)
2 ≤ [r (λ− ia)]

2 ≤ ‖λ− ia‖2

wherein

‖λ− ia‖2 C∗-cond
=

∥∥(λ− ia)
∗

(λ− ia)
∥∥ = ‖(λ+ ia) (λ− ia)‖

=
∥∥λ2 + a2

∥∥ ≤ λ2 +
∥∥a2
∥∥ C∗-cond

= λ2 + ‖a‖2 .

Combining the last two displayed equation leads to the nonsensical inequality,
2λ + 1 ≤ ‖a‖2 for all λ ∈ R, and we have arrived at the desired contradiction
and hence i /∈ σ (a) .

For general λ = x+ iy with y 6= 0, we have then

a− λ = a− x− iy = y
[
y−1 (a− x)− i

]
which is invertible by step 1. with a replaced by y−1 (a− x) which shows λ /∈
σ (a) . As this was valid for all λ with Imλ 6= 0, we have shown σ (a) ⊂ R.
1 More directly,

λ+ 1− (λ− ia) = 1 + ia = i (a− i)
is not invertible by assumption and hence λ+ 1 ∈ (λ− ia) .
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Corollary 4.6. If a ∈ B is a Hermitian element of a unital C∗-algebra, then

‖p (a)‖ = sup
x∈σ(a)

|p (x)| ∀ p ∈ C [x] .

Proof. Since p (a) is normal, it follows that ‖p (a)‖ = r (p (a)) which by the
spectral mapping theorem may be computed as,

r (p (a)) = max
λ∈σ(p(a))

|λ| = max
λ∈σ(a)

|p (x)| .

Theorem 4.7 (Continuous Functional Calculus). If a ∈ B is a Hermi-
tian element of a unital C∗-algebra, then there exists a unique C∗-algebra iso-
morphism, ϕa : C (σ (a)) → C∗ (a, 1) such that ϕa (x) = a or equivalently,
ϕa (p) = p (a) for all p ∈ C [x] . [We usually write ϕa (f) as f (a) .] Let us note
that for general f ∈ C (σ (a) ;C) ,

f (a) = ϕa (f) = lim
n→∞

pn (a)

where{pn}∞n=1 ⊂ C [x] are any sequence of polynomials such that pn|σ(a) → f
uniformly on σ (a) . Moreover,2

σC∗(a,1) (ϕa (f)) = f (σ (a)) .

Proof. By the classical Stone–Weierstrass theorem,
{
p|σ(a) : p ∈ C [x]

}
is

dense in C (σ (a)) and so because of Corollary 4.6, there exists a unique lin-
ear map, ϕa : C (σ (a)) → C∗ (a, 1) , such that ϕa (p) = p (a) for all p ∈ C [x]
and ‖ϕa (f)‖ = ‖f‖`∞(σ(a)) . It is now easily verified that ϕa is a homomor-
phism with dense closed range and hence ϕa is an isomorphism. Moreover,
using p (a)

∗
= p̄ (a) we easily conclude by a simple limiting argument that

ϕa
(
f̄
)

= ϕa (f)
∗
. For the last assertion, as ϕa is a ∗-homomorphism, it follows

that
σC∗(a,1) (ϕa (f)) = σC(σ(a)) (f) = f (σ (a)) .

Corollary 4.8 (Square Roots). If a ∈ B is a Hermitian element of a unital
C∗-algebra and σ (a) ⊂ [0,∞), then there exists a Hermitian element b ∈ B such
that σ (b) ⊂ [0,∞) and a = b2. Moreover, if c ∈ B is Hermitian and c2 = a,
then b = |c| . [See Corollary 9.10 for the polar decomposition.]

2 We will see later that in Corollary 7.34 below that σB (f (a)) = σC∗(a,1) (f (a)) and
therefore we also have σB (f (a)) = f (σ (a)) .

Proof. For existence let b =
√
a := ϕa

(√
·
)
. Now suppose that c ∈ B is

Hermitian and c2 = a. Then a ∈ C∗ (c, 1) and c itself has its own associated
functional calculus. Choose polynomials, pn, so that pn →

√
· uniformly on

σ (a) = σ (c)
2
. If we let qn (x) = pn

(
x2
)
, then

max
t∈σ(c)

|qn (t)− |t|| = max
t∈σ(c)

∣∣∣pn (t2)−√t2∣∣∣ = max
x∈σ(c)2

∣∣pn (x)−
√
x
∣∣

= max
x∈σ(c2)

∣∣pn (x)−
√
x
∣∣ = max

x∈σ(a)

∣∣pn (x)−
√
x
∣∣→ 0 as n→∞,

i.e. qn (x)→ |x| uniformly on σ (c) . Thus we may conclude,

b =
√
a = lim

n→∞
pn (a) = lim

n→∞
pn
(
c2
)

= lim
n→∞

qn (c) = |c| .

If we further assume that σ (c) ⊂ [0,∞) we will know that |x| = x on σ (c) and
hence b = |c| = c and the uniqueness or b is proved.

For the rest of this chapter we will explore the ramifications of having a C∗-
algebra isomorphism of the form in Theorem 4.7. We will work more generally
at this stage so that the results derived here will be applicable later when we
have more general forms of Theorem 4.7 at our disposal.

4.3 Cyclic Vector and Subspace Decompositions

The first point we need to deal with is that understanding the structure of a C∗-
subalgebra (B) of B (H) does not fully describe how B is embedded in B (H) .
To understand the embedding problem we need to introduce the notation of
cyclic vector and cyclic subspaces of H.

Definition 4.9 (Cyclic vectors). If A is a sub-algebra of B (H) a vector x
in H is called a cyclicvector for A if Ax ≡ {Ax : A ∈ A} is dense in H. We
further say that an A – invariant subspace, M ⊂ H, is an A – cyclic subspace
of H if there exists x ∈M such that Ax := {Ax : A ∈ A} is dense in M.

Lemma 4.10. If A is a ∗ – sub-algebra of B (H) and M ⊂ H is an A –
invariant subspace, then M̄ and M⊥ are A – invariant subspaces.

Proof. If m ∈M and m⊥ ∈M⊥, then〈
Am⊥,m

〉
=
〈
m⊥, A∗m

〉
= 0

for all A ∈ A as A∗ ∈ A (A is a ∗ – subalgebra). In other words,
〈
AM⊥,M

〉
=

{0} and hence AM⊥ ⊂ M⊥. The assertion that M̄ is also A-invariant follows
by a simple continuity argument.
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Theorem 4.11. Let H be a separable Hilbert space and A be a unital ∗ – sub-
algebra of B (H) with identity. Then H may be decomposed into an orthogonal
direct sum, H = ⊕Nn=1Hn (N = ∞ possible) such that Hn is a cyclic subspace
of A. [This cyclic decomposition is typically highly non-unique.]

Proof. Let {ek}∞k=1 be an orthonormal basis for H and let

v1 := e1 and H1 := Av1.

Then let k2 = min {k ∈ N : ek /∈ H1} and let

v2 := PH⊥1 ek2 and H2 := Av2 ⊂ H⊥1 .

Now let k3 := min min {k ∈ N : ek /∈ H1 ⊕H2} and let

v3 := P[H1⊕H2]⊥ek3 and H3 := Av3

and continue this way inductively forever or until {ek}∞k=1 ⊂ HN for some
N <∞.

Exercise 4.2. Show (using Zorn’s lemma say) that Theorem 4.11 holds with-
out the assumption that H is separable. In this case the second item should
be replaced by the statement that there exists an index set I and {vα}α∈I a

collection of non-zero vectors such that H =
⊥
⊕α∈IHα (orthogonal direct sum)

where Hα := Hvα = Avα
H
.

Before leaving this topic let us explore the meaning of cyclic vectors by
looking at the finite dimensional case.

Proposition 4.12. Let T be a n×n-diagonal matrix, T = diag (λ1, . . . , λn) for
some λi ∈ C and set σ (T ) := {λ1, . . . , λn} . If u ∈ Cn is expressed as

u =
∑

λ∈σ(T )

eλ (4.5)

where eλ ∈ Nul (T − λI) for each λ ∈ σ (T ) , then

{p (T )u : p ∈ C [z]} = span {eλ : λ ∈ σ (T )} .

In particular, there is a cyclic vector for T iff # (σ (T )) = n, i.e. all eigenvalues
of T have multiplicity 1. In this case, one may take u =

∑
λ∈σ(T ) eλ where

eλ ∈ Nul (T − λI) \ {0} for all λ ∈ σ (T ) . [Moral, the existence of a cyclic
vector is equivalent to T having no repeated eigenvalues.]

Proof. If u is as in Eq. (4.5) and p ∈ C [z] , then

p (T )u =
∑

λ∈σ(T )

p (T ) eλ =
∑

λ∈σ(T )

p (λ) eλ.

As usual, given λ0 ∈ σ (T ) , we may choose p ∈ C [z] such that p (λ) = δλ0,λ for
all λ ∈ σ (T ) . For this p we have p (T )u = eλ0

and hence we learn

{p (T )u : p ∈ C [z]} = span {eλ : λ ∈ σ (T )} .

From this relation we see that maximum possible dimension of
{p (T )u : p ∈ C [z]} is # (σ (T )) which is equal to n iff # (σ (T )) = n.

4.4 The Diagonalization Strategy

Definition 4.13 (Radon measure). If Y is a locally compact Hausdorff
space, let FY = σ ({open sets}) be the Borel σ-algebra on Y. A measure µ on
(Y,FY ) is a Radon measure if it µ (K) < ∞ when K is compact at it is a
regular Borel measure, i.e.

1. µ is outer regular on Borel sets, i.e. if A ∈ FY , then

µ (A) = inf {µ (V ) : A ⊂ V ⊂o Y } , and

2. it is inner regular on open sets, i.e. if V ⊂o Y, then

µ (V ) = sup {µ (K) : K ⊂ V with K compact} .

Proposition 4.14. Suppose that Y is a compact Hausdorff space, H is a Hilbert
space, B is a commutative unital C∗-subalgebra of B (H) , and ϕ : C (Y )→ B is
a given C∗-isomorphism of C∗-algebras. [This is in fact can always be arranged,
see Theorem 8.14 below.] Then for each v ∈ H \{0} , there exists a unique finite
radon measure, µv, on (Y,FY ) such that

〈ϕ (f) v, v〉 =

∫
Y

fdµv ∀ f ∈ C (Y ) . (4.6)

Proof. For f ∈ C (Y ) , let Λ (f) := 〈ϕ (f) v, v〉 which is a linear functional
on C (Y ) . Moreover if f ≥ 0, then g =

√
f ∈ C (Y ) and hence

Λ (f) = Λ
(
g2
)

=
〈
ϕ
(
g2
)
v, v
〉

= 〈ϕ (g)ϕ (g) v, v〉

=
〈
ϕ (g) v, ϕ (g)

∗
v
〉

= 〈ϕ (g) v, ϕ (ḡ) v〉 = ‖ϕ (g) v‖2 ≥ 0.
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Thus Λ is a positive linear functional on C (Y ) and hence by the Riesz-Markov
theorem there exists a unique (necessarily finite) Radon measure, µv, on (Y,FY )
such that

〈ϕ (f) v, v〉 = Λ (f) =

∫
Y

fdµv ∀ f ∈ C (Y ) .

Proposition 4.15. Continue the notation and assumptions in Proposition 4.14
and for each v ∈ H \ {0} , let

Hv := BvH ⊂ H. (4.7)

Then there exists a unique unitary isomorphism, Uv : L2 (µv) → Hv which is
uniquely determined by requiring

Uvf = ϕ (f) v ∈ Hv for all f ∈ C (Y ) . (4.8)

Moreover, this unitary map satisfies,

U∗vϕ (f) |HvUv = Mf on L2 (µv) ∀ f ∈ C (Y ) . (4.9)

Proof. Since

‖Uvf‖2 = 〈ϕ (f) v, ϕ (f) v〉 =
〈
ϕ (f)

∗
ϕ (f) v, v

〉
=
〈
ϕ
(
f̄
)
ϕ (f) v, v

〉
=
〈
ϕ
(
|f |2

)
v, v
〉

=

∫
Y

|f |2 dµv = ‖f‖2 ,

and C (Y ) is dense in L2 (µv) , it follows that Uv extends uniquely to an isometry
from L2 (µv) to Hv. Clearly Uv has dense range and the range is closed since
Uv is isometric, therefore Ran (Uv) = Hv and hence Uv is unitary.

Let us further note that for f, g ∈ C (Y ) ,

U∗vϕ (f)Uvg = U∗vϕ (f)ϕ (g) v = U∗vϕ (fg) v = fg = Mfg. (4.10)

If g ∈ L2 (µv) , we may choose {gn} ⊂ C (Y ) so that gn → g in L2 (µv) . So
by replacing g by gn in Eq. (4.10) and then passing to the limit as n → ∞ we
conclude It then follows that

U∗vϕ (f)Uvg = fg = Mfg ∀ g ∈ L2 (µ)

which proves Eq. (4.9).

Theorem 4.16. Continue the notation and assumptions in Proposition 4.14.
Then there exist N ∈ N∪{∞} , a probability measure µ measure on

Ω := ΛN × Y =
∑
j∈ΛN

Yj where Yj = {j} × Y

equipped with the product σ – algebra (here ΛN = {1, 2, . . . , N} ∩ N), and a
unitary map U : L2 (µ)→ H such that

U∗ϕ (f)U = Mf◦π on L2 (µ) (4.11)

where π : Ω → Y is defined by π (j, w) = w for all j ∈ ΛN and w ∈ Y, see
Figure 4.2.

Y

Y1

Y2

Y3

π

µ1

µ2

µ3

Fig. 4.2. Making disjoint copies of Y to take care of multiplicities.

Proof. By Theorem 4.11, there exists an N ∈ N∪{∞} so that we may
decompose H into an orthogonal direct sum, ⊕i∈ΛNHi, of cyclic subspaces for
B. Choose a cyclic vector, vi ∈ Hi, for all i ∈ Λ := ΛN and normalize the
{vi}i∈Λ so that ∑

i∈Λ
‖vi‖2 = 1.

Let µi = µvi be the measure in Proposition 4.14 and let Ω := Λ× Y which we
equip with the product σ – algebra, F , and the probability measure µ defined as
follows. Every G ∈ F may be written (see Remark 4.17 below) may be uniquely
written as

G =
∑
i∈Λ
{i} ×Gi for some {Gi}i∈Λ ⊂ FY

and if we let
µ (G) :=

∑
i∈Λ

µi (Gi) ,

then µ is a measure on F . For this measure,∫
Ω

gdµ =
∑
i∈Λ

∫
Ω

g1{i}×Y dµ =
∑
i∈Λ

∫
Ω

g (i, ·) dµi

From which it easily follows that the map,
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L2 (Ω,µ) 3 g → {g (i, ·)}i∈Λ ∈ ⊕i∈ΛL
2 (Y, µi)

is a unitary. For g ∈ L2 (Ω,µ) we define,

Ug =
∑
i∈Λ

Uvig (i, ·) ∈ ⊕i∈ΛHi = H,

where Uvi is the unitary map in Proposition 4.15. Since

‖Ug‖2H =
∑
i∈Λ
‖Uvig (i, ·)‖2Hi =

∑
i∈Λ

∫
Y

|g (i, w)|2 dµi (w) =

∫
Ω

|g|2 dµ,

U is an isometry and since U has dense range it is in fact unitary. Lastly if
f ∈ C (Y ) and g ∈ L2 (µ) , we have

UMf◦πg =
∑
i∈Λ

Uvi [f ◦ π (i, ·) g (i, ·)] =
∑
i∈Λ

Uvi [fg (i, ·)]

=
∑
i∈Λ

Uvi [Mfg (i, ·)] =
∑
i∈Λ

ϕ (f)Uvig (i, ·) = ϕ (f)Ug.

This completes the proof.

Remark 4.17. The product σ-algebra on Λ×Y is given by the collection of sets

F :=

∑
j∈Λ

({j} ×Gj) : {Gj}∞j=1 ⊂ FY

 .

If is clear that every element in F is in the product σ-algebra and hence it
suffices to shows F is a σ-algebra. The main point is to notice that if G =∑
j∈Λ ({j} ×Gj) , then

(i, y) ∈ Gc ⇐⇒ (i, y) /∈ G ⇐⇒ y /∈ Gi ⇐⇒ (i, y) ∈ {i} ×Gci .

This shows Gc =
∑
i∈Λ ({i} ×Gci ) which is graphically easy to understand.

To see that µ is a measure on F , first observe that if H =
∑
i∈Λ {i} ×Hi,

then
H ∩G =

∑
i∈Λ
{i} × [Gi ∩Hi]

and so if
{
G (n) =

∑
i∈Λ {i} ×Gi (n)

}
n∈Λ are pairwise disjoint then

{Gi (n)}n∈Λ must be pairwise disjoint for each i ∈ Λ. Hence it follows
that ∑

n∈N
G (n) =

∑
i∈Λ
{i} ×

(∑
n∈N

Gi (n)

)

and therefore,

µ

(∑
n∈N

G (n)

)
=
∑
i∈Λ

µi

(∑
n∈N

Gi (n)

)
=
∑
i∈Λ

∑
n∈N

µi (Gi (n))

=
∑
n∈N

∑
i∈Λ

µi (Gi (n)) =
∑
n∈N

µ (G (n)) .

Notation 4.18 If (Ω,F) is a measurable space, let `∞ (Ω,F) denote the
bounded F/BC-measurable functions from Ω to C.

Let us now rewrite Eq. (4.11) as

ϕ (f) = UMf◦πU
∗ for f ∈ C (Y ) . (4.12)

From this equation we see there is a “natural” extension ϕ to a map, ψ :
`∞ (Y,FY )→ B (H) defined by

ψ (f) := UMf◦πU
∗ for all f ∈ `∞ (Y,FY ) . (4.13)

This map ψ has the following properties.

Theorem 4.19 (Measurable Functional Calculus I). The map, ψ :
`∞ (Y,FY )→ B (H) in Eq. (4.13) has the following properties.

1. ψ = ϕ on C (Y ) .
2. ‖ψ (f)‖ ≤ ‖f‖∞ for all f ∈ `∞ (Y,FY ) .

3. If fn ∈ `∞ (Y,FY ) converges to f ∈ `∞ (Y,FY ) boundedly then ψ (fn)
s→

ψ (f) .
4. ψ is a C∗-algebra homomorphism.
5. If f ≥ 0 then ψ (f) ≥ 0.

Proof. The proof of this theorem is straight forward and for the most part
is left to the reader. Let me only verify items 3. and 5. here.

3. Let u ∈ H and g = U∗u ∈ L2 (µ) . Then

‖ψ (f)u− ψ (fn)u‖2 = ‖UMf◦πU
∗u− UMfn◦πU

∗u‖2

= ‖[f ◦ π − fn ◦ π] g‖2L2(µ) → 0 as n→∞

by DCT.
5. If f ≥ 0, then

〈ψ (f)u, u〉 = 〈UMf◦πU
∗u, u〉 = 〈Mf◦πg, g〉L2(µ) =

∫
Ω

f ◦ π |g|2 dµ ≥ 0.

Alternatively, simply note that f =
(√
f
)2

and hence

ψ (f) = ψ
(√

f
)2

= ψ
(√

f
)∗
ψ
(√

f
)
≥ 0.
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Definition 4.20. If B ⊂ B (H) , let B′ := {B ∈ B (H) : [B,B] = {0}} be the
commutant of B. Thus A ∈ B′ iff [A,B] = 0 for all B ∈ B.

Remark 4.21. If (Y, d) is a compact metric space, then σ (C (Y )) = FY where
σ (C (Y )) is the smallest σ-algebra on Y for which all continuous functions
are measurable. Indeed we always have σ (C (Y )) ⊂ FY and so it suffices
to show V ∈ σ (C (Y )) for all V ⊂o Y. However, if V is an open set,
then dV c (x) := infy∈V c d (x, y) is a continuous function on Y such that
V = {dV c > 0} ∈ σ (C (Y )) .

Proposition 4.22. If Y is a compact metric space then there is precisely one
map, ψ : `∞ (Y,FY )→ B (H) , which satisfies properties 1.-4. in Theorem 4.19.
Moreover the image of this map is in B′′.

Proof. If ψ̂ : `∞ (Y,FY )→ B (H) also satisfies items 1.-4. of Theorem 4.19,
let

H =
{
f ∈ `∞ (Y,FY ) : ψ (f) = ψ̂ (f)

}
.

One then easily verifies that H is closed is a subspace of `∞ (Y,FY ) which is
closed under conjugation and bounded convergence and hence by the multiplica-
tive system Theorem A.9 it follows thatH contains all bounded σ (C (Y )) = FY -
measurable functions, i.e. H = `∞ (Y,FY ) .

To prove the second assertion, let

H = {f ∈ `∞ (Y,FY ) : [ψ (f) ,B′] = {0}} .

Then H is a linear space closed under conjugation and bounded convergence
and contains C (Y ) as the reader should verify. Thus by another application
of the multiplicative system Theorem A.9, H = `∞ (Y,FY ) and the proof is
complete.

Corollary 4.23 (Spectral Theorem I). Let H be a separable Hilbert space
and A ∈ B (H) be a self-adjoint operator. Then there exists a finite measure
space, (Ω,F , µ) , a bounded function, a : Ω → σ (A) , and a unitary map,
U : L2 (µ) → H, such that A = UMaU

∗. Moreover, if f ∈ `∞
(
σ (A) ,Fσ(A)

)
,

then
ψA (f) = “f (A) ” = UMf◦aU

∗

defines the unique measurable functional calculus in this setting.

Proof. Let B = C∗ (A, I) ⊂ B (H) and then by Theorem 4.7, there exists
C∗-isomorphism, ϕA : C (σ (A))→ B such that ϕA (p) = p (A) . To complete the
proof of the theorem, we apply Theorem 4.16 with ϕ = ϕA and take a = id ◦ π
where id : σ (A) → σ (A) is the identity map. as in the language of Theorem
4.16.

The next theorem summarizes the result we have proved for a self-adjoint
element, A ∈ B (H) .

Theorem 4.24 (Measurable Functional Calculus for a Hermitian). Let
H be a separable Hilbert space and A be a self-adjoint element of B (H) . Then
there exists a unique map ψA : `∞

(
σ (A) ,Fσ(A)

)
→ B (H) such that;

1. ψA is a ∗ – homomorphism, i.e. ψA is linear, ψA(fg) = ψA(f)ψA(g) and
ψA(f̄) = ψA(f)∗ for all f, g ∈ `∞ (σ (A)) .

2. ‖ψA(f)‖op ≤ ‖f‖∞ for all f ∈ `∞ (σ (A)) .
3. ψA (p) = p (A) for all p ∈ C [x] . [Equivalently ϕ (1) = I and ψA (x) = A

where x : σ (A)→ σ (A) is the identity map.]
4. If fn ∈ `∞ (σ (A)) and fn → f pointwise and boundedly, then ψA(fn) →
ψA(f) strongly.
Moreover this map has the following properties.

5. If f ≥ 0 then ψA(f) ≥ 0.
6. If B ∈ B (H) and [B,A] = 0, then [B,ψA(f)] = 0 for all f ∈ `∞ (σ (A)) .
7. If Ah = λh for some h ∈ H and λ ∈ R, then ψA(f)h = f (λ)h.

Proof. Although there is no need to give a proof here, we do so anyway in
order to solidify the above ideas in this concrete special case.

Uniqueness. Suppose that ψ : `∞ (σ (A)) → B (H) is another map satis-
fying (1) – (4). Let

H := {f ∈ `∞ (σ (A) ,C) : ψ(f) = ψA(f)} .

Then H is a vector space of bounded complex valued functions which by prop-
erty 4. is closed under bounded convergence and by property 1. is closed under
conjugation. Moreover H contains

M =
{
p|σ(A) : p ∈ C [x]

}
and therefore also C(σ (A) ,C) because of the Stone–Weierstrass approximation
theorem. Therefore it follows from Theorem A.9 that H = `∞(σ (A)), i.e. ψ =
ψA.

Existence. Let U : L2 (Ω,µ)→ H be as in Corollary 4.23 and then define

ψA(f) := UMf◦aU
∗ ∀ f ∈ `∞ (σ (A)) .

One easily verifies that ψA satisfies items 1. – 4. Moreover we can easily verify
items 5–7 as well.

5. If f ≥ 0, then f =
(√
f
)2

and hence ψA(f) = ψA
(√
f
)2 ≥ 0.

6. Let
H := {f ∈ `∞ (σ (A) ,C) : [B,ψA(f)] = 0}

which is vector space closed under conjugation3 and bounded convergence. It
is easily deduced from [B,A] = 0 that [B, p (A)] = 0 for all p ∈ C [x] , the result

3 Again we use Theorem 2.68 and the fact that ψA (f) is normal for all f.
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follows by an application of the multiplicative system Theorem A.9 applied
using the multiplicative system,

M =
{
p|σ(A) : p ∈ C [x]

}
.

7. If Ah = λh and g := U∗h, then Mag = λg from which it follows that
(a− λ) g = 0 µ – a.e. which implies a = λ µ – a.e. on {g 6= 0} . Thus it follows
that f ◦ a = f (λ) µ – a.e. on {g 6= 0} and this implies Mf◦ag = f (λ) g which
then implies,

ψA(f)h = ψA(f)Ug = UMf◦ag = Uf (λ) g = f (λ)h.





5

**More Measurable Functional Calculus

This highly optional chapter contains more details on the general construc-
tion of the measurable functional calculus.

5.1 Constructing a Measurable Functional Calculus

Assumption 1 In this chapter we will assume that Y is a compact Hausdorff
space, H is a Hilbert space, B is a commutative unital C∗-subalgebra of B (H) ,
and ϕ : C (Y ) → B is a given C∗ isomorphism of C∗-algebras. [This is in fact
can always be arranged, see Theorem 8.14 below.]

Let us start by recording some notation and results we introduced in Propo-
sition 4.14 and Proposition 4.15.

Notation 5.1 For each v ∈ H, we let

Hv := BvH ⊂ H (5.1)

and µv be the unique (finite) Radon measure on (Y,FY ) such that

〈ϕ (f) v, v〉 =

∫
Y

fdµv ∀ f ∈ C (Y ) , (5.2)

see Proposition 4.14. Further let Uv : L2 (µv) → Hv be the unique unitary
isomorphism determined by

Uvf = ϕ (f) v ∈ Hv for all f ∈ C (Y ) (5.3)

which satisfies

ϕ (f) |Hv = UvMfU
∗
v on L2 (µv) ∀ f ∈ C (Y ) (5.4)

as in Proposition 4.15.

Notation 5.2 Using Theorem 4.11 when H is separable or Exercise 4.2 for

general H, let us choose (and fix) {vα}α∈I ⊂ H such that H =
⊥
⊕α∈IHvα and

let Pα denote orthogonal projection onto Hvα for each α ∈ I.

For f ∈ C (Y ) and u ∈ H, we have

ϕ (f)u = ϕ (f)
∑
α∈I

Pαu =
∑
α∈I

ϕ (f)Pαu =
∑
α∈I

UvαMfU
∗
vαPαu (5.5)

wherein we used Eq. (5.4) for the last equality. In light of Eq. (5.5), the following
definition is a “natural” extension of ϕ to f ∈ `∞ (Y,FY ) .

Definition 5.3 (Construction of ψ). Continuing the notation above, let ψ :
`∞ (Y,FY )→ B (H) be defined by

ψ (f)u :=
∑
α∈I

UvαMfU
∗
vαPαu for all u ∈ H. (5.6)

In other words, ψ (f) is given in block diagonal form as

ψ (f) = diag
({
UvαMfU

∗
vα

}
α∈I

)
. (5.7)

Theorem 5.4. The map, ψ : `∞ (Y,FY ) → B (H) in Definition 5.3 has the
following properties.

1. ψ = ϕ on C (Y ) .
2. ‖ψ (f)‖ ≤ ‖f‖∞ for all f ∈ `∞ (Y,FY ) .

3. If fn ∈ `∞ (Y,FY ) converges to f ∈ `∞ (Y,FY ) boundedly then ψ (fn)
s→

ψ (f) .
4. ψ is a C∗-algebra homomorphism.
5. If f ≥ 0 then ψ (f) ≥ 0.

Proof. Recall Iu := {α ∈ I : uα := Pαu 6= 0} is at most countable for each
u ∈ H and so

u =
∑
α∈I

uα =
∑
α∈Iu

uα – a countable sum.

As the reader should verify, ψ (f) : H → H is linear and ψ (1) = IH . We now
prove the remaining items in turn.

1. That ψ is an extension of ϕ follows from Eq. (5.5).
For the rest of this proof let u ∈ H,
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gα := U∗vαPαu ∈ L
2 (µvα) for α ∈ I,

and mu be the measure on (Y,FY ) defined by

dmu :=
∑
α∈Iu

|gα|2 dµvα . (5.8)

2. For f ∈ `∞ (Y,FY ) ,

‖ψ (f)u‖2 =
∑
α∈I

∥∥UvαMfU
∗
vαPαu

∥∥2
=
∑
α∈I

∥∥MfU
∗
vαPαu

∥∥2

L2(να)

=
∑
α∈I
‖fgα‖2L2(να) =

∫
Y

|f |2 dmu. (5.9)

Taking f = 1 in this equation shows

mu (Y ) = ‖u‖2 <∞ (5.10)

which combined with Eq. (5.9) shows

‖ψ (f)u‖2 ≤ ‖f‖2∞ ‖u‖
2

which proves item 2.
3. Item 3. is now also easily proved since if fn → f boundedly then

‖ψ (f)u− ψ (fn)u‖2 = ‖ψ (f − fn)u‖2

=

∫
Y

|f − fn|2 dmu → 0 as n→∞.

by DCT.
4. For f, g ∈ `∞ (Y,FY ) and u ∈ H,

ψ (f)ψ (g)u =
∑
α∈I

ψ (f)UvαMgU
∗
vαPαu

=
∑
α∈I

UvαMfU
∗
vαUvαMgU

∗
vαPαu

=
∑
α∈I

UvαMfMgU
∗
vαPαu

=
∑
α∈I

UvαMfgU
∗
vαPαu = ψ (fg)u

which shows ψ (fg) = ψ (f)ψ (g) . Moreover for another v ∈ H,

〈ψ (f)u, v〉 =
∑
α∈I

〈
UvαMfU

∗
vαPαu, v

〉
=
∑
α∈I

〈
PαUvαMfU

∗
vαPαu, v

〉
=
∑
α∈I

〈
MfU

∗
vαPαu, U

∗
vαPαv

〉
L2(µvα )

=
∑
α∈I

〈
U∗vαPαu,Mf̄U

∗
vαPαv

〉
L2(µvα )

=
∑
α∈I

〈
u, UvαMf̄U

∗
vαPαv

〉
=
〈
u, ψ

(
f̄
)
v
〉

(5.11)

which shows ψ (f)
∗

= ψ
(
f̄
)

and item 3. is proved.
5. Taking v = u in Eq. (5.11) shows,

〈ψ (f)u, u〉 =
∑
α∈Iu

〈
MfU

∗
vαPαu, U

∗
vαPαu

〉
L2(µνα )

=
∑
α∈Iu

〈Mfgαu, gαu〉L2(µνα ) =
∑
α∈Iu

∫
Y

f |gα|2 dµvα ,

i.e.

〈ψ (f)u, u〉 =

∫
Y

fdmu for all f ∈ `∞ (Y,FY ) . (5.12)

It clearly follows from this identity that ψ (f) ≥ 0 if f ≥ 0.

Proposition 5.5. If we now further assume1 that FY = F0, then there is pre-
cisely one map, ψ : `∞ (Y,FY ) → B (H) such that properties in items 1.-4. of
Theorem 5.4 hold and moreover ψ is uniquely determined by

〈ψ (f)u, u〉 =

∫
Y

fdµu for all u ∈ H and f ∈ `∞ (Y,FY ) . (5.13)

Proof. Suppose that ψ̂ : `∞ (Y,FY ) → B (H) also satisfies items 1.-4. of
Theorem 5.4. Then let

H =
{
f ∈ `∞ (Y,FY ) : ψ (f) = ψ̂ (f)

}
.

One then easily verifies that H is closed is a subspace of `∞ (Y,FY ) which is
closed under conjugation and bounded convergence and hence by the multi-
plicative system Theorem A.9 it follows that H contains all bounded Baire-
measurable functions, i.e. `∞ (Y,F0) ⊂ H ⊂ `∞ (Y,FY ) . Since we are assuming
FY = F0, it follows that `∞ (Y,F0) = H = `∞ (Y,FY ) . To finish the proof it

1 This will be the case if Y is metrizable for example, see below.
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suffices to show Eq. (5.13) holds which is equivalent to showing the measure
mu in Eq. (5.12) is µu. However, we do know that∫

Y

fdµu = 〈ϕ (f)u, u〉 = 〈ψ (f)u, u〉 =

∫
Y

fdmu ∀ f ∈ C (Y ) . (5.14)

From this identity and a simple application of the multiplicative system The-
orem A.9 it follows from Eq. (5.14) that mu = µu and the proof is complete.

Proposition 5.6. Continuing the notation and setup in Proposition 5.5, then
ψ (`∞ (Y,FY )) ⊂ B′′, the double commutant of B. That is A ∈ B (H) and
[A,B] = {0} , then [A,ψ (`∞ (Y,FY ))] = {0} . In words, for f ∈ `∞ (Y,FY ) ,
ψ (f) commutes every A ∈ B (H) which commutes with every B ∈ B.

Proof. Let H = {f ∈ `∞ (Y,FY ) : [ψ (f) ,B′] = {0}} . Then H is a linear
space closed under conjugation and bounded convergence and contains C (Y )
as the reader should verify. Thus by the multiplicative system Theorem A.9,
`∞ (Y,F0) ⊂ H ⊂ `∞ (Y,FY ) and as we assume F0 = FY , the proof is complete.

For the remainder of this chapter we are going to remove the added assump-
tion that FY = F0. Before getting down to business we need to take care some
measure theoretic details.

5.2 Baire Sets and Radon Measures

Theorem 5.7 (Properties of Locally compact spaces). Suppose (X, τ) is
a locally compact Hausdorff space where τ is the collection of open subsets of
X. We write C @ X and K @@ X to indicate that C is a closed subset of X
and K is a compact subset of X respectively.

1. It K @@ X and K ⊂ U∪V with U, V ∈ τ, then K = K1∪K2 with K1 @@ U
and K2 @@ V.

2. If K @@ X and F @ X are disjoint, then there exists f ∈ C(X, [0, 1]) such
that f = 0 on K and f = 1 on F.

3. If f is a real valued continuous function, then for all c ∈ R the sets {f ≥ c} ,
{f ≤ c} , and {f = c} are closed Gδ.

4. If K @@ U ⊂o X then there exists K @@ U0 ⊂ K0 ⊂ U such that K0 is a
Baire measurable set and a compact Gδ and U0 is a σ – compact open set.

Proof. We take each item in turn.

1. K\U and K\V are disjoint compact sets and hence there exists two disjoint
open sets U ′ and V ′ such that

K \ U ⊂ V ′ and K \ V ⊂ U ′.

Let K1 := K \ V ′ ⊂ U and K2 = K \ U ′ ⊂ V.
2. Tietze extension theorem with elementary proof in Halmos.
3. {f ≤ c} = ∩∞n=1 {f < c+ 1/n} with similar formula for the other cases.
4. For each x ∈ K, let Vx be an open neighborhood of K such that V̄x @@ U,

and set V = ∪x∈ΛVx where Λ ⊂⊂ K is a finite set such that K ⊂ V. Since
V̄ = ∪x∈ΛV̄x is compact, we may replace U by V if necessary and assume
that U is pre-compact. By Urysohn’s lemma, there exists f ∈ Cc(X, [0, 1])
such that f = 0 on K and f = 1 on U c. If we now defined U0 = {f < 1/2}
and K0 = {f ≤ 1/2} then K @@ U0 ⊂ K0 ⊂ U, K0 is a Baire set which is
compact and a Gδ by item 2. Moreover U0 is σ-compact because

U0 = {f < 1/2} = ∪∞n=3{f ≤ 1/2− 1/n}.

Definition 5.8 (Borel and Baire σ-algebras). Let FX denote the Borel σ-
algebra on X, i.e. the σ-algebra generated by open sets and F0 be the Baire-
σ-algebra, i.e. the sigma algebra, σ (Cc (X)) , generated by Cc (X) . A Baire
measure is a positive measure, µ0, on (X,F0) which is finite on compact Baire
sets.

Notation 5.9 If (Ω,F) is a general measurable space we let `∞ (Ω,F) denote
the bounded F/BC – measurable functions, f : Ω → C.

For the rest of this section we will suppose that Y is a compact Hausdorff
space.

Theorem 5.10 (Riesz-Markov Theorem). Let Y be a compact Hausdorff
space. There is a one to one correspondence between positive linear functionals,
Λ : Cc (Y,C) → C, Radon measures µ on (Y,FY ) , and Baire measures µ0 on
(Y,F0) determined by;

Λ (f) =

∫
Y

fdµ =

∫
Y

fdµ0 for all f ∈ C (Y ) ,

and µ0 = µ|F0 .

Proof. The main point is that if µ0 is a Baire measure on Y, then Λ (f) :=∫
Y
fdµ0 is a positive linear functional on C (Y,C) . Therefore, by the Riesz-

Markov theorem, there exists a unique Radon measure, µ, on (Y,FY ) such that
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Y

fdµ =

∫
Y

fdµ0 for all f ∈ C (Y ) . (5.15)

It is now a simple application of the multiplicative system Theorem A.9 to show
Eq. (5.15) is valid for all f ∈ `∞ (Y,F0) and hence µ0 = µ|F0 .

Remark 5.11. In general it is not true that F0 = FY , only that F0 ⊂ FY .
This is the reason one uses Radon measures on (Y,FY ) rather than arbitrary
measures. For the reader wishing to avoid such unpleasantries (at least on first
reading) should further assume Y is metrizable, i.e. the topology on Y is induced
from a metric, d, on Y. By Remark 4.21, it follows that F0 = FY and as a
consequence, if Y is metrizable, then all finite measures on (Y,BY ) are in fact
Radon-measures, see Theorem 5.10.

Exercise 5.1. Let Y be a compact Hausdorff space. Prove the following asser-
tions.

1. If µ is a Radon measure and 0 ≤ f ∈ L1 (Y,FY , µ) , then dν = fdµ is a
Radon measure.

2. If µ1, µ2 are two Radon measures, then so is µ1 + µ2.
3. Suppose that {µj}∞j=1 are finite Radon measures such that µ :=

∑∞
j=1 µj is

finite measure. Then µ is a Radon measure on (Y,FY ) .

5.3 Generalization to arbitrary compact Hausdorff spaces

Lemma 5.12. If f ∈ `∞ (Y,FY ) and v ∈ H, then 〈Uvf, v〉 =
∫
Y
fdµv. In

particular if f ≤ g then 〈Uvf, v〉 ≤ 〈Uvg, v〉 .

Proof. The result holds for all f ∈ C (Y ) by definition of µv and Uv, see
Eqs. (5.2) and (5.3). Given a general f ∈ `∞ (Y,FY ) we may find fn ∈ C (Y )
such that fn → f in L2 (µv) and therefore,

〈Uvf, v〉 = lim
n→∞

〈Uvfn, v〉 = lim
n→∞

∫
Y

fndµv =

∫
Y

fdµv.

Lemma 5.13. If V ⊂o Y then

sup
K⊂kV

〈Uv1K , v〉 = 〈Uv1V , v〉

and if E ∈ FY , then

inf
E⊂V⊂oY

〈Uv1V , v〉 = 〈Uv1E , v〉 .

Proof. The proof of these statements are elementary consequences of
Lemma 5.12 and the fact that µv is a Radon measure.

Theorem 5.14. The map, ψ : `∞ (Y,FY ) → B (H) in Definition 5.3 has the
following additional properties over those stated in Theorem 5.4.

1. ψ satisfies Eq. (5.13), i.e.

〈ψ (f)u, u〉 =

∫
Y

fdµu ∀ f ∈ `∞ (Y,FY ) and u ∈ H.

This identity, because of Lemma 3.26, uniquely specifies ψ (f) and hence
shows that ψ is independent of the choices made in the cyclic subspace
decomposition of H.

2. ψ is regular in the following sense;

a) if E ∈ FY then
ψ (1E) = inf

E⊂V⊂oY
ψ (1V )

or by abuse of notation

ψ (E) = inf {ψ (V ) : E ⊂ V ⊂o Y } .

[We abuse notation here and are writing ψ (E) to mean ψ (1E) where
E is a Borel set.]

b) If V ⊂o Y, then
ψ (1V ) = sup

K⊂kV
ψ (1K)

or by abuse of notation, ψ (V ) = sup {ψ (K) : K @@ V } .

Proof. Let dmu =
∑
α∈Iu |gα|

2
dµνα as in Eq. (5.8) in Theorem 5.4.

1. By item 1. of Exercise 5.1 |gα|2 dµνα is a regular Radon measure and then by
item 3. of the same exercise it follows that mu is a Radon measure. Therefore
from Eq. (5.14) and the uniqueness assertion in the Riesz-Markov theorem,
we may conclude µu = mu which coupled with Eq. (5.12) completes the
proof of item 1.

2. The regularity statements follows by combining Lemmas 5.21 and Lemma
5.13.

Theorem 5.15. There is exactly one C∗-homomorphism, ψ : `∞ (Y,FY ) →
B (H) such that Properties 1.-4. of Theorem 5.4 and the regularity property in
item 2. of Theorem 5.14.
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Proof. We have already proved existence and so we now need only prove
uniqueness. Let ψ̂ : `∞ (Y,FY ) → B (H) be another C∗-homomorphism satis-
fying the stated properties in the statement of the theorem. Following the proof
of Proposition 5.5 we already know that ψ̂ = ψ on `∞ (Y,F0) . We now need to
use the regularity assumption to extend the identity to all of `∞ (Y,FY ) which
we now do.

Let V ⊂o Y. By item 4. of Theorem 5.7, to each compact set, K ⊂ V, there
exists a Baire measurable compact set K0 such that K ⊂ K0 ⊂ V. Thus by the
given regularity and equality of ψ and ψ̂ on Baire sets we may conclude that

ψ (1V ) = sup
{
ψ (1K0

) = ψ̂ (1K0
) : V ⊃ K0 compact & Baire

}
= ψ̂ (1V ) .

Then given any Borel measurable set E ⊂ Y we find,

ψ (1E) = inf
{
ψ (1V ) = ψ̂ (1V ) : E ⊂ V ⊂o Y

}
= ψ̂ (1E) .

By linearity, ψ = ψ̂ on all Borel simple functions and then by taking uniform
limits we conclude that ψ = ψ̂ on `∞ (Y,FY ) .

Proposition 5.16. If f ∈ `∞ (Y,FY ) , then ψ (f) ∈ B′′, i.e. if [A,B] = 0 for
all B ∈ B then [A,ψ (f)] = 0. In words, ψ (f) commutes with every operator,
A ∈ B (H), that commutes with every operator in B.

Proof. Suppose that A ∈ B′. As ψ (f) = ϕ (f) ∈ B for all f ∈ C (Y ) it
follows that [ψ (f) , A] = 0. An application of the multiplicative system Theorem
A.9. then shows that [ψ (f) , A] = 0 for all Baire measurable bounded functions,
f : Y → C. Now suppose that V ⊂o Y. By item 4. of Theorem 5.7, to each
compact set, K ⊂ V, there exists a Baire measurable compact set K0 such that
K ⊂ K0 ⊂ V. Therefore by the regularity of ψ as proved in Theorem 5.14, we
may conclude that

ψ (1V ) = sup
K0⊂V

ψ (1K0
)

which along with Lemma 5.20 shows that [ψ (1V ) , A] = 0. Then given any
E ∈ FY , we have

ψ (1E) = inf
E⊂V⊂0Y

ψ (1V )

also commutes with A, again by Lemma 5.20. Therefore [ψ (f) , A] = 0 for
any simple function in `∞ (Y,FY ) and therefore by uniformly approximating
f ∈ `∞ (Y,FY ) by Borel simple functions shows [ψ (f) , A] = 0 for all f ∈
`∞ (Y,FY ) .

5.4 Appendix: Operator Ordering and the Lattice of
Orthogonal Projections

Exercise 5.2. Suppose that T ∈ B (H) , M is a closed subspace of H, and
P = PM is orthogonal projection onto M. Show 0 = [T, P ] := TP − PT iff
TM ⊂M and T ∗M ⊂M.

See Definition ?? and related material for operator ordering basics.

Definition 5.17. If P and Q are two orthogonal projections on a Hilbert space
H, then we write P ≤ Q to mean Ran (Q) ⊂ Ran (P ) . This defines a partial
ordering on the collection of orthogonal projection on H. If P is an family of
orthogonal projections on H then an orthogonal projection, Q, is an upper
bound (lower bound) for P if P ≤ Q (Q ≤ P ) for all P ∈ P.

Remark 5.18. The notation P ≤ Q is also consistent with the common meaning
of ordering of self-adjoint operators given by A ≤ B iff 〈Av, v〉 ≤ 〈Bv, v〉 for all
v ∈ H. Indeed if Ran (P ) ⊂ Ran (Q) and v ∈ H then Qv = PQv+w = Pv+w
where w ⊥ Pv and hence,

〈Qv, v〉 = ‖Qv‖2 ≥ ‖Pv‖2 = 〈Pv, v〉 .

Conversely if 〈Pv, v〉 ≤ 〈Qv, v〉 for all v ∈ H, then by taking v ∈ Ran (Q)
⊥

we
learn that

‖Pv‖2 = 〈Pv, v〉 ≤ 〈Qv, v〉 = 0

so that v ∈ Ran (P )
⊥
, i.e. Ran (Q)

⊥ ⊂ Ran (P )
⊥
. Taking orthogonal compli-

ments then shows Ran (P ) ⊂ Ran (Q) , i.e. P ≤ Q as in Definition 5.17.

Lemma 5.19. If P is a family of orthogonal projections on a Hilbert space H,
then there exists unique orthogonal projections, Psup and Pinf , such that

1. Psup is an upper bound for P and if Q is any other upper bound for P then
Psup ≤ Q.

2. Pinf is a lower bound for P and if Q is any other lower bound for P then
Q ≤ Pinf .

We write Psup = supP and Pinf = inf P.

Proof. If Q is an upper bound for P (which exists, take Q = I) then
Ran (P ) ⊂ Ran (Q) for all P ∈ P and hence

Msup :=
∑
P∈P

Ran (P ) ⊂ Ran (Q) .

It is now easy to verify that Psup defined to be orthogonal projection onto Msup

is the desired least upper bound for P.
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If Q is an lower bound for P (which exists, take Q ≡ 0) then Ran (Q) ⊂
Ran (P ) for all P ∈ P and hence

Ran (Q) ⊂Minf := ∩P∈P Ran (P ) .

It is now easy to verify that Pinf defined to be orthogonal projection onto Minf

is the desired greatest lower bound for P.
For the next result recall Lemma 9.29 which states; If A is a ∗ subalgebra

of B (H) , K is a closed subspace of H, and P is the projection on K, then K
is and A – invariant subspace iff P ∈ A′

Lemma 5.20. Let P be a family of orthogonal projections on a Hilbert space
H. If A ∈ P ′, i.e. [A,P ] = 0 for all P ∈ P ′ then [A, inf P ] = 0 = [A, supP] .

Proof. As AP = PA for all P ∈ P, by taking adjoints we also have A∗P =
PA∗ for all P ∈ P. From these equation it follows that

ARan (P ) ⊂ Ran (P ) and A∗Ran (P ) ⊂ Ran (P ) ∀ P ∈ P. (5.16)

By Eq. (5.16),

A [∩P∈P Ran (P )] ⊂ [∩P∈P Ran (P )] and

A∗ [∩P∈P Ran (P )] ⊂ [∩P∈P Ran (P )]

and therefore both A and A∗ both preserve Ran (Pinf) , i.e.

APinf = PinfAPinf and A∗Pinf = PinfA
∗Pinf .

Taking adjoints of these equations also shows,

PinfA
∗ = PinfA

∗Pinf and PinfA = PinfAPinf

and therefore [A,Pinf ] = 0.
Similarly by Eq. (5.16) we may conclude that

A
∑
P∈P

Ran (P ) ⊂
∑
P∈P

Ran (P ) and A∗
∑
P∈P

Ran (P ) ⊂
∑
P∈P

Ran (P )

and then by taking closures we learn that A and A∗ both preserve Ran (Psup) .
The same argument as above then shows [A,Psup] = 0.

Lemma 5.21. Let P be a family of orthogonal projections on a Hilbert space
H.

1. If there exists and orthogonal projection Q such that 〈Qv, v〉 =
supP∈P 〈Pv, v〉 for all v ∈ H, then Q = Psup.

2. If there exists and orthogonal projection such Q such that 〈Qv, v〉 =
infP∈P 〈Pv, v〉 for all v ∈ H, then Q = Pinf .

Proof. Since P ≤ Psup for all P ∈ P, it follows by Remark 5.18 that

〈Qv, v〉 = sup
P∈P
〈Pv, v〉 ≤ 〈Psupv, v〉 ∀ v ∈ H

which then implies P ≤ Q ≤ Psup for all P ∈ P and hence Q = Psup.
Similarly, since Pinf ≤ P for all P ∈ P, it follows by Remark 5.18 that

〈Qv, v〉 = inf
P∈P
〈Pv, v〉 ≥ 〈Pinfv, v〉 ∀ v ∈ H

which then implies Pinf ≤ Q ≤ P for all P ∈ P and hence Q = Pinf .
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Part III

Structure Theory of Commutative C∗-algebras





Throughout this part, B will be a complex unital commutative Banach alge-
bra. So far we have been considering a single operator and its spectral properties
and functional calculus. What we would like to do now is to simultaneously di-
agonalize a collection of commuting operators. The goals of this part are;

1. study the structure of B,
2. show that when B is a C∗-algebra, that B is isomorphic to C (X) for some

compact Hausdorff space, X,
3. develop the continuous functional calculus for commutative C∗-algebras,
4. and simultaneously diagonalize all of the operators in commutative unital
C∗-subalgebra of B (H) where H is a separable Hilbert space.

The following two notions will play a key role in our discussions below.

Definition 5.22 (Characters and Spectrum). A character of B is a
nonzero multiplicative linear functional on B, i.e. α : B → C is an algebra
homomorphism so in particular α(ab) = α (a)α (b) .

The spectrumof B is the set B̃ (or denoted by spec (B))2 of all characters
of B.

Please note that we do not assume α to be bounded (i.e. continuous). How-

ever, as shown in Proposition 7.2 below the continuity is automatic. If α ∈ B̃
then α (1) = 1 because α(12) = α (1)

2
so α (1) = 0 or α (1) = 1. If α (1) = 0

then α ≡ 0 so α (1) = 1. Given this information,

B̃ := {α ∈ B∗ : α (1) = 1 and α (AB) = α (A)α (B)} . (5.17)

For the next definition, let Func
(
B̃ → C

)
denote the space of functions from

B̃ to C.

Definition 5.23 (Gelfand Map). For a ∈ B let â : B → C be the function
defined by â (α) = α (a) for all α ∈ B̃. The map

B 3 a→ â ∈ Func
(
B̃ → C

)
is called the canonical mapping or Gelfand mapping of B into

Func
(
B̃ → C

)
. [This definition will be refined in Definition 7.17 below.]

Before getting down to business, we will pause to motivate the theory by
first working in a finite dimensional linear algebra setting. This is the content
of the first chapter of this part.

2 We will see shortly that B̃ 6= ∅, see Lemmas 7.7 and 7.11.





6

Finite Dimensional Matrix Algebra Spectrum

For the purposes of this motivational chapter, let V be a finite dimensional
inner product space and suppose that B is a unital commutative sub-algebra of
EndC (V ).

6.1 Gelfand Theory Warm-up

Proposition 6.1. If B is a commutative sub-algebra of EndC (V ) with I ∈ B,
then there exists v ∈ V \ {0} which is a simultaneous eigenvector of B for all
B ∈ B. Moreover, there exists a character, α ∈ B̃, such that Bv = α (B) v for
all B ∈ B.

Proof. Let {Bj}kj=1 be a basis for B. Using the theory of characteris-
tic polynomials along with the fact that C is algebraically closed, there ex-
ists λ1 ∈ C which is an eigenvalue of B1, i.e. Nul (B1 − λ1) 6= {0} . Since
B2 Nul (B1 − λ1) ⊂ Nul (B1 − λ1) it follows in the same way that there exists a
λ2 ∈ C so that Nul (B2 − λ2)∩Nul (B1 − λ1) 6= {0} . Again one verifies that B3

leaves the joint eigenspace, Nul (B2 − λ2)∩Nul (B1 − λ1) , invariant and hence
there exists λ3 ∈ C such that

Nul (B3 − λ3) ∩Nul (B2 − λ2) ∩Nul (B1 − λ1) 6= {0} .

Continuing this process inductively allows us to find {λj}kj=1 ⊂ C so that

∩kj=1 Nul (Bj − λj) 6= {0} . Let v be a non-zero element of ∩kj=1 Nul (Bj − λj) .
As the general element B ∈ B is of the form B =

∑k
j=1 bjBj , it follows that

Bv =

k∑
j=1

bjBjv =

 k∑
j=1

bjλj

 v (6.1)

showing that v is a joint eigenvector for all B ∈ B.
For the second assertion, let α : B → C be defined by requiring Bv = α (B) v

for all B ∈ B. Then for A,B ∈ B and λ ∈ C we have α (I) v = Iv = v,

α (A+ λB) v = (A+ λB) v = Av + λBv = [α (A) + λα (B)] v,

and

α (AB) v = ABv = A [α (B) v] = α (B)Av = α (B)α (A) v

which altogether shows α is linear, multiplicative, and α (I) = 1.

Corollary 6.2. For every B ∈ B and σ (B) =
{
α (B) : α ∈ B̃

}
, where σ (B) ⊂

C is now precisely the set of eigenvalues of B.

Proof. If α ∈ B̃ is given and b := α (B) , then α (B − b) = 0 which implies
B − bI can have no inverse in B which according to Lemma 3.9 implies that
B − bI has no inverse in End (V ) and hence b ∈ σ (B) . Conversely, if b ∈ σ (B)
is given, in the proof of Proposition 6.1, choose B1 = B and and λ1 = b. Then
the proof of Proposition 6.1 produces a α ∈ B̃ so that α (B) = λ1 = b.

Definition 6.3 (Joint Spectrum). For {Bj}nj=1 ⊂ B, the set,

σ (B1, . . . , Bn) ⊂ σ (B1)× · · · × σ (Bn) ⊂ Cn,

defined by

σ (B1, . . . , Bn) :=
{

(α (B1) , . . . , α (Bn)) : α ∈ B̃
}

will be called the joint spectrum of (B1, . . . , Bn) .

Corollary 6.4. Under the assumptions of this chapter, B̃, is a non-empty finite
set.

Proof. Suppose that {Bj}kj=1 is a basis for B (or at least a generating set).
Then the map,

B̃ 3 α→ (α (B1) , . . . , α (Bn)) ∈ σ (B1, . . . , Bn)

is easily seen to be a bijection. As σ (B1, . . . , Bn) ⊂ σ (B1) × · · · × σ (Bn) and

the latter set is a finite set, it follows that #
(
B̃
)
<∞. The fact that B̃ is not

empty is the part of the content of Proposition 6.1.
The general converse of the second assertion in Proposition 6.1 holds. The

full proof of this Proposition is left to the appendix. Here we will prove an easier
special case. Another, even slightly easier case (and all that we really need) of
the next proposition may be found in Proposition 6.9 where we further restrict
to B being a commutative C∗-subalgebra of End (V ) where in that proposition
V is an inner product space.
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Proposition 6.5. Let B be a commutative sub-algebra of EndC (V ) with I ∈ B
and suppose that α : B → C is a homomorphism. [We require α (I) = 1.] Then
there exists v ∈ V \ {0} such that Bv = α (B) v for all B ∈ B.

Proof. We give a proof here under the added assumption that every element,
A ∈ B, is diagonalizable. Let {Aj}nj=1 be a subset of B which generates B1 and

then let aj := α (Aj) for j ∈ [n] . For each j ∈ [n] let us define the polynomial,

pj (z) :=
∏

λ∈σ(Aj)\{aj}

z − aj
λ− aj

.

This polynomial has the property that pj (λ) = 0 for all λ ∈ σ (Aj) \ {aj} and
pj (aj) = 1. Since Aj is assumed to be diagonalizable we know that

V = ⊕λ∈σ(Aj) Nul (Aj − λ)

and (you prove) pj (Aj) is projection onto Nul (Aj − aj) in this decomposition.
Next let Q :=

∏n
j=1 pj (Aj) , order does not matter as B is commutative. Since

α (Q) =

n∏
j=1

α (pj (Aj)) =

n∏
j=1

pj (α (Aj)) =

n∏
j=1

pj (α (aj)) = 1,

we know Q 6= 0 and so there exists w ∈ V so that v := Qw 6= 0.
Again, since{pj (Aj)}nj=1 all commute with one another it follows that v ∈
Ran (pj (Aj)) = Nul (Aj − aj) for each j ∈ [n] and this implies Ajv = ajv for
all j ∈ [n] . Since the general element A ∈ B is of the form, A = p (A1, . . . , An) ,
for some polynomial p, we conclude that

Av = p (A1, . . . , An) v = p (a1, . . . , an) v = α (A) v.

Remark 6.6 (Joint Spectrum Characterization). Altogether Propositions 6.1
and 6.5 shows the following characterization of the joint spectrum from Defini-
tion 6.3. If B ⊂ End (V ) is a commutative sub-algebra generated by {Bj}kj=1 ,
then

σ (B1, . . . , Bn) =
{

(λ1, . . . , λk) ∈ Ck : ∩kj=1 Nul (Bj − λj) 6= {0}
}
.

That is (λ1, . . . , λk) is an element of σ (B1, . . . , Bn) iff there exist v ∈ V \ {0}
such that Bjv = λjv for all j ∈ [k] .

1 One could simply let {Aj}nj=1 be a basis for B.

Lemma 6.7. The Gelfand map in Definition 5.23 is an algebra homomorphism.

The range, B̂ :=
{
B̂ : B ∈ B

}
, is a sub-algebra which separates points but need

not be closed under conjugation. The Gelfand map need not be injective.

Proof. The homomorphism property is straightforward to verify, Î (α) =
α (I) = 1 so that Î = 1,

(B1 + λB2)
ˆ

(α) = α (B1 + λB2) = α (B1) + λα (B2)

=
(
B̂1 + λB̂2

)
(α)

and
(B1B2)

ˆ
(α) = α (B1B2) = α (B1)α (B2) =

(
B̂1B̂2

)
(α) .

If α1 6= α2 are two distinct elements of B̃ then by definition there exists B ∈ B
so that α1 (B) 6= α2 (B) , i.e. B̂ (α1) 6= B̂ (α2) . This shows B̂ separates points.

Lastly if B̂ ≡ 0, then 0 = B̂ (α) = α (B) for all α ∈ B̃ which implies
σ (B) = {0} and hence B must be nilpotent. This certainly indicates that the
Gelfand map need not be injective. For an explicit example, let

A =

(
0 1
0 0

)
so that A2 = 0 and hence

B := 〈A〉 = span {I, A} =

{(
a b
0 a

)
: a, b ∈ C

}
.

In this case we must have

α

((
a b
0 a

))
= a

and hence B̃ consists of this single α. If

B :=

(
a b
0 a

)

then B̂ (α) = α (B) = a and hence B̂ ≡ 0 iff B =

(
0 b
0 0

)
for some b ∈ C. The

kernel of the Gelfand map is called the radical of B and in this case we have
shown, rad (B) = C ·A.

6.2 Restricting to the C∗-case

In the this and then next section, we now restrict to the finite dimensional
C∗-algebra setting.
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Notation 6.8 Let (V = H, 〈·, ·〉) is a complex finite dimensional inner product
space that B ⊂ End (H) is unital commutative ∗-algebra (i.e. A ∈ B implies

A∗ ∈ B). Further (as dimB <∞), let {Bj}kj=1 which is a basis for B.

We could construct B by choosing commuting normal operators, {Bj}kj=1 ,

and then letting B be the C∗-subalgebra of End (H) generated by these opera-
tors. According to the Fuglede-Putnam Theorem 2.68, it is automatic that the

collection of operators,
{
Bj , B

∗
j

}k
j=1

, all commute with one another and hence

B consists of all elements of the form p (B1, . . . , Bk, B
∗
1 , . . . , B

∗
k) where p is a

polynomial in 2k -complex variables.
From Proposition 6.5 above, if α : B → C is an algebra homomorphism,

there exists a vector v ∈ H \ {0} such that Bv = α (B) v for all B ∈ B. Let us
pause to give another proof of this statement in current C∗-algebra context.

Proposition 6.9. Let B be a unital commutative ∗-subalgebra of End (H) . If
α ∈ B̃, there exists v ∈ H \ {0} such that

Bv = α (B) v for all B ∈ B. (6.2)

Proof. This is of course a special case of Proposition 6.5. Nevertheless, as
the proof of this special case is a fair bit easier we will give another proof here.
Moreover, the idea of this proof will be used again later.

Let {B1, . . . , Bk} ⊂ B be a generating set for B, let λj := α (Bj) for 1 ≤
j ≤ k, and define

Q :=

k∑
j=1

(Bj − λj)∗ (Bj − λj) ∈ B.

We then have

α (Q) =

k∑
j=1

α
(
(Bj − λj)∗ (Bj − λj)

)
=

k∑
j=1

α
(
(Bj − λj)∗

)
α (Bj − λj) =

k∑
j=1

|α (Bj − λj)|2 = 0.

If Q−1 were to exist, Lemma 3.9 would imply that Q−1 ∈ B and therefore,

1 = α (I) = α
(
QQ−1

)
= α (Q)α

(
Q−1

)
which would contradict the assertion that α (Q) = 0. Thus we conclude Q is
not invertible and therefore there exists v ∈ H \ {0} so that Qv = 0. Since

0 = 〈0, v〉 = 〈Qv, v〉 =

k∑
j=1

〈
(Bj − λj)∗ (Bj − λj) v, v

〉
=

k∑
j=1

〈(Bj − λj) v, (Bj − λj) v〉 =

k∑
j=1

‖(Bj − λj) v‖2 ,

it follows that Bjv = λjv for all j. As the general element B ∈ B may be written
as, B = P (B1, . . . , Bk) for some polynomial2, P, it follows that

Bv = P (λ1, . . . , λk) v = α (P (B1, . . . , Bk)) v = α (B) v for all B ∈ B.

Corollary 6.10. If α ∈ B̃, then α : B → C is a ∗-homomorphism, i.e. α (B∗) =
α (B) for all B ∈ B.

Proof. We choose a unit vector v ∈ H so that Bv = α (B) v for all B ∈ B
in which case we have

α (B) = 〈Bv, v〉 ∀ B ∈ B. (6.3)

It then follows from this equation that

α (B∗) = 〈B∗v, v〉 = 〈v,Bv〉 = 〈Bv, v〉 = α (B).

Proposition 6.11. If X is a finite set and A is a sub-algebra of C (X) that
separates points and contains 1, then A = C (X) . [We do not need to assume
that A is closed under conjugation, this comes for free in this finite dimensional
setting!.]

Proof. By assumption for each x, y ∈ X there exists f ∈ A so that f (x) 6=
f (y) . We then let

fy :=
1

f (x)− f (y)
[f − f (y) 1] ∈ A

where now fy (x) = 1 and fy (y) = 0. Thus it follows that

δx :=
∏
y 6=x

fy ∈ A

where δx (y) = 1x=y for all y ∈ X. As {δx}x∈X is a basis for C (X) , the proof
is complete.

2 If B were non-commutative, we would have to take P to be a non-commutative
polynomial.
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Theorem 6.12. If B is a unital commutative C∗-subalgebra of End (H) , then
the Gelfand map,

B 3 A→ Â ∈ C
(
B̃
)

is an isometric C∗-isomorphism.

Proof. Let A :=
{
B̂ : B ∈ B

}
⊂ C

(
B̃
)

be the range of the Gelfand map.

Then A is a sub-algebra of C
(
B̃
)

which contains 1. If α1, α2 are two points in

B̃ such that B̂ (α1) = B̂ (α2) for all B ∈ B then

α1 (B) = B̂ (α1) = B̂ (α2) = α2 (B) for all B ∈ B

from which it follows that α1 = α2. This shows that A separates points and
hence by the finite set version of the Stone-Wierstrass theorem, see Proposition

6.11, A = C
(
B̃
)

and so the Gelfand map is surjective. Lastly

‖B‖ = r (B) = max {|λ| : λ ∈ σ (B)}

= max
{
|α (B)| =

∣∣∣B̂ (α)
∣∣∣ : α ∈ B̃

}
=
∥∥∥B̂∥∥∥

∞
,

which shows the Gelfand map is isometric which of course implies that it is
injective.

The previous results illustrate well the key new result we are going to prove
in the next chapter for general commutative C∗-algebras. The rest of this section
is optional at this point.

6.3 Toward’s Spectral Projections

Notation 6.13 For each α ∈ B̃, let

Hα := {v ∈ H : Bv = α (B) v for all B ∈ B} .

Lemma 6.14. Let B be a commutative ∗-subalgebra of End (H) with unit. The
inner product space, H, admits the orthogonal direct sum decomposition;

H = ⊕α∈B̃Hα.

Proof. If α1 and α2 are distinct elements of B̃, then there exists B ∈ B so
that λ1 := α1 (B) 6= α2 (B) =: λ2. Thus if vj ∈ Hαj , then

λ1 〈v1, v2〉 = 〈Bv1, v2〉 = 〈v1, B
∗v2〉 = 〈v1, α2 (B∗) v2〉

=
〈
v1, λ̄2v2

〉
= λ2 〈v1, v2〉

from which it follows that 〈v1, v2〉 = 0. This shows Hα1 ⊥ Hα2 .
Let H0 := ⊕α∈B̃Hα and H1 := H⊥0 . Since H0 is a B-invariant subset of H

it follows that H1 is also B-invariant. Indeed,

〈BH1, H0〉 = 〈H1, B
∗H0〉 ⊂ 〈H1, H0〉 = {0} for all B ∈ B.

If H1 6= {0} , we may restrict B to H1 and use Proposition 6.1 to find3 a
simultaneous eigenvector v1 ∈ H1 \ {0} of B. Associated to this vector is the
character, α, of B such that Bv1 = α (B) v1 for all B ∈ B. But this then leads
to the contradiction that v1 ∈ Hα ⊂ H0.

Notation 6.15 For each α ∈ B̃, let Pα : H → H be orthogonal projection onto
Hα.

For v ∈ H, we have, with vα = Pαv, that v =
∑
α∈B̃ vα and so for B ∈ B,

Bv =
∑
α∈B̃

Bvα =
∑
α∈B̃

α (B) vα =
∑
α∈B̃

α (B)Pαv.

Thus we have shown that

B =
∑
α∈B̃

α (B)Pα for all B ∈ B. (6.4)

Corollary 6.16. For each α ∈ B̃, Pα ∈ B.

Proof. Let Qα ∈ B̃ be the unique element such Q̂α = δα, i.e. α′ (Qα) =
1α=α′ . Then by Eq. (6.4)

Qα =
∑
α′∈B̃

α′ (Qα)Pα′ = Pα.

Corollary 6.17. For f ∈ C
(
B̃
)
, let

f∨ =
∑
α∈B̃

f (α) · Pα ∈ B.

Then C
(
B̃
)
3 f → f∨ ∈ B is the inverse to the Gelfand map.

Proof. We have

(f∨)
ˆ

=
∑
α∈B̃

f (α) · P̂α =
∑
α∈B̃

f (α) · δα = f.

3 Here is where we use the assumption that B is commutative.
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6.4 Appendix: Full Proof of Proposition 6.5

Proof of Proposition 6.5. Suppose that B is generated by {Aj}kj=1 and let

aj = α (Aj) . Let us further choose an N ∈ N sufficiently large so that

Nul
(

[Aj − λ]
N+1

)
= Nul

(
[Aj − λ]

N
)
∀ 1 ≤ j ≤ k and λ ∈ σ (Aj) .

Thus Nul
(

[Aj − λ]
N
)

is the generalized λ-eigenspace of Aj for each j and

λ ∈ σ (Aj) and recall that

V = ⊕λ∈σ(Aj) Nul
(

[Aj − λ]
N
)

for each j. We then let

pj (z) =
∏

λ∈σ(Aj)\{aj}

(
z − λ
aj − λ

)N

so that α (pj (Aj)) = pj (aj) = 1, pj (Aj) annihilates Nul
(

[Aj − λ]
N
)

for ever

λ ∈ σ (Aj) \ {aj} , and

Ran [pj (Aj)] = pj (Aj) Nul
(

[Aj − aj ]N
)
⊂ Nul

(
[Aj − aj ]N

)
for each j. From this it follows that 1 = α

(∏k
j=1 pj (Aj)

)
and hence there exists

v 6= 0 in V so that
k∏
j=1

pj (Aj) v = v. (6.5)

As the {pj (Aj)}kj=1 commute along with the above remarks we learn that v ∈

∩kj=1 Nul
(

(Aj − aj)N
)
. We now have to modify v a bit to produce an non-

zero element of ∩kj=1 Nul (Aj − aj) which suffices to complete the proof of the
proposition.

Start by choosing 0 ≤ `1 < N so that

v1 = (A1 − a1)
`1 v ∈ Nul (A1 − a1) \ {0} .

Applying (A1 − a1)
`1 to Eq. (6.5) (while using p1 (A1) v1 = p1 (a) v1 = v1)

shows,
k∏
j=2

pj (Aj) v1 = v1. (6.6)

Next we choose `2 so that

v2 = (A2 − a2)
`2 v1 ∈ Nul (A2 − a2) \ {0} .

Applying (A2 − a2)
`2 to Eq. (6.6) shows,

k∏
j=3

pj (Aj) v2 = v2. (6.7)

Let us note that A2v2 = a2v2 and

A1v2 = A1 (A2 − a2)
`2 v1 = (A2 − a2)

`2 A1v1 = a1 (A2 − a2)
`2 v1 = a1v2

and so

v2 ∈ Nul (A2 − a2) ∩Nul (A1 − a1) ∩
[
∩kj=3 Nul

(
[Aj − λ]

N
)]
.

Again choosing 0 ≤ `3 < N so that

v3 = (A3 − a3)
`3 v2 ∈ Nul (A3 − a3) \ {0} .

Applying (A3 − a3)
`3 to Eq. (6.6) shows,

k∏
j=4

pj (Aj) v3 = v3. (6.8)

Working as above it not follows that v3 6= 0 and

v3 ∈
[
∩3
j=1 Nul (Aj − aj)

]
∩
[
∩kj=4 Nul

(
[Aj − λ]

N
)]
.

Continuing this way inductively eventually produces 0 6= vk ∈
∩kj=1 Nul (Aj − aj) .

6.5 *Appendix: Why not characters for non-commutative
B

Question: why don’t we use characters when B is non-commutative?
Answer: they may vary well not exists. For example if B is all 2×2 matrices

and α is a character, then α ([A,B]) = 0 for all A,B ∈ B. When

B =

[
a b
c d

]
, A =

[
0 0
1 0

]
, and A′ =

[
0 1
0 0

]
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we find

[A,B] =

[
−b 0
a− d b

]
and [A′, B] =

[
c d− a
0 −c

]
.

Taking b = 0 in the first case and c = 0 in the second case we see that
span {[A,B] : A,B ∈ B} contains A,A′, and then it also follows that it con-
tains [

c 0
0 −c

]
for all c ∈ C.

In other words, span {[A,B] : A,B ∈ B} is precisely the set of trace free matri-
ces. Thus it follows that α (A) = 0 whenever trA = 0. For a general matrix, A,
we then have A− 1

2 tr (A) I is trace free and therefore,

0 = α

(
A− 1

2
tr (A) I

)
= α (A)− 1

2
tr (A) .

Thus the only possible choice for α is α (A) = 1
2 tr (A) . However, this functional

is not multiplicative.
A point to keep in mind below. When B is a non-commutative Banach

algebra and if M ⊂ B is a proper two sided-ideal, then M can not contain any
element, b ∈ B, which have either a right or a left inverse. Whereas when B is
commutative, this condition reduces to the statement that M can not contain
any invertible elements, i.e. B ⊂ S where S is the collections of non-invertible
elements. In particular if we are expecting to use characters to find the spectrum
of operators, b ∈ B, as {α (b) : α runs through characters of B} we are going to
be sorely disappointed as we see even in the finite 2× 2 matrix algebra.

As another such example, let S : `2 → `2 be the shift operator and S∗ be
it’s adjoint;,

S (x1, x2, . . . ) = (0, x1, x2, . . . ) , and S∗ (x1, x2, . . . ) = (x2, x3, . . . )

and suppose that α is a character on some algebra containing {S, S∗} . Since
SS∗ = I 6= S∗S, it follows that 1 = α (I) = α (S)α (S∗) even though neither S
nor S∗ are invertible.



7

Commutative Banach Algebras with Identity

Henceforth B will denote a unital commutative Banach algebra over C.
(A good reference is Vol II of Dunford and Schwartz.) Recall from Definition
8.1 that a spec (B) = B̃ is the set of characters, α : B → C, where α is a
character if it is, non-zero, linear, and multiplicative. [See Corollary 2.63 for
more motivation for the terminology.]

7.1 General Commutative Banach Algebra Spectral
Properties

Lemma 7.1. If α ∈ B̃ = spec (B) , then α (a) ∈ σ (a) for all a ∈ B.

Proof. Let λ = α (a) and b = a − λ1 so that α (b) = 0. If b−1 existed in B
we would have

1 = α (1) = α
(
b−1b

)
= α

(
b−1
)
α (b)

which would imply α (b) 6= 0. Thus b is not invertible and hence λ = α (a) ∈
σ (a) .

Proposition 7.2 (Continuity of characters). Every character α of B is con-
tinuous and moreover ‖α‖ ≤ 1 with equality if ‖1‖ = 1 which we always assume
here.

Proof. By Lemma 7.1, α (a) ∈ σ (a) for all a ∈ B and therefore,

|α (a)| ≤ r (a) ≤ ‖a‖ .

Definition 7.3 (Maximal Ideals). An ideal J ⊂ B is a maximal ideal if
J 6= B and there is no proper ideal in B containing J.

Example 7.4. If α ∈ B̃, then Jα := Nul (α) is a maximal ideal. Indeed, it is
easily verified that is proper ideal. To see that it is maximal, suppose that
b ∈ B \ Jα and let λ = α (b) so that α (b− λ) = 0, i.e. b − λ ∈ Jα. This shows
that B = Jα ⊕ C1 and therefore Jα is maximal.

Notation 7.5 Let S := B \ Binv be the singular elements of B. [Notice that
S is a closed subset of B.]

Lemma 7.6. If J is a proper ideal of B, then J ⊂ B \ Binv. Moreover, the
closure

(
J̄
)

of J is also a proper ideal of B. In particular if J ⊂ B is a maximal
ideal, then J is necessarily closed.

Proof. If J is any ideal in B that contains an element, b, of Binv, then J
contains b−1b = 1 and hence J = B. Thus if J  B is any proper ideal then
J ⊂ B\Binv. As B\Binv is a closed, J̄ ⊂ B\Binv. Moreover if b = limn→∞ bn ∈ J̄
with bn ∈ J and x ∈ B, then xb = limn→∞ xbn ∈ J̄ as xbn ∈ J for all n. Lastly
if J is a maximal ideal, then J ⊂ J̄  B and hence by maximality of J we have
J = J̄ .

Lemma 7.7. If B is a commutative Banach algebra with identity, then;

1. Every proper ideal J0 ⊂ B is contained in a (not necessarily unique) maxi-
mal ideal.

2. An element a ∈ B is invertible iff a does not belong to any maximal ideal.
In other words,

S := B \ Binv = ∪ (maximal ideals) . (7.1)

Proof. We take each item in turn.

1. Let F denote the collection of proper ideals of B which contain J0. Order
F by set inclusion and notice that if {Jα}α∈A is a totally ordered subset of
F then J := ∪α∈AJα ⊂ S is a proper ideal (1 /∈ Jα for all α) containing J0,
i.e. J ∈ F . So by Zorn’s Lemma, F contains a maximal element J which is
the desired maximal ideal.

2. If a ∈ S, then the ideal, (a), generated by a is a proper ideal for otherwise
1 ∈ (a) and there would exists b ∈ B such that ba = 1, i.e. a−1 would exist.
By item 1. we can find a maximal ideal, J, which contains (a) and hence a.
Conversely if a is in some maximal ideal, J, then a−1 can not exists since
otherwise 1 = a−1a ∈ J. This verifies the identity in Eq. (7.1).

As is well known from basic algebra, the point of ideals are that they are
precisely the subspaces which are the possible null spaces of algebra isomor-
phisms.
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Exercise 7.1. Suppose B is a Banach algebra (not necessarily commutative)
and K ⊂ B is a closed proper two sided ideal in B. Show (items 1. and 3. are
the most important);

1. B/K is a Banach algebra.
2. The bijection of closed subspaces in the factor Theorem A.24 given by,{

closed subspaces
of B containing K

}
3 N → π (N) ∈

{
closed subspaces

of π (B/K)

}
,

restricts to a bijection of two sided closed ideals in B containing K to two
sided closed ideals in B/K.

3. If ‖1‖B = 1, then ‖π (1)‖B/K = 1.

Proposition 7.8. If J ⊂ B is a maximal ideal, then B = J⊕C1, where 1 = 1B.

Proof. Let a ∈ B and ā := π (a) ∈ B/J and λ ∈ σ (ā) and set b := a − λ.
Then b̄ = π (b) = ā − λ is not invertible in B/J and therefore

(
b̄
)

is a proper

ideal in B/J. If b̄ 6= 0, then π−1
((
b̄
))

would be a proper ideal in B which was
strictly bigger than J contradicting the maximality of J. Therefore we conclude
0 = b̄ = π (b) = π (a− λ) which implies a − λ ∈ J. Thus we have shown
a = λ1 modJ, i.e. B = J + C1. Since 1 /∈ J as J is a proper ideal the proof is
complete.

The next two result are optional at this point and the reader may safely
skip to Lemma 7.11.

Theorem 7.9 (Gelfand – Mazur). If A is a complex Banach algebra (A)
with unit which is a division algebra1, then A is isomorphic to C. In more
detail we have A = C · 1A.

Proof. Let x ∈ A and λ ∈ σ (x). Then x − λ1 is not invertible. Thus
x− λ1 = 0 so x = λ1. Therefore every element of A is a complex multiple of 1,
i.e. A = C · 1.

Proposition 7.10 (Optional). If B is a commutative Banach algebra with
identity, then;

1. If {0} is the only proper ideal in B then B = C · 1.
2. If J is a maximal ideal in B then B/J = C · 1B/J is a field.

Proof. 1. If a ∈ B let (a) denote the ideal generated by a. If a 6= 0 we must
have (a) = B and in particular a must be invertible. Moreover, because we are
working over C, B = C · 1 by the Gelfand – Mazur Theorem 7.9.

1 Recall that A is a division algebra iff every non-zero element is invertible.

2. Since the ideals of B/J are in one to one correspondence with ideals J ⊂ B
such that J ⊂ J, it follows that J is a maximal ideal in B iff (0) is the only
proper ideal in B/J. The result now follows from item 1.

Lemma 7.11. The map

B̃ 3 α→ Nul (α) ∈ {maximal ideals in B}

is a bijection. In particular, B̃ 6= ∅ because of Lemma 7.7.

Proof. If α is a character then Nul (α) is a maximal ideal of B by Example
7.4. Conversely if J ⊂ B is a maximal ideal, then by Proposition 7.8, B = C·1⊕J
and we may define α : B → C by

α (λ1 + a) = λ ∀ λ ∈ C and a ∈ J.

It is now easily verified that α ∈ B̃ and clearly we have Nul (α) = J.
Finally if α, β ∈ B̃ and J = Nulα = Nulβ, then for λ ∈ C and a ∈ J we

must have,
α (λ1 + a) = λ = β (λ1 + a)

which shows (as B = C · 1⊕ J) that α = β.

Corollary 7.12. If B is a commutative Banach algebra with identity, then b ∈
S := B \ Binv iff 0 ∈ σ (b) iff there exists α ∈ B̃ such that α (b) = 0. More
generally,

σ (a) =
{
α (a) : α ∈ B̃

}
.

Proof. The first assertion follows from Lemmas 7.7 and 7.11. It can also be
seen by Proposition 8.3 below. For the second we have λ ∈ σ (a) iff b = a−λ ∈ S
iff 0 = α (b) = α (a)− λ for some α ∈ B̃.

Notation 7.13 Because of Lemma 7.11, B̃ is sometimes referred to as the
maximal ideal space of B.

Let us recall Alaoglu’s Theorem ??.

Theorem 7.14 (Alaoglu’s Theorem). If X is a normed space the closed unit
ball,

C∗ := {f ∈ X∗ : ‖f‖ ≤ 1} ⊂ X∗,
is weak-∗ compact. [Recall that the weak-∗ topology is the smallest topology on
X∗ such that πx = x̂ : X∗ → C is continuous for all x ∈ X, where x̂ (`) = ` (x) ,
see Definition A.18.]

Corollary 7.15 (B̃ is a compact Hausdorff space). B̃ is a w∗–closed subset

of the unit ball in B∗. In particular, B̃ is a compact Hausdorff space in the w∗

– topology. [Here w∗ is short for weak-*.]
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Proof. Since {α ∈ B∗ : α(ab) = α (a)α (b)} for a, b ∈ B fixed and {α ∈ B∗ :
α(1) = 1} are closed in the w∗–topology,

B̃ = {α ∈ B∗ : α(1) = 1} ∩
⋂
a,b∈B

{α ∈ B∗ : α(ab) = α (a)α (b)}

is w∗ – closed – being the intersection of closed sets. Since B̃ is a closed subset of
a compact Hausdorff space (namely the unit ball in B∗ with the w∗ – topology),
B̃ is a compact Hausdorff space as well.

Remark 7.16. If B is a commutative Banach algebra without identity and we
define a character as a continuous nonzero homomorphism α : B → C. Then
the preceding arguments shows that B̃ ⊂ (unit ball of B∗) but may not be closed

because 0 is a limit point of B̃. In this case B̃ is locally compact.

We now recall and refine the definition of the Gelfand map given in Definition
5.23.

Definition 7.17 (Gelfand Map). For a ∈ B, let â ∈ C
(
B̃
)

be the function

defined by â (α) = α (a) for all α ∈ B̃. The map

B 3 a→ â ∈ C
(
B̃
)

is called the canonical mapping or Gelfand mapping of B into C
(
B̃
)

.

Proposition 7.18. If B is a commutative Banach algebra with identity, then

1. 1̂ is the constant function 1 in 1 ∈ C
(
B̃
)
.

2. For a ∈ B,
σ (a) = Ran (â) = {α (a) : α ∈ B̃}

3. The spectral mapping Theorem 3.42 is a consequence of the previous asser-
tion.

4. The spectral radius of a ∈ B satisfies (compare with Exercise 3.5),

r (a) = ‖â‖∞ ≤ ‖a‖ , r(a+ b) ≤ r (a) + r (b) , and r(ab) ≤ r (a) r (b) .

Proof. We take each item in turn.

1. 1̂ (α) = α (1) = 1 for all α ∈ B̃, so 1̂ is the constant function 1 ∈ C
(
B̃
)
.

2. This was proved in Corollary 7.12.

3. If p ∈ C [z] is a polynomial, a ∈ B, and α ∈ B̃, then

p̂ (a) (α) = α(p (a)) = p(α (a)) = p(â (α)) = (p ◦ â) (α)

and therefore

σ(p (a)) = Ran(p̂ (a)) = Ran(p ◦ â) = p(Ran (â)) = p(σ (a)).

4. This is an easy direct consequence of the spectral mapping theorem of item
3. Indeed we always know r (a) ≤ ‖a‖ and

r (a) = sup {|λ| : λ ∈ σ (a)} = sup
{
|α (a)| : α ∈ B̃

}
= sup

{
|â (α)| : α ∈ B̃

}
= ‖â‖∞ .

The remaining inequalities are now easily proved as follows;

r (ab) =
∥∥∥âb∥∥∥

∞
=
∥∥∥â · b̂∥∥∥

∞
≤ ‖â‖∞

∥∥∥b̂∥∥∥
∞

= r (a) r (b)

and similarly,

r (a+ b) =
∥∥∥â+ b

∥∥∥
∞

=
∥∥∥â+ b̂

∥∥∥
∞

≤ ‖â‖∞ +
∥∥∥b̂∥∥∥
∞

= r (a) + r (b) .

For more on the general Gelfand-homomorphism theory, see the optional
Appendix 8.1 below. For our immediate purposes we are going to now restrict
to the C∗-algebra setting.

7.2 Commutative C∗-algebras

For this section, B is a commutative C∗-algebra2 with identity.

Lemma 7.19. If α ∈ B̃, then α (b∗) = α (b) for all b ∈ B. Equivalently, the

Gelfand homomorphism is a ∗-homomorphism, i.e. b̂∗ = b̂ for all b ∈ B.

Proof. If b ∈ B is decomposed as b = x+ iy with x, y are Hermitian, then

α (b) = α (x) + iα (y)

2 Recall the C∗ – definition requires that ‖a∗a‖ = ‖a‖2 for all a ∈ B, see Definition
2.50.
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where α (x) ∈ σ (x) and α (y) ∈ σ (y) . By Lemma 4.5 we know that σ (x) and
σ (y) are contained in R and therefore,

α (b∗) = α (x− iy) = α (x)− iα (y) = α (b).

Remark 7.20 (Second proof of Lemma 4.5). If a ∈ B is Hermitian, then (by
Example 2.66) ut := eita is unitary for all t ∈ R and so by Lemma 2.65,
‖ut‖ = 1 for all t ∈ R. Now for α ∈ B̃, α (ut) = eitα(a) and hence

e−t Im[α(a)] =
∣∣∣eitα(a)

∣∣∣ = |α (ut)| ≤ ‖α‖ ‖ut‖ = 1 ∀ t ∈ R.

This last inequality can only hold if Imα (a) = 0 and hence σ (a) ={
α (a) : α ∈ B̃

}
⊂ R.

Let us recall the Stone-Weierstrass theorem.

Theorem 7.21 (Complex Stone-Weierstrass Theorem). Let X be a lo-
cally compact Hausdorff space. Suppose A is a subalgebra of C0 (X,C) which is
closed in the uniform topology, separates points, and is closed under complex
conjugation. Then either A = C0 (X,C) (which happens if 1 ∈A) or

A = ICx0
:= {f ∈ C0 (X,C) : f(x0) = 0}

for some x0 ∈ X.

Theorem 7.22 (Commutative C∗-algebra classification). If B is a com-
mutative C∗-algebra with identity, then the Gelfand map,

B 3 b→ b̂ ∈ C
(
B̃
)
,

is an isometric ∗−isomorphism onto C
(
B̃
)
.

Proof. Since, for b ∈ B,

Ran
(
b̂
)

=
{
α (b) : α ∈ B̃

}
= σ (b)

and r (b) = ‖b‖ as b is normal (see Proposition 4.3), it follows that∥∥∥b̂∥∥∥
∞

= r (b) = ‖b‖ .

This shows the Gelfand map is isometric and in particular injective. From this
we find that the range, B̂, of the Gelfand map is closed under uniform limits

and moreover, B̂ is an algebra closed under complex conjugation because the
Gelfand map is a ∗–homomorphism. Also note that 1 = 1̂ ∈ B̂ and B̂ separates
points. Indeed, if α, β ∈ B̃ are such that b̂ (α) = b̂ (β) for all b ∈ B then
α (b) = β (b) for all b ∈ B, i.e. iff α = β. Given all of this, an application of the

Stone-Weierstrass theorem implies B̂ = C
(
B̃
)

.

Corollary 7.23. A commutative C∗-algebra with identity is isometrically iso-
morphic to the algebra of complex valued continuous functions on a compact
Hausdorff space.

Notation 7.24 If B is a unital commutative C∗-algebra, let ϕB : C
(
B̃
)
→ B

be the inverse of Gelfand isomorphism, B 3 A→ Â ∈ C
(
B̃
)
, in Theorem 7.22.

That is ϕB (f) = A iff Â = f, i.e. ϕB (f) is the unique element of B such that

α (ϕB (f)) = f (α) for all α ∈ B̃.

[We might also write f∨ for ϕB (f) so that f∨ is the unique element of B such
that (f∨)

∧
= f.]

Theorem 7.25 (Spectral Theorem). Let H be a separable Hilbert space and
B be a unital C∗-subalgebra of B (H) . Then there exist3 ΛN = {1, 2, . . . , N}∩N
(for some N ∈ N∪{∞}), a probability measure µ measure on Ω := ΛN × B̃
equipped with the product σ – algebra, and a unitary map U : L2 (µ)→ H such
that

U∗AU = MÂ◦π on L2 (µ) for all A ∈ B, (7.2)

where π : Ω → B̃ is the second factor projection map, i.e. π (j, α) = α for
(j, α) ∈ Ω.

Proof. Let ϕB : C
(
B̃
)
→ B be the inverse to the Gelfand isomorphism

as in Notation 7.24. Then by Theorem 4.16, there exists an N ∈ N∪{∞} , a
probability measure µ on Ω as in the statement of the theorem, and a unitary
map U : L2 (µ)→ H such that

U∗ϕB (f)U = Mf◦π ∀ f ∈ C
(
B̃
)
.

The result in Eq. (7.2) now follows by taking f = Â while using ϕB

(
Â
)

= A.

Corollary 7.26. If {Ti}Ni=1 ⊂ B (H) is a collection of commuting normal op-
erators, then there exists a probability space (Ω,F , ν), a unitary map, U :

L2 (ν) → H, and functions, {fi}Ni=1 ⊂ L∞ (ν) such that U∗TiU = Mfi for
all i.
3 If there is a cyclic vector, v ∈ H, for B, then we can take N = 1.
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7.2.1 Spectral Theory of Compact Hausdorff Spaces

Exercise 7.2. If A is an n–dimensional commutative C∗-algebra with identity
show that the spectrum of A consists of exactly n points (n <∞).

Notation 7.27 For x ∈ X (X is a compact Hausdorff space), let αx : C (X)→
C be the evaluation map,

αx (f) = f (x) for all f ∈ C (X) .

Theorem 7.28. If X is a compact Hausdorff space, then

C̃ (X) = spec (C (X)) = {αx : x ∈ X}

and moreover, the map

X 3 x→ αx ∈ C̃ (X) (7.3)

is a homeomorphism of compact Hausdorff spaces.

Proof. It is easily verified that αx is a character with corresponding maximal
ideal being

Ix = Nul (αx) = {f ∈ C (X) : f (x) = 0} .

To finish the proof it suffices to show that every maximal ideal of C (X) is of
the form Ix for some x ∈ X.

Let I ⊂ C (X) be a maximal ideal. If I did not separate points there would
exist x 6= y in X such that f (x) = f (y) for all f ∈ C (X) . Since I is an ideal
we could use Uryshon’s lemma to find ϕ ∈ C (X) such that ϕ (x) = 1 while
ϕ (y) = 0 and hence we learn that

f (x) = ϕ (x) f (x) = (ϕf) (x) = (ϕf) (y) = ϕ (y) f (y) = 0

for all f ∈ I. Thus it follows that f ∈ Ix ∩ Iy and I would not be maximal.
Thus we know that I separates points and therefore by the Stone-Weierstrass
theorem we must have I ⊂ Ix for some x ∈ X.

Exercise 7.3. Prove the second assertion in Theorem 7.28 stating X 3 x →
αx ∈ C̃ (X) is a homeomorphism.

Exercise 7.4. If X and Y are compact Hausdorff spaces and ϕ : C (X) →
C (Y ) is a C∗-isomorphism, show there exists a unique homeomorphism T :
Y → X such that ϕ = T ∗, where T ∗ : C (X)→ C (Y ) is defined by T ∗f = f ◦T
for all f ∈ C (X) .

The remainder of this section is optional and has not been fully edited as of
yet.

Notation 7.29 (Optional) Suppose that X is a compact Hausdorff space and
A := C(X,C) be the algebra of continuous function on X. To an set E ⊂ X, let

I(E) := {f ∈ A : f |E ≡ 0}

be the closed ideal in A of functions vanishing on E. To any subset T ⊂ A, let

Z(T ) := {x ∈ X : f (x) = 0 for all f ∈ T}

denote the subset of X consisting of the common zeros of functions from T.
When E = {x} with x ∈ X, we will write mx := I ({x}) .

Proposition 7.30 (Optional). Suppose that X is a compact Hausdorff space
and A := C(X,C). Then

1. For any subset E ⊂ X, Z(I(E)) = Ē.
2. For any T ⊂ A, I(Z(T )) = (T ) – the closed ideal in A generated by T.

(Items 1. and 2. implies that closed subsets E ⊂ X are in one to one
correspondence with closed ideals in A via E → I(E) and J → Z(J).)

3. For each x ∈ X, mx := I ({x}) is a maximal (necessarily closed) ideal in
A.

4. Let m denote the collection of maximal ideals in A, then the map ψ : X → m
defined by ψ (x) = mx is bijective.

5. If we view m as a topological space by transferring the topology on X to m
using ψ, the closed sets in m consist precisely of the sets

CJ := {m ∈ m : J ⊂ m}

where J is a closed ideal in A.

Proof. We take each item in turn.

1. Since Z(T ) ⊂ X is closed for any T ⊂ A and E ⊂ Z(I(E)), Ē ⊂ Z(I(E)).
If x /∈ Ē, then by Uryhson’s lemma, there exists f ∈ A such that f (x) 6= 0
while f |Ē = 0, i.e. f ∈ I(E). This shows x /∈ Z(I(E)) and we have proved
the first assertion.

2. Since I(E) is a closed ideal for any subset E ⊂ X and (T ) is easily seen to
be a subset of I(Z(T )), it follows that (T ) ⊂ I(Z(T )). – the closed ideal
in A generated by T. Let X0 := X \ Z(T ), a locally compact space. If
f ∈ I(Z(T )) then f |X0

∈ C0 (X0,C) and if f |X0
≡ 0 then f ≡ 0 since by

assumption f = 0 on Z(T ). So using this identification we have

(T ) ⊂ I(Z(T )) ⊂ C0 (X0,C) (7.4)

and in particular (T ) is a closed ideal in C0 (X0,C) . Suppose there exists
x 6= y in X0 such that f (x) = f(y) for all f ∈ (T ). Let ψ ∈ C0 (X0,C) be
chosen so that ψ (x) = 1 while ψ(y) = 0, then for f ∈ (T ), ψf ∈ (T ) and so
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82 7 Commutative Banach Algebras with Identity

f (x) = (ψf) (x) = (ψf) (0) = 0

which shows f (x) = 0 for all f ∈ T. But this is impossible because of the
definition of X0 = X \ Z(T ). So the locally compact form of the Stone-
Weierstrass theorem is applicable and implies (T ) = C0 (X0,C) . Hence by
Eq. (7.4), (T ) = I(Z(T )) = C0 (X0,C) .

3. Suppose x ∈ X and f ∈ A\ mx and let I be the closed ideal generated by
f and mx. It is easily checked that I separates points and Z(I) = ∅ and
hence by the Stone-Weierstrass theorem I = A. This shows that mx is a
maximal ideal which is necessarily closed by the comments at the start of
the proof.

4. Clearly the map ψ : X → m is injective. To prove surjectivity, suppose
m ∈ m is a maximal ideal. Using the same sort of argument to in the proof
of item 2. above, it follows that m separates points. Since m is a closed
proper subalgebra of A, the Stone-Weierstrass theorem implies m = mx for
some x ∈ X.

5. For a closed subset E ⊂ X,

ψ(E) = {mx ∈ m : x ∈ E} =
{
m ∈ m : I(Ē) = I(E) ⊂ m

}
.

Therefore the closed subsets of m are precisely sets of the form

CJ := {m ∈ m : J ⊂ m}

where J is a closed ideal in A.

7.3 Some More Spectral Theory

Proposition 7.31 (Continuous Functional Calculus II). Suppose that B
is a commutative unital C∗-algebra generated by a = (a1, . . . , an) ∈ Bn. Let
ga = â1 × · · · × ân : B̃ → Cn and σ (a) ⊂ Cn be defined by

ga (α) = (â1 (α) , . . . , ân (α)) = (α (a1) , . . . , α (an)) (7.5)

and
σ (a) = ga

(
B̃
)

=
{
α (a) : α ∈ B̃

}
(7.6)

be the image of ga. Then;

1. σ (a) is compact and ga : B̃ → σ (a) is a homeomorphism of compact Haus-
dorff spaces.

2. There exists a C∗-isomorphism, ϕa : C (σ (a)) → B, uniquely determined
by

ϕa (zi) = ai for i ∈ [n] = {1, 2, . . . , n} . (7.7)

In the sequel we will denote ϕa (f) by f (a) for any f ∈ C (σ (a)) .
3. If f ∈ C (σ (a)) , then f (a) is the unique element4 of B such that

α (f (a)) = α (ϕa (f)) = f (α (a)) ∀ α ∈ B̃, where (7.8)

α (a) := ga (α) = (α (a1) , . . . , α (an)) ,

i.e.
α (f (a1, . . . , an)) = f (α (a1) , . . . , α (an)) for all α ∈ B̃. (7.9)

4. The spectral mapping theorem holds in the form, σ (f (a)) = f (σ (a)) .

Proof. 1. First off ga is continuous because, by the definition of the weak∗-
topology, each of the components, âj , of ga are continuous. Since the continuous

image of compact sets are compact, it follows that σ (a) = ga

(
B̃
)
. If ga (α) =

ga (β) for some α, β ∈ B̃, then since α and β are ∗–homomorphism it follows
that α = β on the ∗-algebra generated by a and then by continuity on all of B.
Thus ga (α) = ga (β) implies α = β which means ga is injective and therefore
ga : B̃ → σ (a) is continuous bijection. Since B̃ and σ (a) are compact Hausdorff
spaces it follows automatically that ga has a continuous inverse and hence ga
is a homeomorphism.

2. and 3. Let ϕB : C
(
B̃
)
→ B be the inverse to the Gelfand isomor-

phism as in Notation 7.24 and note that C (K) 3 f → f ◦ ga ∈ C
(
B̄
)

is
also a C∗-isomorphism. Therefore ϕa : C (K) → B defined by the composition
isomorphism,

ϕa (f) := ϕB (f ◦ ga) for all f ∈ C (K) ,

is again a C∗-isomorphism. Moreover, ϕa is uniquely determined by the equation

ϕ̂a (f) = ̂ϕB (f ◦ ga) = f ◦ ga

which is equivalent to

α (f (a)) = α (ϕa (f)) = ϕ̂a (f) (α) = f ◦ ga (α) = f (α (a)) ∀ α ∈ B̃.

Taking f (z) = zi in Eq. (7.9) implies

4 This is the analogue of the statement for matrices that if aiv = λiv, then

f (a1, . . . , an) v = f (λ1, . . . , λn) v.

Also note that if f is a polynomial function as above then we would clearly have
Eq. (7.9) holding as α is a ∗-algebra homomorphism.
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α (zi (a)) = α (ϕa (zi)) = zi (α (a)) = α (ai) for all α ∈ B̃

which proves Eq. (7.7), i.e. zi (a) = ai.
4. Item 4. follows directly from item 3.,

σ (f (a)) =
{
α (f (a)) : α ∈ B̃

}
=
{
f (α (a)) : α ∈ B̃

}
= f (σ (a)) .

Notation 7.32 Let B be a C∗-algebra with identity and a = (a1, . . . , an) ∈ Bn.

1. Let SB = B \ Binv denote the non-invertible (singular) elements of B.
2. For λ ∈ Cn let

bλ := (a− λ)
∗ · (a− λ) :=

n∑
j=1

(
a∗j − λ̄j

)
(aj − λj) .

Proposition 7.33. Continuing the notation and assumptions in Proposition
7.31, we have

σ (a) := {λ = (λ1, . . . , λn) ∈ Cn : bλ ∈ S} .

Proof. If λ = α (a) ∈ σ (a) for some α ∈ B̃, then

α (bλ) =

n∑
j=1

|α (aj)− λj |2 = 0 =⇒ bλ ∈ S.

Conversely if λ ∈Cn is chosen so that bλ ∈ S, then there exists α ∈ B̃ such that

0 = α (bλ) =

n∑
j=1

|α (aj)− λj |2 .

For this α we have λ = α (a) .

Corollary 7.34. If B is a unital C∗-algebra (not necessarily commutative) and
b ∈ B is a Hermitian element, such that b−1 exists in B, then b−1 ∈ C∗ (b, 1) .

Proof. Since b−1 is still Hermitian and commutes with b, we may conclude
that A := C∗

(
b, b−1, 1

)
is a commutative C∗-subalgebra of B with b−1 ∈ A.

By Corollary 7.23 we may view b and b−1 to be continuous functions on the

compact Hausdorff space, Y = ˜C∗ (b, b−1, 1). As b−1 ∈ C (Y ) , it follows that
Ran (b) is a compact subset R \ {0} and so by the Weierstrass approximation
theorem we may find pn ∈ C [x] such that

lim
n→∞

sup
z∈Ran(b)

∣∣∣∣pn (x)− 1

x

∣∣∣∣ = 0.

Therefore b−1 is the uniform limit of pn (b) ∈ C∗ (b, 1) ⊂ C (Y ) and hence
b−1 ∈ C∗ (b, 1) .

Theorem 7.35 (σA (a) = σB (a)). Suppose that B is a unital C∗-algebra and
A ⊂ B is a unital C∗—sub-algebra with no commutativity assumptions on A or
B. Then for every a ∈ A, σA (a) = σB (a) . In particular, for any a ∈ B we have
σC∗(a,1) (a) = σB (a) .

Proof. Recall that we always have,

σB (a) ⊂ σA (a) ⊂ σC∗(a,1) (a) . (7.10)

If λ /∈ σB (a) , then a − λ ∈ Binv and therefore b := (a− λ)
∗

(a− λ) is a
Hermitian invertible element of B. By Corollary 7.34, b−1 ∈ C∗ (b, 1) ⊂ C∗ (a, 1)
and therefore

(a− λ)
−1

= b−1 (a− λ)
∗ ∈ C∗ (a, 1) ,

i.e. λ /∈ σC∗(a,1) (a) . Thus we conclude that σB (a)
c ⊂ σC∗(a,1) (a)

c
or equiva-

lently, σC∗(a,1) (a) ⊂ σB (a) which along with Eq. (7.10) completes the proof.

Corollary 7.36 (Positivity). Let a be a Hermitian element of a unital C∗-
algebra, B, then the following are equivalent;

1. a = b∗b for some normal5 element b ∈ B,
2. σ (a) ⊂ [0,∞),
3. a = b2 for a unique Hermitian element b ∈ B with σ (b) ⊂ [0,∞). [We will

denote this b by
√
a.]

Proof. 1. =⇒ 2. If a = b∗b with b normal. If we let B0 = C∗ (b, 1) (a
commutative C∗-algebra), then

σ (a) = σB0 (a) =
{
α (a) : α ∈ B̃0

}
=
{
|α (b)|2 : α ∈ B̃0

}
⊂ [0,∞).

2. =⇒ 3. This was proved in Corollary 4.8. For completeness we repeat a
proof here. For existence let b =

√
a := ϕa

(√
·
)
. For uniqueness suppose that c

is a Hermitian element of B such that a = c2. Then working in B0 = C∗ (c, 1) , we
have â = ĉ2 which implies |ĉ| =

√
â. Choose pn ∈ C [x] such that pn (x) →

√
x

uniformly for x ∈ σ (a) = Ran (â) . If we now let qn (x) = pn
(
x2
)
, then

max
t∈σ(c)

|qn (t)− |t|| = max
t∈σ(c)

∣∣∣pn (t2)−√t2∣∣∣ = max
x∈σ(c)2

∣∣pn (x)−
√
x
∣∣

= max
x∈σ(c2)

∣∣pn (x)−
√
x
∣∣ = max

x∈σ(a)

∣∣pn (x)−
√
x
∣∣→ 0 as n→∞,

i.e. qn (t)→ |t| uniformly on t ∈ σ (c) . Thus we may conclude,

5 The condition that b is normal may be omitted from this statement, see Lemma
7.38 when B = B (H) and Theorem 9.9 for the general case.
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b =
√
a = lim

n→∞
pn (a) = lim

n→∞
pn
(
c2
)

= lim
n→∞

qn (c) = |c| .

If we further assume that σ (c) ⊂ [0,∞) we will know that |x| = x on σ (c) and
hence b = |c| = c and the uniqueness or b is proved.

3. =⇒ 1. This is obvious.

Definition 7.37. We say A ∈ B (H) is non-negative (and write A ≥ 0) if
〈Av, v〉 ≥ 0 for all v ∈ H. [Recall from Lemma 3.27 that 〈Av, v〉 ∈ R for all
v ∈ H implies A = A∗.] Moreover, if A,B ∈ B (H) are self-adjoint operators
then we say A ≥ B iff A−B ≥ 0.

Lemma 7.38. Suppose that H is a separable Hilbert space and A ∈ B (H) is a
self-adjoint operator, then the following are equivalent;

1. A ≥ 0
2. σ (A) ⊂ [0,∞) and
3. A = B2 for some B ≥ 0.
4. A = B∗B for some B ∈ B (H) .

Proof. (1) =⇒ (2). Proof 1. Suppose that A ≥ 0. By Eq. (3.7) with β = 0
and α > 0,

‖(A+ α)ψ‖2 = ‖Aψ‖2 + 2α(Aψ,ψ) + |α|2 ‖ψ‖2 ≥ |α|2 ‖ψ‖2

which implies by Lemma 3.34 −α /∈ σ (A) . That is to say σ (A) ⊂ [0,∞).
Proof 2. By the spectral theorem, we may assume there exists a finite

measure space (Ω,F , µ) and a bounded measurable function, f : Ω → R, such
that A = Mf on H = L2 (µ) . The condition A ≥ 0 is then equivalent to

0 ≤ 〈Ag, g〉 =

∫
Ω

f |g|2 dµ ∀ g ∈ L2 (µ) .

Taking g = 1E for E ∈ F shows
∫
Ω
f1Edµ ≥ 0 and this is sufficient to show

f ≥ 0 a.e.. Since σ (A) = essranµ (f) ⊂ [0,∞), the proof is complete.

(2) =⇒ (3). Take B =
√
A which exists by the functional calculus or in the

model above, take B = M√
f
.

(3) =⇒ (4) is obvious and (4) =⇒ (1) is easy since

〈Ax, x〉 = ‖Bx‖2 ≥ 0 for all x ∈ H.

Exercise 7.5. Suppose that H is a separable Hilbert space and A ∈ B (H) and
A ≥ 0. Show A−1 exists iff there exists ε > 0 so that A ≥ εI, i.e. iff

ε := inf
‖x‖=1

〈Ax, x〉 > 0.

Corollary 7.39 (Joint approximate eigensequences). Suppose H is a sep-
arable Hilbert space, {Tj}nj=1 ⊂ B (H) are commuting normal random variables,

and B = C∗
(
{Tj}nj=1 , I

)
. Then λ ∈ σ (T1, . . . , Tn) iff there exists {xk}∞k=1 ⊂ H

such that ‖xk‖ = 1 and limk→∞ (Tj − λj)xk = 0 for all j ∈ [n] .

Proof. Recall that λ ∈ σ (T1, . . . , Tn) iff bλ =
∑n
j=1 (Tj − λj)∗ (Tj − λj) is

not invertible. Since bλ ≥ 0 the following statements are equivalent;

1. bλ is not invertible,
2. inf‖x‖=1 〈bλx, x〉 = 0,
3. there exists {xk}∞k=1 ⊂ H such that

0 = lim
k→∞

〈bλxk, xk〉 = lim
k→∞

n∑
j=1

〈
(Tj − λj)∗ (Tj − λj)xk, xk

〉
= lim
k→∞

n∑
j=1

‖(Tj − λj)xk‖2 ,

4. there exists {xk}∞k=1 ⊂ H such that limk→∞ (Tj − λj)xk = 0 for all j ∈ [n] .

Exercise 7.6. Let (Ω,F , µ) be a σ – finite measure space, H = L2 (Ω,F , µ) ,
fj : Ω → C be bounded measurable functions for 1 ≤ j ≤ n, and let aj :=
Mfj ∈ B (H) . Letting a = (a1, . . . , an) and f = (f1, . . . , fn) : Ω → Cn, show
σ (a) = essranµ (f) .

Corollary 7.40 (Spectral Theorem III). If {Ti}ni=1 ⊂ B (H) is a collection
of commuting normal operators and K = σ (T1, . . . , Tn) ⊂ Cn. Then there exits
N ∈ N ∪ {∞} , a probability measure, µ on Ω := K × ([N ] ∩ N) , and a unitary
map, U : L2 (µ)→ H so that U∗TjU = Mzj◦π for j ∈ [n] , where zj◦π (λ, i) = λj
for all (λ, i) ∈ Ω.

Proof. Let B := C∗ (T1, . . . , Tn, I) and ϕ : C (σ (T1, . . . , Tn)) → B be the
unique C∗-isomorphism such that ϕ (zi) = Ti for i ∈ [n] as developed in Propo-
sition 7.31 with ai = Ti. The result now follows as a direct application of
Theorem 4.16.

Remark 7.41. For multiplicity theory for normal operators, see Conway [7], p.
293 where invariants are assigned to normal operators which can be used to
classify normal operators up to unitary equivalence. The finial theorem in The-
orem 10.21 on p. 301.Given a measurable set K ⊂ Cn, let B∞(K) denote the
bounded complex valued Borel measurable functions on K and let B∞(K,R)
denote the subspace of real valued functions. The following theorem is Theorem
VII.2 on p.225 of Reed and Simon.
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Theorem 7.42 (Functional Calculus). Let T = (T1, T2, . . . , Tn) ∈
B (H)

n
be a collection of commuting bounded normal operators on a separable

Hilbert space H. Then there exists a unique map ϕ : B∞ (σ (T))→ B (H) such
that;

1. ϕ is a ∗ – homomorphism, i.e. ϕ is linear, ϕ(fg) = ϕ(f)ϕ(g) and ϕ(f̄) =
ϕ(f)∗ for all f, g ∈ B∞ (σ (T)) .

2. ‖ϕ(f)‖op ≤ ‖f‖∞ for all f ∈ B∞ (σ (T)) .
3. ϕ (1) = I and ϕ (zi) = Ti for all 1 ≤ i ≤ n where zi : Cn →
C is projection onto the ith – coordinate. Alternatively stated, if p ∈
C [z1, . . . , zn, z̄1, . . . , z̄n] , then ϕ (p̃) = p (T,T∗) where p̃ (w) := p (w, w̄) .

4. If fn ∈ B∞ (σ (T)) and fn → f pointwise and boundedly, then ϕ(fn) →
ϕ(f) strongly.
Moreover this map has the following properties

5. If f ≥ 0 then ϕ(f) ≥ 0.
6. If Tih = λih for i = 1, . . . , n then ϕ(f)h = f (λ)h where λ = (λ1, . . . , λn).
7. If B ∈ B (H) and [B, Ti] = 0 for i = 1, . . . , n then [B,ϕ(f)] = 0 for all
f ∈ B∞ (σ (T)) .

Proof. Uniqueness. Suppose that ψ : B∞ (σ (T))→ B (H) is another map
satisfying (1) – (4). Let

H := {f ∈ B∞ (σ (T) ,C) : ψ(f) = ϕ(f)} .

Then H is a vector space of bounded complex valued functions which by prop-
erty 4. is closed under bounded convergence and by property 1. is closed under
conjugation. Moreover H contains

M = {p̃ : p ∈ C [z1, . . . , zn, z̄1, . . . , z̄n]}

and therefore also C(σ (A) ,C) because of the Stone – Weierstrass approxima-
tion theorem. Therefore it follows from Theorem A.9 that H = B∞(σ (A)), i.e.
ψ = ϕ.

Existence. Let Ω = ΛN × σ (T) , µ, and U : L2 (Ω,µ) → H be as in
Corollary 7.40 and let π : Ω → σ (T) be projection onto the second factor so
that U∗TU = Mπ For f ∈ B∞ (σ (T)) , define

ϕ(f) := UMf◦πU
∗.

One easily verifies that ϕ satisfies items 1. – 4. Moreover we can easily verify
items 5–7 as well.

5. If f ≥ 0, then f =
(√
f
)2

and hence ϕ(f) = ϕ
(√
f
)2 ≥ 0.

6. If Th = λh and g := U∗h, then Mπg = λg from which it follows that
(πj − λj) g = 0 µ – a.e. which implies πj = λj µ – a.e. on {g 6= 0} . Thus it

follows that f ◦ π = f (λ) µ – a.e. on {g 6= 0} and this implies Mf◦πg = f (λ) g
which then implies,

ϕ(f)h = ϕ(f)Ug = UMf◦πg = Uf (λ) g = f (λ)h.

7. First recall from Theorem 2.68 that we also know that [B, T ∗i ] = 0 for
1 ≤ i ≤ n and therefore [B, p (T,T∗)] = 0 for all p ∈ C [z, z̄] . We now let

H := {f ∈ B∞ (σ (T) ,C) : [B,ϕ(f)] = 0} .

Then H is a vector space closed under conjugation (again by Theorem 2.68)
and bounded convergence. Thus applying the multiplicative system Theorem
A.9 with M = {p (T,T∗) : p ∈ C [z, z̄]} completes the proof.

Example 7.43 ( [43, Example 10.3]). If B =

(
2 1
1 1

)
and A =

(
1 0
0 0

)
, then

0 ≤ A ≤ B while

det
(
B2 −A2

)
= det

(
4 3
3 2

)
= −1 < 0

and therefore A2 � B2.

Theorem 7.44 (Löwner-Heinz inequality). Suppose that A and B are non-
negative bounded operators on a Hilbert space, H. If 0 ≤ A ≤ B, then 0 ≤ Ax ≤
Bx for all x ∈ [0, 1] .

The first result of this form was for matrices in Löwner [25] and then later
in the Hilbert space setting by Heinz [22]. The result as stated can be found
in Theorem 2?? of Kato [24, Theorem 2?]. For a short proof in the bounded
operator setting see [31] and also see [30, Theorem 18]. For a general result for
x > 1 when B is bounded above and below, see [12] and for a variant of this
theme see Ando and Hiai [2]. We will give a (new??) proof of Theorem ?? based
on complex interpolation. For the case of unbounded self-adjoint operators,
see [43, Proposition 10.14]. [A useful reference for the material here is [43], see
Chapter 10 in particular.]

Proof. First let us assume that B−1 exists as a bounded operator. (The
general case follows by perturbing B and by truncating A and then passing to
the limits. Below we will use the following are equivalent characterizations of
0 ≤ A ≤ B;

1. 0 ≤ A ≤ B,
2. 0 ≤ 〈Aϕ,ϕ〉 ≤ 〈Bϕ,Bϕ〉
3. 0 ≤

〈
AB−1/2ϕ,B−1/2ϕ

〉
≤ 〈ϕ,ϕ〉 = ‖ϕ‖2 ,
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4. 0 ≤ B−1/2AB−1/2 ≤ I, and

5.
∥∥∥A 1

2B−1/2ϕ
∥∥∥ ≤ ‖ϕ‖ for all ϕ wherein we have used〈
AB−1/2ϕ,B−1/2ϕ

〉
=
〈
A

1
2B−1/2ϕ,A

1
2B−1/2ϕ

〉
.

Given ϕ ∈ K and z ∈ C let

f (z) :=
〈
B−z/2AzB−z/2ϕ,ϕ

〉
=
〈
Az/2B−z/2ϕ,Az̄/2B−z̄/2ϕ

〉
so that f is a holomorphic function of which is bounded on the strip, 0 ≤ Re z ≤
1. Moreover if z = iy with y ∈ R then

|f (iy)| =
∣∣∣〈Aiy/2B−iy/2ϕ,A−iy/2Biy/2ϕ〉∣∣∣ ≤ ‖ϕ‖2

and for z = 1 + iy,

|f (1 + iy)| =
∣∣∣〈A(1+iy)/2B−(1+iy)/2ϕ,A(1−iy)/2B−(1−iy)/2ϕ

〉∣∣∣
=
∣∣∣〈Aiy/2A1/2B−1/2B−iy/2ϕ,A−iy/2A1/2B−1/2Biy/2ϕ

〉∣∣∣
≤
∥∥∥Aiy/2A1/2B−1/2B−iy/2ϕ

∥∥∥ · ∥∥∥A−iy/2A1/2B−1/2Biy/2ϕ
∥∥∥

=
∥∥∥A1/2B−1/2B−iy/2ϕ

∥∥∥ · ∥∥∥A1/2B−1/2Biy/2ϕ
∥∥∥

≤
∥∥∥B−iy/2ϕ∥∥∥ · ∥∥∥Biy/2ϕ∥∥∥ = ‖ϕ‖2 .

Therefore by Haddamard’s three line lemma we may conclude that |f (z)| ≤
‖ϕ‖2 for all 0 ≤ Re z ≤ 1. Taking z = x ∈ [0, 1] then implies,∥∥∥Ax/2B−x/2ϕ∥∥∥2

=
〈
Ax/2B−x/2ϕ,Ax/2B−x/2ϕ

〉
= f (x) = |f (x)| ≤ ‖ϕ‖2

for all ϕ ∈ K and thus we may conclude that 0 ≤ Ax ≤ Bx for all x ∈ [0, 1] .

7.4 Exercises: Spectral Theorem (Multiplication Form)

Exercise 7.7. Suppose that H is a separable Hilbert space and T ∈ B (H) is
a normal operator. Show T = T ∗ iff σ (T ) ⊂ R.

Exercise 7.8. Suppose that H is a separable Hilbert space and T ∈ B (H) is
a normal operator. Show T is unitary iff σ (T ) ⊂ S1 := {λ ∈ C : |λ| = 1} .

Exercise 7.9. Let A be a self-adjoint operator on an n–dimensional Hilbert
space (n < ∞) V. Show that the general spectral theorem of Theorem 7.25
or Corollary 7.40 implies that A has an orthonormal basis of eigenvectors.
Hints: you may assume from the outset that V = L2 (Ω,F , µ) and A = Mf

where (Ω,F , µ) is a finite measure space such that dimL2 (µ) = n and
f : Ω → R is a bounded measurable function. [A preliminary result you might
want to first prove is; if dimL2 (Ω,F , µ) = n, then there exists a partition
Π = {Ω1, . . . , Ωn} ⊂ F of Ω so that µ (Ωi) > 0 and (for any A ∈ F) either
µ (A ∩Ωi) = µ (Ωi) or µ (A ∩Ωi) = 0 for 1 ≤ i ≤ n.]

Exercise 7.10. Suppose that T = (T1, T2, . . . , Tn) ∈ B (H)
n

is a collection of
commuting bounded normal operators on a separable Hilbert space H. Show;
if D ∈ B (H) is an operator such that [D,Tj ] = 0 for all 1 ≤ j ≤ n, then
[D, f (T)] = 0 for all bounded measurable functions, f : σ (T) → C. [Note: by
Theorem 2.68, the assumption that [D,Tj ] = 0 automatically implies

[
D,T ∗j

]
=

0.]

Exercise 7.11. Suppose that h is an strictly increasing bounded continuous
positive function on R and Tf = hf for f ∈ L2 (R,m) . Show if Ω (x) > 0 and
Ω ∈ L2 (m) , then Ω is a cyclic vector for C∗ (T, I) . Further find the unitary
map, U : L2 (σ (T ) , µΩ) → L2 (m) in the spectral theorem and show by direct
computation that

U∗TU = Mz on L2 (σ (T ) , µΩ) .

Hint: use the multiplicative system theorem to show if 〈g, hnΩ〉 = 0 for all
n ∈ N0, then g = 0 a.e.

Exercise 7.12. Let H be a Hilbert space with O. N. basis e1, e2, . . . . Let θj
be a sequence of real numbers in (0, π/2). Let

xj = (cos θj)e2j + (sin θj)e2j−1 j = 1, 2, . . .

and
yj = −(cos θj)e2j + (sin θj)e2j−1 j = 1, 2 . . . .

Let

M1 = closedspan {xj}∞j=1 and

M2 = closedspan {yj}∞j=1.

1. Show that the closed span of M1 and M2 (i.e., the closure of M1 + M2) is
all of H.

2. Show that if θj = 1/j then the vector

z =

∞∑
j=1

j−1e2j−1

is not in M1 +M2, so that M1 +M2 6= H.
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Exercise 7.13. Define f on [0, 1] by

f (x) =

{
2 if x is rational
x if x is irrational

.

Find the spectrum of Mf as an operator on L2(0, 1).

Exercise 7.14. Let

H = `2(Z) = {a = {aj}∞j=−∞ : ‖a‖2 :=

∞∑
j=−∞

|aj |2 <∞}.

Define U : H → L2(−π, π) by

(Ua)(θ) =
1√
2π

∞∑
n=−∞

ane
inθ.

It is well known that U is unitary (see Theorem ??). For f in `1 (Z) define

(Cfa)n =

∞∑
k=−∞

f(n− k)ak.

1. Show that Cf is a bounded operator on H and that ‖Cf‖op ≤ ‖f‖1 .
2. Find C∗f explicitly and show that Cf is normal for any f in `1 (Z).

3. Show that UCfU
−1 is a multiplication operator.

4. Find the spectrum of Cf , where

f(j) =

{
1 if |j| = 1
0 otherwise

.

Exercise 7.15. Find a bounded self-adjoint operator, A, with both of the fol-
lowing properties:

1. A has no eigenvectors, and
2. σ(A) is set of Lebesgue measure zero in R.

Hint 1: Such an operator is said to have singular continuous spectrum.
Hint 2: Consider the Cantor set, see [40, Section 7.16.].





8

*Gelfand Theory Expanded

This chapter is highly optional and the material here will not be used later.

8.1 More on the Gelfand Map

Definition 8.1. Given a commutative Banach algebra (B) with identity we de-
fine;

1. The radical of B is the intersection of all the maximal ideals in B,

rad (B) = ∩{J : J is a maximal ideal in B}.

[The radical of B is the intersection of closed ideals and therefore it is also a
closed ideal. Let us further note that a ∈ rad (B) iff α (a) = 0 for all α ∈ B̃.]

2. B is called semi-simpleif rad (B) = {0}. [In our finite dimensional exam-
ples in 6.5 are semi-simple.]

Theorem 8.2 (Gelfand). Let B be a unital commutative Banach algebra.

Then the canonical mapping, B 3 a → â ∈ C
(
B̃
)
, is a contractive homo-

morphism from B into C
(
B̃
)

with rad (B) being its null-space. In particular (̂·)
is injective iff rad (B) = {0} i.e. iff B is semi-simple.

Proof. Let a, b ∈ B and α ∈ B̃. Since

âb (α) = α(ab) = α (a)α (b) = â (α) b̂ (α) ,

B 3 a→ â ∈ C
(
B̃
)

is a homomorphism. Moreover,

|â (α)| = |α (a)| ≤ ‖a‖ for all α ∈ B̃.

Hence ‖â‖∞ ≤ ‖a‖ , i.e. canonical mapping is a contraction. Finally, â = 0 iff

α (a) = 0 for all α ∈ B̃ iff a is in every maximal ideal, i.e. iff a ∈ rad (B) .

Proposition 8.3. If B is a commutative Banach algebra with identity, then

1. The radical of B is given by

rad (B) = {a ∈ B : r (a) = 0} .

2. The canonical map̂ : B → C
(
B̃
)

is an isometry (i.e. ‖â‖∞ = ‖a‖ for all

a ∈ B) iff ‖a2‖ = ‖a‖2 for all a ∈ B.
3. If

∥∥a2
∥∥ = ‖a‖2 for all a ∈ B, then B is semi-simple.

Proof. We prove each item in turn.

1. Using Theorem 8.2 and item 2. of Proposition 7.18, we have a ∈ rad (B) iff
â = 0 iff ‖â‖∞ = 0 iff r (a) = 0.

2. By item 4. of Proposition , ‖â‖∞ = ‖a‖ iff r (a) = ‖a‖ . If r (a) = ‖a‖ for
all a ∈ B then (by the spectral mapping Theorem 3.42)∥∥a2

∥∥ = r(a2) = r (a)
2

= ‖a‖2 .

Conversely if
∥∥a2
∥∥ = ‖a‖2 for all a ∈ B, then by induction, for all a ∈ B we

also have

‖a2n‖ = ‖a‖2
n

⇐⇒ ‖a‖ = ‖a2n‖1/2
n

for all n ∈ N.

The last equality along with Corollary 3.45 gives,

‖a‖ = lim
n→∞

‖a2n‖1/2
n

= r (a) ∀ a ∈ B.

3. By item 2. the map a → â is isometric and hence its null-space, rad (B) ,
must be {0} . Alternatively, item 2. gives ‖a‖ = ‖â‖∞ = r (a) and therefore,

rad (B) = {a ∈ B : r (a) = 0} = {a ∈ B : ‖a‖ = 0} = {0} .

Remark 8.4. If B does not have a unit then a similar theory can be developed
in which B̃ is locally compact.

For the rest of this section we will assume that B is a commutative unital
Banach algebra with an involution, (∗) . The main goal of this section is to prove

Theorem 7.22 which asserts that the Gelfand map, B 3 b → b̂ ∈ C
(
B̃
)
, is an

isometric isomorphism of C∗-algebras.
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Definition 8.5. An element a is Hermitian if a = a∗, strongly positive if
a = b∗b for some b, positive if σ (a) ⊂ [0,∞) and real if σ (a) ⊂ R is real.

Definition 8.6. An involution ∗ in a Banach algebra B with unit

1. is real if σ (a) ⊂ R when a = a∗

2. is symmetric if 1 + a∗a is invertible for all a ∈ B. [This is a repeat of
Definition 2.73.]

A Banach algebra B equipped with a (real) symmetric involution will be called
a (real) symmetric Banach algebra. [We will see that every C∗-algebra with
unit is real, symmetric, and the notion of strongly positive and positivity agree.]

Example 8.7. Let H be a Hilbert space, then B = B (H) is a real and symmetric
Banach ∗-Algebra where A∗ is the adjoint of A for all A ∈ B (H) . Any C∗-sub-
algebra of B (H) is also a real and symmetric Banach ∗-algebra, see Lemma
2.74 and the next proposition.

Proposition 8.8. Let B be a symmetric Banach algebra and a ∈ B.

1. If a is Hermitian then a is real (σ (a) ⊂ R if a = a∗), i.e. B is real.
2. If a is strongly positive then a is positive, i.e. σ (x∗x) ⊂ [0,∞) for all x ∈ B.

Proof. We take each item in turn.

1. If a is Hermitian (a∗ = a) and λ = α+ βi ∈ C with β 6= 0, then

β−1 (a− λ) = (a− β−1α)− i = x− i

where x := (a− β−1α) is still Hermitian. Since

(x− i)∗ (x− i) = x∗x+ 1 and

(x− i) (x− i)∗ = xx∗ + 1

we discover that

(x∗x+ 1)
−1

(x− i)∗ (x− i) = 1 and

(x− i) (x− i)∗ (xx∗ + 1)
−1

= 1.

These equations shows x − i has both a right and a left inverse, x − i is
invertible and therefore so is a− λ. This shows λ ∈ σ (a) implies Imλ = 0,
i.e. σ (a) ⊂ R.

2. Suppose that a is strongly positive, a = b∗b. Then a∗ = b∗b = a showing
that a is Hermitian and hence by (1) that σ (a) ⊂ R. If α > 0, then

b∗b− (−α) = b∗b+ α = α

(
b∗b

α
+ 1

)
= α

((
b√
α

)∗(
b√
α

)
+ 1

)
which is invertible showing σ (b∗b) ⊂ [0,∞).

Our first order of business towards proving this theorem is to give conditions
on (B, ∗) so that the Gelfand-map is a ∗-homomorphism.

Proposition 8.9. Let B be a commutative, unital, and ∗-algebra. The following
are equivalent:

1. B is symmetric, i.e. a∗a+ 1 is invertible for all a ∈ B.
2. Every Hermitian element, a ∈ B, is real, i.e. if a∗ = a, then σ (a) ⊂ R.
3. If α ∈ B̃ then α (a∗) = α (a) for all a ∈ B. [Alternatively put the Gelfand

map, B 3 a→ â ∈ C
(
B̃
)

is a ∗ – homomorphism of Banach algebras, i.e.

â∗ = â for all a ∈ B.]
4. Every maximal ideal, J, of B is a ∗-ideal, i.e. if a ∈ J then a∗ ∈ J.

Proof. 1) ⇒ 2) This is Proposition 8.8.
2) ⇒ 3) Let a ∈ B,

b = Re a :=
1

2
(a+ a∗) and c = Im a :=

1

2i
(a− a∗).

Then b and c are Hermitian and so by Proposition 8.3, α (b) ∈ σ (b) ⊂ R and
α (c) ∈ σ (c) ⊂ R for all α ∈ B̃. Since a = b+ ic it follows that

α (a∗) = α (b− ic) = α (b)− iα (c) = α (b) + iα (c) = α (a).

3) ⇒ 1). For any a ∈ B and α ∈ B̃, we now have,

α(a∗a) = α(a∗)α (a) = α (a)α (a) = |α (a) |2

and therefore
α(1 + a∗a) = 1 + |α (a) |2 6= 0.

As this is true for all α ∈ B̃ we conclude that 0 /∈ σ (1 + a∗a) by Proposition
8.3, i.e. 1 + a∗a is invertible.

3) ⇒ 4) Let J be a maximal ideal and let α ∈ B̃ be the unique character
such that Nul (α) = J, see Lemma 7.11. Since α (a) = 0 iff 0 = α (a) = α (a∗)
and J = Nul (α) , it follows that a ∈ J iff a∗ ∈ J.

4) ⇒ 3) Given a ∈ B and α ∈ B̃, let b = a − α (a) ∈ Nul (α) =: J . By
assumption we have a∗ − α (a) = b∗ ∈ J = Nul (α) and therefore,
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0 = α (b∗) = α (a∗)− α (a) =⇒ α (a∗) = α (a).

Theorem 8.10 (A Dense Range Condition). If B is a commutative Banach
∗ -algebra with unit which is symmetric (or equivalently real), then the image,

B̂ =
{
b̂ ∈ C

(
B̃
)

: b ∈ B
}
, (8.1)

of the Gelfand map is dense in C
(
B̃
)
.

Proof. From Proposition 8.9, the Gelfand map is a ∗ – homomorphism
and therefore B̂ is closed under conjugation.1 Hence, by the Stone-Weierstrass
theorem 7.21, it suffices to observe; 1) 1 = 1̂ ∈ B̂ and 2) B̂ separates points.
Indeed, if α1, α2 ∈ B̃ such that â (α1) = â (α2) for all a ∈ B then

α1 (a) = â (α1) = â (α2) = α2 (a) ∀ a ∈ B,

i.e. α1 = α2.

Lemma 8.11 (An Isometry Condition). If B is a unital commutative ∗-
multiplicative Banach algebra [i.e. ‖a∗a‖ = ‖a∗‖ ‖a‖ as in Definition ??], then
the Gelfand map is isometric, i.e.

‖a‖ = ‖â‖∞ = r (a) ∀ a ∈ B. (8.2)

In particular, B is semi-simple, i.e. rad (B) = {0} .

Proof. If b is Hermitian, then∥∥b2∥∥ = ‖b∗b‖ = ‖b∗‖ ‖b‖ = ‖b‖2

and by induction,
∥∥b2n∥∥ = ‖b‖2

n

. It then follows from Corollary 3.45 that

r (b) = lim
n→∞

∥∥∥b2n∥∥∥2−n

= ‖b‖ .

If a ∈ B is now arbitrary, then a∗a is Hermitian and therefore

r (a∗a) = ‖a∗a‖ = ‖a∗‖ ‖a‖ .

On the other hand by Proposition 8.3,

1 If a ∈ B, then cong (â) = â∗ ∈ B̂.

‖a∗‖ ‖a‖ = r(a∗a) ≤ r(a∗)r (a) ≤ ‖a∗‖ r (a)

from which it follows that r (a) ≥ ‖a‖ or ‖a∗‖ = 0. (If ‖a∗‖ = 0 then a∗ = 0
and hence a = a∗∗ = 0 and we will have r (a) = ‖a‖ .) Since r (a) ≤ ‖a‖ by
Proposition 8.3, we have now shown ‖a‖ = r (a) .

For the semi–simplicity of B we have by Item 5 of Proposition 8.3 that

rad (B) =
{
a ∈ B̃ : r (a) = 0

}
while from Lemma 8.11 we know r (a) = ‖a‖ and thus rad (B) = {0} , i.e. B is
semi-simple.

We are now going to apply the previous results when B is a C∗-algebra. As
we have claimed in Remark 2.52, every C∗-algebra can be viewed as a C∗-sub-
algebra of B (H) for some Hilbert space H. This comment along with Lemma
2.74 then implies that every C∗-algebra is symmetric whether it is commutative
or not. As we have not proved the claim in Remark 2.52, for completeness we
will prove directly the symmetry condition for commutative C∗-algebras.

Lemma 8.12 (Commutative C∗ – algebras are symmetric). A commu-
tative C∗-algebra, B, with identity is symmetric. [This is equivalent to every
α ∈ B̃ being a ∗-homomorphism.]

Proof. By Proposition 8.9, to show B is symmetric it suffices to show B
is real, i.e. we must show σ (a) ⊂ R if a ∈ B is Hermitian. However, this has
already been done in Lemma 4.5. Alternatively we may appeal to Lemma 7.19
which asserts that every α ∈ B̃ is a ∗-homomorphism.

Remark 8.13. The Shirali-Ford Theorem asserts that a Banach algebra with in-
volution is symmetric iff it is real. We will prove a special case of this below
for commutative Banach algebras in Proposition 8.9. In fact almost all of the
algebras we will consider here are going to be symmetric. [For example Lemma
8.12 shows every commutative C∗-algebra is symmetric.] For some examples of
non-symmetric Banach algebras, see Tenna Nielsen Bachelor’s Thesis, “Hermi-
tian and Symmetric Banach Algebras” where it is shown that `1 (Fn) is not a
Hermitian (hence not symmetric) Banach algebra if Fn is the free group on n
– generators with n ≥ 2. The reader can also find a proof of the Shirali-Ford
Theorem stated on p. 20 of this reference, also see [3].

Theorem 8.14. If B is a commutative Banach ∗ -algebra with unit which is
symmetric and ∗–multiplicative [i.e. ‖a∗a‖ = ‖a∗‖ ‖a‖ as in Definition 2.47],

then the Gelfand map, B 3 b → b̂ ∈ C
(
B̃
)
, is an isometric ∗−isomorphism

onto C
(
B̃
)
. In particular, it follows that B is a C∗-algebra.
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Proof. By Proposition 8.9, the Gelfand map,

B 3 b→ b̂ ∈ B̂ ⊂ C
(
B̃,C

)
,

is a ∗ – algebra homomorphism. Lemma 8.11 may be applied to show that

Gelfand map is an isometry which in turn implies that the image
(
B̂
)

of the

Gelfand map is complete and therefore closed. By Theorem 8.10, B̂ is dense in

C
(
B̃
)

and therefore (being closed) is equal to C
(
B̃
)

and the proof is complete.

8.2 Examples of spec (B)

Example 8.15. Let n ∈ N, T ∈ B (Fn) , and B = {p (T ) : p ∈ C [z]} . From Corol-
lary 3.10 we know that σB (T ) = σ (T ) – the eigenvalues of T. Thus if α ∈ B̃,
then α (T ) = λ ∈ σ (T ) and hence α (p (T )) = p (α (T )) = p (λ) . Conversely
if λ ∈ σ (T ) then T − λ is not invertible and there exists α ∈ B̃ such that
α (T − λ) = 0, i.e. α (T ) = λ and we denote this α by αλ. We have shown that
the map

σ (T ) 3 λ→ αλ ∈ B̃

gives a one to one correspondence between σ (T ) and B̃. In short spec (B) ∼=
σ (T ) .

Example 8.16. Continuing the notation of the previous example,we have

rad (B) = ∩λ∈σ(T ) Nul (αλ) = {p (T ) : p (σ (T )) = {0}} .

Thus if # (σ (T )) < n, it follows that pmin (z) :=
∏
λ∈σ(T ) (z − λ) is a polyno-

mial such that pmin (T ) ∈ rad (B) and in fact

rad (B) = {q (T ) : q ∈ (pmin)} .

For example if T is nilpotent so that σ (T ) = {0} we have pmin (z) = z and so

rad (B) = {p (T ) : p ∈ F [z] with p (0) = 0} .

On the other hand if T ∈ B (Cn) is normal (TT ∗ = T ∗T ), then pmin (T ) = 0
and we learn that

rad (B) = {0} .

Example 8.17. As another example, suppose that T ∈ B (Fn) is the block diag-
onal with blocks of the form λjI +Nj where λj ∈ F and Nj is nilpotent. Then

σ (T ) = {λj}kj=1 and

pmin (λjI +Nj) =

k∏
l=1

[(λj − λl) I +Nj ] = Nj ·
∏
l 6=j

[(λj − λl) I +Nj ]

= Nj [cjI + qj (Nj)] .

where q (0) = 0 and cj 6= 0. Take Nj to be the matrix of 1’s just above the
diagonal (Jordan canonical form) so that Njqj (Nj) has no ones on the entries
just above the diagonal hence shown pmin (λjI +Nj) = cjNj +O

(
N2
j

)
6= 0 for

all j. In this case rad (B) = (pmin (T )) 6= {0} .

Example 8.18 (Continuation of Example ??). Let us continue the notation
in Proposition 3.14. Our goal is to work out B̃ = spec (B) where B =

{p (z) : p ∈ C [z]}
A

and A = C
(
S1
)
. [Please note that B is not a C∗-algebra as

it is not closed under the involution, f → f̄ .] Here are the salient features.

1. By the maximum principle if pn ∈ C [z] and pn → f on S1, then pn → F ∈
C
(
D̄
)
∩H (D) on D. Thus to each f ∈ B we have an uniquely determined

Ff ∈ C
(
D̄
)
∩ H (D) such that Ff |S1 = f. Notice that Fp|S1

= p for all
p ∈ C [z] .

2. If f, g ∈ B then FfFg = Ffg. In particular if f, g ∈ B with fg = 1, then
FfFg = 1. In particular, this shows if f ∈ B is invertible in B then Ff (λ) 6= 0
for all x ∈ D̄.

3. Similarly, if f ∈ B and p ∈ C [z] , then pFf = Fpf .
4. If λ ∈ D̄, we may define αλ (f) := Ff (λ) . Then by item 2 we will have that

αλ ∈ B̃.
5. Conversely if α ∈ B̃, then λ = α (z) ∈ σB (z) ⊂ D̄ (as ‖z‖∞ = 1). If λ ∈ S1,

then λ ∈ σA (z) . While if |λ| < 1, then we have

α (p) = p (λ) = Fp (λ) .

Since α is continuous it follows that in fact α (f) = Ff (λ) for all f ∈ B.
Thus we have shown.

6. There is a one to one correspondence between B̃ and D̄ given by

B̃ 3 α→ α (z) ∈ D̄.

The inverse map is given by

D̄ 3 λ→ αλ (f) := Ff (λ) .

7. As a consequence, if f ∈ B we have σB (f) =
{
Ff (λ) : λ ∈ D̄

}
while

σA (f) =
{
f (λ) : λ ∈ S1

}
and in particular typically,

σA (f) ⊂ σB (f) .
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8. Note if f ∈ B, I think we should be able to prove that f
(
eiθ
)

=
∑∞
n=0 cne

inθ

and therefore

Ff (λ) =

∞∑
n=0

cnλ
n for |λ| < 1.

The point is that these assertions are true when f (z) = p (z) with p ∈ C [z]
and then the general result follows by taking limits. Thus we learn more
explicitly that

σB (f) =

{ ∞∑
n=0

cnλ
n : |λ| ≤ 1

}
where one has to interpret

∑∞
n=0 cnλ

n as f (λ) for λ ∈ S1.

Example 8.19. Let T = Mq, then spec (C∗ (T)) ∼= σ (T) .

Example 8.20. Let B = `1 (Z) . If α ∈ B̃ and z := α (δ1) ∈ C then |z| ≤ ‖δ1‖ = 1
and

∣∣z−1
∣∣ = |α (δ−1)| ≤ ‖δ−1‖ = 1. This shows that z ∈ S1 and for f ∈ B we

have,

f =
∑
n

f (n) δn =⇒ α (f) =
∑
n

f (n)α (δn) =

∞∑
n=−∞

f (n) zn.

Conversely given z ∈ S1 we may define αz ∈ B̃ so that

αz (f) =

∞∑
n=−∞

f (n) zn ∀ f ∈ B

and so we have shown

B̃ = spec (B) =
{
αz : z ∈ S1

}
.

Consequently for f ∈ B we have

σ (f) =
{
αz (f) : z ∈ S1

}
= Ran

(
S1 3 z → αz (f)

)
.

From this we may conclude that f ∈ B is invertible iff

S1 3 z → αz (f) =

∞∑
n=−∞

f (n) zn

is never zero. Since f−1f = δ0 we find that

αz
(
f−1

)
=

1

αz (f)
=

1∑∞
n=−∞ f (n) zn

which implies the result if f ∈ `1 (Z) such that αz (f) 6= 0 for all z ∈ S1 then
there exists a unique g ∈ `1 (Z) such that

αz (g) =
1

αz (f)
for all z ∈ S1.

Further notice that αz (f) = 0 for all z ∈ S1 implies (Fourier theory) that f = 0
and this shows rad (B) = {0} so the Gelfand map

`1 (Z) 3 f → (z → αz (f)) ∈ C
(
S1
)

is an injective ∗ – homomorphism with dense range.

8.3 Gelfand Theory Exercises

In each of the following two problems a commutative ∗ algebra A with identity
is given. In each case

1. Find the spectrum of A.
2. Determine whether A is semi–simple or symmetric or a C∗-algebra, or sev-

eral of these.
3. Determine whether the Gelfand map is one to one, or onto or both or neither

or has dense range.

Exercise 8.1. Let A be the ∗-algebra of 2× 2 complex matrices of the form

A =

(
a b
0 a

)
but with A∗ :=

(
a b
0 a

)
.

The norm on A is still taken to be the operator norm, ‖A‖, associated to the
usual inner product on C2 with associated norm∥∥∥∥(cd

)∥∥∥∥ = (|c|2 + |d|2)1/2.

Exercise 8.2. A = `1 (Z) where Z is the set of all integers. For f and g in A
define

(fg) (x) =

∞∑
n=−∞

f(x− n)g(n)

and f∗ (x) = f(−x). Show first that A is a commutative ∗-Banach algebra with
identity which is not a C∗-algebra. You may cite any results from [41].
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* More C∗-Algebras Properties

This is another optional chapter which contains some more interesting
C∗-algebra properties along with some alternate proof of results already proved
above. Warning: this chapter has not been properly edited!!

Lemma 9.1. If ρ : A → B is a homomorphism between two unital C∗-algebras,
then

1. σ (ρ (a)) ⊂ σ (a) and r (ρ (a)) ≤ r (a) for all a ∈ A.
2. ρ is contractive, i.e. ‖ρ‖op ≤ 1.
3. If a ∈ A is normal, then

f (ρ (a)) = ρ (f (a)) for all f ∈ C (σ (a)) .

Proof. 1. If a is invertible in A then ρ
(
a−1

)
= ρ (a)

−1
so that ρ (a) is

invertible in B. From this it follows σ (a)
c ⊂ σ (ρ (a))

c
, i.e. σ (ρ (a)) ⊂ σ (a) and

this suffices to show r (ρ (a)) ≤ r (a) .
2. Using the C∗-condition and its consequence, r (b) = ‖b‖ when b = b∗ in

Proposition 4.3, we find

‖ρ (a)‖2 =
∥∥ρ (a)

∗
ρ (a)

∥∥ = ‖ρ (a∗a)‖

= r (ρ (a∗a)) ≤ r (a∗a) = ‖a∗a‖ = ‖a‖2 .

3. Let A0 = C∗ (a, 1) and B0 = C∗ (ρ (a) , 1) and recall that for f ∈ C (σ (a))
that f (a) is the unique element of A0 such that α (f (a)) = f (α (a)) for all

α ∈ Ã0, see Eq. (7.9). Since σ (ρ (a)) ⊂ σ (a) , f (ρ (a)) is well defined and of
course also uniquely determined by β (f (ρ (a))) = f (β (ρ (a))) for all β ∈ B̃0.

Since ρ0 := ρ|A0
: A0 → B0 is a C∗-homomorphism, if β ∈ B̃0, then α =

β ◦ ρ0 ∈ Ã0 and hence

β (ρ0 (f (a))) = (β ◦ ρ0) (f (a)) = f ((β ◦ ρ0) (a)) = f (β (ρ (a))) .

As this holds for all β ∈ B̃0 if follows that

ρ (f (a)) = ρ0 (f (a)) = f (ρ0 (a)) = f (ρ (a)) .

Lemma 9.2. If ρ : A → B is an injective unital ∗-homomorphism and a ∈ A
is a normal element, then σ (ρ (a)) = σ (a) .

Proof. By Lemma 9.1 we know that spec (ρ (a)) ⊂ spec (a) . For
sake of contradiction, suppose that spec (ρ (a))  spec (a) . Let f (x) :=
dist (x, spec (ρ (a))) in which case f is non-zero continuous function on spec (a)
which vanishes on σ (ρ (a)) . As we have already shown in Lemma 9.1, ρ (f (a)) =
f (ρ (a)) = 0. As ρ is injective this would lead to the contradiction that f (a) = 0
which is a contradiction since f is not the zero function on σ (a) .

Theorem 9.3. If ρ : A → B is an injective unital ∗-homomorphism, then ρ is
isometric.

Proof. If a ∈ A is self-adjoint, then by Lemma 9.2, ‖ρ (a)‖ = r (ρ (a)) =
r (a) = ‖a‖ . For general a ∈ A,

‖ρ (a)‖2 =
∥∥ρ (a)

∗
ρ (a)

∥∥ = ‖ρ (a∗a)‖ = ‖a∗a‖ = ‖a‖2 .

Next we give another (more elementary but trickier) proof of a special case
of Theorem 7.35.

Theorem 9.4. Suppose that B is a unital C∗-algebra (not assumed to be com-
mutative) and A ⊂ B is a unital commutative C∗—sub-algebra. Then for every
a ∈ A, σA (a) = σB (a) .

Proof. Since it is easier to find an inverse if we are allowed to look for this
inverse in B rather than just in A, it follows that if a ∈ A is invertible in A
then it is invertible in B. The contrapositive is that if a is not invertible in B
then it is not invertible in A which directly shows that σB (a) ⊂ σA (a) for all
a ∈ A. To prove the converse inclusion it suffices to show σB (a)

c ⊂ σA (a)
c

which amounts to showing if a ∈ A has in inverse in B then a has an inverse in
A.

So suppose that a ∈ A has an inverse in B. Then a∗ ∈ A also has an inverse
in B and hence b = a∗a ∈ A has an inverse in B. As we have now seen we also
know

σB (a∗a) ⊂ σA (a∗a) =
{
α (a∗a) : α ∈ Ã

}
=
{
|α (a)|2 : α ∈ Ã

}
.

So we may conclude that
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σB (a∗a) ⊂ σA (a∗a) ⊂ [0, ‖a∗a‖]

and a∗a is invertible in B we know that 0 /∈ σB (a∗a) . Since σB (a∗a) is compact
there exists δ > 0 such that

σB (a∗a) ⊂ σA (a∗a) ⊂ [δ, ‖a∗a‖] .

We now work as in Proposition 9.16. Let λ := (δ + ‖a∗a‖) /2 so that

σA (a∗a− λ) ⊂ [δ, ‖a∗a‖]− λ =

[
− `

2
,
`

2

]
,

λ > `/2 and

σA

(
a∗a− λ

λ

)
⊂
[
− `

2λ
,
`

2λ

]
.

From this it follows
∥∥∥a∗a−λλ

∥∥∥ ≤ `
2λ =: γ < 1 and therefore

(
1 +

a∗a− λ
λ

)−1

exists in A.

From this we conclude that

λ

(
1 +

a∗a− λ
λ

)
= λa∗a

is invertible in A and so is a∗a. Finally this implies that a−1 = (a∗a)
−1
a∗ exists

in A and the proof is complete.

Lemma 9.5. Suppose a is a self-adoint element of a unital C∗— algebra B (not
assumed to be commutative. Then the following two statements hold;

1. If σ (a) ⊂ [0,∞), then for all t ≥ ‖a‖ , ‖t− a‖ ≤ t.
2. If there exists t ≥ 0 such that ‖t− a‖ ≤ t, then σ (a) ⊂ [0,∞).

Proof. Let A := C∗ (I, a) . Since σB (a) = σA (a) , by the continuous form of
the spectral theorem we may assume that a is a compactly supported function
on R. For the first item we know that 0 ≤ a ≤ t and hence 0 ≤ t − a ≤ t
which implies ‖t− a‖ ≤ t. For the second item, if ‖t− a‖ ≤ t then |t− a| ≤ t
pointwise and therefore t− a ≤ t which implies a ≥ 0.

Corollary 9.6. If a, b ∈ B (unital C∗-algebra) such that σ (a) and σ (b) are
contained in [0,∞), then σ (a+ b) ⊂ [0,∞).

Proof. By Lemma 9.5, for s ≥ ‖a‖ and t ≥ ‖b‖ we know that

‖s− a‖ ≤ s and ‖t− b‖ ≤ t.

This inequalities along with the triangle inequality then implies,

‖(t+ s)− (a+ b)‖ ≤ ‖s− a‖+ ‖t− b‖ ≤ s+ t

which, by Lemma 9.5 again, shows σ (a+ b) ⊂ [0,∞).

Theorem 9.7. A is a unital algebra and a, b ∈ A, then σ (ab) \ {0} = σ (ba) \
{0} . In fact, if 0 6= λ /∈ σ (ab) , then

x =
1

λ
+

1

λ
b (λ− ab)−1

a = λ−1
[
1 + b (λ− ab)−1

a
]

is the inverse to (λ− ba) .

Proof. To motivate the formula for x, let us note that for |λ| large,

λ (λ− ba)
−1

=
λ

λ− ba
=

1

1− λ−1ba
=

∞∑
n=0

λ−n (ba)
n

= 1 +

∞∑
n=0

λ−(n+1) (ba)
n+1

= 1 +
1

λ

∞∑
n=0

λ−nb (ab)
n
a

= 1 +
1

λ
b

[ ∞∑
n=0

λ−n (ab)
n

]
a

= 1 +
1

λ
b

1

1− λ−1ab
a = 1 + b

1

λ− ab
a

and so we expect that

(λ− ba)
−1

=
1

λ

[
1 + b

1

λ− ab
a

]
.

For the formal proof we need only shows x (λ− ba) = 1 = (λ− ba)x. For
example,

x (λ− ba) = λ−1
[
(λ− ba) + b (λ− ab)−1

a (λ− ba)
]

= λ−1
[
(λ− ba) + b (λ− ab)−1

(λ− ab) a
]

= λ−1 [(λ− ba) + ba] = 1

and
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(λ− ba)x = λ−1 (λ− ba)
[
1 + b (λ− ab)−1

a
]

= λ−1
[
(λ− ba) + (λ− ba) b (λ− ab)−1

a
]

= λ−1
[
(λ− ba) + b (λ− ab) (λ− ab)−1

a
]

= λ−1 [(λ− ba) + ba] = 1.

Corollary 9.8. If a Banach algebra has unit 1, then 1 cannot be a commutator;
i.e., 1 6= [x, y] for any x, y ∈ B.

Proof. This is because xy and yx have the same spectrum except possibly
0 while if xy = 1 + yx we would have σ (xy) = 1 + σ (yx) .

Theorem 9.9 (Positivity in a C∗-algebra). Let a = a∗ in a unital C∗-
algebra A. Then a is positive (i.e. a = b∗b for some b ∈ A) iff σ (a) ⊂ [0,∞).

Proof. We have see that if σ (a) ⊂ [0,∞) then we a = (
√
a)

2
which shows

a is positive. So we now need to show that if a = b∗b for some1 b ∈ A, then
σ (a) ⊂ [0,∞). To this end let g (x) = (−x)∨0. We then hope to show g (a) = 0
which would then imply that g|σ(a) = 0 and hence σ (a) ⊂ [0,∞).

To carry out the proof we consider c = bg (a) so that

c∗c = g (a) b∗bg (a) = g (a) ag (a) = −g (a)
3
.

Moreover if we write c = x+ iy with x and y being self-adjoint in A, then

c∗c+ cc∗ = (x− iy) (x+ iy) + (x+ iy) (x− iy) = 2
(
x2 + y2

)
or equivalently,

cc∗ = 2
(
x2 + y2

)
− c∗c = 2

(
x2 + y2

)
+ g (a)

3
.

Since t→ 2t2 and g3 are positive functions it follows that 2x2, 2y2, and g (a)
3

are self-adjoint with spectrum in [0,∞) and therefore by Corollary 9.6, σ (cc∗) ⊂
[0,∞). On the other hand σ (c∗c) = σ

(
−g (a)

3
)
⊂ (−∞, 0]. But an application

of Theorem 9.7 with a = c and b = c∗, show σ (cc∗) \ {0} = σ (c∗c) \ {0}
which along with the previous inclusions shows σ (c∗c) = {0} which implies

‖c‖2 = ‖c∗c‖ = r (c∗c) = 0. Therefore g3 (a) = 0 and as g3 > 0 on (−∞, 0) it
follows that σ (a) ⊂ [0,∞).

1 If b is assumed to be normal, life is easier as we saw in Corollary 7.36.

Corollary 9.10 (Polar Decomposition). Suppose that x ∈ B is an invertible
element of a unital C∗-algebra. Then there exists a unique u ∈ B and Hermitian
a ∈ B with σ (a) ⊂ [0,∞) such that x = ua.

Proof. If such a decomposition exists we must have

x∗x = au∗ua = a2

and so a =
√
x∗x. In order for this to make sense we are going to need to know

that σ (x∗x) ⊂ [0,∞).

9.1 Alternate Proofs

The goal of this section is to give an elementary proof of Proposition ??, i.e.
without the aid of the spectral theorem. We need to do some preparation first
which is of interest in its own right. The results in this section could be proved
using the spectral theorem as shown in Proposition ?? below.

Proposition 9.11. If A = A∗, then σ (A) ⊂
[
−‖A‖op , ‖A‖op

]
and if A ≥ 0,

then σ (A) ⊂
[
0, ‖A‖op

]
and moreover∥∥∥(A+ λ)

−1
∥∥∥ ≤ λ−1 for all λ > 0. (9.1)

Proof. First proof. By the spectral theorem we may assume there exists
a probability space, (Ω,F , µ) and a bounded measurable function, f, on Ω so
that A = Mf acting on H = L2 (µ) . We then know A = A∗ iff f is real a.e. and

σ (A) = essranµ (f) ⊂ [−‖f‖∞ , ‖f‖∞] =
[
−‖A‖op , ‖A‖op

]
.

Moreover, A ≥ 0 iff
∫
Ω
f |g|2 dµ ≥ 0 for all g ∈ L2 (µ) and this then implies

by taking g = 1A, that
∫
Ω
f1Adµ ≥ 0 for all A ∈ F . This last assertion is

equivalent to f ≥ 0 a.e. and hence

σ (A) = σ (Mf ) ⊂ [0, ‖f‖∞] =
[
0, ‖A‖op

]
.

Finally if λ > 0, then f + λ ≥ λ a.e. and therefore

0 ≤ 1

f + λ
≤ 1

λ
a.e.

which implies
∥∥∥(A+ λ)

−1
∥∥∥ =

∥∥∥ 1
f+λ

∥∥∥
∞
≤ 1

λ .
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Second proof. If A = A∗ and λ = a+ ib ∈ C, then

‖(A− λ) f‖2 = ‖(A− a) f − ibf‖2

= ‖(A− a) f‖2 − 2 Re 〈(A− a) f, ibf〉+ b2 ‖f‖2

= ‖(A− a) f‖2 + b2 ‖f‖2 ≥ b2 ‖f‖2 .

Hence if b 6= 0, then Ran (A− λ) is closed and hence

Ran (A− λ) = Nul
(
A− λ̄

)⊥
= {0}

where the latter assertion follows from the inequality we have proved with λ
replaced by λ̄. Thus we see that A− λ is a bijection with∥∥∥(A− λ)

−1
∥∥∥
op
≤ (Imλ)

−1
<∞.

So we have shown σ (A) ⊂ R and this completes the proof that σ (A) ⊂[
−‖A‖op , ‖A‖op

]
, since (as always) σ (A) ⊂ D

(
0, ‖A‖op

)
.

If we further assume that A ≥ 0 and λ > 0, then we have

‖(A+ λ) f‖2 = ‖Af + λf‖2

= ‖Af‖2 + 2 Re 〈Af, λf〉+ λ2 ‖f‖2

≥ ‖Af‖2 + λ2 ‖f‖2 ≥ λ2 ‖f‖2 .

The same argument as above now shows that (A+ λ)
−1

exists and Eq. (9.1)
holds.

Lemma 9.12. Suppose A ∈ B (H) with A ≥ 0 (this means A = A∗ and
〈Ax, x〉 ≥ 0 for all x ∈ H), then

1. Nul(A) = {x ∈ H : 〈x,Ax〉 = 0} .
2. Nul(A) = Nul(A2).
3. If A,B ∈ B (H) are two positive operators then Nul(A + B) = Nul(A) ∩

Nul(B).

Proof. Items 2. and 3. are fairly easy and will be left to the reader.
To prove Item 1., it suffices to show {x ∈ H : 〈x,Ax〉 = 0} ⊂ Nul(A) since

the reverse inclusion is trivial. For sake of contradiction suppose there exists
x 6= 0 such that y = Ax 6= 0 and 〈x,Ax〉 = 0. Using x ⊥ y, we have for λ ∈ R
that

〈(x+ λy) , A (x+ λy)〉 = 〈x+ λy, y + λAy〉

= λ 〈x,Ay〉+ λ ‖y‖2 + λ2 〈Ay, y〉

= 2λ ‖y‖2 + λ2 〈Ay, y〉 .

From this expression we easily deduce that

0 ≤ 〈(x+ λy) , A (x+ λy)〉 < 0

for all λ < 0 sufficiently close to zero which is a contradiction. But this contra-
dicts the positivity of A.

We can make item 1. of Lemma 9.12 more quantitative as follows.

Theorem 9.13. If A ≥ 0 and A−1 exists then there exists δ > 0 so that A ≥ δI.
Conversely if A ≥ δI for some δ > 0 then A−1 exists and

∥∥A−1
∥∥
op
≤ δ−1.

Proof. First proof. By Proposition 9.11 we know that σB(H) (A) ⊂ [0,∞)
and by Corollary 7.34 it follows that σC∗(A,I) (A) = σB(H) (A) ⊂ [0,∞). Hence
we may apply Corollary 7.36 (or Corollary ?? below) with B = C∗ (A, I) to
find Hence we may apply to find B ∈ C∗ (A, I) so that B = B∗, σB(H) (B) =

σC∗(A,I) (B) ⊂ [0,∞) and A = B2. Thus if A ≥ δI, then ‖Bx‖2 = 〈Ax, x〉 ≥
δ ‖x‖2 implies B−1 exists in B (H) and

∥∥B−1
∥∥ ≤ 1√

δ
and therefore A−1 exists

and ∥∥A−1
∥∥ =

∥∥∥(B−1
)2∥∥∥ ≤ 1

δ
.

Conversely if A−1 exists then B−1 exists and there exists δ > 0 so that ‖Bx‖2 ≥
δ ‖x‖2 for all x ∈ H. As in the above argument, it now follows that A ≥ δI.

Second proof. [This proof uses no C∗-algebra technology.] Suppose that

A−1 exists and let ε :=
∥∥A−1

∥∥−1

op
> 0. We then have∥∥A−1f

∥∥ ≤ ∥∥A−1
∥∥
op
‖f‖ =⇒ ‖f‖ ≤

∥∥A−1
∥∥
op
‖Af‖ , i.e.

‖Af‖ ≥ ε ‖f‖ for all f ∈ H.

If λ ≥ 0 and f ∈ H with ‖f‖ = 1, then

0 ≤ 〈A (f − λAf) , (f − λAf)〉 =
〈
Af − λA2f, f − λAf

〉
= 〈Af, f〉 − 2λ ‖Af‖2 + λ2

〈
A3f, f

〉
≤ 〈Af, f〉 − 2λε2 + λ2 ‖A‖3op .

Minimizing the right side of this inequality by taking λ = ε2/ ‖A‖3op shows

〈Af, f〉 ≥ ε4

‖A‖3op
=

1

‖A‖3op ‖A−1‖4op
=: δ > 0.

Conversely if A ≥ δI, then A− δI ≥ 0 and (by Proposition 9.11) it follows
that σ (A− δI) ⊂ [0,∞), i.e. σ (A) ⊂ [δ,∞). Hence 0 /∈ σ (A) , i.e. A−1 exists.
Moreover,

δ ‖f‖2 ≤ 〈Af, f〉 ≤ ‖Af‖ ‖f‖ =⇒ ‖Af‖ ≥ δ ‖f‖
from which it follows that

∥∥A−1
∥∥
op
≤ δ−1.
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Lemma 9.14. If B is a C∗-sub-algebra of B (H) with unit and B ∈ B with

B ≥ 0, then (I +B)
−1 ∈ B. Actually what is proved here is; if B ∈ B (H) with

B ≥ 0, then (I +B)
−1 ∈ C∗ (I,B) .

Proof. Let Aλ := I +λB for all λ ≥ 0. As Aλ ≥ I we know that A−1
λ exists

in B (H) by Theorem 9.13. Moreover if 0 ≤ λ < ‖B‖−1
op , then

A−1
λ =

∞∑
n=0

(−1)
n
λnBn ∈ B.

Suppose that we have shown that Aλ ∈ B for some λ > 0. Then for ε > 0 we
have

Aλ+ε = Aλ + εB = Aλ
[
I + εA−1

λ B
]

where A−1
λ B ∈ B. Thus if ε

∥∥A−1
λ B

∥∥ < 1, then

[
I + εA−1

λ B
]−1

=

∞∑
n=0

(−1)
n
λn
(
BA−1

λ

)n ∈ B
and so A−1

λ+ε =
[
I + εA−1

λ B
]−1

A−1
λ ∈ B. On the other hand, from Proposition

9.11,

∥∥A−1
λ

∥∥ =
∥∥∥(I + λB)

−1
∥∥∥ = λ−1

∥∥∥∥∥
(
B +

1

λ

)−1
∥∥∥∥∥

≤ λ−1
(
λ−1

)−1
= 1 for all λ ≥ 0

and so
ε
∥∥A−1

λ B
∥∥ ≤ ε ‖B‖

and the previous construction works provided ε < ‖B‖−1
op where the bound on

ε is independent of λ! Putting this all together if we fix n ∈ N so that 1/n < ε,
then we can show inductively that Ak/n ∈ B for k = 1, 2, . . . and hence A1 ∈ B.

Corollary 9.15. Let B be a C∗-sub-algebra of B (H) with identity and A ∈ B
with A ≥ 0. If A−1 exists in B (H) then A−1 ∈ B. [In other words, if A ∈ B
and A ≥ 0, then invertibility of A in B (H) and in B are the same notions.]

Proof. By Theorem 9.13, if A−1 exists there exists δ > 0 so that A ≥ δI.
We may replace A by δ−1A and henceforth assume that A ≥ I. Then B :=
A − I ∈ B and A = I + B with B ≥ 0. It now follows from Lemma 9.14 that
A−1 = (I +B)

−1 ∈ B.

Proposition 9.16. Suppose that A is a self-adjoint operator on a Hilbert space,
H, such that A ≥ εI for some ε > 0. Then A−1 exists and if M is chosen so
that εI ≤ A ≤MI and λ := (M + ε) /2, then

A−1 =

∞∑
n=−0

1

λn+1
(λI −A)

n
.

Proof. The key idea of the proof is to shift A by some λ ∈ R in such a way
that we make ‖A− λI‖op as small as possible. To this end let α := (M − ε) /2
and set λ = (M + ε) /2 = ε+ α = M − α and note that

A = λI + (A− λ) = λ

[
I +

1

λ
(A− λ)

]
where

1

λ
(ε− λ) I ≤ 1

λ
(A− λ) ≤ 1

λ
(M − λ) I

and
1

λ
(ε− λ) = − α

ε+ α
and

1

λ
(M − λ) =

α

ε+ α

and hence

− α

ε+ α
I ≤ 1

λ
(A− λ) ≤ α

ε+ α
I.

From this we conclude that∥∥∥∥ 1

λ
(A− λ)

∥∥∥∥
op

≤ α

ε+ α
< 1

and hence I + 1
λ (A− λ) is invertible and moreover,

A−1 =
1

λ

∞∑
n=−0

1

λn
(λI −A)

n
=

∞∑
n=−0

1

λn+1
(λI −A)

n
.

Corollary 9.17. If T ∈ B (H) is an invertible operator, then there exists λ ∈
(0,∞) such that

T−1 =

∞∑
n=−0

1

λn+1
(λI − T ∗T )

n
T ∗ (9.2)

and in particular T−1 ∈ C∗ (I, T ) where C∗ (I, T ) is the C∗–algebra generated
by {I, T} , i.e. C∗ (I, T ) is the smallest Banach sub-algebra of B (H) containing
{I, T, T ∗} .
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Proof. Let ε > 0 be defined so that
∥∥T−1

∥∥
op

= ε−1/2, i.e.∥∥T−1v
∥∥2 ≤ ε−1 ‖v‖2 for all v ∈ H.

Replacing v by Tv in this inequality and then multiplying by ε shows,

ε ‖v‖2 ≤ ‖Tv‖2 = 〈T ∗Tv, v〉 .

Hence A = T ∗T is a self-adjoint operator such such A ≥ εI for some ε > 0,
hence by Proposition 9.16, there exists λ > ε > 0 such that

A−1 =

∞∑
n=−0

1

λn+1
(λI −A)

n
=

∞∑
n=−0

1

λn+1
(λI − T ∗T )

n
.

Equation (9.2) follows from this equation and the observation that T−1 =
A−1T ∗.

As a consequence of Corollary 9.17, if T ∈ B (H) , then

σB(H) (T ) = σC∗(I,T ) (T ) .

9.2 The Spectral Theorem Again

In this section, let H be a complex Hilbert space. Our goal here is to give
another C∗-algebra style proof of the spectral theorem.

9.2.1 First variant of the spectral theorem proof.

Theorem 9.18. Let H be a Hilbert space, B, be a commutative C∗-subalgebra

of B (H) with identity, x ∈ H \ {0} , and Hx := BxH . Then there exists a
compact Hausdorff space, X, a Radon measure µ on X, and a unitary map,
U : L2 (X,µ) → Hx, and fA ∈ L∞ (X,µ) such that U∗AU = MfA for all
A ∈ B.

Proof. Let X := B̃ = spec (B) and fA := Â ∈ C
(
B̃
)

for all A ∈ B. To

construct the measure, µ, let Λ be the linear functional on C
(
B̃
)

defined by,

Λ
(
Â
)

:= 〈Ax, x〉 for all A ∈ B.

If Â ≥ 0 then
√
Â ∈ C

(
B̃
)

and
√
Â = B̂ for some B ∈ B and moreover,

B = B∗ and B2 = A since B̂2 = B̂2 = Â. Therefore,

Λ
(
Â
)

=
〈
B2x, x

〉
= 〈Bx,Bx〉 = ‖Bx‖2

which shows Λ is a positive linear functional on C
(
B̃
)
. An application of the

Riesz-Markov theorem (see [41, Theorem 3.14, p. 69]) there exists a unique
Radon measure such that Λ (f) =

∫
X
fdµ for all f ∈ C (X) , i.e.

〈Ax, x〉 = Λ
(
Â
)

=

∫
B̃
Âdµ ∀ A ∈ B.

Let us further observe that∫
B̃

∣∣∣Â∣∣∣2 dµ =

∫
B̃
Â∗Adµ = 〈A∗Ax, x〉 = ‖Ax‖2 . (9.3)

From this identity it follows that Â = 0 µ – a.e. iff Ax = 0. Thus we may define

a linear operator, U0 : C
(
B̃
)
→ Hx ⊂ H by defining

U0Â := Ax for all A ∈ B.

This map is an isometry on the dense subspace,2 C (X) , of L2 (X,µ) and
therefore extends uniquely to an isometry U : L2 (X,µ) → Hx. As the
Bx = Ran (U0) ⊂ Ran (U) , Bx is dense in Hx, and Ran (U) is complete and
hence closed, we conclude that Ran (U) = Hx. This shows U : L2 (X,µ)→ Hx

is unitary. Finally if A,B ∈ B, then

U∗AUB̂ = U∗ABx = ÂB = ÂB̂ = MÂB̂.

Since C
(
B̃
)

is dense in L2 (µ) we may conclude that U∗AU = MÂ and the

proof is complete.

Corollary 9.19. Let H be a separable Hilbert space and B be a commutative
C∗-subalgebra of B (H) . Then there exists a finite measure space (X,F , µ) ,
fA ∈ L∞ (µ) for all A ∈ B, and a unitary map, U : L2 (µ) → H, such that
U∗AU = MfA for all A ∈ B.

Proof. Follow the same proof strategy as in the proof of Corollary 7.40 with
Theorem 9.18 playing the role of Theorem ??.

2 Recall that C (X) is a dense subspace of Lp (X,µ) for an 1 ≤ p < ∞, see [41,
Theorem 3.14, p. 69].
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9.2.2 Second variant of the spectral theorem proof.

In this section we are going to give another variant of the proof of Corollary 9.19.
The key idea is to take B and embedded it in a larger (maximal) commutative
C∗-subalgebra A of B (H) . We then show that A has cyclic vector and therefore
we will get the result of Corollary 9.19 by directly applying Theorem 9.18 with
B replaced by A as long as we choose x to be cyclic vector for A.

Notation 9.20 If S ⊂ B (H) then

S′ = {A ∈ B (H) : AB = BA ∀B ∈ S}.

S′ is clearly a subalgebra of B (H) for any set S. S′ is called the commutator
algebra of S.

Remark 9.21. Recall from Proposition ?? that S′ is w.o.t. closed and hence also
s.o.t. and operator norm closed. It is of course easy to directly verify that S′

is closed under operator norm convergence. Indeed, if An ∈ S′ and A ∈ B (H)
such ‖A−An‖op → 0, then for any B ∈ S,

[B,A] = lim
n→∞

[B,An] = 0 for all B ∈ S

which shows A ∈ S′.
Also observe that if S is ∗ – closed then so is S′. Indeed, if A ∈ S′, then

[A∗, B] = − [A,B∗]
∗

= 0 for all B ∈ S.

Definition 9.22. A maximal abelian algebra on H is a commutative subal-
gebra, A ⊂ B (H) , which is not contained in any larger commutative subalgebra
of B (H) .

Proposition 9.23. Let H be a Hilbert space and A be a sub-algebra of B (H) .
Then;

1. A ⊂ B (H) is a maximal abelian subalgebra iff A′ = A.
2. If A is maximal abelian then A is operator norm closed. [More generally A

is w.o.t. and s.o.t. closed.]

Proof. We consider each item separately.

1. Suppose A is a maximal abelian algebra and B ∈ A′. Then the algebra
generated by A ∪ {B} consisting of operators of the form

A0 +A1B +A2B
2 + · · ·+AnB

n with Aj ∈ A

is a commutative algebra containing A and therefore it is A. Thus we have
shown A′ ⊂ A and as A is commutative we also have A ⊂ A′, i.e. A′ = A.
Conversely, if A is not maximal abelian then there exist a commutative
algebra, B ⊂ B (H) , such that A $ B. As B ⊂ A′ it follows that A $ A′.

2. This follows from item 1. and Remark 9.21.

Definition 9.24. A maximal abelian self–adjoint (m.a.s.a.) algebra on
H is a commutative ∗-subalgebra, A ⊂ B (H) , which is not contained in any
larger commutative ∗-subalgebra of B (H) .

Proposition 9.25. Let H be a Hilbert space and A be a ∗-subalgebra of B (H) .

1. A is a maximal abelian self–adjoint algebra iff A′ = A.
2. A m.a.s.a. algebra A is a C∗-algebra.3

Proof. 1. If A′ = A, then A is maximal abelian by Proposition 9.23 and in
particular A must be a m.a.s.a. Conversely if A is m.a.s.a. and B ∈ A′, then
B∗ ∈ A′ by Remark 9.21 and hence

X := ReB =
1

2
(B +B∗) ∈ A′ and

Y := ImB =
1

2i
(B −B∗) ∈ A′.

Since X and Y are self-adjoint, the algebras generated by A∪{X} and A∪{Y }
are both commutative self-adjoint algebras containing A and hence must be A.
This shows that both X,Y ∈ A and hence B = X + iY ∈ A. Thus we have
shown A′ ⊂ A and therefore A′ = A as we always have A ⊂ A′ when A is
commutative.

2. If A is m.a.s.a., then A = A′ is operator norm closed by Remark 9.21 and
is ∗-closed by definition, i.e. A is a C∗-subalgebra of B (H) .

Definition 9.26. Let (X,µ) be a measure space. The multiplication alge-
bra (denoted by M(X,µ)) of (X,µ) is the algebra of operators on L2(X,µ)
consisting of all Mf , f ∈ L∞.

The next proposition is essentially a repeat of item 1. of Proposition ??
below.

Proposition 9.27. If (X,µ) is a σ–finite measure space, then M(X,µ) is a
m.a.s.a. algebra.

Proof. Assume first µ (X) <∞. WriteM =M(X,µ) and assume T ∈M′.
Let g = T (1). If f ∈ L∞ then TMf1 = MfT1. Therefore T (f) = fg. Thus
Tf = Mgf for f in L∞. The proof in the preceding example shows ‖g‖∞ ≤ ‖T‖.
Since Mg is bounded the equation T | L∞ = Mg | L∞, already established,

3 It also a von Neumann algebra.
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extends by continuity to L2. Hence T ∈ M and M is maximal abelian. Since
M∗g = Mg, M is self–adjoint.

In the general case, write X = ∪∞j=1Xj , where the Xj are disjoint subsets
of finite measure. If T is in M′ it commutes with MχXj

and therefore leaves

invariant the subspace L2(Xj) which we identify with {f ∈ L2 (X) : f =
0 off Xj}. Apply the finite measure case and piece together the result to get
the general case.

Definition 9.28. If A is a subalgebra of B (H) a vector x in H is called a
cyclicvector for A if Ax ≡ {Ax : A ∈ A} is dense in H.

Lemma 9.29. Let A be any ∗ subalgebra of B (H). Suppose K is a closed sub-
space of H and P is the projection on K. Then K is invariant under A iff
P ∈ A′.

Proof. (This result may be deduced rather quickly from Exercise 5.2. Nev-
ertheless, we will give the proof here for completeness.)

(⇐) If P ∈ A′ and x ∈ K, then

Ax = APx = PAx ∈ K ∀ A ∈ A.

(⇒) If AK ⊂ K, then for any x ∈ H, Px ∈ K and so APx ∈ K. Thus it
follows that APx = PAPx for all A ∈ A and x ∈ H, i.e. AP = PAP for all
A ∈ A. Since A∗ ∈ A for A ∈ A we also have A∗P = PA∗P for all A ∈ A.
Using these observations we find,

PA = P ∗A = (A∗P )∗ = (PA∗P )∗ = PAP = AP ∀ A ∈ A,

i.e. P ∈ A′.
Alternative proof. Let x, y ∈ H and A ∈ A, then using APx ∈ K and

A∗Py ∈ K we find,

〈APx, y〉 = 〈APx, Py〉 = 〈Px,A∗Py〉
= 〈x,A∗Py〉 = 〈PAx, y〉 .

As x, y ∈ H were arbitrary we have shown [A,P ] = 0 so that P ∈ A′.

Lemma 9.30. If H is separable and A is a m.a.s.a. on H then A has a cyclic
vector.

Proof. For any x ∈ H, let Ax be the closed subspace containing Ax. Since
I ∈ A, x ∈ Ax. Since Ax is invariant under A, so is Ax. If y ⊥ Ax then
Ay ⊥ Ax since 〈Ay,Bx〉 = 〈y,A∗Bx〉 = 0. Let E = {xα} be an orthonormal
set such that Axα ⊥ Axβ if α 6= β. Such sets exist (e.g. singletons). Zorn’s
lemma gives us a maximal such set. For this E, H = closed spanα{Axα} for

otherwise we could adjoin to E any unit vector in (span{Axα})⊥. Now, since
H is separable, E is countable; E = {x1, x2, . . .} put z =

∑∞
n=1 2−nxn.

Claim: z is a cyclic vector for A. To prove this recall from Lemma 9.29
that the orthogonal projection operator, Pn, from H onto Axn is in A′ = A.
Therefore,

Az ⊃ APnz = A2−nxn = Axn ∀n ∈ N
and hence

H = closed spann{Axn} ⊂ Az.

Theorem 9.31. Let A be a m.a.s.a. on separable Hilbert space H. Then there
exists finite measure space (X,µ) and a unitary operator U : H � L2(X,µ)
such that UAU−1 =M(X,µ).

Proof. Let z be a unit cyclic vector for A and then apply Theorem 9.18
with B replaced by A and x = z in order to find a Radon measure, µ , on
x := Ã such that

UAU−1 = MÂ for all A ∈ A. (9.4)

Let N = UAU−1 and let M = {Mf : f ∈ L∞ (X,µ)} be the multiplication
algebra of (X,µ). Then

N ′ =
[
UAU−1

]′
= N = UA′U−1 = N = UAU−1 = N

and N ⊂M by Eq. (9.4). Therefore, (using Proposition 9.27) we find

M =M′ ⊂ N ′ = N ⊂M,

i.e. M = N .

Remark 9.32. The compact Hausdorff space, X = spec (A) in the above proof
is rather pathological. It has the bizarre property that every element, f ∈
L∞ (X,µ) , has a continuous representative!

Theorem 9.33 (Spectral Theorem). Let {Aα}α∈I be a family of bounded
normal operators on a complex separable Hilbert space. Assume that the family
is a commuting set in the sense that:

AαAβ = AβAα ∀α, β

and
AαA

∗
β = A∗βAα ∀α, β

Then there exists a finite measure space (X,µ) and a unitary operator U :
H → L2(X,µ) and for each α there exists a function fα ∈ L∞ such that

UAαU
−1 = Mfα .
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Proof. Let A0 be the algebra generated by the {Aα, A∗α}α∈I . Then A0 is a
commutative ∗ algebra. Order the set of all commutative self-adjoint algebras
containing A0 by inclusion. By Zorn’s lemma there exists a largest such algebra,
A. [Bruce does not see the need for the following argument as it seems to me that
clearly A is m.a.s.a. by construction. We assert that A = A′. Indeed if B ∈ A′
then B∗ ∈ A′ also because A is self-adjoint. Hence C := B + B∗ ∈ A′. But
the algebra generated by A and C is commutative and self-adjoint. Therefore
C ∈ A. Similarly i(B − B∗) ∈ A. Hence B ∈ A. So A′ = A. Therefore A is
maximal abelian and self-adjoint.]

Now by the Theorem 9.31, there exists a measure space (X,µ) with µ (X) =
1 and a unitary operator, U : H → L2 (X) , such that UAU−1 = M(X,µ).
Therefore UAαU

−1 = Mfα for some fα ∈ L∞.
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*Projection Valued Measure Spectral Theorem

It is natural to put this material here but in fact I will likely be able to
avoid using projection valued measures in the remainder of these notes. So for
the time being you may consider this chapter optional as well. [This chapter
needs editing!]

Recall that if A is a n × n self-adjoint matrix, then one may express the
spectral theorem as,

A =
∑

λ∈σ(A)

λEλ

where Eλ is orthogonal projection onto Nul (A− λI) for all λ ∈ σ (A) . The goal
of this chapter is to rewrite the general spectral theorem in this same form. The
statement we are aiming for is if A ∈ B (H) is self-adjoint, then there exists a
unique “projection valued measure,” E (·) , on σ (A) so that

A =

∫
σ(A)

λdE (λ) .

Clearly to make sense of this assertion we have to develop the notion of projec-
tion valued measures.

10.1 Projection valued measures

Definition 10.1. A sequence An of bounded operators on a Banach space B
converges strongly to a bounded operator A if Anx → Ax for each x ∈ B.
An converges weakly to A if 〈Anx, y〉B×B∗ → 〈Ax, y〉B×B∗ for all x ∈ B,
y ∈ B∗. If B is a Hilbert space weak convergence is equivalently defined as
〈Anx, y〉H → 〈Ax, y〉H for all x, y ∈ H.

Definition 10.2. If P and Q are two projections in H, then P is called or-
thogonal to Q if Ran(P ) ⊥ Ran(Q).

Proposition 10.3. A bounded operator P with range M is the orthogonal pro-
jection onto M iff P 2 = P and P ∗ = P .

Proof. We already know that the orthogonal projection onto a closed sub-
space M has these properties. Suppose then that P 2 = P and P ∗ = P and

M = Ran (P ) . If x ∈M then x = Py for some y. Hence: Px = P 2y = Py = x.
So P |M = IM . The subspace, M, is closed since, if xn ∈ M and xn → x
then Px = limPxn = limxn = x. Hence x ∈ M . It remains to show that
Nul(P ) = M⊥.

If x ∈M and Py = 0 then

〈x, y〉 = 〈Px, y〉 = 〈x, Py〉 = 0

and therefore Nul (P ) ⊂M⊥. If y ∈M⊥ then

〈x, Py〉 = 〈Px, y〉 = 0 ∀ x ∈ H

which implies Py = 0, i.e. y ∈ Nul (P ) .
Note: Henceforth projection means “orthogonal projection”.

Corollary 10.4. If P1, P2 are two projections with ranges M1, M2, respectively,
then

1. M1 ⊥M2 implies P1P2 = P2P1 = 0.
2. P1P2 = 0 implies M1 ⊥M2.
3. In case of 1. or 2., P1 + P2 is the projection onto span {M1,M2}.

[If either of the equivalent conditions in items 1. or 2. hold we say P1 is
orthogonal to P2 and write P1 ⊥ P2.]

Proof. We will take each item in turn.

1. If M1 ⊥ M2, then for any x ∈ H, P1x ∈ M1 ⊂ M⊥2 = Nul(P2) and hence
P2P1x = 0. Similarly one shows P1P2 = 0.

2. If P1P2 = 0 and x ∈M1, y ∈M2, then

〈x, y〉 = 〈P1x, P2y〉 = 〈x, P1P2y〉 = 0,

which shows M1 ⊥M2.
3. If P1P2 = 0, then

(P1 + P2)2 = P 2
1 + P1P2 + P2P1 + P 2

2 = P1 + P2
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and moreover (P1 + P2)∗ = P1 + P2. Therefore by Proposition 10.3, P =
P1 + P2 is the projection onto some closed subspace M . If x ∈M1, y ∈M2

then

P (x+ y) = P1x+ P2x+ P1y + P2y = P1x+ P2y = x+ y

and therefore M ⊇M1+M2. If z ∈M , then z = Pz = P1z+P2z ∈M1+M2.

Proposition 10.5. If Pn is a sequence of mutually orthogonal projections, then
strong limn→∞

∑n
k=1 Pk exists and is the projection onto the closure of span

{Ran(Pn)}∞n=1.

Proof. Let Qn =
∑n
k=1 Pk. Then Qn is the projection on M1 + · · · + Mn

where Mj = Ran(Pj) by Corollary 10.4 and induction. The Proposition is now a
consequence of the Martingale Convergence Theorem of Exercise ??. For those
who did not do that exercise, I will complete the proof here.

As Qn is orthogonal projection we know, for all x ∈ H, that ‖Qnx‖2 5 ‖x‖2 .
This inequality is, by Pythagorean’s theorem, equivalent to

‖x‖2 =

∥∥∥∥∥
n∑
k=1

Pkx

∥∥∥∥∥
2

=

〈
n∑
k=1

Pkx,

n∑
j=1

Pjx

〉
=

n∑
k=1

‖Pkx‖2

from which it follows that
∑∞
k=1 ‖Pkx‖2 ≤ ‖x‖

2
. But if n > m,

‖(Qn −Qm)x‖2 =

n∑
k=m+1

‖Pkx‖2 → 0 as m,n→∞.

Hence Qx := limn→∞Qnx exists for all x ∈ H. The operator Q is clearly a
bounded linear operator and ‖Q‖ 5 1. Since

〈Qx, y〉 = lim
n→∞

〈Qnx, y〉 = lim
n→∞

〈x,Qny〉 = 〈x,Qy〉 ∀ x, y ∈ H,

Q∗ = Q. Using QmQn = Qm if n = m, it follows that for any x ∈ H,

Q2x = lim
m
QmQx = lim

m
lim
n
QmQnx = lim

m
Qmx = Qx,

i.e. Q2 = Q. Thus Q is the projection on some closed subspace M .
If x ∈ Mk, then Qnx = x for n = k and therefore Qx = x. This shows

Mk ⊂ M and as k was arbitrary we may conclude N := span{Mn} ⊂ M.
Finally, if x ∈ N⊥, then x ⊥Mn for all n ∈ N, i.e. Qnx = 0 for all n. Therefore
Qx = 0 and we have shown N⊥ ⊂M⊥ which implies M ⊂ N.

Definition 10.6 (Projection valued measures). Let Ω be a set and let S
be a sub σ–field of 2Ω . A projection valued measure on S is a function E(·)
from S to projections on a Hilbert space H such that

1. E(∅) = 0,
2. E(Ω) = I,
3. E(A ∩B) = E(A)E(B) where A,B ∈ S, and
4. if A1, A2, . . . is a disjoint sequence in S, then

E(∪∞n=1An) =

∞∑
n=1

E(An) (strong sum). (10.1)

Remark 10.7. Items 1. and 3. of Definition 10.6 imply; if A ∩B = ∅ then E(A)
and E(B) are mutually orthogonal. Hence the strong sum in Eq. (10.1) con-
verges to a projection by Proposition 10.5.

Remark 10.8. If E(·) a projection valued measure on a measurable space, (Ω,S),
then for every x, y ∈ H, S 3B → 〈E(B)x, y〉 is a complex measure on S.

Notation 10.9 If E(·) a projection valued measure on a measurable space,
(Ω,S), and v ∈ H we let µv denote the positive measure on S defined by

µv (B) := 〈E (B) v, v〉 for all B ∈ S.

Example 10.10. Suppose (Ω,S) is a measure space, (Z,M, µ) is a σ – finite
measure space, and G : Z → Ω is a measurable function. Then one easily
checks E (A) := M1A◦G = M1G−1(A)

∈ B
(
L2 (X,µ)

)
for all A ∈ S defines a

projection valued measure.

Example 10.11. Suppose that T = (T1, T2, . . . , Tn) are n – commuting normal
operators, Ω = σ (T) , S = B (σap (T)) , and for A ∈ S, let E (A) := 1A (T) :=
ϕT (1A) . Then {E (A) : A ∈ S} is a projection valued measure. We will see
shortly that in this case, if v ∈ H and µv is the measure in Notation 10.9, then
µv agrees with the measure used in Eq. (??) of Theorem ??.

Definition 10.12. Let E(·) be a projection valued measure (Ω,S). As usual if
f : Ω → C is an S -simple function, then we define∫

Ω

fdE :=
∑
λ∈C

λE (f = λ)

where
E (f = λ) := E ({ω ∈ Ω : f (ω) = λ}) = E

(
f−1 ({λ})

)
.

[To simplify notation we will often write
∫
fdE for

∫
Ω
fdE.]
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10.1 Projection valued measures 107

As for any vector valued measure, the above integral is a B (H) – valued
linear transformation on the S – simple functions, see the proof of Proposition
1.28 which goes through without any significant change. Let us summarize some
more properties of this integral.

Proposition 10.13 (Properties of f →
∫
fdE). The map

{S-simple functions} 3 f →
∫
Ω

fdE ∈ B (H)

is a linear transformation. Moreover this integral satisfies the following identi-
ties; ∫

fdE = (

∫
fdE)∗, (10.2)∫

fgdE =

(∫
fdE

)(∫
gdE

)
, (10.3)

and for x, y ∈ H,〈(∫
Ω

f (ω) dE (ω)

)
x, y

〉
=

∫
Ω

f (ω) d 〈E (ω)x, y〉 and (10.4)〈(∫
fdE

)
x,

(∫
gdE

)
y

〉
=

∫
fḡd 〈E (·)x, y〉 . (10.5)

In particular, ∥∥∥∥(∫ fdE

)
x

∥∥∥∥2

=

∫
Ω

|f (ω)|2 dµx (ω) and (10.6)∥∥∥∥∫ fdE

∥∥∥∥
op

≤ sup
ω∈Ω
|f(ω)|. (10.7)

Proof. We take the identities in turn. Equation (10.2) is proved by;(∫
fdE

)∗
=

(∑
λ∈C

λE (f = λ)

)∗
=
∑
λ∈C

λ̄E (f = λ)

=
∑
λ∈C

λE
(
f = λ̄

)
=
∑
λ∈C

λE
(
f̄ = λ

)
=

∫
f̄dE.

For Eq. (10.3 ) we first observe that

fg =
∑
α,β∈C

αβ1f=α1g=β =
∑
α,β∈C

αβ1{f=α,g=β}

and hence,∫
fgdE =

∑
α,β∈C

αβE (f = α, g = β) =
∑
α,β∈C

αβE (f = α)E (g = β)

=
∑
α∈C

αE (f = α)
∑
β∈C

βE (g = β) =

(∫
fdE

)(∫
gdE

)
.

For Eq. (10.4) we have〈(∫
Ω

f (ω) dE (ω)

)
x, y

〉
=

〈(∑
λ∈C

λE (f = λ)

)
x, y

〉
=
∑
λ∈C

λ 〈(E (f = λ))x, y〉

=

∫
Ω

fd 〈E (·)x, y〉 .

Equation (10.5) now follows easily from what we have already proved, namely;〈(∫
fdE

)
x,

(∫
gdE

)
y

〉
=

〈(∫
gdE

)∗(∫
fdE

)
x, y

〉
=

〈(∫
ḡdE

)(∫
fdE

)
x, y

〉
=

〈(∫
fḡdE

)
x, y

〉
=

∫
fḡd 〈E (·)x, y〉 .

Taking g = f and x = y in the above identity implies Eq. (10.6) and Eq. (10.7)

easily follows since µx (Ω) = ‖x‖2 .

Definition 10.14. If f is a bounded measurable function, let fn be a sequence
of simple measurable functions converging to f uniformly. Then by Eq. (10.6)
of Proposition 10.13,∥∥∥∥∫ fndE −

∫
fmdE

∥∥∥∥
op

→ 0 as m,n→∞.

Hence we may define
∫
fdE by,

∫
fdE = limn→∞

∫
fndE (in operator norm

topology).

The majority of the proof of the following corollary is straightforward and
will be left to the reader.

Page: 107 job: 241Functional_2020s macro: svmonob.cls date/time: 13-Feb-2020/12:28



108 10 *Projection Valued Measure Spectral Theorem

Corollary 10.15. All of the properties of the integral in Proposition 10.13 ex-
tend to the integral on bounded measurable functions in Definition 10.14. More-
over, if fn → f boundedly then∫

fndE
s→
∫
fdE and n→∞.

Proof. We only verify the last assertion here. The key point is that for any
x ∈ H we still have have∥∥∥∥(∫ fdE

)
x

∥∥∥∥2

=

∫
|f |2 dµx

as it holds for simple functions by Proposition 10.13 and then for bounded
measurable functions by taking uniform limits. Thus if fn → f boundedly we
have ∥∥∥∥(∫ fdE

)
x−

(∫
fndE

)
x

∥∥∥∥2

=

∫
|f − fn|2 dµx → 0 as n→∞

by DCT.

Remark 10.16 (Truncation). If B ∈ S and f is a bounded measurable function
on Ω, then (∫

fdE

)
E (B) =

(∫
fdE

)(∫
1BdE

)
=

∫
1BfdE.

As usual we let ∫
B

fdE :=

∫
Ω

1BfdE =

(∫
Ω

fdE

)
E (B) .

Example 10.17 (Continuation of Example 10.10). Let us continue the setup in
Example 10.10, i.e. (Ω,S) is a measure space, (Z,M, µ) is a σ – finite measure
space, G : Z → Ω is a measurable function, and

E (A) := M1A◦G = M1G−1(A)
∈ B

(
L2 (Z, µ)

)
for all A ∈ S.

In this case if f : Ω → C is a bounded measurable function then∫
Ω

fdE = Mf◦G.

Indeed, if f = 1A for some A ∈ S then∫
Ω

1AdE = E (A) = M1A◦G

and hence if f is an S – simple function,∫
fdE =

∑
λE (f = λ) =

∑
λM1{f=λ}◦G

=
∑

λM1{f◦G=λ} = Mf◦G.

For general bounded S – measurable functions f, we may choose S – simple
functions, fn, so that fn → f uniformly and therefore,∫

fdE = lim
n→∞

∫
fndE = lim

n→∞
Mfn◦G = Mf◦G

wherein we have used

‖Mfn◦G −Mf◦G‖op ≤ sup
z∈Z
|fn (G (z))− f (G (z))| ≤ ‖fn − f‖∞ → 0 as n→∞.

10.2 Spectral Resolutions

Definition 10.18 (Support). The support of a projection measure E on
(Cn,B (Cn)) is the set

supp (E) := {λ ∈ Cn : E (B (λ, ε)) 6= 0 for all ε > 0} .

Remark 10.19. Here are a few simple remarks about supp (E) .

1. Cn \ supp (E) is an open set and hence supp (E) is a closed set.
2. If K = supp (E) and f : Cn → C is a bounded measurable function, then∫

Cn
f (z) dE (z) =

∫
Cn

1K (z) f (z) dE (z) .

This follows directly from Remark 10.16 and the observation that E (K) = I
so that and hence∫

Cn
fdE =

(∫
Cn
fdE

)
E (K) =

∫
Cn

1KfdE.

3. If A ⊂ Cn is a Borel set and v ∈ RanE (A) , then supp (µv) ⊂ Ā. Indeed
we have

µv (B) = 〈E (B) v, v〉 = 〈E (B)E (A) v, v〉
= 〈E (B ∩A) v, v〉 = µv (B ∩A) .

Thus if λ ∈ Cn and ε > 0 so that B (λ, ε) ∩A = ∅ we must have

µv (B (λ, ε)) = µv (B (λ, ε) ∩A) = µv (∅) = 0.

This shows that if λ ∈ Āc then λ ∈ supp (µv)
c
, i.e. supp (µv) ⊂ Ā.
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Lemma 10.20 (Optional). Suppose that E is a compactly supported projec-
tion valued measure on (Cn,B (Cn)) and for 1 ≤ j ≤ n,

Tj :=

∫
K

zjdE (z)

where K = supp (E) . Then supp (E) = σap (T) where T = (T1, . . . , Tn) .

Proof. First observe if λ ∈ Cn and v ∈ H, then

n∑
j=1

‖(Tj − λj) v‖2 =

n∑
j=1

∫
K

|zj − λj |2 dµv (z)

=

∫
K

|z− λ|2 dµv (z) . (10.8)

If we now assume λ ∈ supp (E) and ε > 0, we can find vε ∈ RanE (B (λ, ε))
such that ‖vε‖ = 1. Taking v = vε in Eq. (10.8) and making use of Item 3. in
Remark 10.19 we find,

n∑
j=1

‖(Tj − λj) vε‖2 =

∫
B(λ,ε)

|z− λ|2 dµvε (z)

≤ ε2 ‖vε‖2 = ε2

and as ε > 0 was arbitrary we have shown λ ∈ σap (T) . Conversely if λ /∈
supp (E) there exists ε > 0 so that E (B (λ, ε)) = 0 and hence for any v ∈ H
we also have µv (B (λ, ε)) = 0. Using this remark back in Eq. (10.8) shows,

n∑
j=1

‖(Tj − λj) v‖2 =

∫
K\B(λ,ε)

|z− λ|2 dµv (z) ≥ ε2 ‖v‖2

and hence λ /∈ σap (T) .

Definition 10.21 (Spectral resolution). Suppose that T = (T1, . . . , Tn) is a
list of commuting normal operators in B (H) . A spectral valued measure, E, on
(Cn,B (Cn)) is a spectral resolution for T provided E is compactly supported
and

Tj =

∫
σap(T)

zjdE (z) for 1 ≤ j ≤ n. (10.9)

Theorem 10.22 (Spectral Resolution Theorem). If T = (T1, . . . , Tn) is
a list of commuting normal operators in B (H) , then T has a unique spectral
resolution, namely E (B) = 1B (T) for all B ∈ B (Cn) . Moreover, supp (E) =
σap (T) .

Proof. Uniqueness. Let E (·) be a spectral resolution of T and K :=
supp (E) ∪ σap (T) . For any bounded measurable function, f, on K let

ψ (f) :=

∫
E

fdE.

It is now easily verified that ψ is a ∗ – homomorphism satisfying the hypothesis
of satisfying the same properties as ϕ in Theorem 7.42 and hence we in fact
must have ψ (f) = ϕ

(
f1σap(T)

)
by the same uniqueness proof used there.

Existence. Let E (B) = 1B∩σap(T) (T) for all B ∈ B (Cn) in which case
supp (E (·)) ⊂ σap (T) . Moreover, by the spectral Corollary 7.40 we may find a
finite measure space (X,F , µ) and a measurable functions π : X → σap (T) ⊂
Cn such that Tj = UMπjU

∗ for some unitary map, U : L2 (µ) → H. With
this notation we have E (B) = UM1A◦πU

∗. If f : σap (T) → C is a bounded

measurable function and Ẽ (A) := M1A◦π, it is easy to verify that∫
σap(T)

fdE = U

[∫
σap(T)

fdẼ

]
U∗.

From Example 10.17, we know that∫
σap(T)

fdẼ = Mf◦π

and therefore, ∫
σap(T)

fdE = UMf◦πU
∗ = f (T) .

Taking f (z) = zj then shows that E is a spectral resolution of T.

Corollary 10.23. Let T = (T1, . . . , Tn)be a list of commuting normal opera-
tors in B (H) and E (·) be the corresponding spectral resolution. If D ∈ B (H)
satisfies [Tj , D] = 0 for 1 ≤ j ≤ n, then [E (B) , D] = 0 for all B ∈ B (σap (T)) .
In other words, E (B) ∈ C (I,T)

′′
– the double commutant of C (I,T) .

Proof. This follows directly from item 7. of Theorem 7.42 and the fact that
E (B) = ϕT (1B) for all B ∈ B (σap (T)) .

Corollary 10.24. If A is a bounded normal operator on H with spectral reso-
lution E(·) then support E = σ(A).

Proof. From the construction of E, we see that the support of E is the
essential range of f . But essential range of f = σ(Mf ) = σ(A) since unitary
equivalences preserve spectrum.
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Lemma 10.25. For any bounded operator A,

σ(A∗) = conj (σ (A)) := {z̄ : z ∈ σ (A)} .

Furthermore, if A is invertible, then σ(A−1) = σ(A)−1.

The proof follows easily from the definitions of σ(A), A∗ and A−1.

Proposition 10.26. If A = A∗ then σ (A) ⊂ R and if U is unitary then

σ (U) ⊂ S1 := {z ∈ C : |z| = 1} .

Proof. The first assertion easily follows from Lemma 10.25. For the second,
since ‖U‖ = 1 we know σ(U) ⊆ {z : |z| ≤ 1}. If 0 < |z| < 1 and z ∈ σ(U) then

z−1 ∈ σ(U−1) = σ(U∗) ⊂ {z : |z| ≤ 1},

a contradiction. Finally, it is clear that 0 /∈ σ(U). Alternatively just notice that
U is unitarily equivalent to Mf for some function f which is necessarily taking
values if S1. Indeed if f took values outside of S1 with positive measure it would
be easy to show Mf is not an isometry.

Corollary 10.27 (Spectral theorem for a bounded Hermitian opera-
tor). If A is a bounded Hermitian operator on a separable Hilbert space H,
then there exists a unique projection–valued Borel measure E(·) on the line
with compact support such that

A =

∫ ∞
−∞

λdE (λ) .

For all real Borel sets B, E(B) ⊂ {A}′′.

Proof. σ(A) ⊂ (−∞,∞) by the proposition. Apply Corollary 10.24.

Corollary 10.28 (Spectral theorem for a unitary operator). If U is
a unitary operator on a separable Hilbert space, then there exists a unique
projection–valued Borel measure E(·) on [0, 2π) such that

U =

∫ 2π

0

eiθdE(θ),

and E(B) ⊂ {U}′′ for all Borel sets B.

Proof. The same as for Corollary 10.27 if we map [0, 2π) onto {z : |z| = 1}
with θ → eiθ.

10.3 Spectral Types

Definition 10.29 (Atoms). Suppose that E is a projection valued measure on
a measurable space, (Ω,S) . We say A ∈ S is an atom of E provided E (A) 6= 0
and either E (A ∩B) = E (A) or 0 for every B ∈ S.

Exercise 10.1. Suppose that E is a projection valued measure on a measurable
space, (Rn,B = BRn) for some n ∈ N. If B ∈ B is an atom of E, then there
exists a unique point λ ∈ B such that E (B) = E ({λ}) .

Definition 10.30 (Point spectrum). If T = (T1, . . . , Tn) be a list of bounded
operators and λ ∈ Cn, let

Nul (T− λ) := ∩nj=1 Nul (Tj − λj)

and let
σp (T) := {λ ∈ Cn : Nul (T− λ) 6= {0}} .

In other words, λ ∈ σp (T) iff there exists v 6= 0 so that Tjv = λjv for all
1 ≤ j ≤ n.

Theorem 10.31 (Joint eigen-vectors). Let T = (T1, . . . , Tn) be a list of
commuting normal operators in B (H) and E (·) be the corresponding spectral
resolution. Then for all λ ∈ Cn we have

Nul (T− λ) = RanE ({λ}) (10.10)

and in particular λ ∈ σp (T) iff E ({λ}) 6= 0.

Proof. For λ ∈ Cn and v ∈ H we have

n∑
j=1

‖(Tj − λj) v‖2 =

n∑
j=1

∫
σap(T)

|zj − λj |2 dµv (z)

=

∫
σap(T)

n∑
j=1

|zj − λj |2 dµv (z)

=

∫
σap(T)

|z − λ|2 dµv (z) . (10.11)

Hence if v ∈ Nul (T− λ) , then

0 =

∫
σap(T)

|z − λ|2 dµv (z)

from which it follows that µv ({λ}c) = 0. This then implies that

Page: 110 job: 241Functional_2020s macro: svmonob.cls date/time: 13-Feb-2020/12:28



10.3 Spectral Types 111

‖v‖2 = µv ({λ}) = ‖E ({λ}) v‖2 =⇒ v ∈ Ran (E ({λ})) .

[This is true even if v = 0.] Thus we have shown

Nul (T− λ) ⊂ RanE ({λ}) .

For any A,B ∈ B (σap (T)) we have

µE(B)v (A) = 〈E (A)E (B) v,E (B) v〉 = 〈E (A ∩B) v, v〉 = µv (B ∩A) .

Therefore if follows from Eq. (10.11) with v replaced by E (B) v that

n∑
j=1

‖(Tj − λj)E (B) v‖2 =

∫
B

|z − λ|2 dµv (z) .

In particular if B = {λ} , this shows

n∑
j=1

‖(Tj − λj)E ({λ}) v‖2 =

∫
{λ}
|z − λ|2 dµv (z) = 0.

Hence if v ∈ RanE ({λ}) , then v ∈ Nul (T−λ) and the proof of Eq. (10.10) is
complete.

Definition 10.32. Let A be any bounded operator. The set σp(A) of all eigen-
values of A is called the point spectrumof A. Let Hp be the closed subspace
of H spanned by the eigenvectors of A. If Hp = H then A is said to have pure
point spectrum.

Example 10.33. H = `2. If x = {an}∞n=1 ∈ `2, put

Ax =

{
1

n
an

}∞
n=1

.

Then A is a bounded multiplication operator by a real function, and is hence
Hermitian.

σ(A) = {1, 1/2, 1/3, . . . , 0}.

Each point is an eigenvalue, except 0. The eigenvector corresponding to 1/n is

xn = (0, 0, . . . , 1, 0, . . .).

In this example, Hp = H but σp(A) 6= σ(A) since 0 /∈ σp(A).

Remark 10.34. Every element x ∈ Hp is of the form, x =
∑N
j=1 xj where

{xj}Nj=1 is an orthogonal set of eigenvectors of A 6 ( N = ∞ allowed). As-
suming Axj = λjxj it then follows that

E (B)x =

N∑
j=1

E (B)xj =

N∑
j=1

1B (λj)xj

and hence

µx (B) = 〈E (B)x, x〉 =

〈
N∑
j=1

1B (λj)xj , x

〉
=

N∑
j=1

1B (λj) ‖xj‖2

which is to say

µx =

N∑
j=1

‖xj‖2 δλj .

Definition 10.35. If Hp = {0} then A is said to have purely continuous
spectrum.

Example 10.36. H = L2(0, 1), A = Mx+2. Then A has no eigenvalues, as we
have seen before. Hence σp(A) = ∅. Thus A has purely continuous spectrum.
Note that σ(A) = [2, 3].

Example 10.37. Let Q = rationals in [0, 1] with the counting measure. Let A =
Mx+2. Then

σ(A) = essran(x+ 2) = [2, 3].

But every rational number in [2, 3] is an eigenvalue of A because the function

f (x) =

{
1 if x = r
0 if x 6= r, x ∈ [0, 1]

is an eigenfunction associated to the eigenvalue 2 + r if r is a rational in [0, 1].
Since these functions form an Orthonormal basis of H we have Hp = H. Thus
A has pure point spectrum in spite of the fact that σ(A) = [2, 3], which is the
same spectrum as in Example 10.36.

Exercise 10.2. Suppose that µ is a measure on (R,B) such that B ∈ B is a
finite atom, see Definition 2.57. Show there exists a unique point λ ∈ B such
that µ ({λ}) = µ (B) . [This exercise easily extends to the case of measure on
(Rn,BRn) as well.]

Exercise 10.3 (Decomposition by spectral type). Let A be a bounded
Hermitian operator on a complex Hilbert space H. Suppose that A =∫∞
−∞ λdE (λ) is its spectral resolution. Denote by Hac the set of all vectors x

in H such that the measure B → µx (B) := ‖E(B)x‖2 is absolutely continuous
with respect to Lebesgue measure.

1. Show that Hac is a closed subspace of H.
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2. Show that Hp ⊥ Hac.
3. Define Hsc = (Hp+Hac)

⊥. (So we have the decomposition H = Hp⊕Hac⊕
Hsc.) Show that if x ∈ Hsc and x 6= 0 then the measure

B → µx (B) := 〈E(B)x, x〉 = ‖E (B)x‖2

has no atoms and yet there exists a Borel set B of Lebesgue measure zero
such that E(B)x 6= 0.

4. Show that the decomposition of part c) reduces A. That is, AHi ⊂ Hi, for
i = p, ac, or sc.

10.4 More Exercise

Exercise 10.4 (Behavior of the resolvent near an isolated eigenvalue).
We saw in the proof of Corollary 3.44 in Chapter 2 that if A is a bounded
operator on a complex Banach space and λ0 is not in σ(A) then (A− λ)−1 has
a power series expansion: (A − λ)−1 =

∑∞
n=0(λ − λ0)nBn valid in some disk

|λ− λ0| < ε, where each Bn is a bounded operator.

1. Suppose that A is the operator on the two dimensional Hilbert space C2

given by the two by two matrix

A =

(
3 1
0 3

)
.

As you (had better) know, σ(A) = {3}. Show that the resolvent (A− λ)−1

has a Laurent expansion near λ = 3 with a pole of order two. That is

(A− λ)−1 = (λ− 3)−2B−2 + (λ− 3)−1B−1 +

∞∑
n=0

(λ− λ0)nBn

which is valid in some punctured disk 0 < |λ − 3| < a. Find B−2 and B−1

and show that neither operator is zero.
2. Suppose now that A is a bounded self-adjoint operator on a complex, sep-

arable, Hilbert space H. Suppose that λ0 is an isolated eigenvalue of A, by
which we mean that, for some ε > 0

σ(A) ∩ {λ ∈ C : |λ− λ0| < ε} = {λ0}.

Prove that (A− λ)−1 has a pole of order one around λ0, in the sense that,
for some δ > 0,

(A− λ)−1 = (λ− λ0)−1B−1 +

∞∑
n=0

(λ− λ0)nBn, 0 < |λ− λ0| < δ,

where the operators Bj , j = −1, 0, 1, . . . are bounded operators on H. Ex-
press B−1 in terms of the spectral resolution of A.

Definition 10.38. A one parameter unitary group is a function U : R →
unitary operators on a Hilbert space H such that

U(t+ s) = U (t)U (s) ∀ s, t ∈ R.

Exercise 10.5. Let A be a bounded Hermitian operator on a separable Hilbert
space H. Denote by E(·) its spectral resolution. Assume that A ≥ 0 and write
P = E({0}) (which may or may not be the zero projection). Prove that for any
vector u in H

lim
t→+∞

e−tAu = Pu.

Exercise 10.6. Let V be a unitary operator on a separable complex Hilbert
space H. Prove that there exists a one parameter group U (t) on H such that

(a) U(1) = V,
(b)U(·) is continuous in the operator norm.
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Part IV

Unbounded operators





11

Unbounded Operator Introduction

Definition 11.1. If X and Y are Banach spaces and D is a subspace of X,
then a linear transformation T from D into Y is called a linear transformation
(or operator) from X to Y with domain D (T ) = D. If D (T ) is dense in X, we
say T is said to be densely defined.

Notation 11.2 If S, T are two operators from X to Y we say T is an exten-
sion of S if D (S) ⊂ D (T ) and S = T on D (S) . We abbreviate this by writing
S ⊂ T, see Remark 11.8.

Definition 11.3. If S, T : X → Y are linear operators we define S + T :
X → Y by setting D (S + T ) := D (S) ∩ D (T ) and for x ∈ D (S + T ) we let
(S + T )x = Sx + Tx. If T : X → Y and S : Y → Z are linear operators we
define ST : X → Z by setting

D (ST ) := {x ∈ D (T ) : Tx ∈ D (S)}

and for x ∈ D (ST ) we let (ST )x = S (Tx).

Proposition 11.4 (Properties of sums and products). Let A,B and C be
operators from H to H, then

1. A (BC) = (AB)C
2. (A+B)C = AC +BC
3. AB +AC ⊂ A (B + C) with equality if A is everywhere defined.

Proof. The only real issue to check in each of this assertions is that the
domains of the operators on both sides of the equations are the same because
it is easily checked that equality holds on the intersection of the domains of the
operators on each side of the equation.

1. We have

D (A (BC)) = {h ∈ D (BC) : BCh ∈ D (A)}
= {h ∈ D (C) : Ch ∈ D (B) and BCh ∈ D (A)}

while

D ((AB)C) = {h ∈ D (C) : Ch ∈ D (AB)}
= {h ∈ D (C) : Ch ∈ D (B) and BCh ∈ D (A)} .

2. For the second item;

D ((A+B)C) = {h ∈ D (C) : Ch ∈ D (A) ∩ D (B)}
= C−1 (D (A) ∩ D (B))

while

D (AC +BC) = D (AC) ∩ D (BC)

= {h ∈ D (C) : Ch ∈ D (A) ∩ D (B)}
= C−1 (D (A) ∩ D (B)) .

3. Lastly, we have h ∈ D (AB +AC) = D (AB)∩D (AC) iff h ∈ D (B)∩D (C)
and Bh,Ch ∈ D (A) which implies h ∈ D (B) ∩ D (C) and (B + C)h ∈
D (A) , i.e. h ∈ D (A (B + C)) . If we further assume that A is everywhere
defined then

D (AB +AC) = D (AB) ∩ D (AC) = D (B) ∩ D (C) and

D (A (B + C)) = D (B + C) = D (B) ∩ D (C) .

Remark 11.5. The inclusion in item 3. may be strict. For example, suppose
A = B = −C = d

dx with common domains being C1
c (R) ⊂ L2 (R) = H. Then

D (AB +AC) =
{
h ∈ C1

c (R) : h′ ∈ C1
c (R)

}
= C2

c (R) $ C1
c (R) = D (A (B + C)) ,

wherein we have used B + C = 0|C1
c (R).

Exercise 11.1. Suppose that A,B : H → K are (unbounded) operators such
that; 1) A ⊂ B, 2) A is surjective, and 3) B is injective. Show A = B. [Hint:
this result would hold for arbitray functions A,B between two abstarct sets H
and K. This has nothing to do with linearity! In general if A ⊂ B and B is
injective, then A is injective and A−1 ⊂ B−1.]

We note that X × Y is a Banach space in either of the equivalent norms;
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‖ (x, y) ‖ = ‖x‖+ ‖y‖ or (11.1)

‖ (x, y) ‖ =

√
‖x‖2 + ‖y‖2. (11.2)

When H and K are Hilbert spaces, then H × K and K × H become Hilbert
spaces by defining

〈(x, y) , (x′, y′)〉H×K := 〈x, x′〉H + 〈y, y′〉K and (11.3)

〈(y, x) , (y′, x′)〉K×H := 〈x, x′〉H + 〈y, y′〉K (11.4)

respectively. The Hilbert norm associated to the inner-product in Eq. (11.1) is
the norm in Eq. (11.2).

Definition 11.6 (Graph of an operator). If T is an operator from X to Y
with domain D, the graphof T is

Γ (T ) := {(x, Tx) : x ∈ D(T )} ⊂ H ×K.

Note that Γ (T ) is a subspace of X × Y.

The linearity of T assures that Z := Γ (T ) is a subspace of X×Y. Moreover
it is easy to check that πX (Z) = D (T ) and # {y ∈ Y : (x, y) ∈ Z} = 1. The
next lemma shows that operators T : X → Y are in one to one correspondence
with subspaces Z ⊂ X × Y such that Z passes the vertical line test, i.e.

# {y ∈ Y : (x, y) ∈ Z} = 1 for all x ∈ πX (Z) . (11.5)

Lemma 11.7 (Vertical line test at x = 0 suffices). If Z is a subspace of
X × Y such that (0, y) ∈ Z happens iff y = 0 (i.e. [{0} × Y ] ∩ Z = {(0, 0)}),
then Z is the graph of an operator T : X → Y. Explicitly, D (T ) := πX (Z) and
for x ∈ D (T ) we let Tx = y where y ∈ Y is uniquely determined by requiring
(x, y) ∈ Z. Alternatively stated, T = πY ◦

(
πX |−1

Z

)
.

Proof. Suppose that Z is a subspace of X ×Y satisfying the assumption of
the lemma. If z = (x, y) ∈ Z is such that πX (z) = x = 0,then (by assumption)
y = 0 and hence z = 0. This shows that πX |Z : Z → πX (Z) = D (T ) is a linear
isomorphism and hence we may define T = πY ◦

(
πX |−1

Z

)
: D (T )→ Y. Clearly T

is linear and moreover for x ∈ D (T ) and Tx = y we have (x, y) ∈ Z. Similarly,
if (x, y) ∈ Z, then πX (x, y) = x ∈ D (T ) and therefore πX |−1

Z (x) = (x, y) and
so Tx = y. Thus we have shown Γ (T ) = Z.

Remark 11.8. The reader should verify for herself that if S and T are two op-
erators from X to Y, then S ⊂ T iff Γ (S) ⊂ Γ (T ) .

Definition 11.9 (Closed operators). We say an operator T : X → Y is
closed if Γ (T ) is a closed subspace of X × Y. Recall the closed graph theorem.

Remark 11.10. An operator T : X  Y is closed iff for all sequences {xn} ⊂
D (T ) such that xn → x in X and Txn → y in Y implies x ∈ D (T ) and
y = Tx. In other words, limn→∞ Txn = T limn→∞ xn provided limn→∞ xn
and limn→∞ Txn exist. So T is closed if limn→∞ Txn = T limn→∞ xn for all
{xn}∞n=1 ⊂ D (T ) where both limn→∞ xn and limn→∞ Txn exists. [If T : X →
Y everywhere defined, then T is continuous iff limn→∞ Txn = T limn→∞ xn
whenever limn→∞ xn exists in X.]

Example 11.11. If T : X → Y is an everywhere defined bounded operator then
T is closed. Indeed, if (xn, yn) = (xn, Txn) ∈ Γ (T ) and (xn, yn)→ (x, y) , then

y = lim
n→∞

yn = lim
n→∞

Txn = T lim
n→∞

xn = Tx

so that (x, y) ∈ Γ (T ) . It turns out the converse is true as well provided X and
Y are Banach spaces.

Theorem 11.12 (Closed Graph Theorem). If X and Y are Banach spaces
and T : X → Y is closed and everywhere defined and linear operator, then
T is bounded. Moral: Unbounded closed operators from one Banach space to
another cannot be everywhere defined.

Exercise 11.2. Suppose that (X,µ) is a measure space and that µ (X) < ∞.
Let T : L2(µ) → L2(µ) be a bounded operator. Suppose that range T is con-
tained in L5(µ). Show that T is bounded as an operator from L2(µ) into L5(µ).
Hint: Use the closed graph theorem. (See [41, Chapter 5, poblem 16.]. The
solution to this problem depends on Theorem 5.10 of the same reference.)

Exercise 11.3. Suppose that X = Y = BC (R,C) , the bounded continuous
functions on R equipped with the supremum norm. Let D (T ) = BC1 (R,C)
be those f ∈ X which are differentiable with f ′ ∈ X and for f ∈ D (T ) , let
Tf = f ′. Show T is a closed operator. [Hint: this is a standard undergraduate
theorem in diguise.]

Lemma 11.13. If X and Y are Banach spaces, D (A) is a dense subspace of X,
and A : D (A)→ Y is a closed operator which is a bijection, then A−1 : Y → X
is bounded.

Proof. By the closed graph theorem we need only show A−1 has a closed
graph. To this end suppose that {yn} ⊂ Y is a sequence such that both

y = lim
n→∞

yn and x = lim
n→∞

A−1yn

exist. Letting xn := A−1yn we have xn → x and Axn = yn → y. As A is a
closed operator, it follows that x ∈ D (A) and Ax = y and so x = A−1y and
hence A−1 is a closed operator.
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Theorem 11.14. Let X and Y be Banach spaces and suppose that T : X → Y
is an unbounded densely defined operator. For x ∈ D (T ) let

‖x‖T := ‖x‖X + ‖Tx‖Y .

Then T is closed iff (D (T ) , ‖·‖T ) is a Banach space.

Proof. Short proof. The linear transformation, D (T ) 3 x → (x, Tx) ∈
Γ (T ) is as surjective isometry of normed spaces. Thus (D (T ) , ‖·‖T ) will be a
Banach space iff Γ (T ) is a Banach space which happens iff Γ (T ) is closed in
X × Y.

Definition 11.15 (Closable operators). An operator T : X → Y is closable
if Γ (T ) is the graph of an operator,see Lemma 11.7. If T is closable, we let
T̄ : X → Y be the unique operator such that Γ (T ) = Γ

(
T̄
)
.

Lemma 11.16. An operator T : X → Y is closable iff for every {xn} ⊂ D (T )
such that xn → 0 and y := limn→∞ Txn exists Y we must have y = 0.

Proof. Let us first observe that (0, y) ∈ Γ (T ) iff there exists {xn} ⊂ D (T )
such that (xn, Txn) → (0, y) , i.e. iff xn ∈ D (T ) , xn → 0 in X, and Txn → y.
Thus according to Lemma 11.7, T is closable iff (0, y) ∈ Γ (T ) implies y = 0 iff
for every {xn} ⊂ D (T ) such that xn → 0 and y := limn→∞ Txn exists Y we
must have y = 0.

Example 11.17. Let 1 ≤ p <∞ and T : Lp (R)→ C defined by D (T ) = Cc (R)
and Tf = f (0) is not closable. In fact, Γ (T ) = Lp (R) × C. To see this is the
case let ϕk (x) be the tent function which is 0 on R \

[
− 1
k ,

1
k

]
, ϕk (0) = 1, and

ϕk is linear on
[
− 1
k , 0
]

and
[
0, 1

k

]
. Given f ∈ Lp (R) , choose gn ∈ Cc (R) so

that gn → f in Lp (R) . Given an a ∈ C, let

fn (x) = gn (x) + (a− gn (0))ϕkn

where kn ↑ ∞ sufficiently rapidly so that

|(a− gn (0))| ‖ϕkn‖p → 0 as n→∞.

We then have fn → f in Lp (R) while Tfn = fn (0) = a → a which shows
(f, a) ∈ Γ (T ).

Proposition 11.18 (IBP =⇒ Closable). Suppose that 1 < p < ∞ and X =
Y = Lp (Rn,m) . Let D (T ) = C∞c (Rn) and for f ∈ D (T ) , let

Tf =
∑
|α|≤m

aαD
αf where aα ∈ C∞ (Rn) and Dα = ∂α1

1 . . . ∂αnn .

Here α = (α1, . . . , αn) ∈ Nn0 and |α| = α1 + α2 + · · ·+ αn. Then T : X → X is
closable.

Proof. Let q = p
p−1 be the conjugate exponent to p. For f ∈ Lp and g ∈ Lq,

let 〈f, ϕ〉 =
∫
Rn f (x)ϕ (x) dx. Then by integration by parts for f, ϕ ∈ D (T ) ,

〈Tf, ϕ〉 =
〈
f, T †ϕ

〉
where T † =

∑
|α|≤m

(−1)
|α|
DαMaα .

Thus if fn ∈ D (T ) is such that fn → 0 and Tfn → g in Lp, then for all
ϕ ∈ D (T ) ,

〈g, ϕ〉 = lim
n→∞

〈Tfn, ϕ〉 = lim
n→∞

〈
fn, T

†ϕ
〉

= 〈0, ϕ〉 = 0.

As D (T ) = C∞c (Rn) is dense in Lq (m) , it follows that g = 0 a.e and hence T
is closable.

Remark 11.19. If S : X → Y is a linear operator, then S is closable iff S has at
least one closed extension T. Moreover, if S is closable and T is a close extension
of S, then S̄ ⊂ T. Thus S̄ is the smallest closed extension of S. Indeed, if S is
closable, then S ⊂ S̄ and hence S has a closed extension. Conversely if T is a
closed extension of S then Γ (S) ⊂ Γ (T ) with Γ (T ) being closed and hence
Γ (S) ⊂ Γ (T ) which implies Γ (S) is necessarily the graph of a linear operator,
i.e. S is closable. Moreover we see that Γ

(
S̄
)

= Γ (S) ⊂ Γ (T ) and therefore
S̄ ⊂ T.

Remark 11.20. If S, T : X → Y are linear operators such that S ⊂ T and T is
closable, then S is closable and S̄ ⊂ T̄ . Indeed, S ⊂ T̄ and so the result follows
directly from Remark 11.19.

Alternatively: if xn ∈ D (S) ⊂ D (T ) such that xn → 0 and Sxn → y,
then Txn = Sxn → y and since T is closable we must have y = 0 showing S is
closable. Moreover, if x ∈ D

(
S̄
)

and S̄x = y, there exists xn ∈ D (S) ⊂ D (T )

such that xn → x and Sxn → y. As Txn = Sxn → y it follows that x ∈ D
(
T̄
)

and T̄ x = y as well showing S̄ ⊂ T̄ .

Definition 11.21 (Cores). A core for a closed operator T is a subspace D0 ⊂
D (T ) such that T = T |D0

, i.e. T is the closure of its restriction to D0.

Example 11.22. If A : X → Y is a bounded everywhere defined operator and
D0 is a dense subspace of X, then A0 := A|D0

is not closed but is closable and
Ā0 = A. So any dense subspace of X is a core for all bounded operators on X.

Notation 11.23 (Multiplication Operators) Given a measure space
(X,M, µ) and a measurable function q : X → C, let Mq : L2(µ) → L2(µ) de-
note the operation of multiplication by q. More precisely, Mq : D(Mq)→ L2(µ)
is defined by Mqf = qf where

D(Mq) := {f ∈ L2(µ) : qf ∈ L2(µ)} ⊂ L2(µ).
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Lemma 11.24. Let (Ω,F , µ) be a measure space, q : Ω → C be a measurable
function (not assumed to be bounded!), and Mq be the corresponding multipli-
cation operator on H = L2 (µ) . Then Mq is a closed operator and

D0 := ∪∞n=1

{
f ∈ L2 (µ) : 1|q|≤nf = f

}
is a core for Mq.

Proof. Mq is closed. Suppose that {fn} ⊂ D (Mq) is s such that fn → f
and Mqfn = qfn → g in L2 (µ) . By passing to a subsequence if necessary we
may assume fn → f and qfn → g a.e. and from this we learn that qf = g a.e.
This shows f ∈ D (Mq) and that Mqf = g, i.e. Mq is closed.
D0 is a core. For f ∈ D (Mq) , let fn := 1|q|≤nf ∈ D0. Then by DCT,

fn → f and qfn → qf in L2 (µ) which shows Mq|D0 = Mq, i.e. D0 is a core for
Mq.

Definition 11.25. Let (Ω,S) be a measurable space, H be a Hilbert space, E(·)
be a projection valued measure (Ω,S), µx (B) := 〈E (B)x, x〉 for all x ∈ H, and
f : Ω → C be a measurable function. Let

D (Tf ) :=

{
x ∈ H :

∫
Ω

|f |2 dµx <∞
}

and for x ∈ D (Tf ) let

Tfx := lim
n→∞

(∫
Ω

f1{|f |≤n}dE

)
x. (11.6)

Notice that for m ≤ n,∥∥∥∥(∫
Ω

f1{|f |≤n}dE

)
x−

(∫
Ω

f1{|f |≤m}dE

)
x

∥∥∥∥2

=

∥∥∥∥(∫
Ω

f1{m<|f |≤n}dE

)
x

∥∥∥∥2

=

∫
Ω

1{m<|f |≤n} |f |
2
dµx → 0 as m,n→∞

and so the limit in Eq. (11.6) exists.

Theorem 11.26 (Projection valued measures II). Continuing the notation
in Definition 11.25, D (Tf ) is a dense subspace of H and Tf : H → H is a closed
linear operator on H which satisfies, for all x ∈ D (Tf ) ,

‖Tfx‖2 =

∫
Ω

|f |2 dµx and (11.7)

E ({|f | ≤ n})Tfx = TfE ({|f | ≤ n})x =

(∫
Ω

f1{|f |≤n}dE

)
x. (11.8)

Moreover L := ∪∞n=1 Ran (E ({|f | ≤ n})) is a core for Tf .

Proof. If x, y ∈ H, then√
µx+y (B) = ‖E (B) (x+ y)‖ ≤ ‖E (B)x‖+ ‖E (B) y‖ =

√
µx (B) +

√
µy (B)

and therefore,

µx+y ≤ µx + µy + 2
√
µx
√
µy ≤ 2 (µx + µy) .

From this one easily shows if x, y ∈ D (Tf ) then x + y ∈ D (Tf ) and since

µcx = |c|2 µx we also have cx ∈ D (Tf ) whenever x ∈ D (Tf ) . This show D (Tf )
is a vector space. It is now a simple matter to use the definition of Tf in Eq.
(11.6) to verify that Tf is linear and the equality in Eq. (11.7) holds. To see that
D (Tf ) is dense in H let Pn := E ({|f | ≤ n}) and observe that Pnx ∈ D (Tf ) for
all x ∈ H. Indeed,

µPnx (B) = µx (B ∩ {|f | ≤ n})

and hence ∫
Ω

|f |2 dµPnx =

∫
Ω

1|f |≤n |f |
2
dµx ≤ n2 ‖x‖2 <∞.

So it only remains to show Tf is closed.
Let xn ∈ D (Tf ) and x, y ∈ H be chosen so that xn → x and Tfxn → y.

Notice that, for any B ∈ S,

µxn (B) = 〈E (B)xn, xn〉 → 〈E (B)x, x〉 = µx (B) .

Hence if g is any simple function on Ω such that 0 ≤ g ≤ |f |2 , then∫
Ω

gdµx = lim
n→∞

∫
Ω

gdµxn

≤ lim inf
n→∞

∫
Ω

|f |2 dµxn = lim
n→∞

‖Tfxn‖2 = ‖y‖2 <∞.

From this inequality if follows that
∫
Ω
|f |2 dµx ≤ ‖y‖2 <∞ so that x ∈ D (Tf ) .

So it only remains to show Tfx = y.
However, for any m ∈ N and z ∈ D (Tf ) ,

PmTfz = lim
n→∞

(
Pm

∫
Ω

f1{|f |≤n}dE

)
z = lim

n→∞

(∫
Ω

f1{|f |≤m}1{|f |≤n}dE

)
z

=

(∫
Ω

f1{|f |≤m}dE

)
z.

Therefore it follows that
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PmTfx =

(∫
Ω

f1{|f |≤m}dE

)
x = lim

n→∞

(∫
Ω

f1{|f |≤m}dE

)
xn

= lim
n→∞

PmTfxn = Pmy.

Letting m → ∞ in this last equation shows Tfx = y. Since PmTfx = TfPmx,
this also shows L is a core for Tf .

Definition 11.27. If T : X → Y is a linear operator we let

Nul (T ) := {x ∈ D (T ) : Tx = 0} ⊂ X and

Ran (T ) := {Tx ∈ Y : x ∈ D (T )} ⊂ Y.

Lemma 11.28. If T : X → Y is a closed operator, then Nul (T ) is closed.

Proof. If xn ∈ Nul (T ) such that xn → x, then Txn = 0 → 0 as n → ∞
which shows x ∈ D (T ) and Tx = 0, i.e. x ∈ Nul (T ) .

Lemma 11.29. If T : X → Y is a closable operator and there exists ε > 0 such
that

‖Tx‖ ≥ ε ‖x‖ ∀ x ∈ D (T ) , (11.9)

then Nul
(
T̄
)

= {0} and Ran
(
T̄
)

= Ran (T ) and Eq. (11.9) extends to the
inequality, ∥∥T̄ x∥∥ ≥ ε ‖x‖ ∀ x ∈ D (T̄ ) . (11.10)

Proof. If x ∈ D
(
T̄
)
, there exists xn ∈ D (T ) such that xn → x and

Txn → T̄ x and hence∥∥T̄ x∥∥ = lim
n→∞

‖Tnxn‖ ≥ ε lim
n→∞

‖xn‖ = ε ‖x‖

which shows Eq. (11.10) also holds. In is now trivial to verify Nul
(
T̄
)

= {0} .
If yn = Txn ∈ Ran (T ) is convergent to y, then by Eq. (11.9) it follows that

{xn}∞n=1 is a Cauchy sequence. Hence it follows that x := limn→∞ xn ∈ D
(
T̄
)

and y = T̄ x, i.e. y ∈ Ran
(
T̄
)
. Thus we have shown Ran (T ) ⊂ Ran

(
T̄
)
.

Conversely if y = T̄ x ∈ Ran
(
T̄
)
, there exist xn ∈ D (T ) such that xn → x and

Txn → y which shows y ∈ Ran (T ).

Notation 11.30 If T : X → Y is a linear operator we say T is weakly in-
vertible if Nul (T ) := {0} . Under this assumption we define T−1 : Y → X to
be the linear operator with D

(
T−1

)
= Ran (T ) such that T−1y = x ∈ D (T ) iff

Tx = y. We say T is invertible if Nul (T ) = {0} and D
(
T−1

)
= Ran (T ) = Y.

Proposition 11.31. If T : X → Y is a closed weakly invertible linear operator,
then T−1 is closed. Moreover if T is closed and invertible, then T−1 is bounded.
[Note well that a weakly invertible bounded everywhere defined bounded operator,
T : X → Y, need not have bounded inverse but it is always a closed operator.]

Proof. If yn ∈ D
(
T−1

)
= Ran (T ) is such that yn → y in Y and T−1yn → x

in X. Let xn := T−1yn → x and Txn = yn → y as n→∞. Since T is closed it
follows that x ∈ D (T ) and Tx = y, i.e. y ∈ D

(
T−1

)
and T−1y = x. This shows

T−1 is closed. If T is closed and invertible, then T−1 is an everywhere defined
closed operator and hence bounded by the closed graph theorem.

Example 11.32. Suppose that X = Y = L1 ([0, 1] , dm) ,

D (A) :=
{
f ∈ AC ([0, 1]) : f ′ ∈ L1 (m) and f (0) = 0

}
and for f ∈ D (A) let Af = f ′. Then by the fundamental theorem of calculus,
f (x) =

∫ x
0
f ′ (y) dy from which we learn that A is invertible with

(
A−1g

)
(x) =

∫ x

0

g (y) dy.

Let us note that∥∥A−1g
∥∥

1
≤
∫

0≤y≤x≤1

|g (y)| dy =

∫ 1

0

(1− y) |g (y)| dy ≤ ‖g‖1

so that A−1 is bounded and hence A is a closed operator by Proposition 11.31.

Lemma 11.33. Suppose that B : Y → X is a bounded everywhere defined
weakly invertible operator, A := B−1, Y0 is a dense subspace of Y, and A0 :=
B−1|D(A0) where D (A0) := BY0. Then Ā0 = A.

Proof. Suppose that x ∈ D (A) and Ax = y, i.e. By = x. Then choose
yn ∈ Y0 so that yn → y as n → ∞ and let xn := Byn ∈ D (A0) . We then
have xn = Byn → By =: x and A0xn = yn → y and therefore x ∈ D

(
Ā0

)
and

Ā0x = y. This shows that Ā0 = A.

Lemma 11.34. For g ∈ L1 ([0, 1] , dm) , let

ḡ :=

∫ 1

0

g (x) dx and L̃1 :=
{
g ∈ L1 ([0, 1] , dm) : ḡ := 0

}
.

Then C̃c := {g ∈ Cc (0, 1) : ḡ = 0} is a dense subspace of L̃1.

Proof. Let ψ ∈ Cc ((0, 1)) be chosen so that
∫ 1

0
ψ (x) dx = 1. Then given

g ∈ L̃1 we may find γn ∈ Cc (0, 1) so that γn → g in L1. Since γ̄n → ḡ = 0 it
follows that gn := γn − γ̄nψ ∈ C̃c also converges to g in L1 (m) .

Example 11.35 (Continuation of Example 11.32). If X = Y = L1 ([0, 1] , dm) ,
and A : X → X be the operator in Example 11.32. Further let D (A0) :=
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C1
c ((0, 1)) , and for f ∈ D (A0) let A0f = f ′ so that A0 ⊂ A. Then Ā0  A.

More precisely,

D
(
Ā0

)
= {f :∈ D (A) : f (0) = 0 = f (1)} .

Indeed, applying Lemma 11.33 with X = L1 ([0, 1] , dm) , Y = L̃1, Y0 = C̃c
which is dense in Y by Lemma 11.34, and B = A−1|Y we have BC̃c =
C1
c (0, 1) = D (A0) and

D
(
Ā0

)
= BL̃1 = {f :∈ D (A) : f (0) = 0 = f (1)} .

In particular this shows C1
c ((0, 1)) is not a core for A.

Definition 11.36. If T : X → X is a densely defined linear operator and
D ∈ B (X) , we say T and D commute if DT ⊂ TD. [The condition DT ⊂ TD
is equivalent to; D (D (T )) ⊂ D (T ) and DT = TD on D (T ) .]

Exercise 11.4. Let T : X → X be a densely defined closable linear opera-
tor and D ∈ B (X) . If D (D (T )) ⊂ D (T ) and DT = TD on D (T ) , then
D
(
D
(
T̄
))
⊂ D

(
T̄
)

and D commutes with T̄ , i.e. DT̄ = T̄D on D
(
T̄
)
.

Proposition 11.37. Suppose that T is a densely defined invertible (i.e.
Nul (T ) = {0} and Ran (T ) = X) and D ∈ B (X) , then DT ⊂ TD iff[
T−1, D

]
= 0.

Proof. If DT ⊂ TD, then D = DTT−1 ⊂ TDT−1 and as D (D) = X we
find D = TDT−1. Therefore T−1D = T−1TDT−1 = DT−1.

Conversely if T−1D = DT−1, then D = TT−1D = TDT−1 and hence

DT = TDT−1T = TD1D(T ) ⊂ TD.

Definition 11.38 (Spectrum and Resolvents). For any (possibly un-
bounded) linear operator T : X → X, a complex number λ ∈ C is said to
be in the resolvent set(ρ (T )) of T if T − λI is one to one and onto and
(T −λI)−1 is bounded. Otherwise λ is said to be in the spectrum(σ (T )) of T .

For λ ∈ ρ (T ) we let Rλ := (T − λ)
−1
.

Proposition 11.39. If T : X → X is an unbounded operator and ρ (T ) 6= ∅,
then T is closed. [So if T is not closed, then σ (T ) = C!]

Proof. Let λ ∈ ρ (T ) , so that Rλ = (λ− T )
−1 ∈ B (X) . Suppose that

vn ∈ D (T ) is such that vn → v and Tvn → w ∈ X. It then follows that
(λ− T ) vn → λv − w and therefore,

v = lim
n→∞

vn = lim
n→∞

(λ− T )
−1

(λ− T ) vn

= (λ− T )
−1

(λv − w) ∈ D (T ) .

Applying λ− T to this idenity shows,

(λ− T ) v = (λ− T ) (λ− T )
−1

(λv − w) = λv − w,

i.e. Tv = w and we have shown T is closed.

Lemma 11.40 (Spectrum of Mq). Let (X,M, µ) be a σ – finite measure
space and q : X → C be a measurable function, then

1. Mq is always a closed operator, i.e. Γ (Mq) := {(f, qf) : f ∈ D(Mq)} is a
closed subspace of L2(µ)× L2(µ).

2. Mq is bounded iff q ∈ L∞ in which case ‖Mq‖ = ‖q‖L∞(µ) .
3. The following are equivalent:

a) M−1
q : L2(µ)→ L2(µ) exists in the algebraic sense, i.e. Mq : D(Mq) ⊂

L2(µ)→ L2(µ) is a bijection.
b) M−1

q : L2(µ)→ L2(µ) exists as a bounded linear operator.
c) q 6= 0 a.e. and q−1 ∈ L∞(µ).

4. σ(Mq) = essranµ (q) . [Recall that λ ∈ essranµ (q) iff µ (|q − λ| < ε) > 0 for
all ε > 0, see Definition 1.32.]

Proof. We take each item in turn.

1. This was proved in Lemma 11.24.

2. Let K := ‖q‖L∞(µ) which we assume to be positive for otherwise Mq ≡ 0.

If K <∞, then |q| ≤ K a.e. from which it easily follows that ‖Mq‖op ≤ K.
We wish to prove the reverse inequality for 0 < K ≤ ∞. By assumption
of 0 < k < K, then µ (|q| ≥ k) > 0. Because µ is σ – finite we can find a
set Ak ∈ M such that |q| ≥ k on Ak and 0 < µ (Ak) < ∞. We then take
f := q̄

|q|1Ak ∈ L
2 (µ) and for this f we have

Mqf = |q| 1Ak ≥ k1Ak

and therefore,

‖Mqf‖22
‖f‖22

≥ k2µ (Ak)

µ (Ak)
= k2 =⇒ ‖Mq‖op ≥ k.

Since 0 < k < K was arbitrary we may conclude that ‖Mq‖op ≥ K.
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3. a. =⇒ b. is a special case of Lemma 11.13.
b. =⇒ c. Observe if µ(q = 0) > 0 there exists A ⊂ {q = 0} such that
0 < µ (A) < ∞. Then 1A ∈ Nul(Mq) and Mq is not invertible. So if M−1

q

exists we must have q 6= 0 a.e. and if f ∈ L2, g := M−1
q f ∈ L2, then

f = Mqg = qg a.e. Therefore g = q−1f a.e. so that M−1
q is necessarily

given by Mq−1 . By item (1) this operator is bounded iff q−1 ∈ L∞(µ).
c. =⇒ a. Indeed, Mq−1Mq = ID(Mq) and MqMq−1 = IL2(µ).

4. By item (1), λ ∈ σ(Mq) iff
∥∥∥(q − λ)

−1
∥∥∥
L∞

= ∞ iff λ ∈ essranµ (q) .

To prove the last assertion, suppose first that λ ∈ essranµ (q) . Then

for all ε > 0, µ (|q − λ| < ε) > 0 and hence
∥∥∥(q − λ)

−1
∥∥∥
L∞

≥ ε−1

which implies
∥∥∥(q − λ)

−1
∥∥∥
L∞

= ∞ since ε > 0 was arbitrary. Con-

versely if
∥∥∥(q − λ)

−1
∥∥∥
L∞

= ∞ then for all 0 < M < ∞ we have

µ
(∣∣∣(q − λ)

−1
∣∣∣ > M

)
> 0, i.e. µ

(
|(q − λ)| < M−1

)
> 0 for all M > 0 which

implies λ ∈ essranµ (q) .

Proposition 11.41. The set ρ (T ) is open and if ρ (T ) 6= ∅, then ρ (T ) 3 λ →
Rλ ∈ B (X) is a continuous and in fact analytic map.

Proof. We may assume ρ (T ) 6= ∅ for otherwise there is nothing to prove.
If λ ∈ ρ (T ) and h ∈ C we have,

(T − (λ+ h)) =
[
I − h (T − λ)

−1
]

(T − λ) = (I − hRλ) (T − λ) .

Thus if |h| ‖Rλ‖ < 1, we have (I − hRλ)
−1

is invertible and we may conclude
that (T − (λ+ h)) : D (T ) → H is one to one and onto, i.e. is invertible and
moreover,

Rλ+h = (T − (λ+ h))
−1

= (T − λ)
−1

(I − hRλ)
−1
.

This show ρ (T ) is open as well as showing λ→ Rλ is in fact analytic in λ since,

(I − hRλ)
−1

=

∞∑
n=0

hnRnλ for |h| < ‖Rλ‖−1
.

If µ, λ ∈ ρ (T ) with µ 6= λ then working informally we find,

Rλ −Rµ =
1

T − λ
− 1

T − µ
=
T − µ− (T − λ)

(T − λ) (T − µ)

=
λ− µ

(T − λ) (T − µ)
= (λ− µ)RλRµ.

This heuristic computation serves as motivation for the following important
identity.

Theorem 11.42 (Resolvent Identity). Let T : X → X be a densely defined
closed operator and suppose that µ, λ ∈ ρ (T ) with µ 6= λ. Then

Rλ −Rµ = (λ− µ)RλRµ (11.11)

and in particular, [Rλ, Rµ] = 0. [Just interchange the roles of µ and λ in Eq.
(11.11).]

Proof. We can basically give the same proof we gave in the bounded case,
namely,

(T − λ)
−1 − (T − µ)

−1
= (T − λ)

−1
[(T − µ)− (T − λ)] (T − µ)

−1

= (λ− µ) (T − λ)
−1

(T − µ)
−1
.

wherein the second line we have used Ran
(

(T − µ)
−1
)

= D (T ) and so

[(T − µ)− (T − λ)] (T − µ)
−1

is everywhere defined.

Lemma 11.43. If T : X → X is a densely defined closed operator and λ ∈
ρ (T ) , then RλT ⊂ TRλ and RλT = TRλ.

Proof. As Rλ = (T + λ)
−1
, we have

Rλ (T + λ) = ID(T ) ⊂ I = (T + λ)Rλ

which easily implies RλT ⊂ TRλ. Since

TRλ = (T + λ− λ)Rλ = I − λRλ, (11.12)

TRλ is a bounded operator. Hence if x ∈ X and {xn} is any sequence in D (T )
such that xn → x, then

RλTxn = TRλxn → TRλx as n→∞.

This shows x ∈ D
(
RλT

)
and RλTx = TRλx.

Remark 11.44. Here is another proof that [Rλ, Rµ] = 0 based on Proposition
11.37. Since

(T − λ)
−1

(T − µ) = (T − λ)
−1

(T − λ+ (λ− µ))

= I + (λ− µ) (T − λ)
−1

on D (T )

Page: 121 job: 241Functional_2020s macro: svmonob.cls date/time: 13-Feb-2020/12:28



122 11 Unbounded Operator Introduction

and

(T − µ) (T − λ)
−1

= (T − λ+ (λ− µ)) (T − λ)
−1

= I + (λ− µ) (T − λ)
−1
,

it follows that
(T − λ)

−1
(T − µ) ⊂ (T − µ) (T − λ)

−1
. (11.13)

An application of Proposition 11.37 now completes the proof.

Corollary 11.45. Let T : X → X be a densely defined closed operator. If
λ, µ ∈ ρ (T ) , then

TRλRµ = RλTRµ = TRµRλ = RµTRλ (11.14)

Proof. From Lemma 11.43 or from Eq. (11.13) with µ = 0 we know that
RλT = TRλ on D (T ) for all λ ∈ ρ (T ) . From this assertion and the fact that
Rµ and Rλ commute, Eq. (11.14) holds on D (T ) . Since TRλ is a bounded
operator for all λ ∈ ρ (T ) (see Eq. (11.12)), Eq. (11.14) holds on all of X by
continuity.

Exercise 11.5. Let T : X → X be a densely defined closed operator. If λ, µ ∈
ρ (T ) , show [TRλ, TRµ] = 0.

11.1 Exercises

Exercise 11.6. Let U be an open subset of Rn, g ∈ C (U, (0,∞)) , and Y
be a Banach space. Given v ∈ Rn define ∂v to be the unbounded derivative
operator on BgC (U, Y ) given as follows. First of we let ∂vf (x) := d

dt |0f (x+ tv)
provided the limit exists in Y. We then set D (∂v) to be those functions f ∈
BgC (U, Y ) such that ∂vf (x) exists for all x ∈ U and for which that the resulting
function ∂vf is back in BgC (U, Y ) . Show ∂v is a closed unbounded operator
on BgC (U, Y ) .

Exercise 11.7. If Ai : X → Yi are closed operators for 1 ≤ i ≤ p, the operator
A : X → Y :=

∏p
i=1 Yi defined by D (A) = ∩pi=1D (Ai) and

Ax = (A1x, . . . , Apx) ∈ Y

is again a closed operator.

Corollary 11.46. Let U be an open subset of Rn, g ∈ C (U, (0,∞)) , and
Y be a Banach space and let ∂i := ∂ei be the operators on BgC (U, Y )
as described in Exercise 11.6. Then the operator ∇ : X → Y n defined by
∇f := (∂1f, . . . , ∂nf) with D (∇) = ∩ni=1D (∂i) is a closed operator. Moreover,
D (∇) = BgC

1 (U, Y ) where f ∈ BgC1 (U, Y ) iff f is continuously differentiable
and Df ∈ BgC (U,B (Rn, Y )) .

Corollary 11.47. Let U be an open subset of Rn, g ∈ C (U, (0,∞)) , Y be a
Banach space, k ∈ N0, and BgC

k (U, Y ) denote those f ∈ BgC (U, Y ) such that
∂v1 . . . ∂vlf exists for all 1 ≤ ` ≤ k and vi ∈ Rn. For f ∈ BgCk (U, Y ) let Jkf :=
{∂αf : |α| ≤ k} ∈ Y N be the k – jet of f, where N := # {α ∈ Nn0 : |α| ≤ k} .
Then Jk is a closed operator.

Proof. I will only prove the case k = 2 here leaving the general induction
argument to the reader. Suppose that fn ∈ BgC2 (U, Y ) such that fn → f and
∂αfn → uα for 1 ≤ |α| ≤ 2 in BgC (U, Y ) . From Corollary 11.46 it follows that
f ∈ BgC1 (U, Y ) and that uα = ∂αf for |α| = 1. Moreover, given 1 ≤ i, j ≤ n
then we know ∂ejfn = ∂jfn → uej and ∂ei+ejfn = ∂i∂jfn → uei+ej and
hence by Exercise 11.6 it follows hat uej = ∂ejf ∈ D (∂i) for 1 ≤ i ≤ n and
∂ei+ejf = ∂eiuej = uei+ej . As this holds for all i and j it now follows that
f ∈ BgC2 (U, Y ) and uα = ∂αf for |α| ≤ 2.

Exercise 11.8. Let U be an open interval in R, BC (U) be the bounded con-
tinuous functions on U and BC1 (U) denote those f ∈ C1 (U) ∩ BC (U) such
that f ′ ∈ BC (U) . Define D (∂) := BC1 (U) ⊂ C1 (U) and for f ∈ D (∂) let
∂f := f ′. Show ∂ : BC (U)→ BC (U) is a closed unbounded operator.

Exercise 11.9. Generalize Exercise 11.8 to the following set up. Let U be an
open subset of Rn, let BCk (U) denote those f ∈ BC (U) such that ∂αf exits
for all |α| ≤ k and ∂αf ∈ BC (U) . Let J : BC (U) →

∏
|α|≤k BC (U) be the

linear operator such that D (J) = BCk (U) and for f ∈ D (J) let

Jf := {∂αf : |α| ≤ k} .

Show J is a closed operator. We refer of Jf as the k-jet of f. Perhaps we
should let g be any positive continuos function on U and generalize the above
considerations to allow for BC (U) to be replace by BgC (U) where f ∈ BgC (U)
iff f ∈ C (U) and
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Contraction Semigroups

For this section, let (X, ‖ · ‖) be a Banach space with norm ‖ · ‖. Also let
T := {T (t)}t>0 be a collection of bounded operators on X.

Definition 12.1. Let X and T be as above.

1. T is a semi-group if T (t+ s) = T (t)T (s) for all s, t > 0.
2. A semi-group T is strongly continuous if limt↓0 T (t) v = v for all v ∈
X. By convention if T is strongly continuous, set T (0) := I–the identity
operator on X.

3. A semi-group T is a contraction semi-group if ‖T (t)‖ ≤ 1 for t > 0.The
following examples will be covered in more detail in the exercises.

Example 12.2 (Translation Semi-group). Let X := L2(Rd, dλ), w ∈ Rd and

(Tw (t) f) (x) := f(x+ t).

Then Tw (t) is a strongly continuous contraction semi-group. In fact Tw (t) is
unitary for all t ∈ R.

Example 12.3 (Rotation Semi-group). Suppose that X := L2(Rd, dλ) and
O : R → O(d) is a one parameter semi-group of orthogonal operators. Set
(TO (t) f) (x) := f(O (t)x) for all f ∈ X and x ∈ Rd. Then TO is also a strongly
continuous unitary semi-group.

12.1 Infinitesimal Generators

Definition 12.4. The infinitesimal generator (L) of a strongly continuous
contraction semi-group, {T (t)}t≥0 is the (unbounded) operator on X defined by

Lv :=
d

dt
|0+T (t) v for all v ∈ D (L) (12.1)

where D (L) consists precisely of those v ∈ X for which the derivative in Eq.
(12.1) exists in X.

Proposition 12.5. Let T (t) be a strongly continuous contraction semi-group,
then;

1. [0,∞) 3 t→ T (t) v ∈ X is continuous for all v ∈ X,
2. D (L) is a dense linear subspace of X.
3. If v : [0,∞)→ X is a continuous, then w (t) := T (t) v (t) is also continuous

on [0,∞).

Proof. We take each item in turn.

1. By assumption v (t) := T (t) v is continuous at t = 0. For t > 0 and h > 0,

‖v (t+ h)− v (t)‖ = ‖T (t) (T (h)− I)v‖ ≤ ‖v (h)− v‖ → 0 as h ↓ 0.

Similarly if h ∈ (0, t),

‖v (t− h)− v (t)‖ = ‖T (t− h) (I − T (h))v‖ ≤ ‖v − v (h)‖ → 0 as h ↓ 0.

Thus we have proved item 1.
2. Since σ → T (σ) v is continuous for any v ∈ X, we may define

vs :=

∫ s

0

T (σ) vdσ for all 0 < s <∞,

where the integral may be interpreted as X–valued Riemann integral or as
a Bochner integral. Note∥∥∥∥1

s
vs − v

∥∥∥∥ =

∥∥∥∥1

s

∫ s

0

(T (σ) v − v)dσ

∥∥∥∥ ≤ 1

|s|

∣∣∣∣∫ s

0

‖T (σ) v − v‖dσ
∣∣∣∣→ 0

as s ↓ 0, so that
D := {vs ∈ X : s > 0 and v ∈ X}

is dense in X. Moreover for any s > 0 and v ∈ X we have

d

dt

∣∣∣∣
0+

T (t) vs =
d

dt

∣∣∣∣
0+

∫ s

0

T (t+ σ)vdσ

=
d

dt

∣∣∣∣
0+

∫ t+s

t

T (τ) vdτ = T (s) v − v

which shows vs ∈ D (L) and Lvs = T (s) v − v. In particular, D ⊂ D (L)
and hence D (L) is dense in X. It is easily checked that D (L) is a linear
subspace of X.
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3. This statement is really just a consequence of the fact that the bilinear map,

X ×B (X) 3 (v, T )→ Tv ∈ X

is continuous when X is equipped with the norm topology and B (X) with
the strong operator topology and X×B (X) is then given the corresponding
product topology. For completeness we will give a direct proof in the setting
at hand.
If v : [0,∞)→ X is a continuous function and w (t) := T (t) v (t) , then for
t > 0 and h ∈ (−t,∞),

w (t+ h)− w (t) = (T (t+ h)− T (t))v (t) + T (t+ h) (v (t+ h)− v (t))

The first term goes to zero as h → 0 by item 1 and the second term goes
to zero since v is continuous and ‖T (t+ h)‖ ≤ 1. The above argument also
works with t = 0 and h ≥ 0.

Theorem 12.6 (Solution Operator). Let T (t) be a contraction semi-group
with infinitesimal generator L and v ∈ D (L) . Then T (t) v ∈ D (L) for all t > 0,
the function t→ T (t) v is differentiable for t > 0, and

d

dt
T (t) v = LT (t) v = T (t)Lv.

Proof. Let v ∈ D (L) and t > 0. Then for h > 0 we have

T (t+ h)− T (t)

h
v =

T (h)− I
h

T (t) v =
T (t) (T (h)− I)

h
v.

Letting h ↓ 0 in the last set of equalities show that T (t) v ∈ D (L) and

d

dh
|0+T (t+ h) v = LT (t) v = T (t)Lv. (12.2)

Similarly for h ∈ (0, t) ,

T (t− h)− T (t)

−h
v =

T (t)− T (t− h)

h
v = T (t− h)

T (h)− I
h

v. (12.3)

In order to pass to the limit in this equation, let u : [0,∞) → X be the
continuous function defined by

u (h) =

{
h−1(T (h)− I)v if h > 0

Lv if h = 0
.

Hence by same argument as in the proof of item 3 of Proposition 12.5), h →
T (t− h)u (h) is continuous at h = 0 and therefore,

T (t− h)− T (t)

−h
v = T (t− h)u (h)→ T (t− 0)u (0) = T (t)Lv as h ↓ 0.

So we have shown
d

dh
|0−T (t+ h) v = T (t)Lv

which coupled with Eq. (12.2) shows

d

dt
T (t) v =

d

dh
|0T (t+ h) v = T (t)Lv = LT (t) v.

Proposition 12.7 (L is Closed). Let L be the infinitesimal generator of a
contraction semi-group, T (t) , then L is a densely defined closed operator on
X.

Proof. Suppose that vn ∈ D (L) , vn → v, and Lvn → w in X as n → ∞.
By Theorem 12.6 and the fundamental theorem of calculus, we have

T (t) vn − vn =

∫ t

0

T (τ)Lvndτ.

Passing to the limit as n → ∞ in this equation (using T (·)Lvn → T (·)w
uniformly) allows us to show,

T (t) v − v =

∫ t

0

T (τ)wdτ.

It then follows by the fundamental theorem of calculus (one sided version) that
v ∈ D (L) and Lv = d

dt |0+T (t) v = w, i.e. L is closed.

Definition 12.8 (Evolution Equation). Let T be a strongly continuous con-
traction semi-group with infinitesimal generator L. A function v : [0,∞) → X
is said to solve the differential equation

v̇ (t) = Lv (t) (12.4)

if i) v (t) ∈ D (L) for all t ≥ 0, ii) v ∈ C([0,∞)→ X) ∩ C1((0,∞)→ X), and
iii) Eq. (12.4) holds for all t > 0.

Theorem 12.9 (Evolution Equation). Let T be a strongly continuous con-
traction semi-group with infinitesimal generator L. The for all v0 ∈ D (L) , there
is a unique solution to (12.4) such that v (0) = v0.
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Proof. Existence. By Theorem 12.6 and Proposition 12.5, v (t) := T (t) v0

solves (12.4.
Uniqueness. Let v (t) be any solution of Eq. (12.4), τ > 0 be given, and

set w (t) := T (τ − t)v (t) . By item 3 of Proposition 12.5, w is continuous for
t ∈ [0, τ ]. We will now show that w is also differentiable on (0, τ) and that
ẇ (t) := 0 for t ∈ (0, τ) .

To simplify notation let P (t) := T (τ − t) and for fixed t ∈ (0, τ) and h 6= 0
but sufficiently close to 0, let

ε (h) :=
v (t+ h)− v (t)

h
− v̇ (t)

so that limh→0 ε (h) = 0 by definition of the derivative. With this notation we
have

w (t+ h)− w (t)

h
=

1

h
(P (t+ h) v (t+ h)− P (t) v (t))

=
(P (t+ h)− P (t))

h
v (t) + P (t+ h)

(v (t+ h)− v (t))

h

=
(P (t+ h)− P (t))

h
v (t) + P (t+ h) (v̇ (t) + ε (h))

→ −P (t)Lv (t) + P (t) v̇ (t) as h→ 0,

wherein we have used

‖P (t+ h) ε (h)‖ ≤ ‖ε (h)‖ → 0 as h→ 0.

Hence we have shown,

ẇ (t) = −P (t)Lv (t) + P (t) v̇ (t) = −P (t)Lv (t) + P (t)Lv (t) = 0,

and thus w (t) = T (t − t)v (t) is constant or (0, τ). By the continuity of w on
[0, τ ] we may now conclude that w (τ) = w (0) , i.e.

v (τ) = w (τ) = w (0) = T (τ) v (0) = T (τ) v0.

This proves the only solutions to Eq. (12.4) with initial condition, v0, is v (t) =
T (t) v0.

Corollary 12.10. Suppose that T and T̂ are two strongly continuous con-
traction semi-groups on a Banach space X which have the same infinitesimal
generators L. Then T = T̂ .

Proof. Let v0 ∈ D (L) then v (t) = T (t) v and v̂ (t) = T̂ (t) v̂ both solve
Eq. (12.4 with initial condition v0. By Theorem 12.9, v = v̂ which implies that
T (t) v0 = T̂ (t) v0, i.e., T = T̂ .

Because of the last corollary the following notation is justified.

Notation 12.11 If T is a strongly continuous contraction semi-group with in-
finitesimal generator L, we will write T (t) as etL.

If T (t) = etL is a contraction semigroup we expect L to be “negative” (more
precisely non-positive) in some sense and so working formally we expect to have,
for all λ > 0, that∫ ∞

0

e−tλetLdt =
1

L− λ
et(L−λ)|∞t=0 =

1

λ− L
= (λ− L)

−1
.

The next theorem justifies these hopes.

Theorem 12.12. Suppose T (t) = etL is a strongly continuous contraction
semi-group with infinitesimal generator L. For any λ > 0 the integral∫ ∞

0

e−tλetLdt =: Rλ (12.5)

exists as a B (X)-valued Bochner-integral (or as an improper Riemann integral).

Moreover, (λ− L) : D (L)→ X is an invertible operator, (λ− L)
−1

= Rλ, and
‖Rλ‖ ≤ λ−1.

Proof. First notice that∫ ∞
0

e−tλ‖etL‖dt ≤
∫ ∞

0

e−tλdt = 1/λ.

Therefore the integral in Eq. (12.5) exists and the result, Rλ, satisfies ‖Rλ‖ ≤
λ−1. So we now must show that Rλ = (λ− L)

−1
.

Let v ∈ X and h > 0, then

ehLRλv =

∫ ∞
0

e−tλe(t+h)Lvdt =

∫ ∞
h

e−(t−h)λetLvdt = ehλ
∫ ∞
h

e−tλetLvdt.

(12.6)
Therefore

d

dh

∣∣∣∣
0+

ehLRλv = −v +

∫ ∞
0

λe−tλetLvdt = −v + λRλv,

which shows that Rλv ∈ D (L) and that LRλv = −v+λRλv, i.e. (λ− L)Rλ = I.
Similarly,

Rλe
hLv = ehλ

∫ ∞
h

e−tλetLvdt (12.7)

and hence if v ∈ D (L) , then

RλLv =
d

dh

∣∣∣∣
0+

Rλe
hLv = −v + λRλv,

i.e. Rλ (λ− L) = ID(L).
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12.2 The Hille-Yosida Theorem

Theorem 12.13 (Hille-Yosida). A closed densely defined linear operator, L,
on a Banach space, X, is the generates a contraction semi-group iff for all
λ ∈ (0,∞);

1. Rλ := (λ− L)
−1

exists as a bounded operator and

2. ‖Rλ‖ =
∥∥∥(λ− L)

−1
∥∥∥ ≤ 1

λ ∀λ > 0.

Remark 12.14. In what follows we will freely use the fact that LRλ = RλL on
D (L) . Indeed, if v ∈ D (L) , then

LRλv = L (λ− L)
−1
v = (L− λ+ λ) (λ− L)

−1
v

= −v + λ (λ− L)
−1
v = −v + λRλv

while
RλLv = Rλ (L− λ+ λ) v = −v + λRλv.

Proposition 12.15 (Approximators). Let L be an operator on X satisfying
properties 1. and 2. of the Hille-Yosida theorem and for each λ > 0, let

Lλ := λLRλ = “
λL

λ− L
.”

Then

Lλ = −λ+ λ2Rλ, (12.8)

λRλ
s−→ I as λ→∞, and (12.9)

lim
λ→∞

Lλv = Lv ∀ v ∈ D (L) . (12.10)

Proof. The first identity is easy;

Lλ = λL (λ− L)
−1

= λ (L− λ+ λ) (λ− L)
−1

= −λ+ λ2Rλ.

To prove Eq. (12.9), we will use, for v ∈ D (L) , that

λRλv = (λ− L)
−1
λv

= (λ− L)
−1

(λ− L) v + (λ− L)
−1
Lv = v +RλLv. (12.11)

From this idenitty along with assumption 2., if follows that

‖λRλv − v‖ = ‖RλLv‖ ≤
1

λ
‖Lv‖ → 0 as λ→∞.

Equation (12.9), now follows from the previous equation, the fact that ‖λRλ‖ ≤
1, along with the standard 3ε–argument. Using Eq. (12.9) along with Remark
12.14; if v ∈ D (L) , then

Lλv = λLRλv = λRλLv → Lv as λ→∞

and the proof is complete.

Lemma 12.16. If X is a Banach space and A,B ∈ B (X) , then for any t ∈ R

etB − etA =

∫ t

0

e(t−τ)A(B −A)eτBdτ.

If we further assume that A and B commute, then for each v ∈ X,

∥∥(etB − etA) v∥∥ ≤ ∣∣∣∣∫ t

0

∥∥∥e(t−τ)A
∥∥∥∥∥eτB∥∥ dτ ∣∣∣∣ · ‖(A−B) v‖ (12.12)

≤ |t| ·MA (t)MB (t) ‖(A−B) v‖ (12.13)

where
MA (t) := sup

{∥∥eτA∥∥ : τ between 0 and t
}

with an analogous definition for MB (t) . In particular, if ‖etA‖ and ‖etB‖ are
bounded by 1 for all t > 0, then∥∥(etA − etB) v∥∥ ≤ t ‖(A−B) v‖ for all v ∈ X. (12.14)

Proof. By the fundamental theorem of calculus and the product rule we
have,

e−tAetB − I =

∫ t

0

d

dτ
e−τAeτBdτ =

∫ t

0

e−τA(−A+B)eτBdτ.

Multiplying this equation on the left by etA shows,

etB − etA =

∫ t

0

e(t−τ)A(B −A)eτBdτ.

If we now further assume that [A,B] = 0, the previously displayed equation
may be written as

etB − etA =

∫ t

0

e(t−τ)AeτB(B −A)dτ.

Applying this identity to v ∈ X and then taking norms and using the triangle
inequality for integrals gives Eq. (12.12) which also clearly implies Eqs. (12.13)
and (12.14).
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With this preparation we are now ready for the proof of Hille–Yoshida The-
orem 12.13.

Proof. Hille–Yoshida Theorem 12.13. For λ > 0, let

Tλ (t) := etLλ = etLλ :=

∞∑
n=0

tn

n!
Lnλ.

The outline of the proof is: i) show that Tλ (t) is a contraction for all t > 0, ii)
show for t > 0 that Tλ (t) converges strongly to an operator T (t) , iii) we show
T (t) is a strongly continuous contraction semi-group, and iv) the generator of
T (t) is L.

Step i) Using Lλ = −λ + λ2Rλ (see Eq. (12.8) we find that etLλ =

e−tλetλ
2Rλ and hence

‖Tλ (t) ‖ = ‖etLλ‖ ≤ e−tλetλ
2‖Rλ‖ ≤ e−tλetλ

2λ−1

= 1

wherein we have used assumtion 2. to conclude λ ‖Rλ‖ ≤ 1 for all λ > 0.
Step ii) Let α, µ > 0 and v ∈ D (L) , then by Lemma 12.16 and Proposition

12.15,
‖(Tα (t)− Tµ (t))v‖ ≤ t‖Lαv − Lµv‖ → 0 as α, µ→∞.

This shows, for all v ∈ D (L) , that limα→∞ Tα (t) v exists uniformly for t in
compact subsets of [0,∞). For general v ∈ X, w ∈ D (L) , τ > 0, and 0 ≤ t ≤ τ,
we have

‖(Tα (t)− Tµ (t))v‖ ≤ ‖(Tα (t)− Tµ (t))w‖+ ‖(Tα (t)− Tµ (t))(v − w)‖
≤ ‖(Tα (t)− Tµ (t))w‖+ 2‖v − w‖.
≤ τ‖Lαw − Lµw‖+ 2‖v − w‖.

Thus

lim sup
α,µ→∞

sup
t∈[0,τ ]

‖(Tα (t)− Tµ (t))v‖ ≤ 2‖v − w‖ → 0 as w → v.

Hence for each v ∈ X, T (t) v := limα→∞ Tα (t) v exists uniformly for t in
compact sets of [0,∞).

Step iii) It is now easily follows that ‖T (t)‖ ≤ 1 and that t → T (t) is
strongly continuous. Let us now fix s, t > 0 and v ∈ X and note that

ε (α) := Tα (s) v − T (s) v → 0 as α ↓ 0.

We then have

Tα(t+ s)v = Tα (t)Tα (s) v = Tα (t)T (s) v + Tα (t) ε (α) .

Passing to the limit as α ↓ 0 in this identity then shows T (t+s)v = T (t)T (s) v
((i.e. is a semi-group) where we have used

‖Tα (t) ε (α)‖ ≤ ‖ε (α)‖ → 0 as α ↓ 0.

Step iv) Let L̃ = d
dt |0+T (t) denote the infinitesimal generator of T. We are

going to finish the proof by showing L̃ = L.
If v ∈ D (L) and λ > 0, then

Tλ (t) v = etLλv = v +

∫ t

0

eτLλLλvdτ = v +

∫ t

0

Tλ (τ)Lλvdτ. (12.15)

Let us note that

‖Tλ (τ)Lλv − T (τ)Lv‖ ≤ ‖Tλ (τ) [Lλv − Lv]‖+ ‖Tλ (τ)Lv − T (τ)Lv‖
≤ ‖Lλv − Lv‖+ ‖Tλ (τ)Lv − T (τ)Lv‖

and hence

max
0≤τ≤t

‖Tλ (τ)Lλv − T (τ)Lv‖

≤ ‖Lλv − Lv‖+ max
0≤τ≤t

‖Tλ (τ)Lv − T (τ)Lv‖ → 0 as λ ↓ 0,

wherein we have used Eq. (12.10) and step ii to deduce the limit. With this
result in hand we may let λ ↓ 0 in Eq. (12.15) in order to conclude,

T (t) v = v +

∫ t

0

T (τ)Lv dτ for all v ∈ D (L) .

It then follows by the fundamental theorem of calculus that L̃v = d
dt |0+T (t) v =

Lv, i.e. we have shown L ⊂ L̃ and therefore λ−L ⊂ λ−L̃ for any λ > 0. However
both λ−L and λ− L̃ are invertible and hence by the simple Exercise 11.1 with
A = λ− L̃ and B = λ− L, it follows that A = B, i.e. L = L̃.

For the skeptical reader: here is a direct proof of the last part of the ar-

gument. Suppose that ṽ ∈ D(L̃). Fix λ > 0 and let v := (λ− L)
−1
(
λ− L̃

)
ṽ ∈

D (L) so that (λ− L) v =
(
λ− L̃

)
ṽ. Since L ⊂ L̃, we may conclude(

λ− L̃
)
v = (λ− L) v =

(
λ− L̃

)
ṽ

and because λ− L̃ is invertible it follows that ṽ = v ∈ D (L) .
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43. Konrad Schmüdgen, Unbounded self-adjoint operators on Hilbert space, Graduate
Texts in Mathematics, vol. 265, Springer, Dordrecht, 2012. MR 2953553

44. B. Simon, Convergence in trace ideals, Proc. Amer. Math. Soc. 83 (1981), no. 1,
39–43. MR 82h:47042

45. Barry Simon, Trace ideals and their applications, London Mathematical Society
Lecture Note Series, vol. 35, Cambridge University Press, Cambridge, 1979. MR
80k:47048

46. Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and os-
cillatory integrals, Princeton University Press, Princeton, NJ, 1993, With the
assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III. MR
95c:42002

47. Robert S. Strichartz, Analysis of the Laplacian on the complete Riemannian man-
ifold, J. Funct. Anal. 52 (1983), no. 1, 48–79. MR 84m:58138

48. Michel Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 51
(1984), no. 307, ix+224. MR 756174

49. Michael E. Taylor, Partial differential equations I. Basic theory, second ed., Ap-
plied Mathematical Sciences, vol. 115, Springer, New York, 2011. MR 2744150

50. J. v. Neumann, Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Ann.
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A

Miscellaneous Background Results

A.1 Multiplicative System Theorems

Notation A.1 Let Ω be a set and H be a subset of the bounded real valued
functions on Ω. We say that H is closed under bounded convergence if; for
every sequence, {fn}∞n=1 ⊂ H, satisfying:

1. there exists M <∞ such that |fn (ω)| ≤M for all ω ∈ Ω and n ∈ N,
2. f (ω) := limn→∞ fn (ω) exists for all ω ∈ Ω, then f ∈ H.

Notation A.2 For any σ-algebra, B ⊂ 2Ω , let B (Ω,B;R) be the bounded
B/BR-measurable functions from Ω to R.

Notation A.3 If M is any subset of B
(
Ω, 2Ω ;R

)
, let H (M) denote the small-

est subspace of bounded functions on Ω which contains M∪{1} . (As usual such
a space exists by taking the intersection of all such spaces.)

Definition A.4. A subset, M ⊂ B
(
Ω, 2Ω ;R

)
, is called a multiplicative sys-

tem if M is closed under finite products, i.e. f, g ∈M, then f · g ∈M.

The following result may be found in Dellacherie [8, p. 14]. The style of
proof given here may be found in Janson [23, Appendix A., p. 309].

Theorem A.5 (Dynkin’s Multiplicative System Theorem). Suppose that
H is a vector subspace of bounded functions from Ω to R which contains the
constant functions and is closed under bounded convergence. If M ⊂ H is a mul-
tiplicative system, then H contains all bounded σ (M) – measurable functions,
i.e. H contains B (Ω, σ (M) ;R) .

Proof. We are going to in fact prove: if M ⊂ B
(
Ω, 2Ω ;R

)
is a multiplicative

system, then H (M) = B (Ω, σ (M) ;R) . This suffices to prove the theorem as
H (M) ⊂ H is contained in H by very definition of H (M) . To simplify notation
let us now assume that H = H (M) . The remainder of the proof will be broken
into five steps.

Step 1. (H is an algebra of functions.) For f ∈ H, let Hf :=
{g ∈ H : gf ∈ H} . The reader will now easily verify that Hf is a linear sub-
space of H, 1 ∈ Hf , and Hf is closed under bounded convergence. Moreover if
f ∈M, since M is a multiplicative system, M ⊂ Hf . Hence by the definition of
H, H = Hf , i.e. fg ∈ H for all f ∈ M and g ∈ H. Having proved this it now

follows for any f ∈ H that M ⊂ Hf and therefore as before, Hf = H. Thus we
may conclude that fg ∈ H whenever f, g ∈ H, i.e. H is an algebra of functions.

Step 2. (B := {A ⊂ Ω : 1A ∈ H} is a σ – algebra.) Using the fact that H
is an algebra containing constants, the reader will easily verify that B is closed
under complementation, finite intersections, and contains Ω, i.e. B is an algebra.
Using the fact that H is closed under bounded convergence, it follows that B is
closed under increasing unions and hence that B is σ – algebra.

Step 3. (B (Ω,B;R) ⊂ H) Since H is a vector space and H contains 1A for
all A ∈ B, H contains all B – measurable simple functions. Since every bounded
B – measurable function may be written as a bounded limit of such simple
functions, it follows that H contains all bounded B – measurable functions.

Step 4. (σ (M) ⊂ B.) Let ϕn (x) = 0 ∨ [(nx) ∧ 1] (see Figure A.1 below)
so that ϕn (x) ↑ 1x>0. Given f ∈ M and a ∈ R, let Fn := ϕn (f − a) and
M := supω∈Ω |f (ω)− a| . By the Weierstrass approximation theorem, we may
find polynomial functions, pl (x) such that pl → ϕn uniformly on [−M,M ] .
Since pl is a polynomial and H is an algebra, pl (f − a) ∈ H for all l. Moreover,
pl ◦ (f − a)→ Fn uniformly as l→∞, from with it follows that Fn ∈ H for all
n. Since, Fn ↑ 1{f>a} it follows that 1{f>a} ∈ H, i.e. {f > a} ∈ B. As the sets
{f > a} with a ∈ R and f ∈M generate σ (M) , it follows that σ (M) ⊂ B.

Fig. A.1. Plots of ϕ1, ϕ2 and ϕ3 which are continuous functions used to approximate,
x→ 1x≥0.
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Step 5. (H (M) = B (Ω, σ (M) ;R) .) By step 4., σ (M) ⊂ B, and so
B (Ω, σ (M) ;R) ⊂ B (Ω,B;R) which combined with step 3. shows,

B (Ω, σ (M) ;R) ⊂ B (Ω,B;R) ⊂ H (M) .

However, we know that B (Ω, σ (M) ;R) is a subspace of bounded measurable
functions containing M and therefore H (M) ⊂ B (Ω, σ (M) ;R) which suffices
to complete the proof.

Corollary A.6. Suppose H is a subspace of bounded real valued functions such
that 1 ∈ H and H is closed under bounded convergence. If P ⊂ 2Ω is a mul-
tiplicative class such that 1A ∈ H for all A ∈ P, then H contains all bounded
σ(P) – measurable functions.

Proof. LetM = {1}∪{1A : A ∈ P} . ThenM ⊂ H is a multiplicative system
and the proof is completed with an application of Theorem A.5.

Example A.7. Suppose µ and ν are two probability measure on (Ω,B) such that∫
Ω

fdµ =

∫
Ω

fdν (A.1)

for all f in a multiplicative subset, M, of bounded measurable functions on Ω.
Then µ = ν on σ (M) . Indeed, apply Theorem A.5 with H being the bounded
measurable functions on Ω such that Eq. (A.1) holds. In particular if M =
{1} ∪ {1A : A ∈ P} with P being a multiplicative class we learn that µ = ν on
σ (M) = σ (P) .

Exercise A.1. Let Ω := {1, 2, 3, 4} and M := {1A, 1B} where A := {1, 2} and
B := {2, 3} .

a) Show σ (M) = 2Ω .
b) Find two distinct probability measures, µ and ν on 2Ω such that µ (A) =

ν (A) and µ (B) = ν (B) , i.e. Eq. (A.1) holds for all f ∈M.

Moral: the assumption that M is multiplicative can not be dropped from
Theorem A.5.

Proposition A.8. Suppose µ and ν are two measures on (Ω,B) , P ⊂ B is a
multiplicative system (i.e. closed under intersections as in Definition ??) such
that µ (A) = ν (A) for all A ∈ P. If there exists Ωn ∈ P such that Ωn ↑ Ω and
µ (Ωn) = ν (Ωn) <∞, then µ = ν on σ (P) .

Proof. Step 1. First assume that µ (Ω) = ν (Ω) < ∞ and then apply
Example A.7 with M = {1A : A ∈ P} in order to find µ = ν on σ (M) = σ (P) .

Step 2. For the general case let µn (B) := µ (B ∩Ωn) and νn (B) :=
ν (B ∩Ωn) for all B ∈ B. Then µn = νn on P (because Ωn ∈ P) and

µn (Ω) = µ (Ωn) = ν (Ωn) = νn (Ω) .

Therefore by step 1, µn = νn on σ (P) . Passing to the limit as n → ∞ then
shows

µ (B) = lim
n→∞

µ (B ∩Ωn) = lim
n→∞

µn (B)

= lim
n→∞

νn (B) = lim
n→∞

ν (B ∩Ωn) = ν (B)

for all B ∈ σ (P).
Here is a complex version of Theorem A.5.

Theorem A.9 (Complex Multiplicative System Theorem). Suppose H
is a complex linear subspace of the bounded complex functions on Ω, 1 ∈ H, H is
closed under complex conjugation, and H is closed under bounded convergence.
If M ⊂ H is multiplicative system which is closed under conjugation, then H
contains all bounded complex valued σ(M)-measurable functions.

Proof. Let M0 = spanC(M∪ {1}) be the complex span of M. As the reader
should verify, M0 is an algebra, M0 ⊂ H, M0 is closed under complex conjuga-
tion and σ (M0) = σ (M) . Let

HR := {f ∈ H : f is real valued} and

MR
0 := {f ∈M0 : f is real valued} .

Then HR is a real linear space of bounded real valued functions 1 which is closed
under bounded convergence and MR

0 ⊂ HR. Moreover, MR
0 is a multiplicative

system (as the reader should check) and therefore by Theorem A.5, HR contains
all bounded σ

(
MR

0

)
– measurable real valued functions. Since H and M0 are

complex linear spaces closed under complex conjugation, for any f ∈ H or
f ∈ M0, the functions Re f = 1

2

(
f + f̄

)
and Im f = 1

2i

(
f − f̄

)
are in H or

M0 respectively. Therefore M0 = MR
0 + iMR

0 , σ
(
MR

0

)
= σ (M0) = σ (M) , and

H = HR + iHR. Hence if f : Ω → C is a bounded σ (M) – measurable function,
then f = Re f + i Im f ∈ H since Re f and Im f are in HR.

Lemma A.10. If −∞ < a < b < ∞, there exists fn ∈ Cc (R, [0, 1]) such that
limn→∞ fn = 1(a,b].

Proof. The reader should verify limn→∞ fn = 1(a,b] where fn ∈ Cc (R, [0, 1])
is defined (for n sufficiently large) by
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fn (x) :=


0 on (−∞, a] ∪ [b+ 1

n ,∞)
n (x− a) if a ≤ x ≤ a+ 1

n
1 if a+ 1

n ≤ x ≤ b
1− n (b− x) if b ≤ x ≤ b+ 1

n

.

Fig. A.2. Here is a plot of f2 (x) when a = 1.5 and b = 3.5.

Lemma A.11. For each λ > 0, let eλ (x) := eiλx. Then

BR = σ (eλ : λ > 0) = σ
(
e−1
λ (W ) : λ > 0, W ∈ BR

)
.

Proof. Let S1 := {z ∈ C : |z| = 1} . For −π < α < β < π let

A (α, β) :=
{
eiθ : α < θ < β

}
= S1 ∩

{
reiθ : α < θ < β, r > 0

}
which is a measurable subset of C (why). Moreover we have eλ (x) ∈ A (α, β)
iff λx ∈

∑
n∈Z [(α, β) + 2πn] and hence

e−1
λ (A (α, β)) =

∑
n∈Z

[(
α

λ
,
β

λ

)
+ 2π

n

λ

]
∈ σ (eλ : λ > 0) .

Hence if −∞ < a < b < ∞ and λ > 0 sufficiently small so that −π < λa <
λb < π, we have

e−1
λ (A (λa, λb)) =

∑
n∈Z

[
(a, b) + 2π

n

λ

]
and hence

(a, b) = ∩λ>0e
−1
λ (A (λa, λb)) ∈ σ (eλ : λ > 0) .

This shows BR ⊂ σ (eλ : λ > 0) . As eλ is continuous and hence Borel measurable
for all λ > 0 we automatically know that σ (eλ : λ > 0) ⊂ BR.

Remark A.12. A slight modification of the above proof actually shows if {λn} ⊂
(0,∞) with limn→∞ λn = 0, then σ (eλn : n ∈ N) = BR.

Corollary A.13. Each of the following σ – algebras on Rd are equal to BRd ;

1.M1 := σ (∪ni=1 {x→ f (xi) : f ∈ Cc (R)}) ,
2.M2 := σ (x→ f1 (x1) . . . fd (xd) : fi ∈ Cc (R))
3.M3 = σ

(
Cc
(
Rd
))
, and

4.M4 := σ
({
x→ eiλ·x : λ ∈ Rd

})
.

Proof. As the functions defining each Mi are continuous and hence Borel
measurable, it follows thatMi ⊂ BRd for each i. So to finish the proof it suffices
to show BRd ⊂Mi for each i.
M1 case. Let a, b ∈ R with −∞ < a < b < ∞. By Lemma A.10, there

exists fn ∈ Cc (R) such that limn→∞ fn = 1(a,b]. Therefore it follows that
x → 1(a,b] (xi) is M1 – measurable for each i. Moreover if −∞ < ai < bi < ∞
for each i, then we may conclude that

x→
d∏
i=1

1(ai,bi] (xi) = 1(a1,b1]×···×(ad,bd] (x)

is M1 – measurable as well and hence (a1, b1] × · · · × (ad, bd] ∈ M1. As such
sets generate BRd we may conclude that BRd ⊂M1.

and therefore M1 = BRd .
M2 case. As above, we may find fi,n → 1(ai,bi] as n→∞ for each 1 ≤ i ≤ d

and therefore,

1(a1,b1]×···×(ad,bd] (x) = lim
n→∞

f1,n (x1) . . . fd,n (xd) for all x ∈ Rd.

This shows that 1(a1,b1]×···×(ad,bd] is M2 – measurable and therefore (a1, b1] ×
· · · × (ad, bd] ∈M2.
M3 case. This is easy since BRd =M2 ⊂M3 ⊂ BRd .
M4 case. Let πj : Rd → R be projection onto the jth – factor, then for

λ > 0, eλ ◦ πj (x) = eiλxj . It then follows that

σ (eλ ◦ πj : λ > 0) = σ
(

(eλ ◦ πj)−1
(W ) : λ > 0,W ∈ BC

)
= σ

(
π−1
j

(
e−1
λ (W )

)
: λ > 0,W ∈ BC

)
= π−1

j

(
σ
((
e−1
λ (W )

)
: λ > 0,W ∈ BC

))
= π−1

j (BR)

wherein we have used Lemma A.11 for the last equality. Since
σ (eλ ◦ πj : λ > 0) ⊂M4 for each j we must have

BRd =

d times︷ ︸︸ ︷
BR ⊗ · · · ⊗ BR = σ (πj : 1 ≤ j ≤ d) ⊂M4.

Page: 135 job: 241Functional_2020s macro: svmonob.cls date/time: 13-Feb-2020/12:28



136 A Miscellaneous Background Results

Alternative proof. By Lemma ?? below there exists gn ∈Trig(R) such
that limn→∞ gn = 1(a,b]. Since x→ gn (xi) is in the span

{
x→ eiλ·x : λ ∈ Rd

}
for each n, it follows that x→ 1(a,b] (xi) isM4 – measurable for all −∞ < a <
b < ∞. Therefore, just as in the proof of case 1., we may now conclude that
BRd ⊂M4.

Corollary A.14. Suppose that H is a subspace of complex valued functions on
Rd which is closed under complex conjugation and bounded convergence. If H
contains any one of the following collection of functions;

1. M := {x→ f1 (x1) . . . fd (xd) : fi ∈ Cc (R)}
2. M := Cc

(
Rd
)
, or

3. M :=
{
x→ eiλ·x : λ ∈ Rd

}
then H contains all bounded complex Borel measurable functions on Rd.

Proof. Observe that if f ∈ Cc (R) such that f (x) = 1 in a neighborhood
of 0, then fn (x) := f (x/n) → 1 as n → ∞. Therefore in cases 1. and 2., H
contains the constant function, 1, since

1 = lim
n→∞

fn (x1) . . . fn (xd) .

In case 3, 1 ∈ M ⊂ H as well. The result now follows from Theorem A.9 and
Corollary A.13.

Proposition A.15 (Change of Variables Formula). Suppose that −∞ <
a < b < ∞ and u : [a, b] → R is a continuously differentiable function which
is not necessarily invertible. Let [c, d] = u ([a, b]) where c = minu ([a, b]) and
d = maxu ([a, b]). (By the intermediate value theorem u ([a, b]) is an interval.)
Then for all bounded measurable functions, f : [c, d]→ R we have∫ u(b)

u(a)

f (x) dx =

∫ b

a

f (u (t)) u̇ (t) dt. (A.2)

Moreover, Eq. (A.2) is also valid if f : [c, d]→ R is measurable and∫ b

a

|f (u (t))| |u̇ (t)| dt <∞. (A.3)

Proof. Let H denote the space of bounded measurable functions such that
Eq. (A.2) holds. It is easily checked thatH is a linear space closed under bounded
convergence. Next we show that M = C ([c, d] ,R) ⊂ H which coupled with
Corollary A.14 will show that H contains all bounded measurable functions
from [c, d] to R.

If f : [c, d] → R is a continuous function and let F be an anti-derivative of
f. Then by the fundamental theorem of calculus,∫ b

a

f (u (t)) u̇ (t) dt =

∫ b

a

F ′ (u (t)) u̇ (t) dt

=

∫ b

a

d

dt
F (u (t)) dt = F (u (t)) |ba

= F (u (b))− F (u (a)) =

∫ u(b)

u(a)

F ′ (x) dx =

∫ u(b)

u(a)

f (x) dx.

Thus M ⊂ H and the first assertion of the proposition is proved.
Now suppose that f : [c, d]→ R is measurable and Eq. (A.3) holds. For M <

∞, let fM (x) = f (x) · 1|f(x)|≤M – a bounded measurable function. Therefore
applying Eq. (A.2) with f replaced by |fM | shows,∣∣∣∣∣

∫ u(b)

u(a)

|fM (x)| dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a

|fM (u (t))| u̇ (t) dt

∣∣∣∣∣ ≤
∫ b

a

|fM (u (t))| |u̇ (t)| dt.

Using the MCT, we may let M ↑ ∞ in the previous inequality to learn∣∣∣∣∣
∫ u(b)

u(a)

|f (x)| dx

∣∣∣∣∣ ≤
∫ b

a

|f (u (t))| |u̇ (t)| dt <∞.

Now apply Eq. (A.2) with f replaced by fM to learn∫ u(b)

u(a)

fM (x) dx =

∫ b

a

fM (u (t)) u̇ (t) dt.

Using the DCT we may now let M → ∞ in this equation to show that Eq.
(A.2) remains valid.

Exercise A.2. Suppose that u : R→ R is a continuously differentiable function
such that u̇ (t) ≥ 0 for all t and limt→±∞ u (t) = ±∞. Use the multiplicative
system theorem to prove∫

R
f (x) dx =

∫
R
f (u (t)) u̇ (t) dt (A.4)

for all measurable functions f : R→ [0,∞] . In particular applying this result
to u (t) = at+ b where a > 0 implies,∫

R
f (x) dx = a

∫
R
f (at+ b) dt.
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Definition A.16. The Fourier transform or characteristic function of a
finite measure, µ, on

(
Rd,BRd

)
, is the function, µ̂ : Rd → C defined by

µ̂ (λ) :=

∫
Rd
eiλ·xdµ (x) for all λ ∈ Rd

Corollary A.17. Suppose that µ and ν are two probability measures on(
Rd,BRd

)
. Then any one of the next three conditions implies that µ = ν;

1.
∫
Rd f1 (x1) . . . fd (xd) dν (x) =

∫
Rd f1 (x1) . . . fd (xd) dµ (x) for all fi ∈

Cc (R) .
2.
∫
Rd f (x) dν (x) =

∫
Rd f (x) dµ (x) for all f ∈ Cc

(
Rd
)
.

3. ν̂ = µ̂.

Item 3. asserts that the Fourier transform is injective.

Proof. Let H be the collection of bounded complex measurable functions
from Rd to C such that ∫

Rd
fdµ =

∫
Rd
fdν. (A.5)

It is easily seen that H is a linear space closed under complex conjugation and
bounded convergence (by the DCT). Since H contains one of the multiplicative
systems appearing in Corollary A.14, it contains all bounded Borel measurable
functions form Rd → C. Thus we may take f = 1A with A ∈ BRd in Eq. (A.5)
to learn, µ (A) = ν (A) for all A ∈ BRd .

A.2 Weak, Weak*, and Strong topologies

Another collection of examples of topological vector spaces comes from putting
different (weaker) topologies on familiar Banach spaces.

Definition A.18 (Weak and weak-* topologies). Let X be a normed vector
space and X∗ its dual space (all continuous linear functionals on X).

1. The weak topology on X is the X∗ topology of X, i.e. the smallest topology
on X such that every element f ∈ X∗ is continuous. This topology is often
denoted by σ(X,X∗).

2. The weak-∗ topology on X∗ is the topology generated by X, i.e. the smallest
topology on X∗ such that the maps f ∈ X∗ → f (x) ∈ C are continuous for
all x ∈ X. In other words it is the topology σ(X∗, X̂) where X̂ is the image
of X 3 x → x̂ ∈ X∗∗. [The weak topology on X∗ is the topology generated
by X∗∗ which is may be finer than the weak-* topology on X∗.]

Definition A.19 (Operator Topologies). Let X and Y be be a normed vec-
tor spaces and B (X,Y ) the normed space of bounded linear transformations
from X to Y.

1. The strong operator topology (s.o.t.) on B (X,Y ) is the smallest topol-
ogy such that T ∈ B (X,Y ) −→ Tx ∈ Y is continuous for all x ∈ X.

2. The weak operator topology (w.o.t.) on B (X,Y ) is the smallest topology
such that T ∈ B (X,Y ) −→ f(Tx) ∈ C is continuous for all x ∈ X and f ∈ Y ∗.

Remark A.20. Let us be a little more precise about the topologies described in
the above definitions.

1. The weak topology on X has a neighborhood base at x0 ∈ X consisting
of sets of the form

N = ∩ni=1{x ∈ X : |fi (x)− fi (x0) | < ε}

where fi ∈ X∗ and ε > 0.
2. The weak-∗ topology on X∗ has a neighborhood base at f ∈ X∗ consisting

of sets of the form

N := ∩ni=1{g ∈ X∗ : |f(xi)− g(xi)| < ε}

where xi ∈ X and ε > 0.
3. The strong operator topology on B (X,Y ) has a neighborhood base at
T ∈ X∗ consisting of sets of the form

N := ∩ni=1{S ∈ L (X,Y ) : ‖Sxi − Txi‖ < ε}

where xi ∈ X and ε > 0.
4. The weak operator topology on B (X,Y ) has a neighborhood base at
T ∈ X∗ consisting of sets of the form

N := ∩ni=1{S ∈ L (X,Y ) : |fi (Sxi − Txi)| < ε}

where xi ∈ X, fi ∈ X∗ and ε > 0.
5. If we let τop – be the operator-norm topology, τs be strong operator topol-

ogy, and τw be the weak operator topology on B (X,Y ) , .then τw ⊂ τs ⊂
τop. Consequently; if Γ ⊂ B (X,Y ) is a set, then Γ

τop ⊂ Γ τs ⊂ Γ τw and in
particular; a τw-closed set is a τs – closed set and a τs – closed set is a τop
– closed set.

Lemma A.21. Let us continue the same notation as in item 5. of Remark
A.20. Then A ∈ Γ τw iff for every Λ ⊂f X × Y ∗, there exists An ∈ Γ such that

limn→∞ f (Anx) = f (Ax) for all (f, x) ∈ Λ and similarly A ∈ Γ τs iff for every
Λ ⊂f X, there exists An ∈ Γ such that limn→∞Anx = Ax for all x ∈ Λ. [Note
well, the sequences {An} ⊂ Γ used here are allowed to depend on Γ !]
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Proof. This follows directly from Proposition ?? and the definitions of the
weak and strong operator topologies.

A.3 Quotient spaces, adjoints, and reflexivity

Definition A.22. Let X and Y be Banach spaces and A : X → Y be a linear
operator. The transpose of A is the linear operator A† : Y ∗ → X∗ defined by(
A†f

)
(x) = f(Ax) for f ∈ Y ∗ and x ∈ X. The null space of A is the subspace

Nul (A) := {x ∈ X : Ax = 0} ⊂ X. For M ⊂ X and N ⊂ X∗ let

M0 := {f ∈ X∗ : f |M = 0} and

N⊥ := {x ∈ X : f (x) = 0 for all f ∈ N}.

Proposition A.23 (Basic properties of transposes and annihilators).

1. ‖A‖ =
∥∥A†∥∥ and A††x̂ = Âx for all x ∈ X.

2. M0 and N⊥ are always closed subspaces of X∗ and X respectively.

3.
(
M0
)⊥

= M̄.

4. N̄ ⊂
(
N⊥

)0
with equality when X is reflexive. (See Exercise ??, Example

?? above which shows that N̄ 6=
(
N⊥

)0
in general.)

5. Nul (A) = Ran(A†)⊥ and Nul(A†) = Ran (A)
0
. Moreover, Ran (A) =

Nul(A†)⊥ and if X is reflexive, then Ran(A†) = Nul (A)
0
.

6. X is reflexive iff X∗ is reflexive. More generally X∗∗∗ = X̂∗ ⊕ X̂0 where

X̂0 = {λ ∈ X∗∗∗ : λ (x̂) = 0 for all x ∈ X} .

Proof.

1.

‖A‖ = sup
‖x‖=1

‖Ax‖ = sup
‖x‖=1

sup
‖f‖=1

|f(Ax)|

= sup
‖f‖=1

sup
‖x‖=1

∣∣A†f (x)
∣∣ = sup

‖f‖=1

∥∥A†f∥∥ =
∥∥A†∥∥ .

2. This is an easy consequence of the assumed continuity off all linear func-
tionals involved.

3. If x ∈ M, then f (x) = 0 for all f ∈ M0 so that x ∈
(
M0
)⊥
. Therefore

M̄ ⊂
(
M0
)⊥
. If x /∈ M̄, then there exists f ∈ X∗ such that f |M = 0 while

f (x) 6= 0, i.e. f ∈ M0 yet f (x) 6= 0. This shows x /∈
(
M0
)⊥

and we have

shown
(
M0
)⊥ ⊂ M̄.

4. It is again simple to show N ⊂
(
N⊥

)0
and therefore N̄ ⊂

(
N⊥

)0
. Moreover,

as above if f /∈ N̄ there exists ψ ∈ X∗∗ such that ψ|N̄ = 0 while ψ (f) 6= 0.
If X is reflexive, ψ = x̂ for some x ∈ X and since g (x) = ψ (g) = 0 for
all g ∈ N̄ , we have x ∈ N⊥. On the other hand, f (x) = ψ (f) 6= 0 so

f /∈
(
N⊥

)0
. Thus again

(
N⊥

)0 ⊂ N̄ .
5.

Nul (A) = {x ∈ X : Ax = 0} = {x ∈ X : f(Ax) = 0 ∀ f ∈ X∗}
=
{
x ∈ X : A†f (x) = 0 ∀ f ∈ X∗

}
=
{
x ∈ X : g (x) = 0 ∀ g ∈ Ran(A†)

}
= Ran(A†)⊥.

Similarly,

Nul(A†) =
{
f ∈ Y ∗ : A†f = 0

}
=
{
f ∈ Y ∗ : (A†f) (x) = 0 ∀ x ∈ X

}
= {f ∈ Y ∗ : f(Ax) = 0 ∀ x ∈ X}

=
{
f ∈ Y ∗ : f |Ran(A) = 0

}
= Ran (A)

0
.

6. Let ψ ∈ X∗∗∗ and define fψ ∈ X∗ by fψ (x) = ψ (x̂) for all x ∈ X and set

ψ′ := ψ − f̂ψ. For x ∈ X (so x̂ ∈ X∗∗) we have

ψ′ (x̂) = ψ (x̂)− f̂ψ (x̂) = fψ (x)− x̂(fψ) = fψ (x)− fψ (x) = 0.

This shows ψ′ ∈ X̂0 and we have shown X∗∗∗ = X̂∗ + X̂0. If ψ ∈ X̂∗ ∩ X̂0,
then ψ = f̂ for some f ∈ X∗ and 0 = f̂(x̂) = x̂ (f) = f (x) for all x ∈ X,
i.e. f = 0 so ψ = 0. Therefore X∗∗∗ = X̂∗⊕ X̂0 as claimed. If X is reflexive,
then X̂ = X∗∗ and so X̂0 = {0} showing X∗∗∗ = X̂∗, i.e. X∗ is reflexive.
Conversely if X∗ is reflexive we conclude that X̂0 = {0} and therefore

X∗∗ = {0}⊥ =
(
X̂0
)⊥

= X̂, so that X is reflexive.

Alternative proof. Notice that fψ = J†ψ, where J : X → X∗∗ is given
by Jx = x̂, and the composition

f ∈ X∗ ˆ→ f̂ ∈ X∗∗∗ J
†

→ J†f̂ ∈ X∗

is the identity map since
(
J†f̂

)
(x) = f̂(Jx) = f̂(x̂) = x̂ (f) = f (x) for all

x ∈ X. Thus it follows thatX∗
ˆ→ X∗∗∗ is invertible iff J† is its inverse which

can happen iff Nul(J†) = {0} . But as above Nul(J†) = Ran (J)
0

which will
be zero iff Ran(J) = X∗∗ and since J is an isometry this is equivalent to
saying Ran (J) = X∗∗. So we have again shown X∗ is reflexive iff X is
reflexive.
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Theorem A.24 (Banach Space Factor Theorem). Let X be a Banach
space, M ⊂ X be a proper closed subspace, X/M the quotient space, π : X →
X/M the projection map π (x) = x+M for x ∈ X and define the quotient norm
on X/M by

‖π (x)‖X/M = ‖x+M‖X/M = inf
m∈M

‖x+m‖X .

Then:

1. ‖·‖X/M is a norm on X/M.

2. The projection map π : X → X/M is has norm 1, ‖π‖ = 1.
3. For all a ∈ X and ε > 0, π

(
BX (a, ε)

)
= BX/M (π (a) , ε) and in particular

π is an open mapping.
4. (X/M, ‖·‖X/M ) is a Banach space.
5. If Y is another normed space and T : X → Y is a bounded linear transfor-

mation such that M ⊂ Nul(T ), then there exists a unique linear transfor-

mation T̂ : X/M → Y such that T = T̂ ◦ π and moreover ‖T‖ =
∥∥∥T̂∥∥∥ .

6. The map,{
closed subspaces

of X containing M

}
3 N → π (N) ∈

{
closed subspaces

of π (X/M)

}
is a bijection. The inverse map is given by pulling back subspace of π (X/M)
by π−1. [The word closed may be removed above and the result still holds as
one learns in a linear algebra class.]

Proof. We take each item in turn.

1. Clearly ‖x+M‖ ≥ 0 and if ‖x + M‖ = 0, then there exists mn ∈ M such
that ‖x+mn‖ → 0 as n→∞, i.e. x = − lim

n→∞
mn ∈ M̄ = M. Since x ∈M,

x+M = 0 ∈ X/M. If c ∈ C\ {0} , x ∈ X, then

‖cx+M‖ = inf
m∈M

‖cx+m‖ = |c| inf
m∈M

‖x+m/c‖ = |c| ‖x+M‖

because m/c runs through M as m runs through M. Let x1, x2 ∈ X and
m1,m2 ∈M then

‖x1 + x2 +M‖ ≤ ‖x1 + x2 +m1 +m2‖ ≤ ‖x1 +m1‖+ ‖x2 +m2‖.

Taking infimums over m1,m2 ∈M then implies

‖x1 + x2 +M‖ ≤ ‖x1 +M‖+ ‖x2 +M‖.

and we have completed the proof the (X/M, ‖ · ‖) is a normed space.

2. Since ‖π (x)‖ = infm∈M ‖x+m‖ ≤ ‖x‖ for all x ∈ X, ‖π‖ ≤ 1. To see
‖π‖ = 1, let x ∈ X \M so that π (x) 6= 0. Given α ∈ (0, 1), there exists
m ∈M such that

‖x+m‖ ≤ α−1 ‖π (x)‖ .

Therefore,
‖π(x+m)‖
‖x+m‖

=
‖π (x)‖
‖x+m‖

≥ α ‖x+m‖
‖x+m‖

= α

which shows ‖π‖ ≥ α. Since α ∈ (0, 1) is arbitrary we conclude that
‖π (x)‖ = 1.

3. Since ‖π‖ < 1 if ε > 0 then π
(
BX (0, ε)

)
⊂ BX/M (0, ε) . Conversely if y ∈

X and π (y) ∈ BX/M (0, ε) then there exists m ∈ M so that ‖y +m‖ < ε,
i.e. y + m ∈ BX (0, ε) . Since π (y) = π (y +m) , this shows that π (y) ∈
π
(
BX (0, ε)

)
and so π

(
BX (0, ε)

)
= BX/M (0, ε) for all ε > 0. For general

a ∈ X and ε > 0 we have

π
(
BX (a, ε)

)
= π

(
a+BX (0, ε)

)
= π (a) + π

(
BX (0, ε)

)
= π (a) +BX/M (0, ε) = BX/M (π (a) , ε) .

4. Let π(xn) ∈ X/M be a sequence such that
∑
‖π(xn)‖ <∞. As above there

exists mn ∈M such that ‖π(xn)‖ ≥ 1
2‖xn+mn‖ and hence

∑
‖xn+mn‖ ≤

2
∑
‖π(xn)‖ <∞. Since X is complete, x :=

∞∑
n=1

(xn +mn) exists in X and

therefore by the continuity of π,

π (x) =

∞∑
n=1

π(xn +mn) =

∞∑
n=1

π(xn)

showing X/M is complete.
5. The existence of T̂ is guaranteed by the “factor theorem” from linear alge-

bra. Moreover
∥∥∥T̂∥∥∥ = ‖T‖ because

‖T‖ =
∥∥∥T̂ ◦ π∥∥∥ ≤ ∥∥∥T̂∥∥∥ ‖π‖ =

∥∥∥T̂∥∥∥
and

∥∥∥T̂∥∥∥ = sup
x/∈M

∥∥∥T̂ (π (x))
∥∥∥

‖π (x)‖
= sup
x/∈M

‖Tx‖
‖π (x)‖

≥ sup
x/∈M

‖Tx‖
‖x‖

= sup
x 6=0

‖Tx‖
‖x‖

= ‖T‖ .
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6. First we will shows that π (N) is closed whenever N is a closed subspace
of X containing M. To verify this, let {xn} ⊂ N be a sequence such that
{π (xn)}∞n=1 is Cauchy in π (X/M) . As in the proof of item 3. we may find
mn ∈M such that x = limn→∞ (xn +mn) exists with x ∈ N as N is closed.
Therefore

π (x) = lim
n→∞

π (xn +mn) = lim
n→∞

π (xn) ∈ π (N)

which shows π (N) is closed. Moreover, x ∈ π−1 (π (N)) iff π (x) ∈ π (N)
which happens iff x+M ⊂ x+N, i.e. iff x ∈ N. This show π−1 (π (N)) = N.

Finally, if Ñ is a closed subspace of π (X/M) , then N := π−1
(
Ñ
)

is a

closed (π is continuous) subspace of X containing M such that π (N) = Ñ .

Theorem A.25. Let X be a Banach space. Then

1. Identifying X with X̂ ⊂ X∗∗, the weak – ∗ topology on X∗∗ induces the weak
topology on X. More explicitly, the map x ∈ X → x̂ ∈ X̂ is a homeomor-
phism when X is equipped with its weak topology and X̂ with the relative
topology coming from the weak-∗ topology on X∗∗.

2. X̂ ⊂ X∗∗ is dense in the weak-∗ topology on X∗∗.
3. Letting C and C∗∗ be the closed unit balls in X and X∗∗ respectively, then
Ĉ := {x̂ ∈ C∗∗ : x ∈ C} is dense in C∗∗ in the weak – ∗ topology on X∗∗..

4. X is reflexive iff C is weakly compact.

(See Definition A.19 for the topologies being used here.)

Proof.

1. The weak – ∗ topology on X∗∗ is generated by{
f̂ : f ∈ X∗

}
= {ψ ∈ X∗∗ → ψ (f) : f ∈ X∗} .

So the induced topology on X is generated by

{x ∈ X → x̂ ∈ X∗∗ → x̂ (f) = f (x) : f ∈ X∗} = X∗

and so the induced topology on X is precisely the weak topology.
2. A basic weak - ∗ neighborhood of a point λ ∈ X∗∗ is of the form

N := ∩nk=1 {ψ ∈ X∗∗ : |ψ(fk)− λ(fk)| < ε} (A.6)

for some {fk}nk=1 ⊂ X∗ and ε > 0. be given. We must now find x ∈ X such
that x̂ ∈ N , or equivalently so that

|x̂(fk)− λ(fk)| = |fk (x)− λ(fk)| < ε for k = 1, 2, . . . , n. (A.7)

In fact we will show there exists x ∈ X such that λ(fk) = fk (x) for
k = 1, 2, . . . , n. To prove this stronger assertion we may, by discarding
some of the fk’s if necessary, assume that {fk}nk=1 is a linearly indepen-
dent set. Since the {fk}nk=1 are linearly independent, the map x ∈ X →
(f1 (x) , . . . , fn (x)) ∈ Cn is surjective (why) and hence there exists x ∈ X
such that

(f1 (x) , . . . , fn (x)) = Tx = (λ (f1) , . . . , λ(fn)) (A.8)

as desired.
3. Let λ ∈ C∗∗ ⊂ X∗∗ and N be the weak - ∗ open neighborhood of λ as in Eq.

(A.6). Working as before, given ε > 0, we need to find x ∈ C such that Eq.
(A.7). It will be left to the reader to verify that it suffices again to assume
{fk}nk=1 is a linearly independent set. (Hint: Suppose that {f1, . . . , fm} were
a maximal linearly dependent subset of {fk}nk=1 , then each fk with k > m
may be written as a linear combination {f1, . . . , fm} .) As in the proof of
item 2., there exists x ∈ X such that Eq. (A.8) holds. The problem is that
x may not be in C. To remedy this, let N := ∩nk=1 Nul(fk) = Nul(T ),
π : X → X/N ∼= Cn be the projection map and f̄k ∈ (X/N)

∗
be chosen so

that fk = f̄k ◦ π for k = 1, 2, . . . , n. Then we have produced x ∈ X such
that

(λ (f1) , . . . , λ(fn)) = (f1 (x) , . . . , fn (x)) = (f̄1(π (x)), . . . , f̄n(π (x))).

Since
{
f̄1, . . . , f̄n

}
is a basis for (X/N)

∗
we find

‖π (x)‖ = sup
α∈Cn\{0}

∣∣∑n
i=1 αif̄i(π (x))

∣∣∥∥∑n
i=1 αif̄i

∥∥ = sup
α∈Cn\{0}

|
∑n
i=1 αiλ(fi)|
‖
∑n
i=1 αifi‖

= sup
α∈Cn\{0}

|λ(
∑n
i=1 αifi)|

‖
∑n
i=1 αifi‖

≤ ‖λ‖ sup
α∈Cn\{0}

‖
∑n
i=1 αifi‖

‖
∑n
i=1 αifi‖

= 1.

Hence we have shown ‖π (x)‖ ≤ 1 and therefore for any α > 1 there
exists y = x + n ∈ X such that ‖y‖ < α and (λ (f1) , . . . , λ(fn)) =
(f1 (y) , . . . , fn (y)). Hence

|λ(fi)− fi(y/α)| ≤
∣∣fi (y)− α−1fi (y)

∣∣ ≤ (1− α−1) |fi (y)|

which can be arbitrarily small (i.e. less than ε) by choosing α sufficiently
close to 1.
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4. Let Ĉ := {x̂ : x ∈ C} ⊂ C∗∗ ⊂ X∗∗. If X is reflexive, Ĉ = C∗∗ is weak - ∗
compact and hence by item 1., C is weakly compact in X. Conversely if C
is weakly compact, then Ĉ ⊂ C∗∗ is weak – ∗ compact being the continuous
image of a continuous map. Since the weak – ∗ topology on X∗∗ is Hausdorff,

it follows that Ĉ is weak – ∗ closed and so by item 3, C∗∗ = Ĉ
weak–∗

= Ĉ. So
if λ ∈ X∗∗, λ/ ‖λ‖ ∈ C∗∗ = Ĉ, i.e. there exists x ∈ C such that x̂ = λ/ ‖λ‖ .
This shows λ = (‖λ‖x)

ˆ
and therefore X̂ = X∗∗.

A.4 Rayleigh Quotient

Theorem A.26 (Rayleigh quotient). If H is a Hilbert space and T ∈ B (H)
is a bounded self-adjoint operator, then

M := sup
f 6=0

|〈Tf, f〉|
‖f‖2

= ‖T‖

(
= sup

f 6=0

‖Tf‖
‖f‖

)
.

Moreover, if there exists a non-zero element f ∈ H such that

|〈Tf, f〉|
‖f‖2

= ‖T‖,

then f is an eigenvector of T with Tf = λf and λ ∈ {±‖T‖}.

Proof. First proof. Applying Eq. (B.5) with Q (f, g) = 〈Tf, g〉 and Eq.
(B.4) with Q (f, g) = 〈f, g〉 along with the Cauchy-Schwarz inequality implies,

4 Re 〈Tf, g〉 = 〈T (f + g) , (f + g)〉 − 〈T (f − g) , (f − g)〉

≤M
[
‖f + g‖2 + ‖f − g‖2

]
= 2M

[
‖f‖2 + ‖g‖2

]
.

Replacing f by eiθf where θ is chosen so that eiθ 〈Tf, g〉 = |〈Tf, g〉| then shows

4 |〈Tf, g〉| ≤ 2M
[
‖f‖2 + ‖g‖2

]
and therefore,

‖T‖ = sup
‖f‖=‖g‖=1

|〈f, Tg〉| ≤M

and since it is clear M ≤ ‖T‖ we have shown M = ‖T‖ .
If f ∈ H \ {0} and ‖T‖ = |〈Tf, f〉|/ ‖f‖2 then, using Schwarz’s inequality,

‖T‖ =
|〈Tf, f〉|
‖f‖2

≤ ‖Tf‖
‖f‖

≤ ‖T‖. (A.9)

This implies |〈Tf, f〉| = ‖Tf‖ ‖f‖ and forces equality in Schwarz’s inequality.
So by Theorem ??, Tf and f are linearly dependent, i.e. Tf = λf for some
λ ∈ C. Substituting this into (A.9) shows that |λ| = ‖T‖. Since T is self-adjoint,

λ ‖f‖2 = 〈λf, f〉 = 〈Tf, f〉 = 〈f, Tf〉 = 〈f, λf〉 = λ̄〈f, f〉 = λ̄ ‖f‖2 ,

which implies that λ ∈ R and therefore, λ ∈ {±‖T‖}.
Second proof. By the spectral theorem for bounded operators of Chapter

?? below, it suffices to prove the theorem in the case where T = Mg ∈ B (H)
where H = L2 (Ω,µ) , (Ω,F , µ) is a finite measure space, and g : Ω → R is a
bounded measurable function. In this case,

|〈Tf, f〉| =
∣∣∣∣∫
Ω

g |f |2 dµ
∣∣∣∣ ≤ ‖g‖L∞(µ)

∫
Ω

|f |2 dµ = ‖g‖L∞(µ) ‖f‖
2
L2(µ) .

If m < ‖g‖L∞(µ) = ‖T‖op then we can choose f = 1A and ε ∈ {±1} so that

µ (A) > 0 and εg1A ≥ m1A. For this f it follows that

|〈Tf, f〉| =
∫
A

εgdµ ≥ m · µ (A) = m ‖f‖2L2(µ) .

Combining these last two assertions shows

m ≤ sup
‖f‖6=0

|〈Tf, f〉|
‖f‖2

≤ ‖T‖op

which completes this proof as m < ‖T‖op was arbitrary.
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B

Spectral Theorem (Compact Operator Case)

Before giving the general spectral theorem for bounded self-adjoint opera-
tors in the next chapter, we pause to consider the special case of “compact”
operators. The theory in this setting looks very much like the finite dimensional
matrix case.

B.1 Basics of Compact Operators

Definition B.1 (Compact Operator). Let A : X → Y be a bounded operator
between two Banach spaces. Then A is compact if A [BX(0, 1)] is precompact
in Y or equivalently for any {xn}∞n=1 ⊂ X such that ‖xn‖ ≤ 1 for all n the
sequence yn := Axn ∈ Y has a convergent subsequence.

Definition B.2. A bounded operator A : X → Y is said to have finite rank if
Ran (A) ⊂ Y is finite dimensional.

The following result is a simple consequence of Theorem ?? and Corollary
??.

Corollary B.3. If A : X → Y is a finite rank operator, then A is compact. In
particular if either dim(X) < ∞ or dim(Y ) < ∞ then any bounded operator
A : X → Y is finite rank and hence compact.

Theorem B.4. Let X and Y be Banach spaces and K := K(X,Y ) denote the
compact operators from X to Y. Then K(X,Y ) is a norm-closed subspace of
B (X,Y ) . In particular, operator norm limits of finite rank operators are com-
pact.

Proof. Using the sequential definition of compactness it is easily seen that
K is a vector subspace of B (X,Y ) . To finish the proof, we must show that K ∈
B (X,Y ) is compact if there exists Kn ∈ K(X,Y ) such that limn→∞ ‖Kn −
K‖op = 0.

First Proof. Let U := B0 (1) be the unit ball in X. Given ε > 0, choose
N = N(ε) such that ‖KN −K‖ ≤ ε. Using the fact that KNU is precompact,
choose a finite subset Λ ⊂ U such that KNU ⊂ ∪σ∈ΛBKNσ (ε) . Then given
y = Kx ∈ KU we have KNx ∈ BKNσ (ε) for some σ ∈ Λ and for this σ;

‖y −KNσ‖ = ‖Kx−KNσ‖
≤ ‖Kx−KNx‖+ ‖KNx−KNσ‖ < ε ‖x‖+ ε < 2ε.

This shows KU ⊂ ∪σ∈ΛBKNσ (2ε) and therefore is KU is 2ε – bounded for all
ε > 0, i.e. KU is totally bounded and hence precompact.

Second Proof. Suppose {xn}∞n=1 is a bounded sequence in X. By com-

pactness, there is a subsequence
{
x1
n

}∞
n=1

of {xn}∞n=1 such that
{
K1x

1
n

}∞
n=1

is
convergent in Y. Working inductively, we may construct subsequences

{xn}∞n=1 ⊃
{
x1
n

}∞
n=1
⊃
{
x2
n

}∞
n=1
· · · ⊃ {xmn }

∞
n=1 ⊃ . . .

such that {Kmx
m
n }
∞
n=1 is convergent in Y for each m. By the usual Cantor’s

diagonalization procedure, let σn := xnn, then {σn}∞n=1 is a subsequence of
{xn}∞n=1 such that {Kmσn}∞n=1 is convergent for all m. Since

‖Kσn −Kσl‖ ≤ ‖(K −Km)σn‖+ ‖Km(σn − σl)‖+ ‖(Km −K)σl)‖
≤ 2 ‖K −Km‖+ ‖Km(σn − σl)‖ ,

lim sup
n,l→∞

‖Kσn −Kσl‖ ≤ 2 ‖K −Km‖ → 0 as m→∞,

which shows {Kσn}∞n=1 is Cauchy and hence convergent.

Example B.5. Let X = `2 = Y and λn ∈ C such that limn→∞ λn = 0, then
A : X → Y defined by (Ax)(n) = λnx(n) is compact. To verify this claim, for
each m ∈ N let (Amx)(n) = λnx(n)1n≤m. In matrix language,

A =


λ1 0 0 · · ·
0 λ2 0 · · ·
0 0 λ3 · · ·
...

...
. . .

. . .

 and Am =



λ1 0 · · ·
0 λ2 0 · · ·
...

. . .
. . .

. . .

0 λm 0 · · ·

· · · 0 0
. . .

. . .
. . .


.

Then Am is finite rank and ‖A−Am‖op = maxn>m |λn| → 0 as m → ∞. The
claim now follows from Theorem B.4.
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We will see more examples of compact operators below in Section B.4 and
Exercise ?? below.

Lemma B.6. If X
A−→ Y

B−→ Z are bounded operators between Banach spaces
such the either A or B is compact then the composition BA : X → Z is also
compact. In particular if dimX =∞ and A ∈ L (X,Y ) is an invertible operator
such that1 A−1 ∈ L (Y,X) , then A is not compact.

Proof. Let BX(0, 1) be the open unit ball in X. If A is compact and B
is bounded, then BA(BX(0, 1)) ⊂ B(ABX(0, 1)) which is compact since the
image of compact sets under continuous maps are compact. Hence we con-
clude that BA(BX(0, 1)) is compact, being the closed subset of the compact
set B(ABX(0, 1)). If A is continuous and B is compact, then A(BX(0, 1)) is a
bounded set and so by the compactness of B, BA(BX(0, 1)) is a precompact
subset of Z, i.e. BA is compact.

Alternatively: Suppose that {xn}∞n=1 ⊂ X is a bounded sequence. If A is
compact, then yn := Axn has a convergent subsequence, {ynk}

∞
k=1 . Since B is

continuous it follows that znk := Bynk = BAxnk is a convergent subsequence of
{BAxn}∞n=1 . Similarly if A is bounded and B is compact then yn = Axn defines
a bounded sequence inside of Y. By compactness of B, there is a subsequence
{ynk}

∞
k=1 for which {BAxnk = Bynk}

∞
k=1 is convergent in Z.

For the second statement, if A were compact then IX := A−1A would be
compact as well. As IX takes the unit ball to the unit ball, the identity is
compact iff dimX <∞.

Corollary B.7. Let X be a Banach space and K (X) := K (X,X) . Then K (X)
is a norm-closed ideal of L (X) which contains IX iff dimX <∞.

Lemma B.8. Suppose that T, Tn ∈ L (X,Y ) for n ∈ N where X and Y are

normed spaces. If Tn
s→ T, M = supn ‖Tn‖ < ∞,2 and xn → x in X as

n → ∞, then Tnxn → Tx in Y as n → ∞. Moreover if K ⊂ X is a compact
set then

lim
n→∞

sup
x∈K
‖Tx− Tnx‖ = 0. (B.1)

Proof. 1. We have,

‖Tx− Tnxn‖ ≤ ‖Tx− Tnx‖+ ‖Tnx− Tnxn‖
≤ ‖Tx− Tnx‖+M ‖x− xn‖ → 0 as n→∞.

2. For sake of contradiction, suppose that

1 Later we will see that A being one to one and onto automatically implies that A−1

is bounded by the open mapping Theorem ??.
2 If X and Y are Banach spaces, the uniform boundedness principle shows that
Tn

s→ T automatically implies supn ‖Tn‖ <∞.

lim sup
n→∞

sup
x∈K
‖Tx− Tnx‖ = ε > 0.

In this case we can find {nk}∞k=1 ⊂ N and xnk ∈ K such that
‖Txnk − Tnkxnk‖ ≥ ε/2. Since K is compact, by passing to a subse-
quence if necessary, we may assume limk→∞ xnk = x exists in K. On the other
hand by part 1. we know that

lim
k→∞

‖Txnk − Tnkxnk‖ =

∥∥∥∥ lim
k→∞

Txnk − lim
k→∞

Tnkxnk

∥∥∥∥ = ‖Tx− Tx‖ = 0.

2 alternate proof. Given ε > 0, there exists {x1, . . . , xN} ⊂ K such that
K ⊂ ∪Nl=1Bxl (ε) . If x ∈ K, choose l such that x ∈ Bxl (ε) in which case,

‖Tx− Tnx‖ ≤ ‖Tx− Txl‖+ ‖Txl − Tnxl‖+ ‖Tnxl − Tnx‖

≤
(
‖T‖op +M

)
ε+ ‖Txl − Tnxl‖

and therefore it follows that

sup
x∈K
‖Tx− Tnx‖ ≤

(
‖T‖op +M

)
ε+ max

1≤l≤N
‖Txl − Tnxl‖

and therefore,

lim sup
n→∞

sup
x∈K
‖Tx− Tnx‖ ≤

(
‖T‖op +M

)
ε.

As ε > 0 was arbitrary we conclude that Eq. (B.1) holds.

B.2 Compact Operators on Hilbert spaces

For the rest of this section, let H and B be Hilbert spaces and U := {x ∈ H :
‖x‖ < 1} be the open unit ball in H.

Proposition B.9. A bounded operator K : H → B is compact iff there exists
finite rank operators, Kn : H → B, such that ‖K −Kn‖ → 0 as n→∞.

Proof. Suppose that K : H → B. Since K(U) is compact it contains a
countable dense subset and from this it follows that K (H) is a separable sub-
space of B. Let {ϕ`} be an orthonormal basis for K (H) ⊂ B and

Pny =

n∑
`=1

〈y, ϕ`〉ϕ`
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be the orthogonal projection of y onto span{ϕ`}n`=1. Then limn→∞ ‖Pny−y‖ = 0

for all y ∈ K (H). Define Kn := PnK – a finite rank operator on H. It then
follows that

lim sup
n→∞

‖K −Kn‖ = lim sup
n→∞

sup
x∈U
‖Kx−Knx‖

= lim sup
n→∞

sup
x∈U
‖ (I − Pn)Kx‖

≤ lim sup
n→∞

sup
y∈K(U)

‖ (I − Pn) y‖ = 0

by Lemma B.8 along with the facts that K (U) is compact and Pn
s→ I. The

converse direction follows from Corollary B.3 and Theorem B.4.

Corollary B.10. If K is compact then so is K∗.

Proof. First Proof. Let Kn = PnK be as in the proof of Proposition B.9,
then K∗n = K∗Pn is still finite rank. Furthermore, using Proposition ??,

‖K∗ −K∗n‖ = ‖K −Kn‖ → 0 as n→∞

showing K∗ is a limit of finite rank operators and hence compact.
Second Proof. Let {xn}∞n=1 be a bounded sequence in B, then

‖K∗xn −K∗xm‖2 = 〈xn − xm,KK∗ (xn − xm)〉 ≤ 2C ‖KK∗ (xn − xm)‖
(B.2)

where C is a bound on the norms of the xn. Since {K∗xn}∞n=1 is also a bounded
sequence, by the compactness of K there is a subsequence {x′n} of the {xn} such
that KK∗x′n is convergent and hence by Eq. (B.2), so is the sequence {K∗x′n} .

Example B.11. Let (X,B, µ) be a σ-finite measure spaces whose σ – algebra is
countably generated by sets of finite measure. If k ∈ L2 (X ×X,µ⊗ µ) , then
K : L2 (µ)→ L2 (µ) defined by

Kf (x) :=

∫
X

k (x, y) f (y) dµ (y)

is a compact operator.

Proof. First observe that

|Kf (x)|2 ≤ ‖f‖2
∫
X

|k (x, y)|2 dµ (y)

and hence

‖Kf‖2 ≤ ‖f‖2
∫
X×X

|k (x, y)|2 dµ (x) dµ (y)

from which it follows that ‖K‖op ≤ ‖k‖L2(µ⊗µ) .

Now let {ψn}∞n=1 be an orthonormal basis for L2 (X,µ) and let

kN (x, y) :=

N∑
m,n=1

〈k, ψm ⊗ ψn〉ψm ⊗ ψn

where f ⊗ g (x, y) := f (x) g (y) . Then

KNf (x) :=

∫
X

kN (x, y) f (y) dµ (y) =

N∑
m,n=1

〈k, ψm ⊗ ψn〉
〈
f, ψ̄n

〉
ψm

is a finite rank and hence compact operator. Since

‖K −KN‖op ≤ ‖k − kN‖L2(µ⊗µ) → 0 as N →∞

it follows that K is compact as well.

B.3 The Spectral Theorem for Self Adjoint Compact
Operators

For the rest of this section, K ∈ K(H) := K(H,H) will be a self-adjoint compact
operator or S.A.C.O. for short. Because of Proposition B.9, we might expect
compact operators to behave very much like finite dimensional matrices. This
is typically the case as we will see below.

Example B.12 (Model S.A.C.O.). Let H = `2 and K be the diagonal matrix

K =


λ1 0 0 · · ·
0 λ2 0 · · ·
0 0 λ3 · · ·
...

...
. . .

. . .

 ,

where limn→∞ |λn| = 0 and λn ∈ R. Then K is a self-adjoint compact operator.
This assertion was proved in Example B.5.

The main theorem (Theorem B.15) of this subsection states that up to
unitary equivalence, Example B.12 is essentially the most general example of an
S.A.C.O. Before stating and proving this theorem we will require the following
results.
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Lemma B.13. Let Q : H × H → C be a symmetric sesquilinear form on
H where Q is symmetric means Q (h, k) = Q (k, h) for all h, k ∈ H. Letting
Q (h) := Q (h, h) , then for all h, k ∈ H,

Q (h+ k) = Q (h) +Q (k) + 2 ReQ (h, k) , (B.3)

Q (h+ k) +Q (h− k) = 2Q (h) + 2Q (k) , and (B.4)

Q (h+ k)−Q (h− k) = 4 ReQ (h, k) . (B.5)

Proof. The simple proof is left as an exercise to the reader.

Exercise B.1 (This may be skipped). Suppose that A : H → H is a
bounded self-adjoint operator on H. Show;

1. f (x) := 〈Ax, x〉 ∈ R for all x ∈ H.
2. If there exists x0 ∈ H with ‖x0‖ = 1 such that

λ0 := sup
‖x‖=1

〈Ax, x〉 = 〈Ax0, x0〉

then Ax0 = λ0x0. Hint: Given y ∈ H let c (t) := x0+ty
‖x0+ty‖H

for t near 0.

Then apply the first derivative test to the function g (t) = 〈Ac (t) , c (t)〉 .
3. If we further assume that A is compact, then A has at least one eigenvector.

Proposition B.14. Let K be a S.A.C.O., then either λ = ‖K‖ or λ = −‖K‖
is an eigenvalue of K.

Proof. (For those who have done Exercise B.1, that exercise along with
Theorem A.26 constitutes a proof.) Without loss of generality we may assume
that K is non-zero since otherwise the result is trivial. By Theorem A.26, there
exists un ∈ H such that ‖un‖ = 1 and

|〈un,Kun〉|
‖un‖2

= |〈un,Kun〉| −→ ‖K‖ as n→∞. (B.6)

By passing to a subsequence if necessary, we may assume that λ :=
limn→∞〈un,Kun〉 exists and λ ∈ {±‖K‖}. By passing to a further subse-
quence if necessary, we may assume, using the compactness of K, that Kun
is convergent as well. We now compute:

0 ≤ ‖Kun − λun‖2 = ‖Kun‖2 − 2λ〈Kun, un〉+ λ2

≤ λ2 − 2λ〈Kun, un〉+ λ2

→ λ2 − 2λ2 + λ2 = 0 as n→∞.

Hence
Kun − λun → 0 as n→∞ (B.7)

and therefore

u := lim
n→∞

un =
1

λ
lim
n→∞

Kun

exists. By the continuity of the inner product, ‖u‖ = 1 6= 0. By passing to the
limit in Eq. (B.7) we find that Ku = λu.

Theorem B.15 (Compact Operator Spectral Theorem). Suppose that
K : H → H is a non-zero S.A.C.O., then

1. there exists at least one eigenvalue λ ∈ {±‖K‖}.
2. There are at most countably many non-zero eigenvalues, {λn}Nn=1, where
N =∞ is allowed. (Unless K is finite rank (i.e. dim Ran (K) <∞), N will
be infinite.)

3. The λn’s (including multiplicities) may be arranged so that |λn| ≥ |λn+1|
for all n. If N = ∞ then limn→∞ |λn| = 0. (In particular any eigenspace
for K with non-zero eigenvalue is finite dimensional.)

4. The eigenvectors {ϕn}Nn=1 can be chosen to be an O.N. set such that H =

span{ϕn}
⊥
⊕Nul(K).

5. Using the {ϕn}Nn=1 above,

Kf =

N∑
n=1

λn〈f, ϕn〉ϕn for all f ∈ H. (B.8)

6. The spectrum of K is σ(K) = {0} ∪ {λn : n < N + 1} if dimH = ∞,
otherwise σ(K) = {λn : n ≤ N} with N ≤ dimH.

Proof. We will find λn’s and ϕn’s recursively. Let λ1 ∈ {±‖K‖} and ϕ1 ∈ H
such that Kϕ1 = λ1ϕ1 as in Proposition B.14.

Take M1 = span(ϕ1) so K(M1) ⊂ M1. By Lemma 3.25, KM⊥1 ⊂ M⊥1 .
Define K1 : M⊥1 →M⊥1 via K1 = K|M⊥1 . Then K1 is again a compact operator.
If K1 = 0, we are done. If K1 6= 0, by Proposition B.14 there exists λ2 ∈
{±‖K1‖} and ϕ2 ∈ M⊥1 such that ‖ϕ2‖ = 1 and K1ϕ2 = Kϕ2 = λ2ϕ2. Let
M2 := span(ϕ1, ϕ2).

Again K (M2) ⊂ M2 and hence K2 := K|M⊥2 : M⊥2 → M⊥2 is compact and
if K2 = 0 we are done. When K2 6= 0, we apply Proposition B.14 again to find
λ3 ∈ {±‖K‖2} and ϕ3 ∈M⊥2 such that ‖ϕ3‖ = 1 and K2ϕ3 = Kϕ3 = λ3ϕ3.

Continuing this way indefinitely or until we reach a point where Kn = 0,
we construct a sequence {λn}Nn=1 of eigenvalues and orthonormal eigenvectors
{ϕn}Nn=1 such that |λn| ≥ |λn+1| with the further property that

|λn| = sup
ϕ⊥{ϕ1,ϕ2,...ϕn−1}

‖Kϕ‖
‖ϕ‖

. (B.9)
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When N <∞, the remaining results in the theorem are easily verified. So from
now on let us assume that N =∞.

If ε := limn→∞ |λn| > 0, then
{
λ−1
n ϕn

}∞
n=1

is a bounded sequence in H.
Hence, by the compactness of K, there exists a subsequence {nk : k ∈ N} of
N such that

{
ϕnk = λ−1

nk
Kϕnk

}∞
k=1

is a convergent. However, since {ϕnk}
∞
k=1

is an orthonormal set, this is impossible and hence we must conclude that
ε := limn→∞ |λn| = 0.

Let M := span{ϕn}∞n=1. Then K(M) ⊂ M and hence, by Lemma 3.25,
K(M⊥) ⊂M⊥. Using Eq. (B.9),

‖K|M⊥‖ ≤
∥∥K|M⊥n ∥∥ = |λn| −→ 0 as n→∞

showing K|M⊥ ≡ 0. Define P0 to be orthogonal projection onto M⊥. Then for
f ∈ H,

f = P0f + (1− P0)f = P0f +

∞∑
n=1

〈f, ϕn〉ϕn

and

Kf = KP0f +K

∞∑
n=1

〈f, ϕn〉ϕn =

∞∑
n=1

λn〈f, ϕn〉ϕn

which proves Eq. (B.8).
Since {λn}∞n=1 ⊂ σ(K) and σ(K) is closed, it follows that 0 ∈ σ(K) and

hence {λn}∞n=1 ∪ {0} ⊂ σ(K). Suppose that z /∈ {λn}∞n=1 ∪ {0} and let d
be the distance between z and {λn}∞n=1 ∪ {0}. Notice that d > 0 because
limn→∞ λn = 0.

A few simple computations show that:

(K − zI)f =

∞∑
n=1

〈f, ϕn〉(λn − z)ϕn − zP0f,

(K − z)−1 exists,

(K − zI)−1f =

∞∑
n=1

〈f, ϕn〉(λn − z)−1ϕn − z−1P0f,

and

‖(K − zI)−1f‖2 =

∞∑
n=1

|〈f, ϕn〉|2
1

|λn − z|2
+

1

|z|2
‖P0f‖2

≤
(

1

d

)2
( ∞∑
n=1

|〈f, ϕn〉|2 + ‖P0f‖2
)

=
1

d2
‖f‖2 .

We have thus shown that (K − zI)−1 exists, ‖(K − zI)−1‖ ≤ d−1 < ∞ and
hence z /∈ σ(K).

Theorem B.16 (Structure of Compact Operators). Let K : H → B
be a compact operator. Then there exists N ∈ N∪{∞} , orthonormal subsets

{ϕn}Nn=1 ⊂ H and {ψn}Nn=1 ⊂ B and a sequence {αn}Nn=1 ⊂ R+ such that
α1 ≥ α2 ≥ . . . (with limn→∞ αn = 0 if N =∞), ‖ψn‖ ≤ 1 for all n and

Kf =

N∑
n=1

αn〈f, ϕn〉ψn for all f ∈ H. (B.10)

Proof. Since K∗K is a self-adjoint compact operator, Theorem B.15 implies
there exists an orthonormal set {ϕn}Nn=1 ⊂ H and positive numbers {λn}Nn=1

such that

K∗Kψ =

N∑
n=1

λn〈ψ,ϕn〉ϕn for all ψ ∈ H.

Let A be the positive square root of K∗K defined by

Aψ :=

N∑
n=1

√
λn〈ψ,ϕn〉ϕn for all ψ ∈ H.

A simple computation shows, A2 = K∗K, and therefore,

‖Aψ‖2 = 〈Aψ,Aψ〉 =
〈
ψ,A2ψ

〉
= 〈ψ,K∗Kψ〉 = 〈Kψ,Kψ〉 = ‖Kψ‖2

for all ψ ∈ H. Hence we may define a unitary operator, u : Ran(A)→ Ran(K)
by the formula

uAψ = Kψ for all ψ ∈ H.

We then have

Kψ = uAψ =

N∑
n=1

√
λn〈ψ,ϕn〉uϕn (B.11)

which proves the result with ψn := uϕn and αn =
√
λn.

It is instructive to find ψn explicitly and to verify Eq. (B.11) by brute force.

Since ϕn = λ
−1/2
n Aϕn,

ψn = λ−1/2
n uAϕn = λ−1/2

n Kϕn

and
〈Kϕn,Kϕm〉 = 〈ϕn,K∗Kϕm〉 = λnδmn.

This verifies that {ψn}Nn=1 is an orthonormal set. Moreover,
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N∑
n=1

√
λn〈ψ,ϕn〉ψn =

N∑
n=1

√
λn〈ψ,ϕn〉λ−1/2

n Kϕn

= K

N∑
n=1

〈ψ,ϕn〉ϕn = Kψ

since
∑N
n=1〈ψ,ϕn〉ϕn = Pψ where P is orthogonal projection onto Nul(K)⊥.

Second Proof. Let K = u |K| be the polar decomposition of K. Then |K|
is self-adjoint and compact, by Corollary ?? below, and hence by Theorem B.15
there exists an orthonormal basis {ϕn}Nn=1 for Nul(|K|)⊥ = Nul(K)⊥ such that
|K|ϕn = λnϕn, λ1 ≥ λ2 ≥ . . . and limn→∞ λn = 0 if N =∞. For f ∈ H,

Kf = u |K|
N∑
n=1

〈f, ϕn〉ϕn =

N∑
n=1

〈f, ϕn〉u |K|ϕn =

N∑
n=1

λn〈f, ϕn〉uϕn

which is Eq. (B.10) with ψn := uϕn.

Exercise B.2 (Continuation of Example ??). Let H := L2 ([0, 1] ,m) ,
k (x, y) := min (x, y) for x, y ∈ [0, 1] and define K : H → H by

Kf (x) =

∫ 1

0

k (x, y) f (y) dy.

From Example B.11 we know that K is a compact operator3 on H. Since k is
real and symmetric, it is easily seen that K is self-adjoint. Show:

1. If g ∈ C2 ([0, 1]) with g (0) = 0 = g′ (1) , then Kg′′ = −g. Use this to
conclude 〈Kf |g′′〉 = −〈f |g〉 for all g ∈ C∞c ((0, 1)) and consequently that
Nul(K) = {0} .

2. Now suppose that f ∈ H is an eigenvector of K with eigenvalue λ 6= 0.
Show that there is a version4 of f which is in C ([0, 1])∩C2 ((0, 1)) and this
version, still denoted by f, solves

λf ′′ = −f with f (0) = f ′ (1) = 0. (B.12)

where f ′ (1) := limx↑1 f
′ (x) .

3. Use Eq. (B.12) to find all the eigenvalues and eigenfunctions of K.
4. Use the results above along with the spectral Theorem B.15, to show{√

2 sin

((
n+

1

2

)
πx

)
: n ∈ N0

}
is an orthonormal basis for L2 ([0, 1] ,m) with λn =

[(
n+ 1

2

)
π
]−2

.

3 See Exercise B.3 from which it will follow that K is a Hilbert Schmidt operator
and hence compact.

4 A measurable function g is called a version of f iff g = f a.e..

5. Repeat this problem in the case that k (x, y) = min (x, y)− xy. In this case
you should find that Eq. (B.12) is replaced by

λf ′′ = −f with f (0) = f (1) = 0

from which one finds; {
fn :=

√
2 sin (nπx) : n ∈ N

}
is an orthonormal basis of eigenvectors of K with corresponding eigenvalues;
λn = (nπ)

−2
.

6. Use the result of the last part to show,

∞∑
n=1

1

n2
=
π2

6
.

Hint: First show

k (x, y) =

∞∑
n=1

λnfn (x) fn (y) for a.e. (x, y) .

Then argue the above equation holds for every (x, y) ∈ [0, 1]
2
. Finally take

y = x in the above equation and integrate to arrive at the desired result.

Note: for a wide reaching generalization of this exercise the reader should
consult Conway [7, Section II.6 (p.49-54)].

Worked Solution to Exercise (B.2). Let I = [0, 1] below.

1. Suppose that g ∈ C2 ([0, 1]) with g (0) = 0 = g′ (1) , then

Kg′′ (x) =

∫ 1

0

x ∧ yg′′ (y) dy =

∫ x

0

yg′′ (y) dy + x

∫ 1

x

g′′ (y) dy

= −
∫ x

0

g′ (y) dy + yg′ (y) |x0 + x (g′ (1)− g′ (x))

= −g (x) + g (0) = −g (x) .

Thus if g ∈ C2
c ((0, 1)) we have

〈Kf |g′′〉 = 〈f |Kg′′〉 = −〈f |g〉.

In particular if Kf = 0, this implies that
∫
I
f (x) ḡ (x) dx = 0 for all g ∈

C2
c ((0, 1)) . Since C∞c ((0, 1)) is dense in L2 ([0, 1] ,m) we may choose gn ∈

C2
c ((0, 1)) such that gn → f in L2 as n∞ and therefore

0 = lim
n→∞

∫
I

f (x) ḡn (x) dx =

∫
I

|f |2 dm.

This shows that f = 0 a.e.
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2. If, for a.e. x,

λf (x) = Kf (x) =

∫
I

x ∧ yf (y) dy =: F (x)

then F is continuous and F (0) = 0. Hence λ−1F is a continuous version of
f. We now re-define f to be λ−1F. Since

f (x) = λ−1

∫
I

x ∧ yf (y) dy = λ−1

(∫ x

0

yf (y) dy + x

∫ 1

x

f (y) dy

)
it follows that f ∈ C1 ([0, 1]) and

f ′ (x) = λ−1

(
xf (x)− xf (x) +

∫ 1

x

f (y) dy

)
= λ−1

∫ 1

x

f (y) dy.

From this it follows that f ∈ C ([0, 1]) ∩ C2 ((0, 1)) and that f ′′ = −λ−1f
and f ′ (1) = 0.

3. By writing out all of the solutions to Eq. (B.12) we find the only possibilities
are

fn (x) = sin

((
n+

1

2

)
πx

)
for n ∈ N

with corresponding eigenvalues being λn =
[(
n+ 1

2

)
π
]−2

. Notice that if
f ′′ = −λ−1f and f satisfies the required boundary conditions, then it fol-
lows from the computations in part 1. that

−f = Kf ′′ = K
(
−λ−1f

)
= −λ−1Kf

and therefore,
Kf = λf.

4. By the spectral Theorem B.15, we must have that
{

fn
‖fn‖2

: n ∈ N
}

is an

orthonormal basis for L2. Since

‖fn‖22 =

∫ 1

0

sin2

((
n+

1

2

)
πx

)
dx =

∫ 1

0

(
1

2
− 1

2
cos [(2n+ 1)πx]

)
dx =

1

2

we find
{√

2 sin
((
n+ 1

2

)
πx
)

: n ∈ N
}

is an orthonormal basis of eigenvec-
tors for H.
Shorter solution. For f ∈ L2 (m) , let

F (x) := Kf (x) =

∫
I

x ∧ yf (y) dy =

∫ x

0

yf (y) dy + x

∫ 1

x

f (y) dy.

Observe that F is continuous and in fact absolutely continuous, F (0) = 0
and

F ′ (x) = xf (x) +

∫ 1

x

f (y) dy − xf (x) =

∫ 1

x

f (y) dy a.e. x.

If F := Kf = 0 then F ′ = 0 a.e. and therefore
∫ 1

x
f (y) dy = 0 for all x.

Differentiating this equation shows 0 = −f (x) a.e. and hence f = 0 and
therefore Nul (K) = 0.
If F = Kf = λf for some λ 6= 0 then we learn f has an absolutely contin-
uous version and from the previous equations we find

f (0) = 0, f ′ (1) = 0, and λf ′′ = F ′′ = −f.

Thus the eigenfunctions of this equation must be of the form f (x) =
c sin (kx) with k chosen so that 0 = f ′ (1) = ck cos (k) , i.e. k =

(
n+ 1

2

)
π.

5. Modification for Dirichlet Boundary Conditions. If k (x, y) = x∧y−
xy instead, then we have

F (x) = Kf (x) =

∫ x

0

yf (y) dy + x

∫ 1

x

f (y) dy − x
∫ 1

0

yf (y) dy,

F ′ (x) =

∫ 1

x

f (y) dy −
∫ 1

0

yf (y) dy, and

F ′′ (x) = −f (y) .

Thus again Nul (K) = {0} and everything goes through as before except
that now F (0) = 0 and F (1) = 0. Thus the eigenfunctions are of the form
f (x) = c sin kx with k chosen so that 0 = f (1) = c sin k. Thus we must
have k = nπ now so that fn (x) = cn sinnπx. As λnf

′′
n = −fn we learn that

λn (nπ)
2

= −1 so that

λn =
1

(nπ)
2

in this case.
6. We know that {fm ⊗ fn}∞m,n=1 is an orthonormal basis for L2

(
I2,m⊗m

)
.

Since

〈k, fm ⊗ fn〉 =

∫
I2
k (x, y) fm (x) fn (y) dxdy

= 〈Kfn, fm〉 = λn 〈fn, fm〉 = λnδm,n,

we find

k =

∞∑
m,n=1

λnδm,nfm ⊗ fn =

∞∑
n=1

λnfn ⊗ fn m⊗m – a.e.

As both sides of the previous equation are continuous, we may conclude
that
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k (x, y) =

∞∑
n=1

λnfn (x) fn (y) for every x, y ∈ I.

Thus it follows that

k (x, x) =

∞∑
n=1

λnf
2
n (x)

and then integrating this equation shows

∞∑
n=1

λn =

∫
I

k (x, x) dx =

∫ 1

0

(
x− x2

)
dx =

1

2
− 1

3
=

1

6

and hence it follows that
∞∑
n=1

1

n2
=
π2

6
.

B.4 Hilbert Schmidt Operators

In this section H and B will be Hilbert spaces.

Proposition B.17. Let H and B be a separable Hilbert spaces, K : H → B be
a bounded linear operator, {en}∞n=1 and {um}∞m=1 be orthonormal basis for H
and B respectively. Then:

1.
∑∞
n=1 ‖Ken‖

2
=
∑∞
m=1 ‖K∗um‖

2
allowing for the possibility that the sums

are infinite. In particular the Hilbert Schmidt norm of K,

‖K‖2HS :=

∞∑
n=1

‖Ken‖2 ,

is well defined independent of the choice of orthonormal basis {en}∞n=1. We
say K : H → B is a Hilbert Schmidt operator if ‖K‖HS < ∞ and let
HS(H,B) denote the space of Hilbert Schmidt operators from H to B.

2. For all K ∈ L(H,B), ‖K‖HS = ‖K∗‖HS and

‖K‖HS ≥ ‖K‖op := sup {‖Kh‖ : h ∈ H such that ‖h‖ = 1} .

3. The set HS(H,B) is a subspace of L (H,B) (the bounded operators from
H → B), ‖·‖HS is a norm on HS(H,B) for which (HS(H,B), ‖·‖HS) is a
Hilbert space, and the corresponding inner product is given by

〈K1|K2〉HS =

∞∑
n=1

〈K1en|K2en〉 . (B.13)

4. If K : H → B is a bounded finite rank operator, then K is Hilbert Schmidt.
5. Let PNx :=

∑N
n=1 〈x|en〉 en be orthogonal projection onto

span{en : n ≤ N} ⊂ H and for K ∈ HS(H,B), let KN := KPN .
Then

‖K −KN‖2op ≤ ‖K −KN‖2HS → 0 as N →∞,
which shows that finite rank operators are dense in (HS(H,B), ‖·‖HS) . In
particular of HS(H,B) ⊂ K(H,B) – the space of compact operators from
H → B.

6. If Y is another Hilbert space and A : Y → H and C : B → Y are bounded
operators, then

‖KA‖HS ≤ ‖K‖HS ‖A‖op and ‖CK‖HS ≤ ‖K‖HS ‖C‖op ,

in particular HS(H,H) is an ideal in L (H) .

Proof. Items 1. and 2. By Parseval’s equality and Fubini’s theorem for
sums,

∞∑
n=1

‖Ken‖2 =

∞∑
n=1

∞∑
m=1

|〈Ken|um〉|2

=

∞∑
m=1

∞∑
n=1

|〈en|K∗um〉|2 =

∞∑
m=1

‖K∗um‖2 .

This proves ‖K‖HS is well defined independent of basis and that ‖K‖HS =
‖K∗‖HS . For x ∈ H \ {0} , x/ ‖x‖ may be taken to be the first element in an
orthonormal basis for H and hence∥∥∥∥K x

‖x‖

∥∥∥∥ ≤ ‖K‖HS .
Multiplying this inequality by ‖x‖ shows ‖Kx‖ ≤ ‖K‖HS ‖x‖ and hence
‖K‖op ≤ ‖K‖HS .

Item 3. For K1,K2 ∈ L(H,B),

‖K1 +K2‖HS =

√√√√ ∞∑
n=1

‖K1en +K2en‖2

≤

√√√√ ∞∑
n=1

[‖K1en‖+ ‖K2en‖]2

= ‖{‖K1en‖+ ‖K2en‖}∞n=1‖`2
≤ ‖{‖K1en‖}∞n=1‖`2 + ‖{‖K2en‖}∞n=1‖`2
= ‖K1‖HS + ‖K2‖HS .

Page: 150 job: 241Functional_2020s macro: svmonob.cls date/time: 13-Feb-2020/12:28



B.4 Hilbert Schmidt Operators 151

From this triangle inequality and the homogeneity properties of ‖·‖HS , we now
easily see that HS(H,B) is a subspace of L(H,B) and ‖·‖HS is a norm on
HS(H,B). Since

∞∑
n=1

|〈K1en|K2en〉| ≤
∞∑
n=1

‖K1en‖ ‖K2en‖

≤

√√√√ ∞∑
n=1

‖K1en‖2
√√√√ ∞∑
n=1

‖K2en‖2 = ‖K1‖HS ‖K2‖HS ,

the sum in Eq. (B.13) is well defined and is easily checked to define an inner

product on HS(H,B) such that ‖K‖2HS = 〈K|K〉HS .
The proof that

(
HS(H,B), ‖·‖2HS

)
is complete is very similar to the proof

of Theorem ??. Indeed, suppose {Km}∞m=1 is a ‖·‖HS – Cauchy sequence in
HS(H,B). Because L(H,B) is complete, there exists K ∈ L(H,B) such that
‖K −Km‖op → 0 as m→∞. Thus, making use of Fatou’s Lemma ??,

‖K −Km‖2HS =

∞∑
n=1

‖(K −Km) en‖2

=

∞∑
n=1

lim inf
l→∞

‖(Kl −Km) en‖2

≤ lim inf
l→∞

∞∑
n=1

‖(Kl −Km) en‖2

= lim inf
l→∞

‖Kl −Km‖2HS → 0 as m→∞.

Hence K ∈ HS(H,B) and limm→∞ ‖K −Km‖2HS = 0.

Item 4. Since Nul(K∗)⊥ = Ran (K) = Ran (K) ,

‖K‖2HS = ‖K∗‖2HS =

N∑
n=1

‖K∗vn‖2H <∞

where N := dim Ran (K) and {vn}Nn=1 is an orthonormal basis for Ran (K) =
K (H) .

Item 5. Simply observe,

‖K −KN‖2op ≤ ‖K −KN‖2HS =
∑
n>N

‖Ken‖2 → 0 as N →∞.

Item 6. For C ∈ L(B, Y ) and K ∈ L(H,B) then

‖CK‖2HS =

∞∑
n=1

‖CKen‖2 ≤ ‖C‖2op
∞∑
n=1

‖Ken‖2 = ‖C‖2op ‖K‖
2
HS

and for A ∈ L (Y,H) ,

‖KA‖HS = ‖A∗K∗‖HS ≤ ‖A
∗‖op ‖K

∗‖HS = ‖A‖op ‖K‖HS .

Remark B.18. The separability assumptions made in Proposition B.17 are un-
necessary. In general, we define

‖K‖2HS =
∑
e∈β

‖Ke‖2

where β ⊂ H is an orthonormal basis. The same proof of Item 1. of Proposition
B.17 shows ‖K‖HS is well defined and ‖K‖HS = ‖K∗‖HS . If ‖K‖2HS < ∞,
then there exists a countable subset β0 ⊂ β such that Ke = 0 if e ∈ β \ β0. Let
H0 := span(β0) and B0 := K(H0). Then K (H) ⊂ B0, K|H⊥0 = 0 and hence

by applying the results of Proposition B.17 to K|H0 : H0 → B0 one easily sees
that the separability of H and B are unnecessary in Proposition B.17.

Example B.19. Let (X,µ) be a measure space, H = L2(X,µ) and

k(x, y) :=

n∑
i=1

fi (x) gi (y)

where
fi, gi ∈ L2(X,µ) for i = 1, . . . , n.

Define

(Kf) (x) =

∫
X

k(x, y)f (y) dµ (y) ,

then K : L2(X,µ) → L2(X,µ) is a finite rank operator and hence Hilbert
Schmidt.

Exercise B.3. Suppose that (X,µ) is a σ–finite measure space such that H =
L2(X,µ) is separable and k : X ×X → R is a measurable function, such that

‖k‖2L2(X×X,µ⊗µ) :=

∫
X×X

|k(x, y)|2dµ (x) dµ (y) <∞.

Define, for f ∈ H,
Kf (x) =

∫
X

k(x, y)f (y) dµ (y) ,

when the integral makes sense. Show:
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1. Kf (x) is defined for µ–a.e. x in X.
2. The resulting function Kf is in H and K : H → H is linear.
3. ‖K‖HS = ‖k‖L2(X×X,µ⊗µ) <∞. (This implies K ∈ HS(H,H).)

Exercise B.4 (Converse to Exercise B.3). Suppose that (X,µ) is a σ–finite
measure space such that H = L2(X,µ) is separable and K : H → H is a Hilbert
Schmidt operator. Show there exists k ∈ L2 (X ×X,µ⊗ µ) such that K is the
integral operator associated to k, i.e.

Kf (x) =

∫
X

k(x, y)f (y) dµ (y) . (B.14)

In fact you should show

k (x, y) :=

∞∑
n=1

((
K∗ϕn

)
(y)
)
ϕn (x) (L2 (µ⊗ µ) – convergent sum) (B.15)

where {ϕn}∞n=1 is any orthonormal basis for H.



C

Trace Class & Fredholm Operators

Appendix Material?
In this section H and B will be Hilbert spaces. Typically H and B will be

separable, but we will not assume this until it is needed later.

C.1 Trace Class Operators

See B. Simon [44] for more details and ideals of compact operators.

Theorem C.1. Let A ∈ B (H) be a non-negative operator, {en}∞n=1 be an or-
thonormal basis for H and

tr(A) :=

∞∑
n=1

〈Aen|en〉 .

Then tr(A) =
∥∥∥√A∥∥∥2

HS
∈ [0,∞] is well defined independent of the choice of

orthonormal basis for H. Moreover if tr(A) <∞, then A is a compact operator.

Proof. Let B :=
√
A, then

tr(A) =

∞∑
n=1

〈Aen|en〉 =

∞∑
n=1

〈
B2en|en

〉
=

∞∑
n=1

〈Ben|Ben〉 = ‖B‖2HS .

This shows tr(A) is well defined and that tr(A) =
∥∥∥√A∥∥∥2

HS
. If tr(A) <∞ then

√
A is Hilbert Schmidt and hence compact. Therefore A =

(√
A
)2

is compact

as well.

Definition C.2. An operator A ∈ L(H,B) is trace class if tr(|A|) =
tr(
√
A∗A) <∞.

Proposition C.3. If A ∈ L(H,B) is trace class then A is compact.

Proof. By the polar decomposition Theorem ??, A = u |A| where u is
a partial isometry and by Corollary ?? |A| is also compact. Therefore A is
compact as well.

Proposition C.4. If A ∈ L(B) is trace class and {en}∞n=1 is an orthonormal
basis for H, then

tr(A) :=

∞∑
n=1

〈Aen|en〉

is absolutely convergent and the sum is independent of the choice of orthonormal
basis for H.

Proof. Let A = u |A| be the polar decomposition of A and {φn}∞n=1 be an
orthonormal basis of eigenvectors for Nul(|A|)⊥ = Nul(A)⊥ such that

|A|φm = λmφm

with λm ↓ 0 and
∑∞
m=1 λm <∞. Then

∑
n

|〈Aen|en〉| =
∑
n

|〈|A| en|u∗en〉| =
∑
n

∣∣∣∣∣∑
m

〈|A| e|φm〉 〈φm|u∗en〉

∣∣∣∣∣
=
∑
n

∣∣∣∣∣∑
m

λm 〈en|φm〉 〈φm|u∗en〉

∣∣∣∣∣
≤
∑
m

λm
∑
n

|〈en|φm〉 〈uφm|en〉|

=
∑
m

λm |〈φm|uφm〉| ≤
∑
m

λm <∞.

Moreover,∑
n

〈Aen|en〉 =
∑
n

〈|A| en|u∗en〉 =
∑
n

∑
m

λm 〈en|φm〉 〈φm|u∗en〉

=
∑
m

λm
∑
n

〈uφm|en〉 〈en|φm〉

=
∑
m

λm 〈uφm|φm〉

showing
∑
n 〈Aen|en〉 =

∑
m λm 〈uφm|φm〉 which proves tr(A) is well defined

independent of basis.
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Remark C.5. Suppose K is a compact operator written in the form

Kf =

N∑
n=1

λn〈f |φn〉ψn for all f ∈ H. (C.1)

where {φn}∞n=1 ⊂ H, {ψn}∞n=1 ⊂ B are bounded sets and λn ∈ C such that∑∞
n=1 |λn| <∞. Then K is trace class and

tr(K) =

N∑
n=1

λn〈ψn|φn〉.

BRUCE STOP
Indeed, K∗g =

∑N
n=1 λ̄n(g, ψn)φn and hence

K∗Kf =

N∑
n=1

λ̄n〈Kf |ψn〉φn

Kf =

N∑
n=1

λn〈f |φn〉ψn for all f ∈ H. (C.2)

We will say K ∈ K(H) is trace class if

tr(
√
K∗K) :=

N∑
n=1

λn <∞

in which case we define

tr(K) =

N∑
n=1

λn〈ψn|φn〉.

Notice that if {em}∞m=1 is any orthonormal basis in H (or for the Ran(K) if H
is not separable) then

M∑
m=1

〈Kem|em〉 =

M∑
m=1

〈
N∑
n=1

λn〈em|φn〉ψn|em

〉
=

N∑
n=1

λn

M∑
m=1

〈em|φn〉 〈ψn|em〉

=

N∑
n=1

λn〈PMψn|φn〉

where PM is orthogonal projection onto Span(e1, . . . , eM ). Therefore by domi-
nated convergence theorem ,

∞∑
m=1

〈Kem|em〉 = lim
M→∞

N∑
n=1

λn〈PMψn|φn〉 =

N∑
n=1

λn lim
M→∞

〈PMψn|φn〉

=

N∑
n=1

λn〈ψn|φn〉 = tr(K).

C.2 Fredholm Operators

Lemma C.6. Let M ⊂ H be a closed subspace and V ⊂ H be a finite dimen-
sional subspace. Then M + V is closed as well. In particular if codim(M) :=
dim(H/M) <∞ and W ⊂ H is a subspace such that M ⊂W, then W is closed
and codim(W ) <∞.

Proof. Let P : H → M be orthogonal projection and let V0 := (I − P )V.
Since dim(V0) ≤ dim(V ) < ∞, V0 is still closed. Also it is easily seen that

M + V = M
⊥
⊕ V0 from which it follows that M + V is closed because

{zn = mn + vn} ⊂ M
⊥
⊕ V0 is convergent iff {mn} ⊂ M and {vn} ⊂ V0 are

convergent. If codim(M) < ∞ and M ⊂ W, there is a finite dimensional sub-
space V ⊂ H such that W = M + V and so by what we have just proved, W
is closed as well. It should also be clear that codim(W ) ≤ codim(M) <∞.

Lemma C.7. If K : H → B is a finite rank operator, then there exists
{φn}kn=1 ⊂ H and {ψn}kn=1 ⊂ B such that

1. Kx =
∑k
n=1〈x|φn〉ψn for all x ∈ H.

2. K∗y =
∑k
n=1〈y|ψn)φn for all y ∈ B, in particular K∗ is still finite rank.

For the next two items, further assume B = H.
3. dim Nul(I +K) <∞.
4. dim coker(I +K) <∞, Ran(I +K) is closed and

Ran(I +K) = Nul(I +K∗)⊥.

Proof.

1. Choose {ψn}k1 to be an orthonormal basis for Ran(K). Then for x ∈ H,

Kx =

k∑
n=1

〈Kx|ψn〉ψn =

k∑
n=1

〈x|K∗ψn〉ψn =

k∑
n=1

〈x|φn〉ψn

where φn := K∗ψn.
2. Item 2. is a simple computation left to the reader.
3. Since Nul(I +K) = {x ∈ H | x = −Kx} ⊂ Ran(K) it is finite dimensional.
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4. Since x = (I +K)x ∈ Ran(I +K)for x ∈ Nul(K), Nul(K) ⊂ Ran(I +K).
Since {φ1, φ2, . . . , φk}⊥ ⊂ Nul(K), H = Nul(K) + span ({φ1, φ2, . . . , φk})
and thus codim (Nul(K)) < ∞. From these comments and Lemma C.6,
Ran(I + K) is closed and codim (Ran(I +K)) ≤ codim (Nul(K)) < ∞.
The assertion that Ran(I+K) = Nul(I+K∗)⊥ is a consequence of Lemma
3.25 below.

Definition C.8. A bounded operator F : H → B is Fredholm iff the
dim Nul(F ) < ∞, dim coker(F ) < ∞ and Ran(F ) is closed in B. (Recall:
coker(F ) := B/Ran(F ).) The indexof F is the integer,

index(F ) = dim Nul(F )− dim coker(F ) (C.3)

= dim Nul(F )− dim Nul(F ∗). (C.4)

Notice that equations (C.3) and (C.4) are the same since, (using Ran(F ) is
closed)

B = Ran(F )⊕ Ran(F )⊥ = Ran(F )⊕Nul(F ∗)

so that coker(F ) = B/Ran(F ) ∼= Nul(F ∗).

Lemma C.9. The requirement that Ran(F ) is closed in Definition C.8 is re-
dundant.

Proof. By restricting F to Nul(F )⊥, we may assume without loss of gen-
erality that Nul(F ) = {0}. Assuming dim coker(F ) < ∞, there exists a finite
dimensional subspace V ⊂ B such that B = Ran(F ) ⊕ V. Since V is finite
dimensional, V is closed and hence B = V ⊕ V ⊥. Let π : B → V ⊥ be the
orthogonal projection operator onto V ⊥ and let G := πF : H → V ⊥ which is
continuous, being the composition of two bounded transformations. Since G is
a linear isomorphism, as the reader should check, the open mapping theorem
implies the inverse operator G−1 : V ⊥ → H is bounded. Suppose that hn ∈ H
is a sequence such that limn→∞ F (hn) =: b exists in B. Then by composing
this last equation with π, we find that limn→∞G(hn) = π (b) exists in V ⊥.
Composing this equation with G−1 shows that h := limn→∞ hn = G−1π (b)
exists in H. Therefore, F (hn) → F (h) ∈ Ran(F ), which shows that Ran(F ) is
closed.

Remark C.10. It is essential that the subspace M := Ran(F ) in Lemma C.9
is the image of a bounded operator, for it is not true that every finite codi-
mensional subspace M of a Banach space B is necessarily closed. To see this
suppose that B is a separable infinite dimensional Banach space and let A ⊂ B
be an algebraic basis for B, which exists by a Zorn’s lemma argument. Since
dim(B) = ∞ and B is complete, A must be uncountable. Indeed, if A were

countable we could write B = ∪∞n=1Bn where Bn are finite dimensional (nec-
essarily closed) subspaces of B. This shows that B is the countable union of
nowhere dense closed subsets which violates the Baire Category theorem.

By separability of B, there exists a countable subset A0 ⊂ A such that the
closure of M0 := span(A0) is equal to B. Choose x0 ∈ A \ A0, and let M :=
span(A \ {x0}). Then M0 ⊂ M so that B = M̄0 = M̄, while codim(M) = 1.
Clearly this M can not be closed.

Example C.11. Suppose that H and B are finite dimensional Hilbert spaces and
F : H → B is Fredholm. Then

index(F ) = dim(B)− dim(H). (C.5)

The formula in Eq. (C.5) may be verified using the rank nullity theorem,

dim(H) = dim Nul(F ) + dim Ran(F ),

and the fact that

dim(B/Ran(F )) = dim(B)− dim Ran(F ).

Theorem C.12. A bounded operator F : H → B is Fredholm iff there exists
a bounded operator A : B → H such that AF − I and FA− I are both compact
operators. (In fact we may choose A so that AF − I and FA− I are both finite
rank operators.)

Proof. (⇒) Suppose F is Fredholm, then F : Nul(F )⊥ → Ran(F ) is a
bijective bounded linear map between Hilbert spaces. (Recall that Ran(F ) is a
closed subspace of B and hence a Hilbert space.) Let F̃ be the inverse of this
map—a bounded map by the open mapping theorem. Let P : H → Ran(F )
be orthogonal projection and set A := F̃P . Then AF − I = F̃PF − I =
F̃F − I = −Q where Q is the orthogonal projection onto Nul(F ). Similarly,
FA−I = FF̃P −I = −(I−P ). Because I−P and Q are finite rank projections
and hence compact, both AF − I and FA− I are compact. (⇐) We first show
that the operator A : B → H may be modified so that AF − I and FA − I
are both finite rank operators. To this end let G := AF − I (G is compact)
and choose a finite rank approximation G1 to G such that G = G1 + E where
‖E‖ < 1. Define AL : B → H to be the operator AL := (I + E)−1A. Since
AF = (I + E) +G1,

ALF = (I + E)−1AF = I + (I + E)−1G1 = I +KL

where KL is a finite rank operator. Similarly there exists a bounded operator
AR : B → H and a finite rank operator KR such that FAR = I + KR. Notice
that ALFAR = AR + KLAR on one hand and ALFAR = AL + ALKR on the
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other. Therefore, AL − AR = ALKR − KLAR =: S is a finite rank operator.
Therefore FAL = F (AR + S) = I + KR + FS, so that FAL − I = KR − FS
is still a finite rank operator. Thus we have shown that there exists a bounded
operator Ã : B → H such that ÃF−I and FÃ−I are both finite rank operators.
We now assume that A is chosen such that AF−I = G1, FA−I = G2 are finite
rank. Clearly Nul(F ) ⊂ Nul(AF ) = Nul(I + G1) and Ran(F ) ⊇ Ran(FA) =
Ran(I +G2). The theorem now follows from Lemma C.6 and Lemma C.7.

Corollary C.13. If F : H → B is Fredholm then F ∗ is Fredholm and
index(F ) = −index(F ∗).

Proof. Choose A : B → H such that both AF −I and FA−I are compact.
Then F ∗A∗ − I and A∗F ∗ − I are compact which implies that F ∗ is Fredholm.
The assertion, index(F ) = −index(F ∗), follows directly from Eq. (C.4).

Lemma C.14. A bounded operator F : H → B is Fredholm if and only if there
exists orthogonal decompositions H = H1 ⊕H2 and B = B1 ⊕B2 such that

1. H1 and B1 are closed subspaces,
2. H2 and B2 are finite dimensional subspaces, and
3. F has the block diagonal form

F =

(
F11 F12

F21 F22

)
:
H1 B1

⊕ −→ ⊕
H2 B2

(C.6)

with F11 : H1 → B1 being a bounded invertible operator.

Furthermore, given this decomposition, index(F ) = dim(H2)− dim(B2).

Proof. If F is Fredholm, set H1 = Nul(F )⊥, H2 = Nul(F ), B1 = Ran(F ),

and B2 = Ran(F )⊥. Then F =

(
F11 0
0 0

)
, where F11 := F |H1

: H1 → B1

is invertible. For the converse, assume that F is given as in Eq. (C.6). Let

A :=

(
F−1

11 0
0 0

)
then

AF =

(
I F−1

11 F12

0 0

)
=

(
I 0
0 I

)
+

(
0 F−1

11 F12

0 −I

)
,

so that AF − I is finite rank. Similarly one shows that FA − I is finite rank,
which shows that F is Fredholm. Now to compute the index of F, notice that(
x1

x2

)
∈ Nul(F ) iff

F11x1 + F12x2 = 0
F21x1 + F22x2 = 0

which happens iff x1 = −F−1
11 F12x2 and (−F21F

−1
11 F12 + F22)x2 = 0. Let D :=

(F22 − F21F
−1
11 F12) : H2 → B2, then the mapping

x2 ∈ Nul(D)→
(
−F−1

11 F12x2

x2

)
∈ Nul(F )

is a linear isomorphism of vector spaces so that Nul(F ) ∼= Nul(D). Since

F ∗ =

(
F ∗11 F

∗
21

F ∗12 F
∗
22

) B1 H1

⊕ −→ ⊕
B2 H2

,

similar reasoning implies Nul(F ∗) ∼= Nul(D∗). This shows that index(F ) =
index(D). But we have already seen in Example C.11 that index(D) = dimH2−
dimB2.

Proposition C.15. Let F be a Fredholm operator and K be a compact operator
from H → B. Further assume T : B → X (where X is another Hilbert space)
is also Fredholm. Then

1. the Fredholm operators form an open subset of the bounded operators. More-
over if E : H → B is a bounded operator with ‖E‖ sufficiently small we have
index(F ) =index(F + E).

2. F +K is Fredholm and index(F ) = index(F +K).
3. TF is Fredholm and index(TF ) = index(T ) + index(F )

Proof.

1. We know F may be written in the block form given in Eq. (C.6) with
F11 : H1 → B1 being a bounded invertible operator. Decompose E into the
block form as

E =

(
E11 E12

E21 E22

)
and choose ‖E‖ sufficiently small such that ‖E11‖ is sufficiently small to
guarantee that F11 + E11 is still invertible. (Recall that the invertible oper-

ators form an open set.) Thus F + E =

(
F11 + E11 ∗
∗ ∗

)
has the block form

of a Fredholm operator and the index may be computed as:

index(F + E) = dimH2 − dimB2 = index(F ).

2. Given K : H → B compact, it is easily seen that F + K is still Fredholm.
Indeed if A : B → H is a bounded operator such that G1 := AF − I and
G2 := FA − I are both compact, then A(F + K) − I = G1 + AK and
(F + K)A − I = G2 + KA are both compact. Hence F + K is Fredholm
by Theorem C.12. By item 1., the function f (t) := index(F + tK) is a
continuous locally constant function of t ∈ R and hence is constant. In
particular, index(F +K) = f(1) = f (0) = index(F ).
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3. It is easily seen, using Theorem C.12 that the product of two Fredholm
operators is again Fredholm. So it only remains to verify the index formula
in item 3. For this let H1 := Nul(F )⊥, H2 := Nul(F ), B1 := Ran(T ) =
T (H1), and B2 := Ran(T )⊥ = Nul(T ∗). Then F decomposes into the block
form:

F =

(
F̃ 0
0 0

)
:

H1 B1

⊕ −→ ⊕
H2 B2

,

where F̃ = F |H1
: H1 → B1 is an invertible operator. Let Y1 := T (B1)

and Y2 := Y ⊥1 = T (B1)⊥. Notice that Y1 = T (B1) = TQ(B1), where
Q : B → B1 ⊂ B is orthogonal projection onto B1. Since B1 is closed
and B2 is finite dimensional, Q is Fredholm. Hence TQ is Fredholm and
Y1 = TQ(B1) is closed in Y and is of finite codimension. Using the above
decompositions, we may write T in the block form:

T =

(
T11 T12

T21 T22

)
:

B1 Y1

⊕ −→ ⊕
B2 Y2

.

Since R =

(
0 T12

T21 T22

)
: B → Y is a finite rank operator and hence RF :

H → Y is finite rank, index(T − R) = index(T ) and index(TF − RF ) =
index(TF ). Hence without loss of generality we may assume that T has the

form T =

(
T̃ 0
0 0

)
, (T̃ = T11) and hence

TF =

(
T̃ F̃ 0
0 0

)
:
H1 Y1

⊕ −→ ⊕
H2 Y2

.

We now compute the index(T ). Notice that Nul(T ) = Nul(T̃ ) ⊕ B2 and
Ran(T ) = T̃ (B1) = Y1. So

index(T ) = index(T̃ ) + dim(B2)− dim(Y2).

Similarly,

index(TF ) = index(T̃ F̃ ) + dim(H2)− dim(Y2),

and as we have already seen

index(F ) = dim(H2)− dim(B2).

Therefore,

index(TF )− index(T )− index(F ) = index(T̃ F̃ )− index(T̃ ).

Since F̃ is invertible, Ran(T̃ ) = Ran(T̃ F̃ ) and Nul(T̃ ) ∼= Nul(T̃ F̃ ). Thus
index(T̃ F̃ )− index(T̃ ) = 0 and the theorem is proved.

C.3 Tensor Product Spaces

References for this section are Reed and Simon [36] (Volume 1, Chapter VI.5),
Simon [45], and Schatten [42]. See also Reed and Simon [35] (Volume 2 § IX.4
and §XIII.17).

Let H and K be separable Hilbert spaces and H ⊗K will denote the usual
Hilbert completion of the algebraic tensors H⊗f K. Recall that the inner prod-
uct on H ⊗ K is determined by 〈h⊗ k|h′ ⊗ k′〉 = 〈h|h′〉 〈k|k′〉 . The following
proposition is well known.

Proposition C.16 (Structure of H ⊗ K). There is a bounded linear map
T : H ⊗ K → Banti(K,H) (the space of bounded anti-linear maps from K to
H) determined by

T (h⊗ k)k′ := 〈k|k′〉h for all k, k′ ∈ K and h ∈ H.

Moreover T (H ⊗K) = HS(K,H) — the Hilbert Schmidt operators1 from K to
H. The map T : H ⊗K → HS(K,H) is unitary equivalence of Hilbert spaces.
Finally, any A ∈ H ⊗K may be expressed as

A =

∞∑
n=1

λnhn ⊗ kn, (C.7)

where {hn} and {kn} are orthonormal sets in H and K respectively and {λn} ⊂
R such that ‖A‖2 =

∑
|λn|2 <∞.

Proof. Let A :=
∑
ajihj ⊗ ki, where {hi} and {kj} are orthonormal bases

for H and K respectively and {aji} ⊂ R such that ‖A‖2 =
∑
|aji|2 <∞. Then

evidently, T (A)k :=
∑
ajihj 〈ki|k〉 and

‖T (A)k‖2 =
∑
j

|
∑
i

aji 〈ki|k〉 |2 ≤
∑
j

∑
i

|aji|2| 〈ki|k〉 |2

≤
∑
j

∑
i

|aji|2‖k‖2.

1 Don’t we need to use the anti-linear HS operators here. Perhaps we should use the
opposite Hilbert space instead somewhere.
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Thus T : H ⊗K → B(K,H) is bounded. Moreover,

‖T (A)‖2HS :=
∑
‖T (A)ki‖2 =

∑
ij

|aji|2 = ‖A‖2,

which proves the T is an isometry. We will now prove that T is surjective and
at the same time prove Eq. (C.7). To motivate the construction, suppose that
Q = T (A) where A is given as in Eq. (C.7). Then

Q∗Q = T

( ∞∑
n=1

λnkn ⊗ hn

)
T

( ∞∑
n=1

λnhn ⊗ kn

)
= T

( ∞∑
n=1

λ2
nkn ⊗ kn

)
.

That is {kn} is an orthonormal basis for (NulQ∗Q)⊥ with Q∗Qkn = λ2
nkn.

Also Qkn = λnhn, so that hn = λ−1
n Qkn. We will now reverse the above ar-

gument. Let Q ∈ HS(K,H). Then Q∗Q is a self-adjoint compact operator on
K. Therefore there is an orthonormal basis {kn}∞n=1 for the (NulQ∗Q)⊥ which
consists of eigenvectors of Q∗Q. Let λn ∈ (0,∞) such that Q∗Qkn = λ2

nkn and
set hn = λ−1

n Qkn. Notice that

〈hn|hm〉 =
〈
λ−1
n Qkn|λ−1

m Qkm
〉

=
〈
λ−1
n kn|λ−1

m Q∗Qkm
〉

=
〈
λ−1
n k|λ−1

m λ2
mkm

〉
= δmn,

so that {hn} is an orthonormal set in H. Define

A =

∞∑
n=1

λnhn ⊗ kn

and notice that T (A)kn = λnhn = Qkn for all n and T (A)k = 0 for all k ∈
NulQ = NulQ∗Q. That is T (A) = Q. Therefore T is surjective and Eq. (C.7)
holds.

Notation C.17 In the future we will identify A ∈ H ⊗ K with T (A) ∈
HS(K,H) and drop T from the notation. So that with this notation we have
(h⊗ k)k′ = 〈k|k′〉h.

Let A ∈ H ⊗H, we set ‖A‖1 := tr
√
A∗A := tr

√
T (A)∗T (A) and we let

H ⊗1 H := {A ∈ H ⊗H : ‖A‖1 <∞}.

We will now compute ‖A‖1 for A ∈ H ⊗ H described as in Eq. (C.7). First
notice that A∗ =

∑∞
n=1 λnkn ⊗ hn and

A∗A =

∞∑
n=1

λ2
nkn ⊗ kn.

Hence
√
A∗A =

∑∞
n=1 |λn|kn ⊗ kn and hence ‖A‖1 =

∑∞
n=1 |λn|. Also notice

that ‖A‖2 =
∑∞
n=1 |λn|2 and ‖A‖op = maxn |λn|. Since

‖A‖21 = {
∞∑
n=1

|λn|}2 ≥
∞∑
n=1

|λn|2 = ‖A‖2,

we have the following relations among the various norms,

‖A‖op ≤ ‖A‖ ≤ ‖A‖1. (C.8)

Proposition C.18. There is a continuous linear map C : H ⊗1 H → R such
that C(h⊗ k) = (h, k) for all h, k ∈ H. If A ∈ H ⊗1 H, then

CA =
∑
〈em ⊗ em|A〉 , (C.9)

where {em} is any orthonormal basis for H. Moreover, if A ∈ H⊗1H is positive,
i.e. T (A) is a non-negative operator, then ‖A‖1 = CA.

Proof. Let A ∈ H ⊗1 H be given as in Eq. (C.7) with
∑∞
n=1 |λn| = ‖A‖1 <

∞. Then define CA :=
∑∞
n=1 λn(hn, kn) and notice that |CA| ≤

∑
|λn| = ‖A‖1,

which shows that C is a contraction on H ⊗1 H. (Using the universal property
of H ⊗f H it is easily seen that C is well defined.) Also notice that for M ∈ Z+

that

M∑
m=1

〈em ⊗ em|A〉 =

∞∑
n=1

M∑
m=1

(em ⊗ em, λnhn ⊗ kn, ), (C.10)

=

∞∑
n=1

λn 〈PMh|kn〉 , (C.11)

where PM denotes orthogonal projection onto span{em}Mm=1. Since
|λn 〈PMhn|kn〉 | ≤ |λn| and

∑∞
n=1 |λn| = ‖A‖1 < ∞, we may let M → ∞ in

Eq. (C.11) to find that

∞∑
m=1

〈em ⊗ em|A〉 =

∞∑
n=1

λn 〈hn|kn〉 = CA.

This proves Eq. (C.9). For the final assertion, suppose that A ≥ 0. Then there
is an orthonormal basis {kn}∞n=1 for the (NulA)⊥ which consists of eigenvectors
of A. That is A =

∑
λnkn ⊗ kn and λn ≥ 0 for all n. Thus CA =

∑
λn and

‖A‖1 =
∑
λn.

Proposition C.19 (Noncommutative Fatou’ s Lemma). Let An be a se-
quence of positive operators on a Hilbert space H and An → A weakly as n→∞,
then
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trA ≤ lim inf
n→∞

trAn. (C.12)

Also if An ∈ H ⊗1 H and An → A in B (H) , then

‖A‖1 ≤ lim inf
n→∞

‖An‖1. (C.13)

Proof. Let An be a sequence of positive operators on a Hilbert space H
and An → A weakly as n → ∞ and {ek}∞k=1 be an orthonormal basis for H.
Then by Fatou’s lemma for sums,

trA =

∞∑
k=1

〈Aek|ek〉 =

∞∑
k=1

lim
n→∞

〈Anek|ek〉

≤ lim inf
n→∞

∞∑
k=1

〈Anek|ek〉 = lim inf
n→∞

trAn.

Now suppose that An ∈ H ⊗1 H and An → A in B (H) . Then by Proposition
??, |An| → |A| in B (H) as well. Hence by Eq. (C.12), ‖

A‖1 := tr |A| ≤ lim inf
n→∞

tr|An| ≤ lim inf
n→∞

‖An‖1.

Proposition C.20. Let X be a Banach space, B : H ×K → X be a bounded
bi-linear form, and

‖B‖ := sup{|B(h, k)| : ‖h‖‖k‖ ≤ 1}.

Then there is a unique bounded linear map B̃ : H ⊗1 K → X such that B̃(h⊗
k) = B(h, k). Moreover ‖B̃‖op = ‖B̃‖.

Proof. Let A =
∑∞
n=1 λnhn⊗ kn ∈ H ⊗1 K as in Eq. (C.7). Clearly, if B̃ is

to exist we must have B̃(A) :=
∑∞
n=1 λnB(hn, kn). Notice that

∞∑
n=1

|λn||B(hn, kn)| ≤
∞∑
n=1

|λn|‖B‖ = ‖A‖1 · ‖B‖.

This shows that B̃(A) is well defined and that ‖B̃‖op ≤ ‖B̃‖. The opposite
inequality follows from the trivial computation:

‖B‖ = sup{|B(h, k)| : ‖h‖‖k‖ = 1}
= sup{|B̃(h⊗ k)| : ‖h⊗1 k‖1 = 1} ≤ ‖B̃‖op.

Lemma C.21. Suppose that P ∈ B (H) and Q ∈ B (K) , then P⊗Q : H⊗K →
H ⊗ K is a bounded operator. Moreover, P ⊗ Q(H ⊗1 K) ⊂ H ⊗1 K and we
have the norm equalities

‖P ⊗Q‖B(H⊗K) = ‖P‖B(H)‖Q‖B(K)

and
‖P ⊗Q‖B(H⊗1K) = ‖P‖B(H)‖Q‖B(K).

Proof. We will give essentially the same proof of ‖P ⊗ Q‖B(H⊗K) =
‖P‖B(H)‖Q‖B(K) as the proof on p. 299 of Reed and Simon [36]. Let A ∈ H⊗K
as in Eq. (C.7). Then

(P ⊗ I)A =

∞∑
n=1

λnPhn ⊗ kn

and hence

(P ⊗ I)A{(P ⊗ I)A}∗ =

∞∑
n=1

λ2
nPhn ⊗ Phn.

Therefore,

‖(P ⊗ I)A‖2 = tr(P ⊗ I)A{(P ⊗ I)A}∗

=

∞∑
n=1

λ2
n(Phn, Phn) ≤ ‖P‖2

∞∑
n=1

λ2
n

= ‖P‖2‖A‖21,

which shows that Thus ‖P⊗I‖B(H⊗K) ≤ ‖P‖. By symmetry, ‖I⊗Q‖B(H⊗K) ≤
‖Q‖. Since P ⊗Q = (P ⊗ I)(I ⊗Q), we have

‖P ⊗Q‖B(H⊗K) ≤ ‖P‖B(H)‖Q‖B(K).

The reverse inequality is easily proved by considering P ⊗Q on elements of the
form h⊗ k ∈ H ⊗K. Now suppose that A ∈ H ⊗1 K as in Eq. (C.7). Then

‖(P ⊗Q)A‖1 ≤
∞∑
n=1

|λn|‖Phn ⊗Qkn‖1

≤ ‖P‖‖Q‖
∞∑
n=1

|λn| = ‖P‖‖Q‖‖A‖,

which shows that

‖P ⊗Q‖B(H⊗1K) ≤ ‖P‖B(H)‖Q‖B(K).

Again the reverse inequality is easily proved by considering P ⊗Q on elements
of the form h⊗ k ∈ H ⊗1 K.
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Lemma C.22. Suppose that Pm and Qm are orthogonal projections on H and
K respectively which are strongly convergent to the identity on H and K re-
spectively. Then Pm ⊗Qm : H ⊗1 K → H ⊗1 K also converges strongly to the
identity in H ⊗1 K.

Proof. Let A =
∑∞
n=1 λnhn ⊗ kn ∈ H ⊗1 K as in Eq. (C.7). Then

‖Pm ⊗QmA−A‖1

≤
∞∑
n=1

|λn|‖Pmhn ⊗Qmkn − hn ⊗ kn‖1

=

∞∑
n=1

|λn|‖(Pmhn − hn)⊗Qmkn + hn ⊗ (Qmkn − kn)‖1

≤
∞∑
n=1

|λn|{‖Pmhn − hn‖‖Qmkn‖+ ‖hn‖‖Qmkn − kn‖}

≤
∞∑
n=1

|λn|{‖Pmhn − hn‖+ ‖Qmkn − kn‖} → 0 as m→∞

by the dominated convergence theorem.
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