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Part 1

Background






1

Vector Valued Integration Theory

[The reader interested in integrals of Hilbert valued functions, may go di-
rectly to Section below and bypass the Bochner integral altogether.]

Let X be a Banach space and ({2, F, u) be a measure space. Given a “nice
enough” function, f : 2 — X, we would like to define |, o Jdu as an element in
X. Whatever integration theory we develop we minimally want to require that

@(Afd,u):/ggpofduforallcpe)(. (1.1)

Basically, the Pettis Integral developed below makes definitions so that there
is an element |, o fdp € X such that Eq. 1) holds. There are some subtleties
to this theory in its full generality which we will avoid for the most part. For
many more details see [15H18| and especially [48]. Other references are Pettis
Integral (See Craig Evans PDE book?) also see

http : / /en.wikipedia.org/wiki/ Pettis_integral
and

http = / Jwww.math.umn.edu/” garrett/m/ fun/Notes/07_vv_integrals.pdf

1.1 Pettis Integral

Remark 1.1 (Wikipedia quote). In mathematics, the Pettis integral or Gelfand—
Pettis integral, named after I. M. Gelfand and B.J. Pettis, extends the definition
of the Lebesgue integral to functions on a measure space which take values in
a Banach space, by the use of duality. The integral was introduced by Gelfand
for the case when the measure space is an interval with Lebesgue measure. The
integral is also called the weak integral in contrast to the Bochner integral,
which is the strong integral.

We start by describing a weak form of measurability and integrability

Definition 1.2. Let X be a Banach space and (2, F, ) be a measure space.
We say a function u : 2 — X is weakly measurable if fou : 2 — C is
measurable for all f € X*.

Definition 1.3. A weakly measurable function u : 2 — X s said to be weakly
L' if there exists U € L' (£2, F, 1) such that |u (w)| < U (w) for u-a.e. w € 0.
We denote the weakly L' functions by L' (u: X) and for u € L' (u: X) we
define,

fully=int { [ U@ du):0 3 Ol U0 ac.}.

Remark 1.4. 1t is easy to check that L' (2, F, ) is a vector space and that ||-||;
satisfies

lzully = |z[ |Jull, and

[u+lly < lully + [lvll,

for all z € F and u,v € L' (u: X). As usual ||ul|; = 0 iff u (w) = 0 except for
w in a p-null set. Indeed, if ||u||, = 0, there exists U,, such that |lu ()| < U, (-)
a.e. and [, Undp | 0 as n — co. Let E be the null set, £ = U,E,, where
E, is a null set such that ||u(w)| < U, (w) for w ¢ E. Now by replacing U,
by ming<, U, if necessary we may assume that U, is a decreasing sequence
such that |lu| < U := limy_0 Uy, off of E and by DCT [, Udyu = 0. This
shows {U # 0} is a null set and therefore ||u (w)|| = 0 if w is not in the null set,
EU{U #0}.

To each u € L (1 : X) let

() ::/ngoudu (1.2)

which is well defined since ¢ o u is measurable and | o u| < [|¢| - [Ju ()] <
lloll ¢« U () a.e. Moreover it follows that

()] < llollx- /Q Udp = |i ()] < llglx- llul,

which shows @ € X** and
]| e < el - (1.3)



4 1 Vector Valued Integration Theory

Definition 1.5. We say u € L' (u: X) is Pettis integrable (and write u €
L., (X)) if there exists (a mecessarily unique) x,, € X such that (o) =
o (xy) for all p € X*. We say that x,, is the Pettis integral of u and denote
T, by fn udp. Thus the Pettis integral of u, if it exists, is the unique element

Joudp € X such that
® </ ud,u> :/ (pou)dpu. (1.4)
7 17

Let us summarize the easily proved properties of the Pettis integral in the
next theorem.

Theorem 1.6 (Pettis Integral Properties). The space, L: , (n: X), is a
vector space, the map,

L};et(u:X)Su%/nfduGX

is linear, and

H/ uduH < |lull, for allu € Lpy, (p: X). (1.5)
2 X

Moreover, if X is reflexive then L' (n: X) = L%, (u: X).

Proof. These assertions are straight forward and will be left to the reader
with the exception of Eq. (1.5). To verify Eq. we recall that the map
X 52— &€ X* (where Z (¢) := ¢ (x)) is an isometry and the Pettis integral,
T, is defined so that %, = 4. Therefore,

H / uduH — zuly = leullger = [llxer < Jlul, - (1.6)
(] X

wherein we have used Eq. (1.3) for the last inequality.
|

Exercise 1.1. Suppose ({2, F, ) is a measure space, X and Y are Banach
spaces, and T € B(X,Y). Ifu e Lh,, (u;X) then Tou € L}, (1;Y) and

/Toudu:T/ udjs. (1.7)
2 7

When X is a separable metric space (or more generally when u takes values
in a separable subspace of X), the Pettis integral (now called the Bochner
integral) is a fair bit better behaved, see Theorem below. As a warm up
let us consider Riemann integrals of continuous integrands which is typically all
we will need in these notes.
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1.2 Riemann Integrals of Continuous Integrands

In this section, suppose that —oco < a < b < oo and f € C([a,b],X) and for
6 >0 let

oscs (f) := max {||f (c) — f ()] : ¢, € [a,b] with |c— (| < §}.

By uniform continuity, we know that oscs (f) — 0 as ¢ J 0. It is easy to check
that f € L' (m: X) where m is Lebesgue measure on [a,b] and moreover in
this case t — || f (t)|| x is continuous and hence measurable.

Theorem 1.7. If f € C ([a,b], X), then f € LL_, (m; X). Moreover if
IIT'={a=ty <ty <--- <ty =0} Clab],

{e;}i_, are arbitrarily chosen so that t;—1 < ¢; < t; for all i, and |II| :=
max; [t; — t;—1| denotes the mesh size of let I, then

Proof. Using the notation in the statement of the theorem, let

< (b—a)oscig (f)- (1.8)
X

b n
JRECLED S OICET Y
a =1

Su(f) =D f (ci) (ti —tia).
i=1
Ifti1=s0<s1 <---<sp=t; and ;1 Sc; <sj for 1 < j <k, then
k

Fle)(ti—tis) = > f(c)) (sj—sj-1)

j=1

= Zf(ci) — [ (<)) (sj —55-1)

k
< oscip) (f) Z (s —sj-1) = osci (f) (ti —ti—1).

So if IT’ refines II, then by the above argument applied to each pair, t;_1,t;, it
follows that
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1S (f) = Si (Il < oseyr () (i — tima) = oseig (f) - (b—a).  (1.9)
i=1

Now suppose that {II,} - ; is a sequence of increasing partitions (i.e. IT,, C
II,+1 ¥ n € N) with |II,,| — 0 as n — oo. Then by the previously displayed
equation it follows that

1S, (f) = Sm,. (DIl < 0s¢jm,, ., (f) - (b= a).

As the latter expression goes to zero as m,n — oo, it follows that
lim,, 00 Sp7,, (f) exists and in particular,

b
o (1m S, () = lim S, (sDOf)=/ o (f(B)dtY o€ X*.

n—oo a

Since the right member of the previous equation is the standard real variable
Riemann or Lebesgue integral, it is independent of the choice of partitions,
{II,,} , and of the corresponding ¢’s and we may conclude lim,,_,o, Sz, (f) is also
independent of any choices we made. We have now shown that f € L}get (m; X)
and that

b
[ r@de=tim Su, ().

To prove the estimate in Eq. (1.8)), simply choose {Hn}ff:l as above so that
IT C II; and then from Eq. (1.9) it follows that

1S (f) = S, (f)I < oscjm (f) - (b—a) VneN.
Letting n — oo in this inequality gives the estimate in Eq. (|L.8]). ]

Remark 1.8. Let f € C (R, X). We leave the proof of the following properties
to the reader with the caveat that many of the properties follow directly from
their real variable cousins after testing the identities against a p € X*.

/:f(t)dt/abf(t)dtjt/bcf(t)dt

and moreover this result holds independent of the ordering of a,b,c € R
provided we define,

1. Fora<b<e,

/Cf(t)dt:—/af(t)dtwhenc<a.

2. For all a € R,
d t
%/ f(s)ds= f(t) for all t € R.
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1.2 Riemann Integrals of Continuous Integrands 5

3.1f f € C* (R, X), then

f(t)—f(s)=/ fr)drvsteR

vhere Pt - ()
@ .—ilg%feX.
4. Again the triangle inequality holds,
b b
/ f@d < / IIf )|l xdt| Va,beR.
a X a

Exercise 1.2. Suppose that (X, ||-||) is a Banach space, J = (a,b) with —oco <
a <b<ooand f,:J— X are continuously differentiable functions such that
there exists a summable sequence {a, }, ., satisfying

1 (0] + |

fn (t)H <ayforalteJandnecN. (1.10)

Show:

Losup { | 2RO (1 h) e TxR 5 t+heand h£0} < an.
2. The function F': R — X defined by

F(t):=> fa(t) forallte.J
n=1

is differentiable and for ¢ € J,
F@) =Y falt).
n=1
Definition 1.9. A function f from an open set 2 C C to a complex Banach

space X is analytic on {2 if

o) et LD )

exists V z € 2
h—0 h

and is weakly analyticon 2 if L o f is analytic on §2 for every ¢ € X*.

Analytic functions are trivially weakly analytic and next theorem shows the
converse is true as well. In what follows let

D (29,2) :={2€C: |z — 2| < p}

be the open disk in C centered at zy of radius p > 0.
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6 1 Vector Valued Integration Theory

Theorem 1.10. If f: 2 — X is a weakly analytic function then f is analytic.
Moreover if zg € 2 and p > 0 is such that D (z9,p) C 2, then for all w €

D (207[)) ;

_ 1 f(z)
f(w) = 31 Sopian 7 — o (1.11)
n ' f
£ (w) = :mygmw) (z_(;){lﬂdz, and (1.12)
% 4(n) (,
f(w)= ZfT(O)(w—zo)n. (1.13)
n=0 :

Proof. Let K C {2 be a compact set and € > 0 such that z + h € 2 for all
|h| < e. Since £ o f is analytic we know that

V(f@+2—f@»’:VOf@+2—€mH@

< My < oo

for all z € K and 0 < |h| < ¢ where

M, = sup ‘(EOf)/(z—i—h)‘.
z€K and |h|<e

Therefore by the uniform boundedness principle,

fz+h) - f(2)
h

sup < 00

z€K,0<|h|<e

‘ = sup
X z€K,0<|h|<e

[f@+2—f@qA

X

from which it follows that f is necessarily continuous.

If D(20,p) C 2 and £ € X*, then for all w € D (z,p) we have by the
standard theory of analytic functions that

gof(w)ziﬁ o f@ a0 Lf FAOFRY
211 OD(z0,p) 2 — W 211 OD(z0,p) 2 — W

As this identity holds for all £ € X* it follows that Eq. is valid. Equation
now follows by repeated differentiation past the integral and in particular
it now follows that f is analytic. The power series expansion for f in Eq.
now follows exactly as in the standard analytic function setting. Namely we

write
1 1 1 1

z—w z—29—(w—2) 2z—251—L=2

zZ—Zz0
0
1 Z w—29\"
zZ— 20 Z— 20

n=0

Page: 6 job: 241Functional_2020s

and plug this identity into Eq. (1.11)) to discover,

flw) =" an(w—z)"

where

1 f(z) (n)
n=— 74 ——dz = .
¢ aD(z0.,p) ( )n+1 F (z0)

211 Z— 20
]

Remark 1.11. If X is a complex Banach space, J is an open subset of C, and
fn +J — X are analytic functions such that Eq. holds, then the results of
the Exercise |1.2| continues to hold provided f, (t) and f (t) is replaced by f/, (2)
and f’(z) everywhere. In particular, if {a,} C X and p > 0 are such that

oo
f(z):= Z an (2 — 20)" is convergent for |z — zo| < p,
n=0
then f is analytic in on D (z, z) and
o0
(z) = Z nan (z —20)" "
n=1

Corollary 1.12 (Liouville’s Theorem). Suppose that f : C — X is a
bounded analytic function, then f(z) = xy for some xo € X.

Proof. Let M := sup,cc ||f (2)| which is finite by assumption. From Eq.
(1.12) with zy = 0 and simple estimates it follows that

1 [ (2)
— I g
2mi faD(O,p) (z —w)® ’

g 0
1 / ‘/:(L)Qipeif)dg

2mi ) (pei? —w)

1f" (w)ll =

< = S
= 2 ol |pei® — w|*’

Letting p 1 oo in this inequality shows ||f’ (w)|| = 0 for all w € C and hence

f is constant by FTC or by noting the that power series expansion is f (w) =

Alternatively: one can simply apply the standard Liouville’s theorem to

Eo f for £ € X* in order to show o f (z) = o f(0) for each z € C. As £ € X*

was arbitrary it follows that f(z) = f (0) = xq for all z € C. |

Exercise 1.3 (Conway, Exr. 4, p. 198 cont.). Let H be a separable Hilbert
space. Give an example of a discontinuous function, f : [0,00) — H, such that
t — (f (t),h) is continuous for all ¢ > 0.
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1.3 Bochner Integral (integrands with separable range)

The main results of this section are summarized in the following theorem.
Theorem 1.13. If we suppose that X is a separable Banach space, then;

1. The Borel o — algebra (Bx) on X is the same as o (X*) — the o — algebra
generated X *.

2. The ||-|| ¢ is then of course Bx = o (X*) measurable.

3. A function, u : (2, F) — X, is weakly measurable iff if is F /Bx measurable
and in which case ||u(-)| y is measurable.

4. The Pettis integrable functions are now easily describe as

Lpe (1;X) = L' (115 X)

:{u:Q—>X| u is F/Bx - meas. & / u(~)||du<oo}.
7}

D

. LY (u; X) is complete, i.e. L' (u; X) is a Banach space.

6. The dominated convergence theorem holds, i.e. if {u,} C L'(w;X) is
such that u(w) = lmy,_eouy (W) exists for p-a.e. x and there exists
g € L' (n) such that ||uy|lx < g a.e. for all n, then u € L' (u; X) and
limy, o0 |u — uyn|l; =0 and in particular,

For the rest of this section, X will always be a separable Banach space.

/ud,u/unduH <|lu—upll; = 0 as n — oo.
i) ) X

Exercise 1.4 (Differentiate past the integral). Suppose that J = (a,b) C
R is a non-empty open interval, f : J x {2 — X is a function such that;

1. foreach t € J, f (t,-) € L' (u; X),
2. for each w, J >t — f (t,w) is a C'-function.

3. There exists g € L' (u) such that Hf(t,w)HX < g(w) for all w where
fltw)=24f(tw).
Then F : J — X defined by

F(t):= Qf(tM) dpt (w)

is a Cl-function with

Py = [ Ftw)du).

The rest of this section is now essentially devoted to the proof of Theorem
INE
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1.3 Bochner Integral (integrands with separable range) 7
1.3.1 Proof of Theorem [L.13]

Proposition 1.14. If X is a separable Banach space, there exists {¢n},; C
X* such that
lz|| = sup |@n (z)| for allz € X. (1.14)

Proof. If ¢ € X*, then ¢ : X — R is continuous and hence Borel mea-
surable. Therefore o(X*) C B. For the converse. Choose z, € X such that
||zn]| =1 for all n and

@l =S={reXx:|x] =1}

By the Hahn Banach Theorem ?? (or Corollary ?? with z = z,, and M = {0}),
there exists p,, € X* such that i) ¢, (x,) =1 and ii) ||¢n|x+ = 1 for all n.

As |on (2)| < ||z|| for all n we certainly have sup, ¢, (z)| < ||z||. For
the converse inequality, let z € X \ {0} and choose {n;};—,; C N such that
x/ ||z|| = limg—y00 Tn, . It then follows that

X X
Pre \ 777 | — 1] = Pre \ 77— Tne <
k4l ]

ie. limg o0 [, ()| = ||z|| which shows sup,, |¢n ()| > ||z . |

— 0 as k — oo,

— =T
™

Corollary 1.15. If X is a separable Banach space, then Borel o — algebra of
X and the o — algebra generated by ¢ € X* are the same, i.e. 0(X*) = Bx —
the Borel o-algebra on X.

Proof. Since every ¢ € X* is continuous it Bx — measurable and hence
o (X*) C Bx. For the converse inclusion, let {¢,},-; C X* be as in Proposition
?7?. We then have for any zo € X that

| - —zoll = sup |pn(- — z0)| = sup [pn(-) — ¢n (z0)|-
n n

This shows || - —x¢]| is o(X*)—measurable for each o € X and hence
{z: ||z — ol <6} € o(X™).

Hence o(X™*) contains all open balls in X. As X is separable, every open set may
be written as a countable union of open balls and therefore we may conclude
o (X*) contains all open sets and hence Bx C o(X™*). |

Corollary 1.16. If X is a separable Banach space, then a function u: 2 — X
is F/Bx — measurable iff Aow : 2 = T is measurable for all A € X*.

Proof. This follows directly from Corollary of the appendix which
asserts that o(X*) = Bx when X is separable. ]
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8 1 Vector Valued Integration Theory

Corollary 1.17. If X is separable and u, : 2 — X are measurable functions
such that u (w) 1= limy, 00 uy, (w) exists in X for allw € 2, thenu: 2 — X is
measurable as well.

Proof. We need only observe that for any A € X*, Aou = limy,, 00 A 0 Uy,
is measurable and hence the result follows from Corollary [T.16} |

Corollary 1.18. If (2, F, u) is a measure space and X is a separable Banach
space, a function u : 2 — X is weakly integrable iff u : 2 — X is F/Bx -

measurable and
Il due) < o

Corollary 1.19. Suppose that (2, F, ) is a measure space and F,G : 2 — X
are F/Bx — measurable functions. Then F (w) = G (w) for p — a.e. w € 2 iff
poF(w)=9oG(w) for u — a.e. w € 2 and every p € X*.

Proof. The direction, “ =", is clear. For the converse direction let {¢,} C
X* be as in Proposition [I.14] and for n € N, let

E,={weR:p,0F (w)# ppoGW)}.

By assumption u (F,,) = 0 and therefore F := U2 1 F, is a p — null set as well.
This completes the proof since ¢, (F — G) = O on E° and therefore, by Eq.
(T.14)

|F' — G|| =sup |, (F—G)| =0 on E°.

L]

Recall that we have already seen in this case that the Borel o — field B on X

is the same as the o — field (o(X*)) which is generated by X* — the continuous

linear functionals on X. As a consequence F : 2 — X is F/B measurable iff

poF: 2 — Ris F/B(R) — measurable for all ¢ € X*. In particular it follows

that if F,G : 2 — X are measurable functions then so is F' 4+ G and AF for

all A € F and it follows that {F # G} = {F — G # 0} is measurable as well.

Also note that [|-|| : X — [0, 00) is continuous and hence measurable and hence

w — ||F (w) ||x is the composition of two measurable functions and therefore
measurable.

Definition 1.20. For 1 < p < oo let LP(u; X) denote the space of measurable
functions F : 2 — X such that [ |F||Pdu < oo. For F € LP(u; X), define
o)

1

1Pl = / VP dp

As usual in LP — spaces we will identify two measurable functions, F,G : 2 —
X, if F=G a.e.
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oo
Lemma 1.21. Suppose a, € X and ||apt1 — an| < en and Y £, < co. Then
n=1

[e.e]
lim a, =a € X exists and ||a — ay|| < 6, 1= Y, €.
k=

n—00

Proof. Let m > n then

< E laks1 — ax| < Z e =0,. (1.15)

=n k=n

lam — anll = H S (arss - an)

S0 [|aym — an|| < Omin(m,n) — 0 as ,m,n — oo, i.e. {a,} is Cauchy. Let m — oo
in (1.15)) to find [ja — an|| < 0. |

Lemma 1.22. Suppose  that {F,} is Cauchy in  measure, i.e.
limy, psoo b (| Fn — Fi|l =€) = 0 for all € > 0. Then there exists a sub-
sequence G = F,, such that F := lim;_, G; exists [t — a.e. and moreover

Fo B F asn — oo, i.e. limy, o0 it (| Fyy — F|| > €) = 0 for all € > 0.

(&)
Proof. Let ¢, > 0 such that > &, < 0o (g, = 27" would do) and set

n=1
dn = Y €k Choose Gj = F,,; where {n;} is a subsequence of N such that
k=n

p({l|Gip1 — Gyl > e5}) < e
Let
An = Uj>n {[|Gj1 — Gyl > &5} and
E .= ﬁjovozlAN = {||Gj+1 — GJ” > €5 10}
Since p(An) < dn < oo and Ay | E it followd]| that 0 = pu(E) =

limy oot (An). For w ¢ E, ||Gj11 (w) — G (w)|| < ¢; for a.a. j and hence
by Lemma [1.21} F'(w) := lim G;(w) exists for w ¢ E. Let us define F'(w) =0
Jj—o0

forallwe F.
Next we will show Gy & F as N — oo where F and Gy are as above. If

we ANy =Ni>n {IIGj+1 — G| < g5},
then
[Gj1 (w) — Gj (w)[| < g forall j > N.

Another application of Lemma shows ||F(w) — G;(w)|| < 6; for all j > N,

ie.

! Alternatively, u(F) = 0 by the first Borel Cantelli lemma and the fact that
e bQlG i = Gill > 65}) <3272, &5 < oo
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AN C NN {IIF = Gyl < 6;} CH{IF - Gn| <N}

Therefore, by taking complements of this equation, {||F  — Gn| > dn} C An
and hence

/.L(HF — GN” > 6N) < /.L(AN) <déy -0as N — ¢

and in particular, G A Fas N — .
With this in hand, it is straightforward to show F, 5 F. Indeed, by the
usual trick, for all j € N,

p({l[Fn = Fl > e}) < p({lIF = Gjll > €/2}) + p(l|G5 = Full > €/2).
Therefore, letting j — oo in this inequality gives,

p{l[Fn = F| > e}) <limsup u([|Gj — Ful| > €/2) — 0 as n — oo,

J]—00

wherein we have used {F,} - is Cauchy in measure and G; 5 F ]

Theorem 1.23. For each p € [0,00), the space (LP(p; X), || - ||ze) is a Banach
space.

Proof. It is straightforward to check that [|-||,, is a norm. For example,

P

£+ Gllr = | 17+ Gl | < | [l + 167
0 (0}

IN

1l ze + |Gl -

So the main point is to prove completeness of the norm.

Let {F,} —, C LP(u) be a Cauchy sequence. By Chebyshev’s inequality
{F,} is Cauchy in measure and by Lemma there exists a subsequence
{G;} of {F,} such that G; — F a.e. By Fatou’s Lemma,

16~ Flp = [t inf G, ~ Gull i < lim it [ G, — Gl d

= lim inf[|G; — Gi|[) — 0 as j — oo.
k—o00

In particular, |F||, < [|G; — F|l, + [|G,llp < oo so the F' € L? and Gj R
The proof is finished because,

HFn_FHPS||Fn_Gij"'||Gj_F||p_>035jan_>oo-
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1.3 Bochner Integral (integrands with separable range) 9

Definition 1.24 (Simple functions). We say a function F : 2 — X is a
simple function if F is measurable and has finite range. If F also satisfies,
w(F #£0) < oo we say that F is a p — simple function and let S (u; X) denote
the vector space of u — simple functions.

Proposition 1.25. For each 1 < p < oo the p — simple functions, S (u; X),
are dense inside of LP (p; X) .

Proof. Let D := {z,,} -, be a countable dense subset of X \ {0}. For each
€ >0and n €N let

1
B o= {o e X sllo —aall < min (=5 )}

and then define A% := B¢ \ (Up_, B;). Thus {A%} 7, is a partition of X \ {0}
with the added property that ||y — x| < & and § [|z,[ < ||yl < 3 [lz,[|for all
y € A;.

Given F € LP (1; X) let

o0 oo
FE = E xn'lFeAi: E ‘"En'lp—l(A%).
n=1 n=1

Forw € F71(AY), i.e. F (w) € A5, we have
[Fe (@)l = llanl| < 2||F (w)]| and
[Fe (w) = F (w)]| = [lzn — F (W) <&
Putting these two estimates together shows,
[Fe = F|| <€ and |[Fe — F|| < |[Fe[| + [|[F|| < 3[F] .
Hence we may now apply the dominated convergence theorem in order to show

i |5 = Fell 1o i) = 0-

As the F. — have countable range we have not yet completed the proof. To
remedy this defect, to each N € N let

N
FEN = Zl‘n . 1F*1(A$L)-
n=1

Then it is clear that limy_,o FY = F. and that |[FN|| < ||F.|| < 2| F]| for
all N. Therefore another application of the dominated convergence theorem
implies, limpy 00 ||FEN — FEHLP(/L;X) = 0. Thus any F' € LP (u; X) may be arbi-
trarily well approximated by one of the FN € & (u; X) with ¢ sufficiently small
and N sufficiently large. ]

For later purposes it will be useful to record a result based on the partitions
{45} of X\ {0} introduced in the above proof.
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10 1 Vector Valued Integration Theory

Lemma 1.26. Suppose that F : 2 — X is a measurable function such that
w(F #0) > 0. Then there exists B € F and ¢ € X* such that u(B) > 0 and
inf,egpoF(w) > 0.

Proof. Let € > 0 be chosen arbitrarily, for example you might take ¢ = 1
and let {A,, := A%} | be the partition of X \ {0} introduced in the proof of
Propositionabove. Since {F #0} =02 | {F € A,} and p(F #0) > 0, it
follows that that u (F € A,,) > 0 for some n € N. We now let B := {F € A,,} =
F~1(A,) and choose ¢ € X* such that ¢ (z,) = |z,| and ||¢|/yx. = 1. For
w € B we have F (w) € A, and therefore || F (w) — 2, | < 3 ||@,|| and hence,

o (F (@) = llznlll = ¢ (F (W) = ¢ (@n)] < llellx-

1
F(w) = znll < 5 llzall-

From this inequality we see that ¢ (F (w)) > 3 [|@,]| > 0 for all w € B. |

Definition 1.27. To each F' € S (11; X) , let

[(F) = Y ap(F ' ({z})) = 3 ap({F = «})

reX reX
= Z zu(F=x) e X.
TEF(Q)

The following proposition is straightforward to prove.

Proposition 1.28. The map I : S(u; X) — X s linear and satisfies for all
Feds(pmX),

1) < [ 1F)du and (1.16)
(9]

@(I(F)):/gpoquVgoeX*. (1.17)

Q

More generally, if T € B (X,Y) where Y is another Banach space then
TI(F)=1(TF).

Proof. If 0 #c€ R and F € S (1; X), then

I(cF) =) au(cF=2)=") ap (F - %)

zeX xeX
=Y ey w(F =y) = cI(F)
yeX

and if c =0, I(0F) =0 = 0I(F). If F,G € S (1; X)
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I(F+G)=> au(F +G =x)
:ix ; wF =y,G=z)
= Z(yy+ ;)u(F= y,G =2)
=yz:yu(F=y)+Zw(G=Z)=I(F)+I(G)-

Equation (|1.16]) is a consequence of the following computation:

reX zeX

HF)x =Y zu(F =2)| < Y llaf p(F = 2) = / 1| dp
2

and Eq. follows from:
P(I(F)) = (D zp({F = z}))

;w(fv)u({Fx})/Qsooqu-

]

The next elementary theorem (referred to as the bounded linear transfor-

mation theorem, or B.L.T. theorem for short) is often useful when constructing
bounded linear transformations.

Theorem 1.29 (B. L. T. Theorem). Suppose that Z is a normed space, X
is a Banach space, and S C Z is a dense linear subspace of Z. If T : S — X is a
bounded linear transformation (i.e. there exists C < oo such that ||Tz| < C ||z]]
for all z € S), then T has a unique extension to an element T € L(Z, X) and
this extension still satisfies

HTZH <C|z|| forallz € S.
Proof. The proof is left to the reader. ]

Theorem 1.30 (Bochner Integr_al). There is a unique continuous linear map
I: LY, F, 15 X) = X such that I|s(,x) = I where I is defined in Definition
. Moreover, for all F € L*(£2, F,u; X),

1) < [ Il (1.18)
o
and I(F) is the unique element in X such that
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o(I(F)) = /Q poF duVpe X*. (1.19)

The map I(F) will be denoted suggestively by [, Fdu or ji (F) so that Eq.

may be written as
go(/ qu)—/gpoquchGX* or
Q Q

p(u(F)=p(poF) Voe X~

It is also true that if T € B(X,Y) where Y is another Banach space, then

/Tqu:T/ Fdu
(9] 2

where one should interpret TF : 2 — TX which is a separable subspace of Y
even is Y 1is not separable.

Proof. The existence of a continuous linear map I : L'(2,F, u; X) — X

such that I|s(;x) = I and Eq. (1.18) holds follows from Propositions

and and the bounded linear transformation Theorem If p € X* and
F e LY(02, F,u; X), choose F,, € S (; X) such that F,, = F in L'(2, F, ji; X)
as n — 0o. Then I(F) = lim, . I(F,) and hence by Eq. (1.17),

P(I(F)) = ¢(lim I(F,)) = lim o(I(F,)) = lim | woFudp.

n—oo n—oo n— oo

This proves Eq. (1.19)) since

/((poF—gpan)du §/|<poF—goan|d,u
(0]

0
< / lellx-
(93

= |lellx*|F = FnllLr — 0 as n — oo.

poF —poF,|xdu

The fact that I(F) is determined by Eq. (1.19)) is a consequence of the Hahn —
Banach theorem. n

Ezample 1.31. Suppose that x € X and f € L' (u;R), then F (w) = f (w)x
defines an element of L' (4; X) and

/Qqu = (/Q fdu) x. (1.20)
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1.4 Strong Bochner Integrals 11
To prove this just observe that ||[F|| = |f| ||z|| € L* (1) and for ¢ € X* we have

(([59)7)- ) w0
([re@an)= [ ooran

Since ¢ ([, Fdu) = [, oo F d for all ¢ € X* it follows that Eq. (1.20) is

correct.

Definition 1.32 (Essential Range). Suppose that (£2,F,u) is a measure
space, (Y, p) is a metric space, and q : 2 — Y is a measurable function. We
then define the essential range of q to be the set,

essrany, (¢) ={y €Y : p({p(q,y) <e}) >0 Ve >0}.

In other words, y € Y is in essran, (q) iff ¢ lies in B, (y,e) with positive (1 —
measure.

Remark 1.33. The separability assumption on X may be relaxed by assuming
that ' : {2 — X has separable essential range. In this case we may still define
/. o F'du by applying the above formalism with X replaced by the separable Ba-

nach space, Xy := span(essran, (F')). For example if {2 is a compact topological
space and F : 2 — X is a continuous map, then |, o Fd is always defined.

Theorem 1.34 (DCT). If {u,} < L' (uX) is such that u(w) =
lim,, o0 un (w) exists for p-a.e. x and there exists g € L'(u) such that
llunllx < g a.e. for all n, then u € L* (4; X) and lim,_,o0 |u — up ||, = 0 and
in particular,

/udu/unduH <|lu—unl|l; = 0 as n — oo.
0 2 X

Proof. Since ||u (w)|| y = limy o0 [[un (w)]] < g (w) for a.e. w, it follows that
uw € L' (u, X) . Moreover, |[u — uy,| x < 2g a.e. and lim, o0 [|[u — up ||y = 0 ae.
and therefore by the real variable dominated convergence theorem it follows
that

lu —unll, :/ lw — upl|lx du — 0 as n — oo.
o

1.4 Strong Bochner Integrals

Let us again assume that X is a separable Banach space but now suppose that
C : 2 — B(X) is the type of function we wish to integrate. As B (X) is
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12 1 Vector Valued Integration Theory

typically not separable, we can not directly apply the theory of the last section.
However, there is an easy solution which will briefly describe here.

Definition 1.35. We say C : 2 — B (X) is strongly measurable if 2 5 w —
C (w) z is measurable for all x € X.

Lemma 1.36. If C : 2 — B (X) is strongly measurable, then 2 > w —
[C (W)l is measurable.

Proof. Let D be a dense subset of the unit vectors in X. Then

1C (W)ll,, = sup [|[C' (w) z[| x
zeD

is measurable. ]

Lemma 1.37. Suppose that u : 2 — X is measurable and C : 2 — B (X) is
strongly measurable, then 25 w — C (w)u (w) € X is measurable.

Proof. Using the ideas in Proposition we may find simple functions
Up : 2 = X so that u = lim,— o uy,. It is easy to verify that C (-)u, (+) is
measurable for all n and that C' () u (-) = limy 00 C (+) up, (+) . The result now
follows Corollary m

Corollary 1.38. Suppose C,D : 2 — B(X) are strongly measurable, then
N3w— C(w)D(w) € X is strongly measurable.

Proof. For z € X, let u (w) := D (w) x which is measurable by assumption.
Therefore, C (-) D (-) x = C'(-) u(+) is measurable by Lemma [[.37] ]

Definition 1.39. We say C : 2 — B(X) is integrable and write C' €
L' (u: B (X)) if C is strongly measurable and

Il = /Q IC (@)l dp (w) < o0

In this case we further define 1 (C) = [, C (w)du (w) to be the unique element

B (X) such that

u(C)mz/ﬂC(w)xdu(w) forallz € X.

It is easy to verify that this integral again has all of the usual properties of
integral. In particular,

[l (C x||</ 1C (W) 2| dp (w /IIC )Hlzl s (w) = (ICT]y (||

from which it follows that [[u (C)][,, < [|C]]; -
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Theorem 1.40. Suppose that (fZ,V) is another measure space and D €
L' (fi: B(X)). Then

p(C)v (D) =pov(CoD)
where @ v is product measure and
C®D(w,w):=Cw)D ).

Proof. Let 7y : 2 x 2 — 2 and 7 : 2 x 2 — 2 be the natural projection
maps. Since C ® D = [C o m][D o], we conclude from Corollary [1.38] that
C ® D is measurable on the product space. We further have

/ C® D (w,@)l,, dyt () dv (@)
2%
— / € (@) D @), dyt () dv (@)
N2x 0
</ 1€ @)l 1D @), di () dv (&)
.O><_Q
/||c e /||D Mo, dv (@) < o0

and therefore p ® v (C ® D) is well defined.
Now suppose that z € X and let u, be simple function in L' (fZ, 1/) such

that limp o0 lun — D () 2l 11, = 0. If uy = 224;0 arla, with {Ak}i\i"l being
disjoint subsets of 2 and aj, € X, then

M,
w) = ZlAk (@) C (w) ag
k=0

After another approximation argument for w — C (w) aj, we find,

M,

| @ @dnen@s) =Y r 4 [ € adiw)

§2 k=0

My,
=Y v (A p(C)ay
k=0

M,
= ()Y v (A ar = 1 (C) v (un)
k=0
(1.21)
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Since,
/ NC W) un (@) = C(w) D (@) x| d[p®v](w,@)
< / 1C (@)l llun (@) = D (@) x| dp (w) dv (@)
%0

= C|l; - [Jun — D(~)x||L1(V) — 0 asn — oo,

we may pass to the limit in Eq. (1.21]) in order to find

M@I/(C’@D)x:/Q ﬁC(w)D(@)xd[u@u](w,(D)

=umy@Dwmmwm=u«nme.

As x € X was arbitrary the proof is complete. [

Exercise 1.5. Suppose that U is an open subset of Ror Cand F': U x 2 — X
is a measurable function such that;

1.U 3 z — F (z,w) is (complex) differentiable for all w € 2.
2. F(z,-)€ L' (u: X) for all z € U.
3. There exists G € L' (i : R) such that

<G (w) for all (z,w) e U x £2.

OF (z,w)
0z

Show
UBZ—)/ F(z,w)du(w) e X
2

is differentiable and
d F(
£AF(zwdu /3 % W) w(w) .

1.5 Weak integrals for Hilbert Spaces

This section may be read independently of the previous material of this chapter.
Although you should still learn about the fundamental theorem of calculus in
Section 77 above at least for Hilbert space valued functions.

In this section, let F be either R or C, H be a separable Hilbert space over
F, and (X, M, ) and (Y, N, v) be two o — finite measures spaces.
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1.5 Weak integrals for Hilbert Spaces 13

Definition 1.41. A function v : X — H is said to be weakly measurable if
X >z — (h,¢(z)) €F is M — measurable for all h € H.

Notice that if ¢ is weakly measurable, then |4 (-)|| is measurable as well.
Indeed, if D is a countable dense subset of H \ {0}, then

. )]

1= 5 =

Definition 1.42. A function ¢ : X — H is weakly-integrable if i is weakly
measurable and

[l = [ 1 @)l din(e) <o
We let L' (X, : H) denote the space of weakly integrable functions.

For ¢ € L' (X,pu: H), let

mwwaéww@mwm

and notice that fy, € H* with

foml < [ 1ih

Thus by the Riesz theorem, there exists a unique element 1) € H such that

x))| dp () <||hHH/||¢ )|l g dpe () = ¢l - 1ol -

(h,¥) = fy (h) = /X (h, 9 (z)) du (z) for all h € H.

We will denote this element, v, as

*=Awwwm

Theorem 1.43. There is a unique linear map,

LX) 30 [ b(@)du() € B,
X

<h,/X1/J(x)d,u(x)>_/X<h,w(x)>du(x) for all h € H.

Moreover this map satisfies;

such that
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14 1 Vector Valued Integration Theory

H [ v@adut)

2.If Be L(H,K) is a bounded linear operator from H to K, then

B/¢ )du (z /sz )dp (x

3. If {en},—, is any orthonormal basis for H, then

/wa)du(x):i[/X<w<x>,en>du<x>]e

Proof. We take each item in turn.

SNl gy -
H

1. We have

H | v@adut)

= sup
H r]=1

(n [ v@au)

/X (o (2)) dps ()] < ]

= sup
lIhll=1

- fomornr) an
/Bw() ) dpe =</

and this suffices to verify item 2.

3. Lastly,
a5 ([ oermin )

n=

S [ [ e ean] e

n—=

2. If k € K, then

(o o

=

=

Definition 1.44. A function C : (X, M,u) — B(H) is said to be a weakly
measurable operator if © — (C (x) v,w) € C is measurable for all v,w € H.

Page: 14 job: 241Functional_2020s

Again if C' is weakly measurable, then

g C@RE)

Xsz—||C -
72 10 @My = b R

op

is measurable as well.

Definition 1.45. A function C : X — B (H) is weakly-integrable if C is
weakly measurable and

Il = [ 1€ @ldu@) < o0
We let L' (X,u: B(H)) denote the space of weakly integrable B (H)-valued

functions.

Theorem 1.46. If C € L' (u: B(H)), then there exists a unique C € B (H)
such that

Cv= /X [C (x)v]du(z) for allve H (1.22)
and ||C|| < [IC]|; -

Proof. By very definition, X 3 z — C (z)v € H is weakly measurable for
each v € H and moreover

| le@oldna

Therefore the integral in Eq. (1.22)) is well defined. By the linearity of the weak
integral on H — valued functions one easily checks that C' : H — H defined by

Eq. (1.22)) is linear and moreover by Eq. (1.23)) we have

coll < [ 10 @vlaut) <l o]

)< [ IC@Heldat@ = Il el <. (123

which implies ||C|| < [|C]]; - |

Notation 1.47 (Weak Integrals) We denote the C in Theorem by ei-
ther 1 (C) or [ C(x)dp(x).

Theorem 1.48. Let C € L' (u: B(H)). The weak integral, u(C), has the
following properties;

L Alp (O)l,p = M€l -
2. For all v,w € H,

(1(C) vy ) = </Xc<x>du<x>v,w> - [ C@vwdna.
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51O = ()i
[ e - [/Xo<x>du<x>r.

4. If {e;};2, is an orthonormal basis for H, then

oo

p(Co=>" (/X (C(x)v,e;)dp (x)) e; VveH. (1.24)

i=1
5 IfDe L' (v:B(H)), then
pw(Cyv(D)=pov(C®D) (1.25)

where u®v is the product measure on X xY and C®D € L' (u®@v : B (H))
is the operator defined by

C®D(z,y)=C(x)D(y) VeeX andy €Y.
6. Forv,w € H,

(1 (C)v,v(D)w) = /X . dp () dv (y) (C (x) v, D (y) w) -

Proof. We leave the verifications of items 1., 2., and 4. to the reader.
Item 3. For v,w € H we have,

(1(©) vw) =Ta(CT ] = [ (C@)w,v)duo)

X

~ [ C@wadute) = [ 0.€ @) whdu(a)

X
= [ (€ @vwduta) = (€ v,).
Item 5. First observe that for v,w € H,
(C®D(z,y)v,w) = (C(x) D (y) v,w) = Z (D (y) v, e:) (C (x) ei,w) (1.26)

i=1

where {e;};~, is an orthonormal basis for H. From this relation it follows that
C ® D is still weakly measurable. Since

[ Ic® D@l dute) v )
XxY
[ @D W,y dn @) v )
XXY

=< /X y 1C (@) llop 1D W)l At () dv (y) = (ICll L1 1) 1Dl 1y < 00,
X
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wesee C®D € L' (u®@v: B(H)) and hence up® v (C ® D) is well defined. So
it only remains to verify the identity in Eq. (1.25)). However, making use of Eq.

(1.26) and the estimates,

=1
SJ Y UD(y)v,en)* Y 1C (x) esw)]?

() ol [|C (@) w]]
1D (W)llop 1€ (@)l 0]l 0]l
= 1D W)llop 1€ @)l 0] o]l

IN

it follows that g € L' (1 ® v) . Using this observations we may easily justify the
following computation,

(n@v(C®D)v,w) =/ dp () dv (y) (C (x) D (y) v, w)

XXY
= [ v ) 3 (D ) vne) (€ (a) e
XY i=1

= Z /X . dp (z)dv (y) (D (y) v, e;) (C (x) e;, w)

=3 w(D)v,ei) (4 () i) = OV (D) v, ).
Item 6. By the definition of u (C) and v (D),
(u(C)v,v(D)w) = / dp (z) (C () v,v (D) w)
X

:/Xdu(x)/ydz/(y) (C(x)v, D (y)w).
]

Exercise 1.6. Let us continue to use the notation in Theorem If B €
B(H) is a linear operator such that [C (z),B] = 0 for y — a.e. x, show
(1 (C), B] = 0.
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Part 11

Basics of Banach and C*-Algebras






In this part, we will only begin to scratch the surface on the topic of Banach
algebras. For an encyclopedic view of the subject, the reader is referred to
Palmer [27,[28].For general Banach and C*-algebra stuff have a look at [26,/53].
Also see the lecture notes in . Putnam’s file looked quite good. For a very
detailed statements see [9, See bottom of p. 45]






2

Banach Algebras and Linear ODE

2.1 Basic Definitions, Examples, and Properties

Definition 2.1. An associative algebra over a field is a vector space over with
a bilinear, associative multiplication: i.e.,

(ab)e = a(be)
a(b+c) =ab+ ac
(a+b)e=ac+ bc

a(Ae) = (Aa)c = Mac).

As usual, from now on we assume that F is either R or C. Later in this
chapter we will restrict to the complex case.

Definition 2.2. A Banach Algebra, A, is an F — Banach space which is an
associative algebra over F satisfying,

labll < fla]l [l ¥ a,b€ A.

[It is typically the case that if A has a unit element, 1, then ||1|| = 1. I will bake
this into the definition!]

Exercise 2.1 (The unital correction). Let A be a Banach algebra with a
unit, 1, with 1 # 0. Suppose that we do not assume ||1]| = 1. Show;

1)1 > 1.
2. For a € A, let L, € B(A) be left multiplication by a, i.e. Loz = az for all
x € A. Now define

lal = [|Lall g4y = sup {[laz| : v € A with [lz]| = 1}.

Show )
Lall < Jal < lal for all a € A,
c

|1] =1 and (A, |-|) is again a Banach algebra.

Examples 2.3 Here are some examples of Banach algebras. The first example
is the prototype for the definition.

1. Suppose that X is a Banach space, B (X) denote the collection of bounded
operators on X. Then B(X) is a Banach algebra in operator norm with
identity. B (X) is not commutative if dim X > 1.

2. Let X be a topological space, BC' (X, F) be the bounded F-valued, continuous
functions on X, with ||f|| = sup,ex |f ()| BC(X,F) is a commutative
Banach algebra under pointwise multiplication. The constant function 1 is
an identity element.

3. If we assume that X is a locally compact Hausdorff space, then Cqy (X,F) -
the space of continuous F — valued functions on X wvanishing at infinity is
a Banach sub-algebra of BC (X,F). If X is non-compact, then BC (X,TF)
is a Banach algebra without unit.

4. If (22, F,p) is a measure space then L™ (p) := L™ (2, F,u: C) is a com-
mutative complex Banach algebra with identity. In this case || f|| = || f|| Lo,
is the essential supremum of |f| defined by

[fllpoe(y = E{M >0 [f| < M p-a.e}.

5. A= LYRY) with multiplication being convolution is a commutative Banach
algebra without identity.

6. If A = (1(Z) with multiplication given by convolution is a commutative
Banach algebra with identity which is this case is the function

_Jlifn=0
%o (n) := {0 ifn#0
This example is generalized and expanded on in the next proposition.
Proposition 2.4 (Group Algebra). Let G be a discrete group (i.e. finite or
countable), A := (' (G), and for g € G let §, € A be defined by
_Jlife=g
dg (x) := {O ifrtg

Then there exists a unique multiplication () on A which makes A into a Banach
algebra with unit such that 64 ® 0, = 041, for all g,k € G which is given by

(u®v) (z) = Zu(g)v(g_lx) = Zu(wk_l)v(l@). (2.1)
geG keG

[The unit in A is 6. where e is the identity element of G.]
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Proof. If u,v € ! (G) then

u= Zu(g)ég and v = Zv(k)Sk

geG keG

where the above sums are convergent in A. As we are requiring (®) to be
continuous we must have

uev=3 u(g)v(k)d8 =3 ulg)v(k) .
9,k€G 9,k€G

1

Making the change of variables z = gk, i.e. ¢ = k~! or k = g~ ' then shows,

UV = Z u(g)v (97 'z) 6, = Z u (zk™") v (k) b,

9,2€G k,xeG

This leads us to define u ® v as in Eq. (2.1). Notice that

S5 Ju (k™) o (B)] = [full, o]l

z€G keG

which shows that u® v is well defined and satisfies, ||u ® v||; < [Jul|, [|v||; . The
reader may now verify that (A, ®) is a Banach algebra. ]

Remark 2.5. By construction, we have d; ® 0 = dg5 and so (A, ®) is commu-
tative iff G is commutative. Moreover for k € G and u € ¢! (G) we have,

0, ®u= Z u(g) Okg = Z U (kj_lg) 0g=u (k—l ())
geG geG

and

U® 0 = Zu(g) dgie = Zu(gk‘l) Sg=u(()k").

geG geG

In particular it follows that . ® u = u = u ® . where e € G is the identity
element.

Proposition 2.6. Let A be a (complex) Banach algebra without identity. Let
B={(a,a):a€e A,acC} =AaC.

Define
(a,a)(b, B) = (ab+ ab+ Ba, af)

and
[(a, )| = [lall + [af. (2:2)

Then B is a Banach algebra with identity e = (0,1), and the map a — (a,0) is
an isometric isomorphism onto a closed two sided ideal in B.
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Proof. Straightforward. [

Remark 2.7. If A is a C*-algebra as in Definition below it is better to
defined the norm on B by

|(a,@)|| = sup{||ab+ ab| : b € A with [|b]| < 1} (2.3)

rather than Eq. . The above definition is motivated by the fact that a €
A — L, € B(A) is an isometry, where L,b = ab for all a,b € A. Indeed,
[Labll = [ladl| < [[a]| [[b] with equality when b = a* so that ||La|l g4y = [lall-
The definition in Eq. has been crafted so that

(@, )|l = [ Lo + el g 4)

which shows ||(a, )| is a norm and a € A < (a,0) € B — B(A) are all
isometric embeddings.
The advantage of this choice of norm is that B is still a C*-algebra. Indeed

lab + ab||* = || (ab+ ab)” (ab + ab) || = || (b*a* + ab*) (ab + ab) ||
= ||b*a*ab + ab*ab + ab*a*b + |of* b*b||
< [6°[1l (a*a + Ga + aa”) b+ |af* Bl
and so taking the sup of this expression over ||b|| < 1 implies
Il < || (a*a+ da+ aa*,Jaf) | = (@, 0)* (@,0) | < lI(a,0)" | (0, )]
(2.4)
Eq. (2.4) implies ||(a, )] < ||(a,@)*|| and by symmetry ||(a,a)*| < ||(a, )] .
Thus the inequalities in Bq. (2.4) are equalities and this shows ||(a,)|> =

(@, @)*(a, )| . Moreover A is still embedded in B isometrically. because for

a€ A,

lall =

a IIaaIH < sup{[lab] : b € A with [|b]| <1} < |all

which combined with Eq. (2.3)) implies ||(a,0)|| = ||a]| -

Definition 2.8. Let A be a Banach algebra with identity, 1. If a € A, then a is
right (left) invertible if there exists b € A such that ab =1 (ba = 1) in which
case we call b a right (left) inverse of a. The element a is called invertible
if it has both a left and a right inverse.

Note if ab = 1 and ca = 1, then ¢ = cab = b. Therefore if a has left and right
inverses then they are equal and such inverses are unique. When a is invertible,
we will write a=! for the unique left and right inverse of a. The next lemma
shows that notion of inverse given here is consistent with the notion of algebraic
inverses when A = B (X) for some Banach space X.
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Lemma 2.9 (Inverse Mapping Theorem). If X, Y are Banach spaces and
T € L(X,Y) is invertible (i.e. a bijective linear transformation) then the in-
verse map, T, is bounded, i.c. T~' € B (Y, X). (Note that T~ is automati-
cally linear.) In other words algebraic invertibility implies topological invertibil-
ity.

Proof. If T is surjective, we know by the open mapping theorem that T'
is an open mapping and form this it follows that the algebraic inverse of T is
continuous. [ |

Corollary 2.10 (Closed ranges). Let X and Y be Banach spaces and T €
L(X,Y). Then Nul(T') = {0} and Ran (T) is closed in Y iff

¢:= inf |Tz|, >0. (2.5)
llzll =1

Proof. If Nul (T') = {0} and Ran (T') is closed then T thought of an operator
in B (X,Ran (7)) is an invertible map with inverse denoted by S : Ran (T") —
X. Since Ran (T) is a closed subspace of a Banach space it is itself a Banach
space and so by Corollary we know that S is a bounded operator, i.e.

15yllx < IS1lo, - lylly ¥y € Ran(T).
Taking y = T'x in the above inequality shows,

12l x < 11Sllop - I Tzlly ¥ 2 € X

. -1
from which we learn € = ||S]|,, > 0.
Conversely if € > 0 (¢ as in Eq. (2.5))), then by scaling, it follows that

ITally > ezl ¥ € X.
This last inequality clearly implies Nul (T) = {0} . Moreover if {z,} C X is a
sequence such that y := lim,_,, Tx, exists in Y, then
1 1
[z — 2wl < - 1T (0 — 2m)ly = - [Tan —Tom|y

1
—>g||y—y||Y:0asm,n—>oo.

Therefore = := lim,_,~ , exists in X and y = lim,_,., T, = Tz which shows
Ran (7)) is closed. |

Ezample 2.11. Let X = (1 (Ng) and T : X — C([0,1]) be defined by
Ta = Y2 anz™ Now let Y := Ran(T) so that T : X — Y is bi-
jective. The inverse map is again not bounded. For example consider a =
(1,-1,1,—1,...,£1,0,0,0,...) so that
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n n+1 n 1
r ()" =1 14 (=1)"2"t
Ta=) (2" = —z—-1 1+ '

We then have ||Ta||, < 2 while |la| y =n+1. Thus HT‘1||OP = 0o. This shows
that range space in the open mapping theorem must be complete as well.

The next elementary proposition shows how to use geometric series in order
to construct inverses.

Proposition 2.12. Let A be a Banach algebra with identity and a € A. If
Yoot lla™|| < oo then 1 — a is invertible and

[ —a)7H < > lla”] -
n=0

In particular, if ||la|| < 1, then 1 — a is invertible and

1
1—lall’

I —a)7} <

Proof. Let b = >, a™ which, by assumption, is absolutely convergent
and so satisfies, ||b]| < 07 [la™|| . It is easy to verify that (1—a)b = b(1—a) =
1 which implies (1 —a)”" = b which proves the first assertion. Then second
assertion now follows from the first and the simple estimates, ||a™|| < ||a]|", and
geometric series identity, Y o [la||" =1/ (1 — [|a]|). [

Notation 2.13 Let A;,, denote the invertible elements for A and by con-
vention we write A instead of Al.

Remark 2.14. The invertible elements, A;,,, form a multiplicative system, i.e.
if a,b € A, then ab € A;p,. As usual we have (ab)f1 =b"la7! as is easily
verified.

Corollary 2.15. If x € A;n, and h € A satisfy H:v_th <1, showx+h € Ajny

and
1

— [z Al
In particular this shows A, of invertible is an open subset of A. We further
have

|@+ w7 < a1l (2.6)

oo
(x4 h)~ Z *1h
=0
=o'~z hat et he T ha T —a the T ha T T ha T 4L
N
= Z _1h '+ Ry
n=0
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where

—1\N _ 1
IRN] < || @)Y [l ==y

Proof. By the assumptions and Proposition both z and 1+ x~1h are
invertible with

1
-1
270l < ==y

As (x4 h) =z (1+x'h), it follows that  + h is invertible and

(x+h)" = (1+ aflh)_1 zh

Taking norms of this equation then gives the estimate in Eq. (2.6]). The series
expansion now follows from the previous equation and the geometric series rep-
resentation in Proposition Lastly the remainder estimate is easily obtained
as follows;

Ry =Y (~a'n)"a~t = (—a~tn)" " [f: (—mlh)n] !

n>N n=0
= (—J;*lh)N—F1 (1 + aflh)_l z !

so that
It < e o =) ™|
— N+1 _ 1
<[ b ey

(]
In the sequel the following simple identity is often useful; if b, ¢ € A;p,,, then

bl—ct=bt(c-b)ct (2.7)

This identity is the non-commutative form of adding fractions by using a com-
mon denominator. Here is a simple (redundant in light of Corollary [2.15)) ap-
plication.

Corollary 2.16. The map,Ainy > ® — 371 € Ay is continuous. [This map
s in fact C*°, see Exercise below.]

Proof. Suppose that x € A;,, and h € A is sufficiently small so that
lz='h|| < ||z=![| Ih]] < 1. Then @ + h is invertible by Corollary [2.15| and we
find the identity,

(z+h) =z =@+h) @—(z+h))ze =—(x+h) That. (2.8)
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From Eq. (2.8) and Corollary it follows that

@+ w7 =t < o ||+ 7| Al < 27— 1M g as 0.

2= Al

2.2 Calculus in Banach Algebras

Exercise 2.2. Show that the inversion map f : Aijny — Aine C A defined by
f (z) = 71 is differentiable with

[ (@) h = (Onf) (x) = =2~ tha™!
for all x € A;p, and h € A. Hint: iterate the identity
(x+h) =2 = (@+h) T ha! (2.9)

that was derived in the lecture notes. [Again this exercise is somewhat redundant
in light of light of Corollary [2.15]]

Exercise 2.3. Suppose that a € 4 and t € R (or C if A is a complex Banach
algebra). Show directly that:

1. eta =32 Lra™ is an absolutely convergent series and [[efe| < el*lllel.
2. e is differentiable in ¢ and that 4 e'® = ae'® = e'“a. [Suggestion; you could

prove this by scratch or make use of Exercise [L.2]]
Corollary 2.17. For a,b € A commute, i.e. ab = ba, then e®e® = e*t0 = ebe?.

Proof. In the proof to follows we will use e/®b = be'® for all ¢ € R. [Proof is
left to the reader.] Let f (t) := e~ **e!(?) then by the product rule,

f(t) — _e—taaet(a+b)+e—ta (a + b) et(a—i—b) _ e—tabet(a—i-b) _ be—taet(a—i-b) _ bf (t) )

Therefore, 4 [e=*f (t)] = 0 and hence e ® f (t) = e~%f (0) = 1. Altogether
we have shown,

e—tbe—taet(a-i-b) _ e—tbf (t) = 1.
Taking ¢ = +1 and b = 0 in this identity shows e™%e® = 1 = e%™¢, i.e.
(e“)_1 = e~ %. Knowing this fact it then follows from the previously displayed

equation that e!(?t?) = etae!® which at t = 1 gives, e%e® = e, Interchanging
the roles of a and b then completes the proof. [
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Corollary 2.18. Suppose that A € A, then the solution to

§(t) = Ay (t) withy(0) =1

is given by y (t) = e where
tA " n
=Y A, (2.10)
n=0
Moreover,
(94 — otAesA for gl 5.t € R. (2.11)

We also have the following converse to this corollary whose proof is outlined
in Exercise [2.16] below.

Theorem 2.19. Suppose that Ty € A for t > 0 satisfies

1. (Semi-group property.) To =1 € A and TyTs = Ty4s for all s,t > 0.
2. (Norm Continuity) t — Ty is continuous at 0, i.e. || Ty —I|| 4, — 0 ast | 0.

Then there exists A € A such that T, = et4 where et is defined in Eq.
12.10).

Exercise 2.4. Let a,b € A and f (t) := et — ¢teet® and then show
f(0) = ab — ba.

[Therefore if e!(¢10) = ete?® for ¢ near 0, then ab = ba.]

Exercise 2.5. If Ay is a unital commutative Banach algebra, show exp (a) = e*

is a differentiable function with differential,
exp’ (a) b= eb = be”.

Exercise 2.6. If t — c(t) € A is a C'-function such that [c(s),c(t)] = 0 for

all s,t € R, then show

9 ge®) — ¢ (1) eot®).

dt
Notation 2.20 Fora € A, let ad, € B (A) be defined by ad, b = ab — ba.

Notice that
lada bl < 2all [|b]] Vb€ A

and hence |ladg||, < 2]a|l -

op —
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Proposition 2.21. If a,b € A, then

ebe™ = i ad”

ada js computed by working in the Banach algebra, B (A) .

where e
Proof. Let f(t) := e!®be™t®, then
f(t) = aet®be ™ — e'®be'q = ad, f (t) with f(0) =
Thus it follows that

D[ f ()] =0 = e ™o f (1) = 0% f (0) =,

From this we conclude,
etbe™ = f(t) = e'*a (b).
]
Corollary 2.22. Let a,b € A and suppose that [a,b] :== ab — ba commutes with

both a and b. Then

1
€a€b — €a+b+ 5 [a,b] )

Proof. Let u (t) := e*®e'® and then compute,
u(t) = aet®et? & etopett = getoeth 4 ptape—tagtath

= [a+ e ()] u(t) =c(t)u(t) withu(0)=1, (2.12)

where
c(t) = a + et2de (b)y=a+b+t[a,b

because
ad2 b = [a, [a,b]] = 0 by assumption.

Furthermore, our assumptions imply for all s,z € R that

[c(t),c(s))]=[a+b+t[a,b],a+ b+ s]a,b]]
= [t]a,b],a+ b+ s[a,b]] = st][a,b],]a,b]] =0.

Therefore the solution to Eq. (2.12) is given by
u(t) = ef e(r)dr _ et(a+b)+%t2[a,b].

Taking t = 1 complete the proof. ]
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Remark 2.23 (Baker-Campbell-Dynkin-Hausdorff formula). In general the
Baker-Campbell-Dynkin-Hausdorff formula states there is a function
I’ (a,b) € A defined for ||al| 4 + ||b]| 4 sufficiently small such that

6aeb _ 61—'(0,,b)

where

1 1
I'(a,b)=a+b+ §[a,b]+ﬁ(adib+ad§a)+...

where all of the higher order terms are linear combinations of terms of the form
ady, ...ady, xo with z; € {a,b} for 0 <i <n and n > 3.

Exercise 2.7. Suppose that a(s,t) € A is a C*-function (s,t) near (so,to) €
R?, show (s,t) — e?(5%) € A is still C2. Hints:

1. Let f,, (s,t) := a(snif)n and then verify

; 1 —1.
ful|| < 1) lal™™ llall,
1 n—1
152l < ;'
r 1 n—2 .2 1 n—1 ..
n|| < v TR
ol < gy el 1l + gl
; 1 n—2 . 1 n—1.
Il < m—2) llall™™= flall fla"]| + =1 llall™ " [la"]]
1 2 2 1 —1
1" < n / n 1
1201 gy el 117 + g el )

where f :=8f/0t and f = %.
2. Use the above estimates along with repeated applications of Exercise[I.2]in
order to conclude that f (s,t) = e**% is C? near (s, o).

Theorem 2.24 (Differential of e*). For any a,b € A,
d 1
pe® 1= —[oe T = e“/ et hetadt.
dS 0

Proof. The function, u (s, ) := e(@+5%) is C? by Exercise and therefore
we find,

s (0,6) = 1ot (5,6) = -fo [(a+ ) u s, )

= bu (s,t) + aus (0,t) with us(0,0) = 0.

To solve this equation we consider,
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4
dt

which upon integration,

[e " u, (0,1)] = e "bu (0,t) = e **be*

1
e [0pe?] = e %us (0,1) = / e betedt
0

and hence L
Ope® = ea/ e~ petadt.
0

Corollary 2.25. The map a — e® is differentiable. More precisely,
et = e — apet|| = 0 (o).
Proof. From Theorem

1
ieaJrsb _ i|06a+8b+5b _ ea+sb/ eft(a+sb)bet(a+sb)dt

ds de 0

and therefore,
1 1 1
ettt et _ Gpet = / dse‘”“/ dte—tatsb)petlatsh) ea/ e~ tapeteqt
0 0 0
1 1
_ / ds/ dt {6(14)(a+sb)bet(a+sb) B e(lft)abeta}
0 0

and so

1 1
Hea+b e — abeaH < / dS/ dt "6(17t)(a+5b)b€t(a+5b) _ 6(17t)ab€ta
0 0

To estimate right side, let

g (S,t) — e(l—t)(a+sb)bet(a+sb) _ e(l—t)abeta.

Then by Theorem [2.24]
d — a-—r+s a-—r+s
g (s,8)] = Hds {6(1 t)(a+sb)p t(at b)} H <C ||b||2

and since ¢ (0,t) = 0, we conclude that ||g (s, )| < C||b]|*. Hence it follows
that
et — e — e = 0 (1))
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2.3 General Linear ODE in A

There is a bit of change of notation in this section as we use both capital
and lower case letters for possible elements of A. Let us now work with more
general linear differential equations on A where again A is a Banach algebra
with identity. Further let J = (a,b) C R be an open interval. Further suppose
that h,A € C(J,A), s € J, and z € A are give then we wish to solve the
ordinary differential equation,

yt)=A{)y(t)+h(t) with y(s) =z € A, (2.13)

for a function, y € C* (J,.A) . This equation may be written in its equivalent (as
the reader should verify) integral form, namely we are looking for y € C (J,.A)
such that

/A d7+x+/:h()d7. (2.14)

Notation 2.26 For ¢ € C(J,A), let |||, := maxies|l¢(t)] € [0,00]. We
further let
BC(J,A) :=={p € C(J,A): llgll < oo}

denote the bounded functions in C (J,A) .

The reader should verify that BC' (J, A) with ||-||  is again a Banach algebra.
If we let

(Auy) (1) = (A2y) (1) = / A(r)y (7) dr and (2.15)
o (t) ::x+/ h(7)dr

then these equations may be written as
y=Ay+o = T—-A)y=¢.

Thus we see these equations will have a unique solution provided (Z — Ag)~
is invertible. To simplify the exposition without real loss of generality we are
going to now assume

IA]l, = /] 1A (7)]| dr < oo. (2.16)

The point of this assumption if A is defined as in Eq. (2.15), then for y €
BC (J,A) and t € J,
[ 1a@ian
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Wl < [ 1A drlyl.
(2.17)

ol <| [ 14yl ir] <
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This inequality then immediately implies A5 : BC (J, A) — BC(J, A) is a
bounded operator with || 4s]|,, < [|A[;. In fact we will see below in Corollary
[2:29) that more generally we have

148 llop < — (l4]l)"

which is the key to showing (Z — A,)~" is invertible.

Lemma 2.27. For alln € N,

An / dTn/ dTp_1- / dTlA(Tn)...A(Tl)(p(Tl).
Proof. The proof is by induction with the induction step being,
(AFhe) (1) = (A7 Asp) (1)

_ /d / " e / Y dnA(m) . A(n) (Ae) (1)

t Tn T2 T1

= / dTn/ drp_1--- drA(m,)... A (7'1)/ A (10) ¢ (10) d7o
St ST,L T °

= / dTn/ dTn_1~~~/ droA (1) ... A(11) A (70) ¢ (10) -

Lemma 2.28. Suppose that 1) € C (J,R), then

/:dTn/ST"dTn1.,,/ST2d71¢(Tn)...¢ 71)271!(/:1,&(7)%)”. (2.18)

Proof. The proof Wlll go by induction on n with n = 1 assertion obviously
being true. Now let ¥ (¢ f ¢ (1) dr so that the right side of Eq. l) is

@ (t)" /n! and ¥ (t) = w( ) . We now complete the induction step;

/: dr, / - / " (1) 16 (7o)
_ /dmm ()] n'/c” o

= T O = e o
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28 2 Banach Algebras and Linear ODE
Corollary 2.29. For alln € N,

" 1 n_ 1 "
1421, < 2 1417 = | [ 14 ar]
and therefore (T — As) is invertible with
|@—a07 <expliaf) =ex ( J1ami dr) :

Proof. This follows by the simple estimate along with Lemma [2.27 that for
any t € J,

1(A5e) (D < dTn/ 7y / dry [[A(7n) ... (7'1)@(7'1)”‘

dr [ [Can ||A<rn>...A<n>|] ol

el < ([ 1a@lar) 1o

Taking the supremum over ¢t € J then shows

450l < 3 ([ 1a@Nar) el

which completes the proof. ]

)| dr

Theorem 2.30. For all ¢ € BC (J, A), there exists a unique solution, y €
BC (J,A), toy = Asy + ¢ which is given by

y(t) = (@-1)7"¢) )
t)+iLthn/sTndTn_1~-~/ST2d71A(Tn)...A(Tl)ga(ﬁ).

Notation 2.31 For s,t € J, let uf (t,s) =1 and for n € N let

t Tn T2
= / dTn/ dTn_1~'~/ drA(ry) ... A(m). (2.19)

Definition 2.32 (Fundamental Solutions). For s,t € J, let

A@ﬁyz(a Ay) ) }:u (t, s) (2.20)

ﬂ+ilmlumpxdﬂm%Aw.(mU
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Equivalently u? (t,s) is the unique solution to the ODE,

L
"

(t,s) = A(t)u® (t,s) with u?(s,s) = 1.
Proposition 2.33 (Group Property). For all s,0,t € J we have
At,s)ul (s,0) =ut (t,0). (2.22)
Proof. Both sides of Eq. satisfy the same ODE, namely the ODE
J(t) = Ay (1) with y(s) = v (s,0).
The uniqueness of such solutions completes the proof. [

Lemma 2.34 (A Fubini Result). Let s,t € J,n € N and f (7,...,71,70) be
a continuous function with values in A, then

/dTn/ dTp—1- / dTl/ drof (Tn, -, 71,70)
/dTo/ dTn/ dr_1- / dri f (T, ..., 11, 70) -

Proof. We simply use Fubini’s theorem to change the order of integration
while referring to Figure (2.1)) in order to work out the correct limits of inte-
gration. [ |

Fig. 2.1. This figures shows how to find the new limits of integration when ¢ > s and
t < s respectively.

Lemma 2.35. If n € Ny and s,t € J, then in general,

t
(AZ'HQD) (t) = / u;;‘ (t,o) A(o) ¢ (o) do. (2.23)
and if H (t) := [ h(7)dr, then
t
(ATH) (t) = / u’t (t,0) h (o) do. (2.24)
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Proof. Using Lemma [2.34] shows,

(A1) (t):/s dTn.../Szdﬁ/s 1dTOA(Tn)...A(ﬁ)A(To)c/?(To)

:/: i {/T: . /Tom dTnl_../T:2 dTlA(Tn)...A(Tl):| A (10) ¢ (10)

- / ul (t,0) [A (o) ¢ (0)] do

Similarly,

(A:}H)():/tdm / dﬁ/ droA (1) ... A(m / h (10) dmo
/d’TO [/ d’Tn/ drp_1- /ZdTlA(Tn)...A(Tl):| h (19)

:/S WA (£ 0) h (o) do.

Proposition 2.36 (Dual Equation). The fundamental solution, u? also sat-
isfies

t
u? (t,s) = 1+/ u? (t,0) A (o) do (2.25)
which is equivalent to solving the ODE,
j u (t,5) = —u? (t,5) A(s) with u” (t,t) = 1. (2.26)
s
Proof. Summing Eq. (2.23) on n shows,
[e'e) 0 t
S ) 0= [ ut o) Ao (o) do
n=0 n=0""%

:/ Zu;?(t,o)A(a)go(a)dU
S n=0
:/ u? (t,0) A(0) ¢ (o) do

and hence

(=207 0) ) =+ Y (A29) (1)
n=0

= (t)+ / u? (t,0) A (o) p (o) do (2.27)
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which specializes to Eq. when ¢ (t) = 1.Differentiating Eq. on s
then gives Eq. . Another proof of Eq. (2.26)) may be given using Propo-
sition to conclude that w(t,s) = w(s,t)”" and then differentiating this
equation shows

d d -1 1 (d -1
gu(t,s) = U (s,t)” = —u(s,t) (dsu (s,t)) u(s,t)

—u(s,t) P A u(s, ) u(s,t) = —u(s, ) A(s).
]

Theorem 2.37 (Duhamel’s principle). The unique solution to Eq. 18
y(t) = uA (£ 5) 2+ / " (o) h (o) do (2.28)
s
Proof. First Proof. Let
w(t)=x+ H (t) with H (t) :/th(T)dT.

Then we know that the unique solution to Eq. (2.13) is given by

y=(T- AS)71 p=(T- AS)71 r+ (T - /15)71
s)x+ ZAZH,
n=0

where by summing Eq. ,
(-a)"m) - Z
= / Zu (t,0)

and the proof is complete.

Second Proof. We need only verify that y defined by Eq. satisfies
Eq. . The main point is that the chain rule, FTC, and differentiation past
the integral implies

Z/;ﬁ} (o) do

o)do = / A(t,0)h(o)do (2.29)
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30 2 Banach Algebras and Linear ODE
d t

a A
o Su (t,o)h(o)do

d t+e d t
:%b/ uA(t7a)h(J)dJ+%\o/ u (t+¢,0)h(0)do

=ut (t,t) h(t) —I—/ %UA (t,o0) h(o)do
h(t)Jr/tA(t)uA(t,a)h(a)da

— b +A(t)/ WA (£ o) h (o) do.

Thus it follows that
g (t) = A(t)ut (t,s)erA(t)/ u? (t,0) h (o) do + h(t)
=A@)y(t)+h(t) with y(s) ==z.

|
The last main result of this section is to show that u? (t, s) is a differentiable
function of A.

Theorem 2.38. The map, A — u? (t,s) is differentiable and moreover,
t
opu’ (t,s) = / u? (t,0) B (o) u” (0, s) do. (2.30)
S

Proof. Since 9pA4 = AP and

ut (-,8) = (T - /1;4)71 1

we conclude form Exercise [2.2] that
Opu? (5) = (T— A2) " AB (T - 2271
Equation (2.30) now follows from Eq. (2.29) with & (¢) = B (¢) u” (0, s) so that

and

H(t) = /:B(o)uA (0,5)do = (Af (I—Af)’11) (t).

Remark 2.39 (Constant coefficient case). When A (t) = A is constant, then

t Tn T ‘. n
ui (t,s) = / dTn/ dTp_1-- / dr A" = #An
s S s n:
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and hence u® (t,s) = e*=9)4, In this case Egs. (2.28) (2.30) reduce to

¢
y(t) =et=4z + / =4 (5) do,

S

and for B € A,
t
opget=94 = / elt=9)Ap (o) el7=9)4 g,

Taking s = 0 in this last equation gives the familiar formula,

¢
Opett = / =B (g) e do.
0

2.4 Logarithms

Our goal in this section is to find an explicit local inverse to the exponential
function, A — e for A near zero. The existence of such an inverse can be
deduced from the inverse function theorem although we will not need this fact
here. We begin with the real variable fact that

1 1
ln(l—i-x):/ diln(l—i—sx)ds:/ z(1+sz)" " ds.
0 0

S

Definition 2.40. When A € A satisfies 1 + sA is invertible for 0 < s < 1 we
define

1
In(L+ A) = / A(1 +sA)" ds, (2.31)
0
The invertibility of 1 4+ sA for 0 < s < 1 is satisfied if;

1. A is nilpotent, i.e. AN =0 for some N € N or more generally if
2. > o IIA™]] < oo (for example assume that ||A]| < 1), of
3. if X is a Hilbert space and A* = A with A > 0.

In the first two cases

o0

(1+s4)7 =) (—s)" A"

n=0

Proposition 2.41. If 1 + sA is invertible for 0 < s <1, then
1
Opn(1+ A) = / (1+5A)""B(1+sA)" " ds. (2.32)
0
If0=[A,B] := AB — BA, Eq. reduces to

Opln(1+A)=B(1+A)"". (2.33)
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Proof. Differentiating Eq. (2.31)) shows
1
dpln(1+ A) :/ [B(1+3A)—1 —A(1+5A)""sB(1+sA)"" ds
0

= /1 [B— sA(1 +sA)*1B} (1+sA) " ds.
0

Combining this last equality with
SAQ+5sA) ' =(14+sA-1)(1+sA) '=1—(1+s4)""
gives Eq. (2.32). In case [4, B] =0,
(1+sA) " B(14+sA) ' =B(1+s4)"°

= B% [—A7 (14 s4)7]

and so by the fundamental theorem of calculus
1 s=1
Opln(1+ A) = B/ (1+sA) 2ds=B [-A*l 1+ SA)—l] i
0 5=
~-B [A‘l AT+ A)—l} — BA™! [1 1+ A)_l}
=B[AT'1+A) -AT1+A) T =BO+A)".
]

Corollary 2.42. Suppose that t — A(t) € A is a C' — function 1 + sA(t) is
invertible for 0 < s <1 forallt € J = (a,b) CR. Ifg(t):=1+A(t) and t € J,
then

d ! 1, _
T In(g(t)) = / (I-s4+sg(t)) Ly ) (1—s+sg(t)) Y ds. (2.34)
0
Moreover if [A(t),A(7)] =0 for all t,7 € J then,
d . _
Zng®) =A@ 1 +A®) ' (2.35)
Proof. Differentiating past the integral and then using Eq. (2.32)) gives

%lnw (t) = / (1+sA (1) A@) (L+sA @) ds

1
:/0 (L4s(g(t) — 1) g() (L +s(g () — 1) ds

:/0 (1—s+sg(8) " g(t)(1— 5+ s9(8) " ds.

Page: 31 job: 241Functional_2020s

2.4 Logarithms 31

For the second assertion we may use Eq. (2.33) instead Eq. (2.32) in order
to immediately arrive at Eq. (2.35]). [

Theorem 2.43. If A € A satisfies, 1 4+ sA is invertible for 0 < s < 1, then
MU+ — 14 A (2.36)

If C € A satisfies Y oy S |C™|" < 1 (for ezample assume ||C|| < In2, i.e.
ell€ll < 2), then
Ine® =C. (2.37)

This equation also holds of C' is nilpotent or if X is a Hilbert space and C = C*-
with C' > 0.

Proof. For 0 <t <1 let
1
C(t):ln(I—HA):t/ A1+ stA) " ds.
0

Since [C (), C (1)] = 0 for all 7, € [0,1], if we let g (¢) := e“®), then

d . _
g(t) = aeC“) =Ct)e’D = A1 +tA) " g(t) with g(0) = 1.
Noting that g (t) = 1 + tA solves this ordinary differential equation, it follows
by uniqueness of solutions to ODE’s that e“(Y) = g(t) = 1 + tA. Evaluating
this equation at ¢ = 1 implies Eq. (2.36)).
Now let C' € A as in the statement of the theorem and for ¢ € R set

oo

_ tC _ n
n=1
Therefore,
X in
— n
1+sA(t) = 1+SZ;HC
with

t" n
n
SSE —n!||C I"<1for0<s,t<1.

n=1

e} o
n
n=1

Because of this observation, In (') :=In (1 + A (t)) is well defined and because
[A(t),A(T)] =0 for all 7 and ¢ we may use Eq. (2.35) to learn,

d . _

- (') = A(t) (1 + A(t)) ! = Ce!®e™*C = C with In (e°C) = 0.
The unique solution to this simple ODE is In (etc) = tC' and evaluating this at
t =1 gives Eq. (2.37). |
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32 2 Banach Algebras and Linear ODE
2.5 C*-algebras

We now are going to introduce the notion of “star” structure on a complex
Banach algebra. We will be primarily motivated by the example of closed *-
sub-algebras of the bounded linear operators on (in) a Hilbert space. For the
rest of this section and essentially the rest of these notes we will assume that
B is a complex Banach algebra.

Definition 2.44. An involution on a complex Banach algebra, B, is a map
a € B— a* € B satisfying:

*

. tnvolutory  a™ =a

. additive (a4 b)* = a* +b*

. conjugate homogeneous  (A\a)* = Aa*
. anti—automorphic  (ab)* = b*a*.

Bl WO~

If * is an involution on B and 1 € B, then automatically we have 1* = 1.
Indeed, applying the involution to the identity, 1* =1 - 1* gives

1=1"=(1-1")"=1"-1"=1-1"=1"
For the rest of this section we let B be a Banach algebra with involution, *.

Definition 2.45. If a € B we say;

1. a is hermitian if a = a*.
2. a is normal if a*a = aa*, i.e. [a,a*] =0 where [a,b] := ab — ba.
3. a is unitary if a* = a~ "

Ezample 2.46. Let G be a discrete group and B = ¢! (G, C) as in Proposition
We define x on B so that §; = d,-1. In more detail if f =37 . f(g)dy,
the

=3 5@ => @) = [ (9)=7F(gD.

geG geG

Notice that
((596h)* = (5;h = 5(gh)_1 = 0p-14-1 = Op-104-1 = 5;(5;.

Using this or by direct verification one shows (f-h)* = h* - f*. The other
properties of x — are now easily verified.

Definition 2.47 (C*-condition). A Banach * algebra B is

1. x multiplicative if ||a*al|| = ||a*|| |lal|
2. x isometric if ||a*|| = ||a|
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3. % quadratic if ||a*a|| = ||a|?.
We refer to item 3. as the C*-condition.

Lemma 2.48. Conditions 1) and 2) in Definition are equivalent to con-
dition 3), i.e. * is multiplicative & isometric iff * is quadratic.

Proof. Clearly * is multiplicative & isometric implies that * is quadratic.
For the reverse implication; if ||a*a|| = ||a]|® for all a € B, then

2
lall™ < lla*[[lall = llall < fla™]-

Replacing a by a* in this inequality shows ||a|| = ||a*|| and hence Thus ||a*a| =
2 *
llall™ = llall fla”]| u

Remark 2.49. Tt is fact the case that seemingly weaker condition 1. in Definition
by itself implies condition 3 but the implication 1. = 3. is quite non-
trivial. See Theorem 16.1 on page 45 of [9]. [That this result holds under the
additional assumption that B is commutative and “symmetric” is contained in
Theorem below.] Historically condition 1. is called the C*-condition on a
norm and condition 3. is called the B* — condition on a norm, see the WikipediaEI
article for information about B*-algebras being the same as C*-algebras.

Definition 2.50. A C*-algebra is a * quadratic algebra, i.e. B is a C*-algebra
if B is a Banach algebra with involution * such that ||a*a|| = |ja||* for all a € B.

The next proposition gives the primary motivating examples of C*-algebras.

Proposition 2.51. Let H be a Hilbert space and BB be a x — closed and operator
norm-closed sub-algebra of B (H) , where A* is the adjoint of A € B(H). Then
(B, *) is a C*—algebra.

Proof. From the basic properties of the adjoint, B (H), is a %-algebra so
the main point is to verify the C*-condition, which we now do in two steps.

1. If K € H, then

Akl = sup [(A"k,h)[ = sup [(k, Ah)]

1Al =1 Il =1
< sup |kl ARl g = [[Allop 1+l -
1Al =1

From this inequality it follows that ||A*[|,, < [[A]|,, . Applying this inequal-
ity with A replaced by A* shows [[A]|,, < [|4*|,, and hence ||A*|| = [|A]
which prove that * is an isometry.

! https://en.wikipedia.org/wiki/C*-algebra
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2. Given item 1., we find the inequality,
1A Al < A" All = [|A]1>.
However we also have for any € H that
|Az||* = (A" Az,z) < | A" A ||lz]* = [|A]* < | A" AJ.

Combining the last two displayed inequalities verifies the C*-condition,

| A=Al = [l A]>.

Alternate proof. Using the Rayleigh quotient in Theorem we have
for any A € B(H),

|AI2, = sup |[Af|* = sup (Af,Af)= sup (A*Af,f) =[|A"Al,,
17l1=1 17l=1 17l=1

Remark 2.52. Irvine Segal’s original definition of C'*-algebra was in fact a *-
Closed sub-algebra of B (H) for some Hilbert space H. The letter “C ” used here
indicated that the sub-algebra was closed under the operator norm topology.
Later, the definition was abstracted to the C*-algebra definition we have given
above. It is however a (standard) fact that by the “GNS construction,” every
abstract C*-algebra may be “represented” by a “concrete” (i.e. sub-algebra of
B (H)) C*-algebra. The “GNS construction” along with appropriate choices of
states shows that in fact every abstract C*-algebra has a faithful representation
as a C*-subalgebra in the sense of Segal, see Conway |7, Theorem 5.17, p. 253].
The B*-terminology has fallen out of favour. [Incidentally, a von Neumann
algebra is a w.o.t. (or s.o.t.) closed *-subalgebra of B (H) and is often called
a W* — algebra.|] See the Appendix to this section for some examples of
embedding commutative C*-algebras into B (H).

2.5.1 Examples

Here are a few more examples of C*-algebras.

Ezample 2.53. If X is a compact Hausdorff space then B := C(X,C) with

[f1l = sup | f (x)| and f* (z) := f (z)
reX

is a C*-algebra with identity. If X is only locally compact, then B := Cy(X,C)
is a C*-algebra without identity. We will see that these are, up to isomorphism,
all of the commutative C*-algebras.
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Ezample 2.54. Let B be a C*-subalgebra of B (H) and then set

81:{(6121) :AEB}CB(H@H).

Clearly,

A0
BBA—><0A>631

is a C*-isomorphism. This example shows that B and B; are the same as abstract
C*-algebras. This example shows that the C*-algebra structure of B is not
necessarily the whole story when one cares about how B is embedded inside of
the bounded operators on a Hilbert space.

Ezample 2.55. If (£2, F, ) is a measure space then L (p) := L (2,
is a commutative complex C*-algebra with identity. Again we let f* (w)
The C*-condition is

1 £ = sup {M >0+ |f* < M ae. |
=sup {M?>0:[f| <M ae. }=|f].

Fou:C)
= f(w).

Notation 2.56 (Bounded Multiplication Operators) Given a mea-
sure space (£2,F,u) and a bounded measurable function q : 2 — C, let
M, : L*(p) — L*(u) denote the operation of multiplication by g, i.e.
M, : L? (p) — L*(p) is defined by My f = qf for all f € L* (u).

Definition 2.57 (Atoms). Let (£2,F,u) be a measure space. A set A € F
is said to be an atom of p if p(A) > 0 and p(ANB) is either p(A) or 0
for every B € F. We say A is an infinite atom if it is an atom such that
1 (A) = oo.

Theorem 2.58. Let (2, F, ) be a measure space with no infinite atoms and
B= {Mf :fe L™ (p,)} = MLN(M) (238)

which we view as a *-subalgebra of B (L2 (p)) Then B is a C*-subalgebra of
B (L?(n)) and the map,

M.
L=(u)>f -3 M;eB (2.39)
is a C*-isometric isomorphism. FExplicitly that isometry condition means,

1Ml = 1fllo for all f € L% (n). (2.40)
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34 2 Banach Algebras and Linear ODE

Proof. Given f,g € L* (1) and X\ € C, one readily shows,
Mf +Mg = Mf+g, M)\f = )\Mf, MfMg = Mfg, and M; = Mf>

ie. My : L* (u) = B (L? (1)) is a x-algebra homomorphism. Since | M;g||, =
19l < Wfllo llglly, it follows that [[Myll,, < [l with equality when
lflloo = 0. For the reverse inequality we may assume that |f[|, > 0. If
0 < k < ||flloo, then p(|f| > k) > 0 and since p has not infinite atoms
we may find A C {|f| > k} such that 0 < u(A) < oo. It then follows that

[Lall, = \/m € (0,00) and

I£1all
ITall

As this holds for all & < ||f[|,, we conclude that [[M(|,, = [|f]., and so Eq.
(2.40) has been proved.

Since B is the image of M.y, M(.y is a linear isometry, and L> () is com-
plete, it follows that B is complete and hence closed in B (L? (u)) . Thus B is a
C*-subalgebra of B (L? (1)) and the proof is done. ]

1My, >

Ezample 2.59. 1t Th,...,T,, € B(H), let A(T4,...,T,) be the smallest sub-
algebra of B (H) containing {T},...,T,}, i.e. A consists of linear combination
of words in {T1,...,T,}. With this notation, A (T1,..., T, Ty, ..., T) is the

smallest * -sub-algebra of B (H) which contains {T1,...,T,}. We let

C*(Ty,...,T,) == A(Tl,...,Tn,Tl*,...,T;)”'”“”
be the C*-algebra generated by {T1,...,T,}.
Ezample 2.60. T, ..., T, € B(H) are commuting self-adjoint operators, then
A(Ty,....,T,) ={p(T1,....,T,) :p€Clz1,...,2,) 2 p(0) =0}
is a commutative * — sub-algebra of B (H). We also have
ATy, ... 7)) ={p(Th,...,T0) :p€Clz1,...,2n]}

where if p (21,...2,) =po + ¢ (21, ... 2,) with ¢(0) =0 we let

p(Th,....Tn) =pol +q(Th,...,Ty).

For most of this chapter we will mostly interested in the commutative *-sub-
algebra, A(I,T) where T € B (H) with T* = T.
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Proposition 2.61. Let (£2,F, 1) be a measure space, B = L™ () be the C*-
algebra of essentially bounded functions, {fj};;l cB, f=(f1,-.-,fn) : 2 —
(9", and essran,, (f) be the essential range of £ (see Definition . Then
f:C (essran,, (f)) — L™ (n) defined by f (1) = o (£) for all ¢ € C (essran,, (f))
is an isometric C*-isomorphism onto C* (f,1).

Proof. Let us first show that

v ()|l = ||1/JHC(essmnu(f)) for all ¢ € C (essran,, (f)). (2.41)

It is clear that [[¢ (f)[|, < ||z/1|\c(essmnu(f)) M < ||z/1|\c(essmnu(f)) , then there

exists z €essran,, (f) so that M < |¢ (z)| and for this z, p (||f — z|| < &) > 0 for
all € > 0. By the continuity of 1 there exists ¢ > 0 so that |[¢) (w)| > M for
|lw — z|| < e and hence

p(l (E) > M) = p(f -zl <€) >0

from which it follows that || ()]l = M. As M < [[¥]¢(essran, (r)) Was arbi-
trary, it follows that |[¢ (f)| > ||1/}HC(essran“(f)) and Eq. is proved.

Let By := f(C (essran,, (f))) be the image of f which, as f is a isometric
C*-homomorphism, is a closed *-subalgebra of B. To finish the proof we must
show By = C* (f,1).

Given 1 € C (essran,, (f)), there exists pr, € Clz1,...,2n, Z1,..., Zs) such
that

lim  max . [ (z) — pn (2,2)| = 0.

n—00 z€essran,, (
Using
p(£.F) :=p(fioe s fur oo fn) € CH(£,1),
along with the isometry property in Eq. , it follows that

Hzﬂ(f)—pk (f,f)”oo: max | (z) —pi (2,2)] = 0 as k — oo,

z€essran,, (f)

which implies ¢ (f) € C* (f,1), i.e. By € C*(f,1). For the opposite inclusion
simply observe that if we let 1; (z) = 2 for i € [n], then f; = f (¢;) € By for
each i € [n]. As By is a C*-algebra we must also have that C* (f,1) C By and
the proof is complete. [

Remark 2.62. 1t is also easy to verify that

C* (f) ={¢(f) : ¢ € C (essran, (f)) > ¥ (0,...,0) =0}
and that

{tp € C (essran,, (f)) > ¢ (0,...,0) =0} = ¥ (f1,...,fn) €C*(f)

is a isomorphism of C*-algebras.” We leave the details to the reader.
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The next result is a direct corollary of Theorem and Proposition [2.61

Corollary 2.63. Let (2, F, ) be a measure space with no infinite atoms, B =

M o0y as in Theorem {fj}?zl CL™®(p),andf = (f1,...,fn): 2—C".
Then the map

C (essrany, (f)) 3¢ — My € C* (My,,..., My, ,1) C B

is an isometric isomorphism of C*-algebras.

2.5.2 Some Consequences of the C*-condition

Let us now explore some of the consequence of the C*-condition. The following
simple lemma turns out to be a very important consequence of the C*-condition
which will be used in Proposition [4.3|in order to show;

la]| = sup{|A| : A € 0 (a)} when a is normal.

Lemma 2.64. If B is a C*-algebra and b is a normal element of B, then HbQH =
[

Proof. This is easily proved as follows;

Hb2H2 C*ignd.H(bz)*bQH Normal

[GON i o B U
u

Lemma 2.65. If B is a unital C*-algebra and u € B is unitary, then |u|| = 1.

Moreover, if u,v € B are unitary, then ||uav|| = ||a|| for all a € B.
Proof. Since 1 = w*u, it follows by the C*-condition that 1 = ||1]| =
[u*u| = |jul|® from which it follows that ||ul| = 1. If @ € B, then
[uav]| < [ull llal lo]| = o] -

By replacing a by w*av* in the above inequality we also find that [ja| <
|lu*av*||. We may replace u by u* and v by v* in the last inequality in or-
der to show ||a|| < |Juav| which along with the previously displayed equation
completes the proof. [

Example 2.66. If A € Bis a C*-algebra, then using the fact that * is an isometry,
it follows that
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Thus if A* = A, we find

(eiA)* o iAT _ miA (eiA)*l’

which shows ¢4

tion.

is unitary. This result is generalized in the following proposi-

Proposition 2.67. Suppose that B is a C*-algebra with identity and t —
A (t) € B is continuous and A (t)* = —A(t) for all t € R. If u (t) is the unique
solution to

w(t)=A@)u(t) withu(0)=1 (2.42)

then u (t) is unitary.
Proof. Let u (¢, s) denote the solution to

w(tys) =A(t)u(t,s) with u(s,s) =1

so that u (t) = u (¢,0) . From Proposition it follows that u (t)™" = u (0,¢)
and from Proposition [2.36] we conclude that
d —1_ d _ _ -1 _ -1 *
%u(t) = %U(O,t) =—u(0,t) At)=—u(®t) " A@)=u(l) A@®)".
On the other hand taking the adjoint of Eq. (2.42]) shows
w* (t) =u(t)" A(t)" with u* (0) = 1.
So by uniqueness of solutions we conclude that u* (t) = u (£) . |

Theorem 2.68 (Fuglede-Putnam Theorem, see Conway, p. 278). Let B
be a C*-algebra with identity and M and N be normal elements in B and B € B
satisfy NB = BM, then N*B = BM?*. In particular, taking M = N implies
[N, B] = 0 implies [N*, B] = 0. [Note well that B is not assumed to be normal
here.]
Proof. Given w € C let
u (t) := !N BemtwM,
Then u (0) = B and
@ (t) = we'™N [NB — BM]e ™M =0

and hence u (t) = B for all t, i.e. e*N Be "M = B for all w € C.
Now for z € C let f: C —B be the analytic function,
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36 2 Banach Algebras and Linear ODE

f(Z) _ eizN*Be—izM*.

Using what we have just proved and the normality assumptionﬂ on N and M
we have for any w € C that

f (Z) — eizN*ewNBefwMefinV[* _ e[izN*quN]Bef[wMJrizM*].
We now take w = iZ to find,
f (z) _ ei[zN*+2N]Be—i[2M+zM*]
and hence by Example [2.66] and Lemma [2.65]

Hf(z)ll — ‘ ei[zN*+2N]Be—i[2M+zM*] _ ||B||

wherein we have used both, zN* 4+ ZN and zM + zM™* are Hermitian ele-
ments. By an application of Liouville’s Theorem (see Corollary [1.12)) we con-
clude f(z) = f(0) = B for all z € C, i.e.

6izN*BefizM* - B.
Differentiating this identity at z = 0 then shows N*B = BM*. ]

Corollary 2.69. Again suppose B is a unital C*-algebra, M € B is normal and
B € B is arbitrary. If [M, B] =0, then [{M,M*},B] = {0} = [{M,M*},B*].

Proof. By Theorem we know that 0 = [M*, B] and taking adjoints of

this equation then shows 0 = —[M, B*]. Finally by one more application of
Theorem it follows that [M*, B*] = 0 as well. |

Note well that under the assumption that M is normal and [M,B] = 0,
C* (M, B, I) will be commutative iff B is normal.

Definition 2.70. If B is a C*-algebra and S C B is a non-empty set, we define
C* (8) to be the smallest C*-subalgebra of B. [Please note that we require C* (S)
to be closed under A — A*\]

Corollary 2.71. Suppose that B is a unital C*-algebra with identity and T :=
{Tj};zl C B are commuting normal operators, then T UT" := {Tj,ij“}?:l
is a list of pairwise commuting operators and C* (T,1) is the norm closure
of all elements of B of the form p (T, T") where p(z1,...,2p, W1,...,Wy) 1S @
polynomial in 2n-variables. Moreover, C* (T, 1) is a commutative C*-subalgebra

of B.

A% -
2 The normality assumptions allows us to conclude elizN"+wN] _ gizN* qwN

Page: 36 job: 241Functional_2020s

Remark 2.72. For the fun of it, here are two elementary proofs of Theorem [2.68
for B = B(H) when dim H < oo.

First proof. The key point here is that H = @ieCEi” where EYf =
Nul (M — XI) and for u € EY we have for v € EX that

(M*u,v) = (u, Mv) = & (u,v)

from which it follows that (M*u,v) = 0 if o # A or if = X and u L wv.
Thus we may conclude that M*u = Au for all u € E;\VI . With this preparation,
NBu = BMu = B \u = ABu and therefore Bu € EY . Therefore it follows that

N*Bu = ABu = BA\u = BM*u.

Asu € EM was arbitrary and A € C was arbitrary it follows that N*B = BM*.
Second proof. A key point of M being normal is that for all A € C and
u € H,

1M = A)ull* = (M = A)u, (M = X)) = (u, (M = A)" (M =N u)
= (u, (M = X) (M = X)"u) = ((M = X)"u, (M = X)"u)
=@ =X

Thus if {u, };h:n;H is an orthonormal basis of eigenvectors of M with Mu; = Aju;
then M*u; = Xjuj. Thus if we apply NB = BM to u; we find,

NBUj = BMUj = /\jBU,j
and therefore as IV is normal, N*Bu; = XjBuj. Since M is normal we also have
N*BUJ' = BS\]‘UJ' = BM*UJ'.

As this holds for all j, we conclude that N*B = BM*.

2.5.3 Symmetric Condition

Definition 2.73. An involution * in a Banach algebra B with unit is symmet-
ric if 1 + a*a is invertible for all a € B.

Lemma 2.74. If H is a complex Hilbert space, then B(H), then B(H) is
symmetric. [It is in fact true that any C*-subalgebra, B, of B (H) is symmetric
but this requires more proof than we can give at this time. See Theorem
below for the missing ingredient.]
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Proof. It clearly suffices to show B (H) is symmetric, i.e. that [ + A*A is
invertible for any A € B (H). The key point is that for any h € H,

BN < [Ihl* + |AR|* = (I + A*A) h,h) < ||(I + A*A) h|| |13
and hence
(1 +A"A)h|| = [[h]|. (2.43)

This inequality clearly shows Nul (I + A*A) = {0} and that I+ A* A has closed
range, see Corollary Therefore we conclude that

Ran (I + A*A) =Ran (I + A*A) = Nul (I + A*A)" = H

and so I + A*A is algebraically invertible and hence invertible in B (H)

by Lemma In fact, because of Eq. (2.43) we have the estimate,
H(IJFA*A)‘1 <1.
op
If we have Theorem [0.4] at our disposal, then we may conclude that
(I+A*A)"" € C*(4*A,I) C C*(A,I) and with this result we may assert
that theorem holds for any C*-subalgebra, B, of B (H). ]

Example 2.75. Referring to Example with G = Z, we claim that ¢! (Z)
with convolution for multiplication is an abelian *-Banach algebra which is not
a C*-algebra. For example, let f := §y — §; — d2, then

f5f =00 —6_1—05_2) (0o — 61 — d2)
=0g— 01 — 0z + (—5_1 + &g + 51) + (—5_2 +d0_1+ 50)
=300 — 02 —0_o
and hence
IFfll=3+1+1=5<9=3=|f|*.

As a consequence of Lemma[2.74] and assuming Remark every C*-algebra
is symmetri(ﬂ and so this example implies ¢! (Z) is not a C*-algebra. See Re-
mark below for some more information about the symmetry condition on
a Banach algebra. See Exercise for more on this example.

2.5.4 Appendix: Embeddings of function C*-algebras into B (H)

The next example is a special case of the GNS construction in disguise. See
Remark for more comments and references in this direction.

3 We will explicitly prove this fact for commutative C*-algebras below in Lemma

BT}
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Example 2.76. Suppose that X is a compact Hausdorfl space, p is counting
measure on X, and H = L? (X, u) . Then

C:={M;eB(H): feC(X):=C(X,C)}C B(H)

is a C*-algebra. Indeed C is a * — algebra since, My + kMg = My g, MM, =
My, and M7 = My for all f,g € C'(X). Moreover, we have

[Mll,, = sup | f (@) = [IfI],, (2.44)
zeX

from which it follows that C is closed in B (H) in the operator norm. In this
case H may be a highly non-separable Hilbert space. However the above con-
struction also works for any measure no infinite atom measure, 1 on By, such
that supp (¢) = X. In particular p is a o-finite measure on open sets and X is
separable, then L? (X, ;1) will be separable as well.

For an explicit choice of measure, D = {x,,},-, is a countable dense subset

of X, let
W= Z Oz,

n=1

in which case supp (1) = X and take H = H = L?(X,Bx,u) in the above
construction. In this special case one directly checks Eq. (2.44) using,

[Myll,, = sup | f (x)| = sup |f (z)] = [ f[|, V feC(X).
xeD zeX

2.6 Exercises

Exercise 2.8. To each A € A, we may define L4, Rs : A — A by
LsB=AB and RyB = BA for all B € A.
Show L4, R4 € L(A) and that

1Lall e = 141y = 1Rall ) -

Exercise 2.9. Suppose that A : R — A is a continuous function and U,V :
R — A are the unique solution to the linear differential equations

V(t)=A(t)V (t) with V (0) =1 (2.45)

and .
U(t) = —U (t) A(t) with U (0) = I. (2.46)
macro: svmonob.cls date/time: 13-Feb-2020/12:28



38 2 Banach Algebras and Linear ODE

Prove that V (¢) is invertible and that V=1 (¢) = U (t), where by abuse of no-
tation T am writing V= (¢) for [V (t)]”". Hints: 1) show LBV )] =0
(which is sufficient if dim (X) < oo) and 2) show y (¢) := V (¢) U (t) solves a
linear differential ordinary differential equation that has y = I as an obvious so-
lution. (The results of Exercise[2.8 may be useful here.) Then use the uniqueness

of solutions to linear O.D.E.s

Exercise 2.10. Suppose that A € A and v € X is an eigenvector of A with
eigenvalue ), i.e. that Av = A\v. Show e!4v = e**v. Also show that if X = R”
and A is a diagonalizable n x n matrix with

A= 8SDS™! with D = diag(\1,...,\,)

then ef4 = SetP?S~1 where e'P = diag(et™, ..., et*). Here diag(Ai,...,\,)
denotes the diagonal matrix A such that A; = \; for i =1,2,...,n.

Exercise 2.11. Suppose that A, B € Alet adyB = [A, B] :== AB — BA. Show
etABe t4 = etada (B) . In particular, if [A, B] = 0 then ¢4 Be™*4 = B for all
teR.

Exercise 2.12. Suppose that A,B € A and [4,B] :== AB — BA = 0. Show
that e(A+5) = eAeh,

Exercise 2.13. Suppose A € C(R, A) satisfies [A (1), A(s)] =0 for all s,t € R.
Show .

Y (t) = e(fo A(T)dT)[E
is the unique solution to g (t) = A (¢) y () with y (0) = .

Exercise 2.14. Compute e when

01
(%)
and use the result to prove the formula

cos(s +t) = cosscost — sin ssint.

tAgsA e(t+s)

Hint: Sum the series and use e 4. Alternatively, compute

> tA _ _

e e*4 and then solve this equation.

Exercise 2.15. Compute e when

Oab
A=|00c
000

with a,b, ¢ € R. Use your result to compute e**+4) where A € R and I is the
3 x 3 identity matrix. Hint: Sum the series.
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Exercise 2.16 (L. Garding’s trick I.). Prove Theorem i.e. suppose
that T; € A for ¢t > 0 satisfies;

1. (Semi-group property.) Ty = Idx and T;Ts = Ty for all s,t > 0.
2. (Norm Continuity at 0+) ¢ — T} is continuous at 0, i.e. | Ty — I|| 4, — 0 as
t10.

Then show there exists A € A such that T; = et where e!4 is defined in
Eq. (2.10). Here is an outline of a possible proof based on L. Garding’s “trick.”

1. Using the right continuity at 0 and the semi-group property for 73, show
there are constants M and C such that || T3] , < MC* for all t > 0.
2. Show ¢t € [0,00) — T} € A is continuous.
3. For € > 0, let E
S, = 1/ T.dr € A.
€Jo
Show S. — I as € | 0 and conclude from this that S. is invertible when
€ > 0 is sufficiently small. For the remainder of the proof fix such a small
e > 0.
4. Show

1 t+8
TtSE = g/ T—,—dT = SETt
t

and conclude using the fundamental theorem of calculus that

d 1
—TS
dt toe

d .
%|0+Tt5.e = 1t1f(f)1 (

[Tt+6 — Tt} for ¢t > 0 and

T, — 1
t

3

)ngim_f].

5. Using the fact that S. is invertible, conclude A = lim; ot~ (T; — I) exists

in A and that )
A= g(TE—I)S;1

and moreover,

d
%Tt = ATt for t > 0.

6. Using step 5., show Le *AT, = 0 for all ¢ > 0 and therefore e *4T; =
€_OAT0 =1.

Exercise 2.17 (Duhamel’ s Principle). Suppose that A : R — A is a con-
tinuous function and V : R — A is the unique solution to the linear differential
equation (2.45)) which we repeat here;

V(t)=A@)V (t) with V (0) = I.
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Let Wy € A and H € C(R,.A) be given. Show that the unique solution to the
differential equation:

W (t)=A(t)W (t) + H (t) with W (0) = W, (2.47)

is given by .
W) = V () Wo +V (¢) /0 V()" H (r) dr. (2.48)

Hint: compute %[V =1 (t) W (¢)].






3

Spectrum of a Single Element

Convention. Henceforth all Banach algebras, B, are complex and have an
identity.

Definition 3.1. For a € B;
1. The spectrumof a is
o(a):={x € C:a— X is not invertible},
2. the resolvent set of a is
p(a) :=={X€C:a— X is invertible} = o (a)°,

and
3. the spectral radius of a is

r(a) :==sup{|A|: A€o (a)}.
We will see later in Corollary that o (a) # 0.
Proposition 3.2. For all a € B, o (a) is compact and r (a) < ||a]| .

Proof. Since A € C — a—\ € Bis continuous and p (a) = {\: a—\ € Binv},
p (a) is open by Corollary and hence o (a) = p (a)° is closed. If |A| > ||a]|,
then |A~!al| < 1 and hence

a—A=X(A"a—1) € Bin.

Therefore if |A| > |la|]| then A € p(a) from which we conclude that r (a) <
|la]| and so o (a) is compact.

Lemma 3.3. If B is a *-algebra with unit then
o(@)=o(a)={A:Aeo(a)}.

Proof. The point is that a € B is invertible iff a* is invertible since [a*]_1 =
(ail)* . Thus A € p(a) iff a— A1 is invertible iff a* — A1 = (a — A1)” is invertible
ifft Aep(a®). |

Notation 3.4 If B is a Banach subalgebra of A with 1 € B and a is an element
of B, then we let o4 (a) and og (a) be the spectrum of a computed in A and B
respectively.

Remark 3.5. Continuing the notation above, we always have op (a) C o4 (a)
for all a € A. Indeed, if A ¢ 0.4 (a), then a — A is invertible in A and hence
also in B, i.e. A ¢ op(a). See Proposition and Theorem to see that
o (a) & o4 (a) is possible.

Proposition 3.6. Let 1 € A C B be as in Notation|3.4l Then o4 (a) = og(a)
for all a € A iff AN Bipw = Ainw iff AN Biny C Ainw. Put another way,
o4 (a) = op(a) if whenever a € A is invertible in B, then a is also invertible

mn A.

Proof. Suppose that o4 (a) = o5 (a) for all a € A. Then if a € AN Biny,
we have a ¢ op (a) = 0.4 (a), i.e. a € Ajp, which shows AN By, C Ajpy. The
opposite inclusion is trivial.

Conversely, suppose that AN Bjy, = A;ny. Because of Remark [3.5 we must
show for any a € Athat 04 (a) Cop(a).If A ¢ op(a), thena— X € ANB;y, =
Ainy and hence A\ ¢ 0.4 (a) and the proof is complete. ]

3.1 Spectrum Examples

Before continuing the formal development it may be useful to consider a few
examples and some more properties of the spectrum of elements of a Banach
algebra, B.

3.1.1 Finite Dimensional Examples

Exercise 3.1. Let X be a finite set and B = CX denote the functions, f : X —
C. Clearly f is invertible in B iff 0 ¢ f(X) in which case (f)”" = % Show
that 1/f = p(f) for some p € C|z] and hence 1/f is in the subalgebra of B
generated by f and 1. Use this to conclude that o5 (f) = o4s1) (f) = f(X)
where A (f, 1) is the algebra generated by f and 1.
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Remark 3.7 (Be careful in infinite dimensions). An easy consequence of Exer-
cise [B.1]is that
op (f) =08, (f) = [ (X)
where is By is any unital sub-algebra of B which contains f. This result does

not necessarily extrapolate to infinite dimensional settings as demonstrated in
Proposition [3.14] below, see also Theorem [3.12] and Remark [3.13]

A similar result holds for finite dimensional matrix algebras as well. In this
case we will need to use the following Cayley Hamilton theorem.

Theorem 3.8 (Cayley Hamilton Theorem). Let B be an n x n matriz and
p(A) :=det (A — B) ijw

be it characteristic polynomial. Then p (B) = 0 where 0 is the zero n xn matriz.

Proof. This result is easy to understand if B has a basis {v; }?:1 of eigen-

vectors with respective eigenvalues {/\j}?zl . Since p (A;) = 0 for all j it follows
that
p(B)v; =p(Aj)v; =0 for all j

which implies p (B) is the zero matrix. For completeness we give a proof of the
general case below.

For the general case, let adj (M) be the classical adjoint of M which is the
transpose of the cofactor matrix. This matrix satisfies,

adj (M) M = M adj (M) = det (M) I.

Taking M = AI — B in this equation shows,

(AT — B)adj (\I — B)

NI = ijw

Writing out

n—1
adj (M — B) = Y _ A*Cy where C; € F™",
k=0

we have
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n n—1
> piIN = (M= B) Y _ MGy
j= k=0
n—1 n—1
= Z Nty — Z N BCy,
k=0 k=0
n n—1
=> MNCr1 =) ABG
k=1 k=0

n—1

=M\"Ch_1+ Y A [Cro1 — BCy] - BCy.
k=1

Comparing coefficients of A/ then implies,

pnI = Cn—h
prl =[Cr—1 — BCy] for 1 <k <n-1,
pol = —BCy

and hence

B"p,I = B"C,,_1,
BrppI = B¥[C),_1 — BC}] for 1 <k<n—1,
poI = —BC().
Summing these identities then shows,

n—1

p(B)=p(P)I=B"C,_1+»_ B*[Cy_y — BCy] - BCy
k=1
n—1 n—1
=B"Ch 1+ »_ B*Cvo1 = > BM'Ci - BG
k=1 k=1
n n—1
= ZB’“C,f_1 - Z BFtIC, = 0.
k=1 k=0

Lemma 3.9. Let B be an invertible n xn matriz, then there exists a degree n—1
polynomial, q, such that B~! = q(B) . In other words B! is in the sub-algebra
of End (C™) generated by B and I.

Proof. Let p be the characteristic polynomial of B, i.e.
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p(\) :=det (\ — B) Za]AJ_Ar ) + ag

where a,, = 1, ag = (—1)" det B, and

A=Y a; N
j=1

By the Cayley Hamilton Theorem, which means explicitly that
0=p(B)=Br(B)+apl

and so 1
B™'=——r(B)=q(B).
ao

Corollary 3.10. Let n € N and suppose that B is any subalgebra of B (F™
which contains I. (As usual F is either R or C.) Then for all S € B, o5 (S)
oy (S) is the set of eigenvalues of S.

3.1.2 Function Space and Multiplication Operator Examples

Lemma 3.11. Let B := C' (X) where X is a compact Hausdorff space. Then
f € Biny iff 0 ¢ Ran(f) = f(X) and in this case f~1 = 1/f € C*(f,1).
Consequently, o (f) = [ (X) = oc-(f1) (f)-

Proof. If f € Bin, and g = f~! € B, then f(z)g(x) =1 forall z € X
which implies f (z) # 0 for all z, i.e. 0 ¢ Ran (f). Conversely if 0 ¢ Ran (f),
then € := mingex |f (z)] > 0 and hence 1/f € B from which it follows that
f € Biny. By the Weierstrass approximation theorem, there exists p,, € C|z, 2]
such that p, (z,2) — L uniformly on & < |z| < || f||, and therefore

=M = Jim pu (£.1) = F€C° (1)

|

[
We now are going to take X = S = {z € C: |z| = 1} in the next couple of
results.

Theorem 3.12. Let B = C (S*;C) and A be the Banach subalgebra (not C*-
subalgebra) generated by u (z) = z, i.e.

A=Tp():peCH} .

Then

s

A= {f €B: £ () e®do =0 for alln € N} . (3.1)

—T
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Proof. Let Ay denote the right side of Eq. (3.1). It is clear that if p (z) =
> h_oPrz" is a polynomial in z, then

/ ( 1«9 zn9d9 _ Zpk/ ik@einedg =0foralln eN

which shows that p € Ag. As Ap is a closed subspace of B we may conclude
that A C .A().
To prove the reverse inclusion, suppose that f € Ag and let

1 ™

pei= o [ f(e¥)emdp for all k € Z
™

and then, for each n € Ny, let
n
Ji= D et =) pedt
|k|<n k=0

wherein we have used p_, = 0 for all £k € N because f € A. By the theory of
the Fourier series (using the Féjer kerne]ED we know that

qn (2) == N 1 an (z) uniformly in z,

which shows that f € A.
Alternatively: we can easily show, for any 0 < r < 1, that

e’} N
E pkrkzk = lim E pkrkzk
N—oo

k=0 k=0

is a uniform limit and hence Y - prr*z* € A. However it is well know that

oo oo
S ekt = " ekt = (px f) (2)
k=0 k=—o00

where p, is the Poisson kernelﬂ This kernel had the property that (p, x f) (z) —
f(2) as r 1 1, uniformly in z, for any continuous function on S*. Thus we again
find f € A. Incidentally, this proof shows that every f € A is the boundary
value of an analytic function in D = D (0,1). ]

! Google Fejér kernel and find the corresponding Wikipedia site for the required
details.

2 Google Poisson kernel and find the corresponding Wikipedia site for the required
details.

macro: svmonob.cls date/time: 13-Feb-2020/12:28



44 3 Spectrum of a Single Element

Remark 3.13. Notice that B = C (S*;C) = C* (u,1) while A is “holomorphic”
subalgebra of B, i.e. is the Banach algebra generated by wu.

Proposition 3.14. Continuing the notation above we have
op(u)=5'¢D=04(u).

[See Conway [7], p.p. 205- 207 and in particular Theorem 5.4 for some related
general theory. We will come back to this example again in E:mmple below.]

Proof. We know that op (u) = u (S') = S* by Lemma Let us not
work out o4 (u). Since |Jul| < 1, we know that S' = o5 (u) C 04 (u) C D. So
to complete the proof we must show D C o4 (u).

Let A € D and 1

uU— A
For sake of contradiction assume that vy € A, i.e. there exists polynomials,
{pn},2 such that

oy i=(uw—XN)""= €B.

unif. 1
) — vy (2) = as n — 00.

Po (2 z—A

Under this assumption we find, by basic complex analysis, that

n—oQ

1
27ri:?{ dz = lim pn(2)dz= lim 0=0
S1 z — n—oo S1

which is a contradiction. Thus we have shown vy ¢ A and hence A € o4 (u). m
The following definition is a special case of Definition above.

Definition 3.15. If ¢ € L™= (2, F, ), the essential range of q is the subset
of C defined by

essran,, (q) = {w € C: u(g ' (D(w,¢))) > 0 for all £ > 0}.

Here, as usual,
D(w,e) ={z€C: |z —w| <e}

for allw € C and € > 0.

Lemma 3.16. Suppose that (2, F,u) is a measure space and f : 2 — C is
a measurable map such that p(f =0) = 0 and M = H%H < oo. Then
w(lfl <1/(2M)) =0 and in particular O ¢ essran,, (f).

Proof. If M := ’%HOO then for every C' > M, p (‘H > C) = 0 or equiva-
lently p (|f| <1/C)=0. |
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Theorem 3.17. Suppose that (2, F,u) is a measure space and f € L™ (u).
Then

essrany, (f) = opec(u) (f) = oc-(p1) (f) - (3.2)

Proof. We start with the proof of the first equality in Eq. (3.2). If \ ¢

essran,, (f) iff there exists & > 0 so that p({|f —A| <e}) = 0. Thus if X ¢
essran,, (f), then p (‘f—i/\’ > é) =0 and hence,

EE.
f=Ms ™
which implies (f — A) ™" = ffl)\ exists in L™ () and so A ¢ o) (f) -

Conversely, suppose that A\ & ope(,) (f) so that (f — A)! = g exists in
L (u) . Then, by definition, we have g (f — \) = 1, p-a.e. and therefore,

1 1
e
By Lemma we conclude that p (|f — A < 1/(2M)) = 0 and in particular
X ¢ essran, (f).
As we automatically know that ope(,) (f) C oc«(s,1) (f) it suffices to show
oc+(51) (f) C opee(y) (f). So suppose that A ¢ o, (f) = essran, (f) which
implies there exists € > 0 such that u (|f — A| <€) = 0 and therefore,

=g a.e. and H =gl =1 M < oo.
o0

e<|f =A< | flloo + [A[ = M ace.

Following the proof of Lemma there exists p,, € C [z, w] such that

. = = 1
e R
from which it follows that (f —A)”" € C* (f,1). This shows \ ¢ oc=(£,1) (f)
and the proof is complete. [

Remark 3.18. By Theorem [7.35] or Corollary ?? below or by the spectral theo-
rem, if B is a unital commutative C*-subalgebra of B (H), then

TC(T) (T) = 0B (T) = O0B(H) (T)

for all T € B. The real content here is the statement that if T € B(H) is a
normal operator which is invertible, then T-! € C* (I, T).

Theorem 3.19. Let (2, F, u) be a measure space with no infinite atoms and
1<p< oo andlet
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B={M;eL"(n:feL>(u}CB(L\ (1)
be the multiplication function subalgebra of B (L? (1)) . If My € B is invertible

in B iff it is invertible in B (LP (1)) . [When p = 2, this is a special case of
Theorem [7.55 below.]

Proof. Suppose that T' = M;l exists in B (LP (u)). Then for g € LP (u) we
have

f-Tg=g9g=T]|fg] ae. (3.3)
If (]f| =0) > 0, then (by the no infinite atoms assumption) we may find
A C {]f| =0} such that 0 < p(A) < co. Taking g = 14 in Eq. (3.3) implies,
f- (TlA) =14 = 1= f . (TIA) =0- (TIA) =0 H-a.e. on A,

which is a contradiction. Thus we conclude that in fact p (f = 0) = 0, and so
from Eq. |j it follows that T'g = %g a.e. and moreover,

=1Tgll, <l llgll, forall g € LP (u). (3.4)
p

H ;
-9
f
To finish the proof we need only show 1/f € L™ (u).

If0< M < ooand u(|1/f| > M) > 0, there exists A C {(]1/f] > M)} such
that 0 < p (A) < co. Then taking g = 14 in Eq. (3.4) shows,

< Ty llgll,
p

1
Mgl < Hfg

and hence M < [|T'[|,,, < oc. As this is true for all M such that p (|1/f] > M) >
0, we conclude that H%Hoo < |[7,, <ocoandsoT = Mf—1 = M,y € B and

the proof is complete. [

Corollary 3.20. Continuing the notation in Theorem[3.19 with p = 2, we have
for every f € B= L™ (u) that

oB(L2(u)) (My) = 08 (M) = 0re () (f) = 0c(p,1) (f) = essran, (f).
Moreover C* (f,1) and C* (My,1) are isomorphic as C*-algebras and therefore,
oc=(f1) (f) = oc+(;,1) (My) = essrany, (f) .

Proof. This is a combination of Theorems [2.58] [3.17] and [3.19] The details
are left to the reader. [
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Ezample 3.21. Let q = (¢1, . - -, ¢n) be a vector of bounded measurable functions
on some probability space (§2, F, ). Let B be the C*-algebra generated by
{1} u {qu };L:l . Then

C (essran, (q)) > f = Myoq € BC B (L* (1))

is an isometric *—isomorphism of Banach algebras. Therefore we conclude and
in particular

0 (Mgoq) = f (essran, (q)) .

3.1.3 Operators in a Banach Space Examples

For the next couple of definitions and results, let X be a complex Banach space.
Recall, by the open mapping theorem, if T € B (X) is invertible then 771 is
bounded, see Lemma [2.9] and Corollary

Definition 3.22. Let X be a complex Banach space and T € B (X). The set,
oap (T) C C, of approximate eigenvalues of T is defined by

Gap (T) = {)\ €C: it (T~ A1)x] = 0}.

Alternatively stated; X € C is o4y (T) iff there exists {xn},, C X with
llznllx =1 such that lim, o (T'— X) 2, = 0. We call such a sequence {z,,}, -
an approximate eigensequence for T.

Proposition 3.23. If T € B(X), then g4y (T) is a closed subset of o (T').

Proof. If A ¢ o (T), then (T — AI)~" exists as a bounded operator and

therefore with M := H(T — M) < oo we have,

op

H(T— AD e

‘§M||x|| Ve X.

Replacing « by (T — M) z in this equation shows,
(T =AMzl zez| VzeX

where e := M ~!. This clearly shows A ¢ 0., (T) and hence o, (T') C o (T).
Moreover, if X ¢ o4, ('), then there exists € > 0 so that

(T —A)z|| >elz|| VzelX.
So if h € C, then
(T =A+h) Dl = (T =Nz —hl| = (T = A) 2| — [[h]
> e lzfl = A lz]l = (¢ = [R]) =]

Hence we conclude that if |h| < €, then (A + h) ¢ 04, (T') which shows C\oy, (T')
is open and hence o, (T') is closed. |
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46 3 Spectrum of a Single Element

Ezample 8.24. Let D := {z € C: |z] < 1} and S : £ — {2 be the shift operator,
S(wy,wa,...) = (0,w1,ws,...). Then
Oap (S*) =0 (S*)=0(S) =D and 0,, (S) C S' € D=0 (9)

and hence it can happen that 0., (S) S 0 (S). [See Exercise [3.2 where you are
asked to show o, (5) = S1.]
Proof. It is easy to see that S is an isometry, the adjoint, S*, of S is the
left shift operator,
S*(wl,wg, .. ) = (LUQ,LU3, . ),

and || S||,, =1 =[/S"|,, - Thus we conclude that o (5) C D, and for any A € D,

1S =N ¢l = [15¢ = M|l = [[[S9Il = AL = (L= AD 1]l -
The latter inequality shows o4, (S) C C\ D.
For A € D, vy := (1,\,\%,...) € /2 and
S* vy = S*(1, A% .) = M1, A, 0%, ...) = Aoy

which shows D C 0,(S*) C 04p (S*). Because 04,(S*) is closed, D C
0ap(S*) C o (S*) C D, ie.
oup(S*) =0 (S*)=D=0(9).

Since we have already seen that 0., (S) C C\ D, it follows that o4, (S) C
D\ D=5

Remark. We may directly show that S C 0, (S*) as follows. Let A € S1
and then set w? = (1,\,A%,...AY,0,0,...). We then have HwNHEQ =N+1
while

S*wlN — AN = xN T =AY = —)\NHeN_H
and therefore,
wl 1
(S* =X N = —\/m/\NHeNH —0as N — o0

while || /VN +1]| ., = 1.

Exercise 3.2. Continuing then notation used in Example show o4p (S) =
St

Exercise 3.3. Let H = L%([0,1],m), g € L*([0,1]), and define T € B (H)
by

(Tf) (z) = / o) 1 () dy.
Show;

Lo (T) = {0},
2. 0¢p (T) # 0 iff m{{g =0}} > 0.
3. Show g, (T') = {0}.
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Exercise 3.4. If T is a subset of H, show T++ = span(T) where span (T
denotes all finite linear combinations of elements from 7.

Lemma 3.25. If H and K be Hilbert spaces and A € L (H,K), then;

1. Nul(A*) = Ran (A)", and

2. Ran (A) = Nul(A*)*,
3. If we further assume that K = H, and V C H is an A — invariant subspace
(i.e. A(V) C V), then V1 is A* — invariant.

Proof. 1. We have y € Nul(4*) <— A*y =0 < (y,Ah) =(0,h) =0
forall he€ H <= y € Ran(A)".

2. By Exercise Ran (A) = Ran (4)*", and so Ran (4) = Ran (4)*" =
Nul(A*)*+.

3. Now suppose that K = H and AV C V.If y € V+ and z € V, then

(A*y,z) = (y,Az) =0 forallz € V — A*yec V™,

For this section we always assume that H is a complex Hilbert space.
Lemma 3.26. If C € B(H) and (Cy,v) =0 for all ¢y € H, then C = 0.
Proof. If ¢, € H, then
0=(CW+¢)¥+¢)

= (O, ) + (Cop, p) +(CP, ) + (Cop, )
= (CY,p) + (Cp, ) .

Replacing 1 by 41 in this identity also shows
0=i[(CP,p) — (Co,9)]

which combined with the previous equation easily gives, (C,¢) = 0. Since
1, € H are arbitrary we must have C' = 0. [ |

Lemma 3.27. If C € B(H), then;

1.C* =C iff (CY,v) €R for allyp € H and
2.C* = =C iff (C,¢) € iR for all ¢p € H.
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Proof. If C = C*, then

(CY,¥) = (¥, CY) = (C™Y, ) = (CY, ¥)
which (C, 1) € R. Conversely if (Ci,¢) € R for all ¢ € H then

(CY, ) = (C,9) = (, CP) = (C™P, )

from which it follows that ((C'— C*),v) = 0 for all ¢ € H. Therefore, by
Lemma C — C* = 0 which completes the proof of item 1. Item 2. follows
from item 1. since, C* = —C iff (iC)" = iC iff (iC, ) € R iff (C1p,v)) € iR. m

Definition 3.28 (Normal operators). An operator A € B(H) is normal
iff [A, A*] =0, i.e. A*A = AA*.

Lemma 3.29. An operator A € B (H) 1is normal iff
[AY|| = [[A"p|| V¢ € H. (3.5)
Proof. If A is normal and ¢ € H, then
149" = (A" Ay, ) = (AA™, ) = (A", A") = A"y

Conversely if Eq. (3.5)) holds and C := [A, A*] = AA* — A* A, then the above
computation shows (C,¢) = 0 for all ¢ € H. Thus by Lemma 0=C=
[A, A*], i.e. A is normal. |

Corollary 3.30. If A € B(H) is a normal operator, then Nul (4) = Nul (4*)
and oep (A*) = cong (e, (A)) where for any 2 C C,

cong(2)={AeC: e N}.

~ Proof. If A € C, then Nul (4 — \) = Nul (4% = \) , i.e. Au= Muiff A*u=
Au. ]

Lemma 3.31. If B,C € B(H) are commuting self-adjoint operators, then
I(B +iC) ¢I|* = [|BY|* + |C¢|* V ¢ € H.
Proof. Simple manipulations show,
I(B +iC)¢II* = | BY|” + IC¥II” + 2 Re (By, iCy)
= [BY|” + IC%|* +21m (C By, v)
2 2
= [I1BYII” + [CY
where the last equality follows from Lemma because,
(CB)" = B*C* = BC = CB.
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Remark 3.32. Here is another way to understand Lemma If A is normal
then A = B 4 iC where
1 1
)

are two commuting self-adjoint operators. Therefore by Lemma [3.31
1 * *
4w )? = 7 [I(A+ A7) I + 1A - A7) )]

which is symmetric under the interchange of A with A*.

Remark 3.83. Suppose that a,b are commuting elements of A, then ab € A;n,
iff a,b € Ajny. More generally if a; € A for i = 1,2,...,n are commuting
elements then [, a; € Aipo iff a; € Ay, for all 4. To prove this suppose
that ¢ := ab € Ajpn,, then ¢ commutes with both ¢ and b and hence ¢! also
commutes with a and b. Therefore 1 = (¢"'a) b = b(c~'a) which shows that

b € Ainy and b~' = ¢ 'a. Similarly one shows that a € A;,, as well and

a~! = ¢~ 'b. The more general version is easily proved in the same way or by

induction on n.

Lemma 3.34. Suppose that A € B (H) is a normal operator, i.e. [A, A*] = 0.
Then o (A) = o4y (A) and

c(A)={ eC:0eca((A=N)"(A=N)}. (3.6)
[In other words, (A — \) is invertible iff (A — \)* (A — \) is invertible.]

Proof. By Proposition [3.23] 04, (4) C 0 (A). If A € 04y (A), then there
exists € > 0 so that

€:= inf A—- )1 >0
inf (4= 0]

or equivalently
[(A= A = el[vll Vo€ H.

As A — M is normal we also know (see Lemma [3.29)) that
[(A= 2" = [[(A=AD[| = ellyll VY e H
and in particular,
Nul (4 — AI) = {0} = Nul ((4 — AI)").

By Corollary Ran (A — AI) is closed. Using these comments along with
Lemma [3:25] allows us to conclude,

Ran (A — AI) = Ran (A — \XI) = Nul (A= AD)")" = {0}* = H
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and hence A — AT is invertible and therefore A ¢ o (A). Thus we have shown
0 (A) C 0ggp (A) and hence o4y, (A) =0 (A).

We now prove Eq. . First note that because A is normal, A— X is normal
and also A — X is invertible iff (A — \)" is invertible. Therefore by Remark
(A—X)"(A—)\) iff both (A—\)" and (A — \) are invertible iff A — ) is
invertible. This is the contrapositive of Eq. (3.6]).

|

Ezample 3.35. Let S be the shift operator as in Example Then S*S =1
while SS5* #£ I since

SS*(wl,WQ,W37 . ) = (O,CUQ,(U3, e )

Thus S is not normal and by Example oap (S) & o (S). Moreover, S*S

is invertible even though neither S nor S* is invertible, i.e. 0 € o (S) while
0 ¢ o (5*S). This example shows that we can not drop the assumption that

[a,b] = 0 in Remark
Lemma 3.36. If A € B (H) is self-adjoint (i.e. A= A*), then o (A) C R. This

is generalized in Lemma[{.5
Proof. Let A = a+ i with o, 8 € R, then
1A +a+i8) | = [(A+a)p||* + B [$II* + 2Re (A + o) ¢, iB)
= [[(A+ )l + 18P 1017 = 18 ]| (37)

wherein we have used Lemmato conclude, Re ((A + a) v, ifv) = 0. [Equa-

tion (3.7 is a simply a special case of Lemma M] Equation (3.7) along with
Lemma shows that A ¢ o (A) if 8 #0, i.e. 0 (4) CR. |

Remark 3.37. Tt is not true that o (4) C R implies A = A*. For example, let
A= (8 (1)) on C?, then o (A) = {0} yet A # A*. This result is true if we
require A to be normal.

3.2 Basic Properties of o (a)

Definition 3.38. The resolvent (operators) of a is the function,
pla)3A—= Ry =(a—A\)"" € Aino.
Lemma 3.39 (Resolvent Identity). If a € A andu, X € p(a), then
Ry — R, =(A—p)Rr\R, (3.8)

and in particular by interchanging the roles of v and X it follows that [Rx, R,,] =
0.
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Proof. Apply Eq. (2.7) with b= (a — ) and ¢ = (a — ) to find
Ry—R,=Ry[(a—p)—(a—N]R,=Rx(A—p)R, = (A—p) R\R,,.

Equation (3.8) is easily remembered by the following heuristic;

1 1 (a—p)—(a—A)
R - R == — =
T AN a—p (a-N(a—p)
Corollary 3.40. Let A be a complex Banach algebra with identity and let a €
A. Then the function, p(a) > X = Ry € A is analytic with %RA = R3 and
IRAll = 0 as A — oc.

= ()\ - ,u) R,\RM.

Proof. For h € C small,
RA+h — R, = ()\ +h— /\) R)\_;,_hR)\ = hR)\+hR>\

and therefore,

1
E (R)\+h — R)\) = R/\Jth)\ — Ri as h — 0
wherein we have used Corollary in order to see that Ry, — Ry as h — 0.

Since )
Ry=(@-N""=-211-2"ta) ,

if [\ > |la]l (i.e. [|A " al| < 1) it follows that

= 0297 <

1

Corollary 3.41. Let A be a complex Banach algebra with unit, 1 # 0 (as we
have assumed that ||1|| = 1.) Then o (a) # 0 for every a € A.

Proof. If o (a) = (), then Ry = (a — A) ™" is analytic on all of C and moreover

[2All = O (ﬁ) as A — oo. Therefore by Liouville’s theorem (Corollary |1.12)),

Ry is constant and in fact must be 0 by letting A — co. Therefore
1=Ryx(a—A)=0(a—A)=0

which is a contradiction and therefore o (a) # (0.

Remark, if we only want to use the classical Liouville’s theorem, just apply
it to A = £(Ry) for all & € A* to find £ (Ry) = £ (Ro). As this holds for all
& € A* it follows again that Ry = Rp.
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Theorem 3.42 (Spectral Mapping Theorem). Ifp : C — C is a polynomial
and a € A then p(o (a)) = o(p (a)).

Proof. Let p be a non-constant polynomial (otherwise there is nothing to
prove) and let u € C be given. Then factor p (A) — u as

PAA) —p=aX =) (A=An)

where a € C* and {\;},_, C C are the solutions (with multiplicity) to p (\) =
. Since

pla) —p=al@=A) - (a=A)

we may conclude using Remark that u € o (p(a)) iff \; € 0 (a) for some i,
ie. iff 4 =p(A) for some A € o (a), ie. iff p € p(o(a)).

|
Corollary 3.43. If p € C[z] and a € A, then
r(p(a)) = sup [pA)] =[Pl o) (3.9)
A€o (a)
and in particular, r(a™) =r (a)" for all n € N.
Proof. Using Theorem [3.:42] and the definition of r,
r(p(a)) =sup{|z| : z € o(p(a))} = sup{l[p(N)| : A € 0 (a)}
which proves Eq. . Taking p (z) = z" in this equation shows,
r(a") =sup{\|": A€o (a)} =[sup{|Al: A€o (a)}]" =7(a)".
|

Corollary 3.44. The function, A — (1 —Xa)" ", is analytic on || < 1/r (a)
and moreover admits the power series representation,

(1-Xa)" ' = f: Amgn (3.10)
n=0

which is valid for |\ < 1/r (a).

Proof. If || |la|| = ||Aa]] < 1, we know that Eq. (3.10) is valid and hence
(1 —Xa)~" is analytic near 0 as well, sce Remark [Alternatively we may
compute by the chain rule that
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d (1-Xxa) '=1=X) " a(l=2a)"" ]

dA
For A # 0,
~1
_ 1
(1=Xa) ' =271 (A - a) =A"1Ry
which is valid provided 1/X € p (a) which will hold if ﬁ >r(a),le if0 <A<

1/r (a) . So we have shown (1 — Aa) ™" is analytic near 0 and also, by Corollary
for 0 < |A| < 1/r (a). Thus it follows that (1 — Aa)~ ' is analytic on for
|A| < 1/r(a) and hence by Theorem the expansion in Eq. is valid
for |A| < 1/r(a).

[

Corollary 3.45. The spectral radius r (a) may be computed by taking the fol-
lowing limit,

r(a) = lim |a™|"".
n—oo

Proof. By Corollary

r(a)" =r(@") <lla"| = r(a) < [la"|"",
Passing to the limit as n — oo in this inequality shows
r(a) < liminf [ja™ """ (3.11)
n—oo

For the opposite we conclude from Eq. (3.10) that lim, . |[(Aa)"]] = 0
when |A| < 1/7 (a). This assertion then implies,

|A| lim sup Ha””l/n = lim sup ||(/\a)n||1/n <1V AN <1/r(a)

and hence limsup,, . [|a”||"/" < r (a) which along with Eq. (3.11) completes
the proof.
[

Exercise 3.5 (Compare with Proposition|8.3)). Let 5 be a complex Banach
algebra with unit, then for any a,b € B which commute, show;

1. r (ab) < r(a)r(b) and
2.r(a+b)<r(a)+r(b).

Proposition 3.46 (Optional). Ifa € A and X\ € p(a), then

=272 (0= 57) > Sy
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Proof. If A € p(a) and 8 € C, then

(a=(+B)=(a=N=B=(a-N[T-Bla-N"

is invertible if

< Q.

> [[pe-]"

n 1/n

The latter condition is implied by requiring lim sup,,_, H [5 (a— )\)71} <

1, i.e.

1 n 1/n
|B|limsupH[(af)\)f } <1

n— oo

—-1/n 1

T ((a - )\)_1>

= |A] < limsup H (= A)—l}"

n—roo

and hence

dist (A, 0 (a)) >




4

Holomorphic and Continuous Functional Calculus

In this chapter we wish to consider two methods for defining functions of a
given element of a Banach algebra, B. The first method allows us to define f (a)
for almost any a € B provided that f is analytic on an open neighborhood of
the spectrum of a. Later we will specialize to the case where B is a C*-algebra
and a € B is Hermitian. In this case we will make sense of f (a) for any bounded
measurable function, f: o (a) — C.

4.1 Holomorphic (Riesz) Functional Calculus

The material in this section was probably taken from M. Taylor [49, pages
576-578]. Let B be a unital Banach algebra and a € B. Suppose that o (a) is a
disjoint union of sets { X },_, which are surrounded by contours {Cy};_, and
{2 is an open subset of C which contains the contours and their interiors, see

Figure

Fig. 4.1. The spectrum of a is in red, the counter clockwise contours are in black,
and (2 is the union of the grey sets.

Given a holomorphic function, f, on 2 we let

fla)= 2271rz z—zz dz,

2mi Cz—a

where 1 = (z — a) " and C = up_,Ck.
Let us observe that f (a) is independent of the possible choices of contours
C as described above. One way to prove this is to choose ¢ € B (X)" and notice

that )
() =5 £

where f(2)¢ ((2 - a)fl) is a holomorphic function on 2\ o (a). Therefore

((z - a)71> dz

5= b f(2) 0 ((z - a)_l) dz remains constant over deformations of C' which

remain in 2\ o (a). As £ is arbitrary it follows that 51§, L L) 42 remains
constant over such deformations as well.

Theorem 4.1. The map H (2) > f — f (a) € B is an algebra homomorphism
satisfying the consistency criteria; if f(z) = ZZ:O cmz™ 18 a polynomial then

N
a) = Z cma™
m=0

More generally, p > 0 is chosen so that v (a) < p and f € H (D (0,p)), then
™ (0
fla)=>" S70) (4.1)

Proof. It is clear that H (£2) > f — f(a) € B is linear in f. Now suppose
that f,g € H (£2) and for each k let Cj, be another contour around X} which is

inside C}, for each k. Then
g9 (<)
r@o@=(55) > f foef G

() Z% -, fiizii-
= () X M

k,l=1
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Using the resolvent formula,
1 1 (—=z

z—a (-a (2—a)((—a)
we find (using Fubini-Tonelli) that

A —]{Ck fgldg aC—zl
:]{dezﬁldCf(Z)g(C)C_z<Zia_<ia)
:]{ dzf(z)?{ Cg(o

Ch N (

f(z)

fa C@fq 12, (42)

For z € Cy, ¢ — g(¢) = T s analytic for ¢ inside C; no matter the [ and
therefore,

75 dcg (OC% ~0 (4.3)
el z

and Eq. (4.2) simplifies to

_ 9 (<) f(z)
Akl?{adgg—aﬁwkd'zg—z'

If k # 1, we still have z — f (z z) is analytic inside of C} and for each ¢ € C; and

v /)
z

which implies Ag; = 0. On the other hand when k£ =

f d,zM = —2mif (¢) for all ¢ € Cy.
c, (—2

Hence we have shown,

and therefore,

:Zi]{ dcw:mm(a)
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which shows that @ — f (a) is an algebra homomorphism.
If f € H(D(0,p)), then for every 0 < r < p, there exists C' (r) < oo such

that ‘%‘ r™ < C (r). Therefore choosing r (a) < r < p, we have

|20 ) < 0.y e

m! rm
and hence
m 1/m m 1/m
limsup‘ ! (,0) a™ < lim sup [C (r)l/m <||a||) ] =r(a)/r<1.
m— o0 m: Mm— 00 rm

It now follows by the root test that the sum in Eq. is absolutely convergent.
[Technically we could skip this convergence argument but it is nice to verify
directly that the sum is convergent.]

We now verify the equality in Eq. . Suppose that f € H (D (0, p)) where
p > r(a). From Corollary we know that

1
1—)a

= 1
= Z A"a™ is convergent for |\ < ——
n=0 T ((L)

and therefore

1 11 L= /a\" <= w —(n
e e (B) X for el > (@),
n=0

Let r € (r (a), p) as above and let C be the contour, z = re?? with —7 < 6 < 7.
Then

f(a)_Qm Cz—a 27rz%za (n+1) g Z)dzznz::ocna

where, by the residue theorem or by differentiating the Cauchy integral formula,

(n)
Cn=— ¢ 2z~ (D¢ (2)dz = / (0)
2ri Jo n!

Theorem 4.2 (Spectral Mapping Theorem). Keeping the same notation
as above, f (o (a)) =0 (f(a)).

Proof. Suppose that u € o (a) and define
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f)—fw) -
g()i= LT
fr(p) ifz=p

so that g € H(U) and f(z) — f (u) = (z — p) g (2) . Therefore f (a) — f (1) =

(a—pu)g(a) and so if f(u) ¢ o(f(a)) then f(a) — f(u) is invertible and

therefore a — p would be invertible contradicting p € o (a). Thus we have
shown f (o (a)) C o(f(a)). Conversely if o ¢ f(o(a)) then g(z) := ﬁ

is holomorphic on a neighborhood of ¢ (a). Since (f (2) —a)g(z) = 1 it fol-
lows that (f (a) — ) g (a) = I and therefore « ¢ o (f (a)) and we have shown

[f (o (a))]* C [o(f ()], ie. o (f(a)) Co(f(a)). m

Exercise 4.1. Continue the notation used in Theorem .1l but now assume that
B is a C*-algebra or is at least equipped with a continuous involution, *. Show
f(a)* = f*(a*) where where f*(z) := f (z) is holomorphic on

cong (2) ={AeC: e N}.

Recall that o (a*) = cong (0 (a)) = {A € C: A€ o (a)} C cong(£2) so that g is
holomorphic on a neighborhood of o (a*) .

See the Section ?? (yet to be written) on perturbation theory for appli-
cations of this formalism.

4.2 Hermitian Continuous Functional Calculus

For the remainder of this chapter let B be a unital C'*-algebra.

Proposition 4.3. If B is a C*-algebra with unit, then r(a) = ||a|| whenever
a € B is normal, i.e. [a,a*] = 0. [We will give another proof of this result in
Lemmas ?? and below that r (a) = ||a|| when a is any normal element of
B.]

Proof. We start by showing, for a € B which is normal and n € N, that
||| = ha®” (4.4)

We will prove Eq. by induction on n € N. By Lemma we know
that Hb2H = ||b]|* whenever b € B is normal. Taking b = a gives Eq. for
n = 1 and then applying the identity with b = a?" while using the induction
hypothesis shows,

H a2n+l 2n

2 n 2 n
= (lal")" = al*"*" forn e .
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The statement that r (a) = ||la|| now follows from Eq. (4.4) and Corollary
which allows us to compute 7 (a) as

n|)1/2"
r(a) = lim Ha2 H

Tim = lim_lal] = [lal]

FEzample 4.4. Let N be an n x n complex matrix such that N;; = 0 if 7 < j,
i.e. N is upper triangular with zeros along the diagonal. Then o (V) = {0}
while |[N]| # 0. Thus »(N) = 0 < ||N||. On the other hand, N” = 0 so

limy oo |N7™ =0 = r (N).

Lemma 4.5 (Reality). Let B be a unital C*-algebra. If a € B is Hermitian,
then o (a) C R. [This generalizes Lemma above. Also see Lemma
below for related results.]

Proof. We must show a — A € By, whenever Im A £ 0. We first consider
A = i. For sake of contradiction, suppose that ¢ € o (a).Then by the spectral

mapping Theorem |3.42'| with p (z) = A — iz implies
A+ 1=p@i)€o(p(a)) =0(A—ia) forall X € R.
Therefore using the fact that r (z) < ||z|| for all z € B along with the C*-identity

shows,
A+ <[r(A—ia)]” < ||A —ial

wherein

1A —ia]> T (A = ia)* (A —ia)|| = [[(A+ia) (A —ia)]|

2 H C*—éond )\2

=W+’ <3+ a + llall*.

Combining the last two displayed equation leads to the nonsensical inequality,
2X+1 < |la|? for all A € R, and we have arrived at the desired contradiction
and hence i ¢ o (a).

For general A = x + iy with y # 0, we have then

a—)\:a—m—iy:y[y_l(a—gc)—i]

which is invertible by step 1. with a replaced by y~! (a — ) which shows \ ¢
o (a). As this was valid for all A with Im A # 0, we have shown o (a) CR. m

1 More directly,
At+l—(A—ia)=14ia=1i(a—1)
is not invertible by assumption and hence A +1 € (A — ia) .
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54 4 Holomorphic and Continuous Functional Calculus

Corollary 4.6. If a € B is a Hermitian element of a unital C*-algebra, then

Ip(a)ll = sup |p(x)] VpeCla].

z€o(a)

Proof. Since p (a) is normal, it follows that ||p (a)|| = r (p (a)) which by the
spectral mapping theorem may be computed as,

rp(@) = max |\ = max p(@)].

Theorem 4.7 (Continuous Functional Calculus). If a € B is a Hermi-
tian element of a unital C*-algebra, then there exists a unique C*-algebra iso-
morphism, pq : C(o(a)) = C*(a,1) such that ¢, () = a or equivalently,
va (p) =p(a) for allp € Clz]. [We usually write ¢, (f) as f(a).] Let us note
that for general f € C (o (a);C)

f(a) =¢a(f) = lim p, (a)

where{p, },—, C Clz] are any sequence of polynomials such that pylsa) — f
uniformly on o (a) . Moreoverﬂ

oc+(a1) (#a (f)) = (o (a)) .

Proof. By the classical Stone-Weierstrass theorem, {p|g(a) peClx } is
dense in C (0 (a)) and so because of Corollary [£.6] there exists a unique lin-
ear map, ¢, : C (0 (a)) = C*(a,1), such that ¢, (p) = p(a) for all p € C[z]
and [l@a (f)II = [l (5 (a)) - It is now easily verified that ¢, is a homomor-
phism with dense closed range and hence ¢, is an isomorphism. Moreover,
using p(a)” = p(a) we easily conclude by a simple limiting argument that
¢a (f) = ¢a (f)" . For the last assertion, as ¢, is a *-homomorphism, it follows
that

oc(a1) (Pa () = 0c (o) (f) = f (o (a)).

Corollary 4.8 (Square Roots). If a € B is a Hermitian element of a unital
C*-algebra and o (a) C [0, 00), then there exists a Hermitian element b € B such
that o (b) C [0,00) and a = b2. Moreover, if ¢ € B is Hermitian and ¢* = a,
then b= |c|. [See Corollary[9.1( for the polar decomposition.]

2 We will see later that in Corollary below that o5 (f (a)) = 6c*(a,1) (f (a)) and
therefore we also have o (f (a)) = f (o (a)).
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Proof. For existence let b = /a := ¢, (/") . Now suppose that ¢ € B is
Hermitian and ¢? = a. Then a € C* (¢, 1) and c itself has its own associated
functional calculus. Choose polynomials, p,, so that p, — /- uniformly on
oa)=0 (0)2 It we let ¢, () = pn (1:2) , then

n t|| =
nax |gn (t) — [¢]] Jnax

= max _|p, (z) — V| = max |p, (z) — VZ| = 0 as n — oo,
z€o(c?) z€o(a)

pn t2 \/7‘ = max ’pn )7 \/E|

z€o(c)?

i.e. ¢p () — |z| uniformly on o (¢). Thus we may conclude,
_ _ . _ . 2 _ . _
b=va= Jim p (@ = fim e () = Jim 0 () =l

If we further assume that o (¢) C [0, 00) we will know that |z| = z on o (¢) and
hence b = |¢| = ¢ and the uniqueness or b is proved. ]

For the rest of this chapter we will explore the ramifications of having a C*-
algebra isomorphism of the form in Theorem We will work more generally
at this stage so that the results derived here will be applicable later when we
have more general forms of Theorem [4.7] at our disposal.

4.3 Cyclic Vector and Subspace Decompositions

The first point we need to deal with is that understanding the structure of a C*-
subalgebra (B) of B (H) does not fully describe how B is embedded in B (H).
To understand the embedding problem we need to introduce the notation of
cyclic vector and cyclic subspaces of H.

Definition 4.9 (Cyclic vectors). If A is a sub-algebra of B (H) a vector x
in H is called a cyclicvector for A if Ax = {Ax : A € A} is dense in H. We
further say that an A — invariant subspace, M C H, is an A — cyclic subspace
of H if there exists x € M such that Ax := {Ax : A € A} is dense in M.

Lemma 4.10. If A is a * — sub-algebra of B(H) and M C H is an A -
invariant subspace, then M and M+ are A — invariant subspaces.

Proof. If m € M and m* € M*, then
<AmJ‘,m> = <mJ‘,A*m> =0

for all A € Aas A" € A (A is a x — subalgebra). In other words, (AM*, M) =
{0} and hence AM* C M. The assertion that M is also A-invariant follows
by a simple continuity argument. ]
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Theorem 4.11. Let H be a separable Hilbert space and A be a unital * — sub-
algebra of B (H) with identity. Then H may be decomposed into an orthogonal
direct sum, H = EBiLV:lHn (N = oo possible) such that H, is a cyclic subspace
of A. [This cyclic decomposition is typically highly non-unique.]

Proof. Let {e;};—, be an orthonormal basis for H and let
vy := e; and Hy := Av;.
Then let ko = min{k € N: e, ¢ H;} and let
Vg 1= PHliek.2 and Hy := Avy C Hf‘
Now let k3 := minmin{k € N: e, ¢ Hy ® Ho} and let
v3 1= P[H1®H2]J.ek;3 and Hs := Avs

and continue this way inductively forever or until {e;},-, C Hy for some
N < oo. ]

Exercise 4.2. Show (using Zorn’s lemma say) that Theorem holds with-
out the assumption that H is separable. In this case the second item should
be replaced by the statement that there exists an index set I and {va},c;

il
collection of non-zero vectors such that H = ®,erH, (orthogonal direct sum)

where H, := H,_ = AvaH.

Before leaving this topic let us explore the meaning of cyclic vectors by
looking at the finite dimensional case.

Proposition 4.12. Let T be a n x n-diagonal matriz, T = diag (A1,...,\,) for
some A\; € C and set o (T) :={A1,..., \n}. If u € C" is expressed as

u= Z e (4.5)

Aeo(T)
where ey € Nul (T — AXI) for each A € o (T), then
{p(T)u:peClz]} =span{er: A€o (T)}.

In particular, there is a cyclic vector for T iff # (o (T)) = n, i.e. all eigenvalues
of T have multiplicity 1. In this case, one may take u = ZAEU(T) ex where
ex € Nul(T — AI) \ {0} for all X\ € o(T). [Moral, the ezistence of a cyclic
vector is equivalent to T having no repeated eigenvalues.]
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Proof. If u is as in Eq. (4.5) and p € C|z], then

p(Mu= Y pMex= Y p(Nen

A€o (T) A€o (T)

As usual, given A\g € o (T'), we may choose p € C [z] such that p (X) = 6, for
all A € o (T'). For this p we have p (T) u = ey, and hence we learn

{p(T)u:peClz]} =span{er: A€o (T)}.

From this relation we see that maximum possible dimension of

{p(T)u:peClz]} is #(o(T)) which is equal to n iff #(o(T)) = n.
[

4.4 The Diagonalization Strategy

Definition 4.13 (Radon measure). If Y is a locally compact Hausdorff
space, let Fy = o ({open sets}) be the Borel o-algebra on Y. A measure p on
(Y, Fy) is a Radon measure if it 4 (K) < oo when K is compact at it is a
regular Borel measure, i.e.

1. p is outer reqular on Borel sets, i.e. if A € Fy, then
p(A)=inf{p(V): ACV C, Y}, and
2. it is inner regular on open sets, i.e. if V. C, Y, then
w(V)=sup{u(K): K CV with K compact}.

Proposition 4.14. Suppose thatY is a compact Hausdorff space, H is a Hilbert
space, B is a commutative unital C*-subalgebra of B(H), and ¢ : C(Y) — B is
a given C*-isomorphism of C*-algebras. [This is in fact can always be arranged,
see Theorem|[8.1]] below.] Then for each v € H\ {0}, there exists a unique finite
radon measure, (i, on (Y, Fy) such that

(o (f)v,v) = /Y fdun ¥ f € C(Y). (4.6)

Proof. For fe C(Y),let A(f):= (¢ (f)v,v) which is a linear functional
on C (Y). Moreover if f > 0, then g =+/f € C(Y) and hence

A(f)=A(g%) = (¢ (9%) v,v) = (p(9) ¢ (9) v, v)
=(p(9)v,0(9) v) = (p(9)v,0 () v) = ¢ (g)v]* > 0.
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Thus A is a positive linear functional on C (V') and hence by the Riesz-Markov
theorem there exists a unique (necessarily finite) Radon measure, p,,, on (Y, Fy)
such that

<so<f>v,v>:A<f>:/yfduvvfecm.
| |

Proposition 4.15. Continue the notation and assumptions in Proposition[].1]]
and for each v € H\ {0}, let

H,:=Bv cH. (4.7)

Then there exists a unique unitary isomorphism, U, : L? (ty) = H, which is
uniquely determined by requiring

Usf = o (f)ve H, forall f € C(Y). (4.8)
Moreover, this unitary map satisfies,
Ut (1) .Uy = My on 12 () ¥ [ €C(Y). (19)
Proof. Since
V712 = o (D w0 (1)) = {2 (1) @ (P v,)
= (e (Do) = (o () o) = [ 177 diss = 11,

and C (Y) is dense in L? (1) , it follows that U, extends uniquely to an isometry
from L2 (u1,) to H,. Clearly U, has dense range and the range is closed since
U, is isometric, therefore Ran (U,) = H, and hence U, is unitary.

Let us further note that for f,g € C (Y),

Usp () Uvg=Ugp (f)e(g)v=Usp(fg)v=fg= Myg. (4.10)

If g € L? (uy), we may choose {g,} C C(Y) so that g, — g in L? (1) . So
by replacing g by g, in Eq. (4.10) and then passing to the limit as n — co we
conclude It then follows that

U;(P(f)Uvg:fg:MfQVQELZ(M)

which proves Eq. (4.9). ]

Theorem 4.16. Continue the notation and assumptions in Proposition [{.1]}
Then there exist N € NU{oco}, a probability measure p measure on

Q:=Ay xY = > Y where Y; = {j} x Y
JEAN
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equipped with the product o — algebra (here Ay = {1,2,...,N} NN), and a
unitary map U : L* (u) — H such that

U (f)U = Myor on L* (p) (4.11)

where m : 2 = Y is defined by 7 (j,w) = w for all j € Ay and w € Y, see

Figure[{.3

M3 Y3
w2 Yo
Mo _y,
™
——Y

Fig. 4.2. Making disjoint copies of Y to take care of multiplicities.

Proof. By Theorem {.11} there exists an N € NU{co} so that we may
decompose H into an orthogonal direct sum, @;¢c4, H;, of cyclic subspaces for
B. Choose a cyclic vector, v; € H;, for all i € A := Ay and normalize the

{vi};c 4 so that
2

D lloil* = 1.

icA
Let p; = py; be the measure in Proposition and let 2 := A x Y which we
equip with the product o — algebra, F, and the probability measure p defined as
follows. Every G € F may be written (see Remark below) may be uniquely
written as

G= Z {i} x G; for some {G;};,c, C Fy
i€

and if we let

() =3 i (G,

€A
then p is a measure on F. For this measure,
/ gdu=Z/ gl{i}de,Uf:Z/ 9(i,-) dpi
2 EYRAL Py RAL

From which it easily follows that the map,
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L2 (Qau) 59— {g (27 .)}iGA € @iEALQ (Y7 /141)

is a unitary. For g € L% (£2, u) we define,

Ug=1 Uugli

€A

6 ®icaH; = H,

where U,, is the unitary map in Proposition Since
2
U = 32 10 ), = 3 [ 1o dis ) = [ 1o
i€A i€A

U is an isometry and since U has dense range it is in fact unitary. Lastly if
feC(Y)and g € L? (), we have

UMgorng = ZUU’ foﬂ' ZUm fg
€A €A
= Uy, [Msg (i,)] = o (f) i,)) = ¢ (f)Ug.
€A €A
This completes the proof. [

Remark 4.17. The product o-algebra on A x Y is given by the collection of sets

Fi=9> iy =Gy (G2, € Fr

JEA

If is clear that every element in F is in the product o-algebra and hence it
suffices to shows F is a o-algebra. The main point is to notice that if G =

> jea {7} x Gj), then
(i,y) € G° <= (i,y) ¢ G <= y ¢ G; <= (i,y) € {i} x G}.

This shows G¢ = ), 1 ({i} x Gf) which is graphically easy to understand.
To see that y is a measure on F, first observe that if H = >, {i} x Hj,
then
HNG =Y {i} x[G;n H|]
e
and so if {G(n)=Y,.,{i} xG; (n)}neA are pairwise disjoint then
{Gi(n)},c, must be pairwise disjoint for each i € A. Hence it follows

that
SR TR PaCAT)

neN €A neN
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and therefore,

(Zew) - Tu(Tem) - X T u@om)

neN €A neN i€ A neN
Y @) = Y (G
neN €A neN

Notation 4.18 If (2, F) is a measurable space, let £ (2, F) denote the
bounded F | Bc-measurable functions from §2 to C.

Let us now rewrite Eq. (4.11)) as
o (f) =UM;so:U" for fe C(Y). (4.12)

From this equation we see there is a “natural” extension ¢ to a map, ¥ :
(> (Y, Fy) — B (H) defined by

Y (f) :=UM;yo U" for all f € (Y, Fy). (4.13)
This map 1 has the following properties.
Theorem 4.19 (Measurable Functional Calculus I). The map,
(> (Y, Fy) — B(H) in Eq. has the following properties.

1L.y=ponC(Y).
2.1 (O < [1fllo for all f € (Y, Fy).
3. If f, € £ (Y, Fy) converges to f € £ (Y, Fy) boundedly then 1 (f,) >

¥ (f).

4. is a C*-algebra homomorphism.
5. If f >0 then ¢ (f) >0

Proof. The proof of this theorem is straight forward and for the most part
is left to the reader. Let me only verify items 3. and 5. here.
3. Let u € H and g = U*u € L? (i) . Then

I (f)u = (fa) ull® = UM porU*u — UMy, 0z U*u|)?
= ||[f077—fn07T]g||2Lz(#) —0asn— o0

by DCT.
5. If f >0, then

<w (f) ’U,7U> = <UMfo7'rU*u; U> = <Mfo7rgvg>L2(u) = /_Q f o |g‘2 d,LL Z 0
Alternatively, simply note that f = (\/7 )2 and hence

v =v(VF) =u (Vi) v (VF) 20
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Definition 4.20. If B C B(H), let B := {B € B(H) : [B,B] ={0}} be the
commutant of B. Thus A € B’ iff [A,B] =0 for all B € B.

Remark 4.21. 1f (Y,d) is a compact metric space, then o (C (Y)) = Fy where
o (C(Y)) is the smallest o-algebra on Y for which all continuous functions
are measurable. Indeed we always have o (C (Y)) C Fy and so it suffices
to show V € o(C(Y)) for all V. C, Y. However, if V is an open set,
then dye (z) := infyeyed(x,y) is a continuous function on Y such that
V={dye >0} o (C((Y)).

Proposition 4.22. If Y is a compact metric space then there is precisely one
map, ¥ : £° (Y, Fy) — B (H), which satisfies properties 1.-4. in Theorem .
Moreover the image of this map is in B”.

Proof. If ¢ : £ (Y, Fy) — B (H) also satisfies items 1.-4. of Theoremm
let

H={ferF): o) =0}

One then easily verifies that H is closed is a subspace of ¢*° (Y, Fy) which is
closed under conjugation and bounded convergence and hence by the multiplica-
tive system Theorem[A.9]it follows that H contains all bounded o (C (Y)) = Fy-
measurable functions, i.e. H = ¢ (Y, Fy).

To prove the second assertion, let

H={f e, Fy):[¥(f),B]={0}}.

Then H is a linear space closed under conjugation and bounded convergence
and contains C (Y) as the reader should verify. Thus by another application
of the multiplicative system Theorem H = ¢ (Y, Fy) and the proof is
complete. [

Corollary 4.23 (Spectral Theorem I). Let H be a separable Hilbert space
and A € B(H) be a self-adjoint operator. Then there exists a finite measure
space, (£2,F,u), a bounded function, a : 2 — o(A), and a unitary map,
U: L?(u) — H, such that A = UM,U*. Moreover, if f € (> (U (A) ,fg(A)) ,
then

i (f) = “f (A) " = UMo,U*

defines the unique measurable functional calculus in this setting.

Proof. Let B = C* (A,I) C B(H) and then by Theorem there exists
C*-isomorphism, ¢4 : C (0 (A)) — Bsuch that 4 (p) = p (A) . To complete the
proof of the theorem, we apply Theorem [£.16 with ¢ = ¢4 and take a = idow
where id : 0 (A) — o (A) is the identity map. as in the language of Theorem
4. 16l u

The next theorem summarizes the result we have proved for a self-adjoint
element, A € B(H).
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Theorem 4.24 (Measurable Functional Calculus for a Hermitian). Let
H be a separable Hilbert space and A be a self-adjoint element of B (H). Then
there exists a unique map P4 : £ (0 (4) ,]-'U(A)) — B (H) such that;

1. %4 is a x — homomorphism, i.e. ¥4 is linear, Ya(fg) = Ya(f)Yalg) and
alF) = 6alf)” for all fg € £ (o (A)).
2 94 (F)lly < 1l for all £ € £ (o (A))
3. %4 (p) = p(A4) for all p € Clx]. [Equivalently ¢ (1) = I and ¥a(x) = A
where x : 0 (A) = o (A) is the identity map.]
4.1If fr, € £ (0 (A)) and f,, — [ pointwise and boundedly, then Ya(fn) —
Yalf) strongly.
Moreover this map has the following properties.
CIf £ >0 then a(f) > 0.
.If B€ B(H) and [B,A] =0, then [B,¥A(f)] =0 for all f € £ (o (A)).
7. If Ah = Ah for some h € H and X\ € R, then Y4 (f)h = f (\) h.

D O

Proof. Although there is no need to give a proof here, we do so anyway in
order to solidify the above ideas in this concrete special case.

Uniqueness. Suppose that ¢ : £>° (0 (A)) — B (H) is another map satis-
fying (1) — (4). Let

H:={f € (0 (A),C) :9(f) = valf)}.

Then H is a vector space of bounded complex valued functions which by prop-
erty 4. is closed under bounded convergence and by property 1. is closed under
conjugation. Moreover H contains

M = {p|,(4) : p € Cz]}

and therefore also C(o (A) , C) because of the Stone-Weierstrass approximation
theorem. Therefore it follows from Theorem that H = £°(c (4)), i.e. ¥ =

Ya.
Existence. Let U : L? (2, 1) — H be as in Corollary and then define

d)A(f) = UMfoaU* M f €L (O’(A))

One easily verifies that 14 satisfies items 1. — 4. Moreover we can easily verify
items 5-7 as well.

5.1f f > 0, then f = (\/7)2 and hence 94 (f) = ¥4 (\/f)z > 0.

6. Let
H:={f €t>*(c(A),C):[B,va(f)] =0}

which is vector space closed under conjugatiorﬁ and bounded convergence. It
is easily deduced from [B, A] = 0 that [B,p (A4)] = 0 for all p € C[z], the result

3 Again we use Theorem and the fact that ¥4 (f) is normal for all f.
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follows by an application of the multiplicative system Theorem applied
using the multiplicative system,

M = {p\a(A) ip € C[x]}

7. If Ah = A and g := U*h, then M,g = Ag from which it follows that
(a—X)g=0 p—ae. which implies a = A p — a.e. on {g # 0} . Thus it follows
that foa = f(\) p — a.e. on {g # 0} and this implies Moqg = f (X) g which
then implies,

Ya(f)h =9a(f)Ug=UMsoag =Uf(X)g=f (N h.






5

**More Measurable Functional Calculus

This highly optional chapter contains more details on the general construc-
tion of the measurable functional calculus.

5.1 Constructing a Measurable Functional Calculus

Assumption 1 In this chapter we will assume that'Y is a compact Hausdorff
space, H is a Hilbert space, B is a commutative unital C*-subalgebra of B (H),
and ¢ : C(Y) — B is a given C* isomorphism of C*-algebras. [This is in fact
can always be arranged, see Theorem below.]

Let us start by recording some notation and results we introduced in Propo-

sition and Proposition
Notation 5.1 For each v € H, we let
H, = EH cCH (5.1)

and p, be the unique (finite) Radon measure on (Y, Fy) such that
v) = [ fdu, v rec). 62

see Proposition |{.14. Further let U, : L* (u,) — H, be the unique unitary
isomorphism determined by

Upf =@ (f)veH, forall feC(Y) (5.3)
which satisfies
¢ (f)|n, = UsMgUS on L? (u,) ¥ f € C(Y) (5.4)
as in Proposition .13}

Notation 5.2 Using Theorem when H is separable or Ezercise [{.9 for

1
general H, let us choose (and fix) {va},c; C H such that H = ©qcrH,, and
let P, denote orthogonal projection onto H,_ for each o € I.

For f € C(Y) and u € H, we have

e(Hu=9(f)Y Pau=> @(f)Pau=">_ Uy MsU; Pou (5.5)

ael acl acl

wherein we used Eq. (5.4]) for the last equality. In light of Eq. (5.5]), the following
definition is a “natural” extension of ¢ to f € £ (Y, Fy).

Definition 5.3 (Construction of ). Continuing the notation above, let 1 :
> (Y, Fy) — B(H) be defined by

U (f)u=>_ Uy, MsU; Pou for allu € H. (5.6)
ael

In other words, v (f) is given in block diagonal form as

P (f) = diag ({UvaMf ':a}aGI) : (5.7)

Theorem 5.4. The map, ¢ : £ (Y, Fy) — B (H) in Definition has the
following properties.

1L.y=¢ponC(Y).

210 () < I flloo for all f € £ (Y, Fy).

3. If f, € £ (Y, Fy) converges to f € (= (Y, Fy) boundedly then 1 (f,) >
v (f)-

4. is a C*-algebra homomorphism.
5. If f >0 then v (f) > 0.

Proof. Recall I, := {a € I : uy := Pyu # 0} is at most countable for each
u € H and so

u = E Uy = E Uy — a countable sum.
ael a€l,

As the reader should verify, ¥ (f) : H — H is linear and 1 (1) = Iy. We now
prove the remaining items in turn.

1. That ¢ is an extension of ¢ follows from Eq. (5.5).
For the rest of this proof let u € H,
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go =U} Pou € L*(p,,) for a €1,

and m,, be the measure on (Y, Fy) defined by

=Y |gal* dpa,-

acl,

2. For fet=(Y, Fy),

[0 (D ull® = D U MU, Paul|* =37 | MUy, Pauil[72
acel a€el
= S 50y = [ V7P
acl

Taking f =1 in this equation shows
2
my (V) = [lu” < oo
which combined with Eq. (5.9)) shows

1 (F) ul® < 112 ul®

which proves item 2.
3. Item 3. is now also easily proved since if f,, — f boundedly then

9 (f)u— (fa)ull® = ¢ (f = fo) ull?

:/ |f = ful? dmy — 0 as n — .
Y

by DCT.
4. For f,ge (> (Y, Fy) and u € H,

(@ u=Y 9 (f)

a€cl

= Uy, MU}, Uy, MgU;: Pou
acl

= Z Uy My MgU; Pou
acl

UvaMgU:aPau

= Up My U Pou = (fg)u
ael

which shows ¢ (fg) = ¥ (f) ¢ (g) . Moreover for another v € H,
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(5.9)

(5.10)

(W (f)u,v) =Y (Up, MgU; Pau,v) =Y (PoUy, MyU; Pou,v)

acl ael
=> (MU} Pou,U; Pov),, (o)
acl
= (U; Pau, MfU; Pov) , )
acl
= Z (u, Uy, MU Pou) = (u,1p (f) v) (5.11)
acl

which shows ¢ (f)" = ¢ (f) and item 3. is proved.
5. Taking v = u in Eq. (5.11)) shows,

W (Nuu) =Y (MgU;, P, Us Pow) s,

acl,
= Z <Mfgozuaga L2 (i, Z / f|ga| dpty,,
acl, acl,
i.e.
() () ) = / Fdm, for all f € 0 (Y, Fy). (5.12)
Y

It clearly follows from this identity that ¢ (f) > 0if f > 0.

]
Proposition 5.5. If we now further assumeEI that Fy = Fo, then there is pre-

cisely one map, ¥ : £ (Y, Fy) — B (H) such that properties in items 1.-4. of
Theorem [5.7) hold and moreover 1) is uniquely determined by

W (f)u,u) = /Y fduy, for allu € H and f € £° (Y, Fy). (5.13)

Proof. Suppose that v : (> Y,Fy) - B
Theorem [5.41 Then let

={re e =0}

(H) also satisfies items 1.-4. of

One then easily verifies that H is closed is a subspace of ¢*° (Y, Fy) which is
closed under conjugation and bounded convergence and hence by the multi-
plicative system Theorem it follows that H contains all bounded Baire-
measurable functions, i.e. £ (Y, Fo) C H C ¢*° (Y, Fy) . Since we are assuming
Fy = Fo, it follows that £ (Y, Fy) = H = ¢ (Y, Fy). To finish the proof it

! This will be the case if Y is metrizable for example, see below.
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suffices to show Eq. (5.13]) holds which is equivalent to showing the measure
m,, in Eq. (5.12)) is p,. However, we do know that

[ =t uw) = 0 (D) = [ gamivfecy). Gy
Y Y

From this identity and a simple application of the multiplicative system The-
orem it follows from Eq. (5.14) that m, = u, and the proof is complete.
]

Proposition 5.6. Continuing the notation and setup in Proposition [5.5, then
Y (> (Y, Fy)) C B’, the double commutant of B. That is A € B(H) and
[A,B] = {0}, then [A,¢ (£ (Y, Fy))] = {0}. In words, for f € £ (Y,Fy),
P (f) commutes every A € B (H) which commutes with every B € B.

Proof. Let H = {f € ¢ (Y, Fy) : [ (f),B]={0}}. Then H is a linear
space closed under conjugation and bounded convergence and contains C (Y)
as the reader should verify. Thus by the multiplicative system Theorem
(Y, Foy) C H C £ (Y, Fy) and as we assume Fy = Fy, the proof is complete.
]

For the remainder of this chapter we are going to remove the added assump-
tion that Fy = Fy. Before getting down to business we need to take care some
measure theoretic details.

5.2 Baire Sets and Radon Measures

Theorem 5.7 (Properties of Locally compact spaces). Suppose (X, T) is
a locally compact Hausdorff space where T is the collection of open subsets of
X. We write C C X and K CC X to indicate that C is a closed subset of X
and K is a compact subset of X respectively.

1. KCC X and K CUUV withU,V € 71, then K = K1UKs with K1 CC U
and Ko CC V.

2.If KCC X and F C X are disjoint, then there exists f € C(X,[0,1]) such
that f =0 on K and f =1 on F.

3. If f is a real valued continuous function, then for all ¢ € R the sets {f > ¢},
{f <ec}, and {f = ¢} are closed Gs.

4. If KCC U C, X then there exists K CC Uy C Ky C U such that Ky is a
Baire measurable set and a compact Gs and Uy is a o — compact open set.

Proof. We take each item in turn.
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5.2 Baire Sets and Radon Measures 63

1. K\U and K\ V are disjoint compact sets and hence there exists two disjoint
open sets U’ and V' such that

K\UcV'and K\V CcU'".

Let K1 SZK\V/CUaHdKQZK\U/CV.

2. Tietze extension theorem with elementary proof in Halmos.

{f <c} =N, {f < ¢+ 1/n} with similar formula for the other cases.

4. For each x € K, let V,, be an open neighborhood of K such that V, CC U,
and set V = U,caV, where A CC K is a finite set such that K C V. Since
V = UzeaV, is compact, we may replace U by V if necessary and assume
that U is pre-compact. By Urysohn’s lemma, there exists f € C.(X,[0,1])
such that f =0 on K and f =1 on U°. If we now defined Uy = {f < 1/2}
and Ko = {f < 1/2} then K CC Uy C Ky C U, Ky is a Baire set which is
compact and a Gs by item 2. Moreover Uy is o-compact because

Uo={f <1/2} = Upta{f <1/2—1/n}.

bad

Definition 5.8 (Borel and Baire o-algebras). Let Fx denote the Borel o-
algebra on X, i.e. the o-algebra generated by open sets and Fy be the Baire-
o-algebra, i.e. the sigma algebra, o (C. (X)), generated by C.(X). A Baire
measure is a positive measure, fio, on (X, Fo) which is finite on compact Baire
sets.

Notation 5.9 If ({2, F) is a general measurable space we let £>° (£2,F) denote
the bounded F /B — measurable functions, f: 2 — C.

For the rest of this section we will suppose that Y is a compact Hausdorff
space.

Theorem 5.10 (Riesz-Markov Theorem). Let Y be a compact Hausdorff
space. There is a one to one correspondence between positive linear functionals,

A: C.(Y,C) = C, Radon measures pn on (Y, Fy), and Baire measures po on
(Y, Fo) determined by;

A(f)=/yfdu=/yfduo for all f € C(Y),

and po = 1|7, -

Proof. The main point is that if p is a Baire measure on Y, then A (f) :=
fY fdug is a positive linear functional on C (Y, C). Therefore, by the Riesz
Markov theorem, there exists a unique Radon measure, u, on (Y, Fy) such that
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64 5 **More Measurable Functional Calculus
/ fdu = / fdug for all f e C(Y). (5.15)
Y Y

It is now a simple application of the multiplicative system Theorem[A.9]to show

Eq. (5.19) is valid for all f € £ (Y, Fy) and hence po = p|7,.
[

Remark 5.11. In general it is not true that Fy = Fy, only that Fy C Fy.
This is the reason one uses Radon measures on (Y, Fy) rather than arbitrary
measures. For the reader wishing to avoid such unpleasantries (at least on first
reading) should further assume Y is metrizable, i.e. the topology on Y is induced
from a metric, d, on Y. By Remark it follows that Fo = Fy and as a
consequence, if Y is metrizable, then all finite measures on (Y, By) are in fact
Radon-measures, see Theorem [5.10

Exercise 5.1. Let Y be a compact Hausdorff space. Prove the following asser-
tions.

1. If 41 is a Radon measure and 0 < f € L' (Y, Fy,u), then dv = fdu is a
Radon measure.

2. If p1, po are two Radon measures, then so is p; + pa.

3. Suppose that {pj}?il are finite Radon measures such that p := Z;’;l i is
finite measure. Then p is a Radon measure on (Y, Fy).

5.3 Generalization to arbitrary compact Hausdorff spaces

Lemma 5.12. If f € (> (Y,Fy) and v € H, then (U,f,v) = fY fdu,. In
particular if f < g then (U, f,v) < (Uyg,v).

Proof. The result holds for all f € C(Y) by definition of yu, and U,, see

Egs. (5.2) and (5.3). Given a general f € £ (Y, Fy) we may find f, € C(Y)
such that f,, — f in L? (u1,) and therefore,

<va,v> = lim <van7v>: lim / fnd,uvz/ fd,uv-

Lemma 5.13. If V C, Y then

sup (Uylg,v) = (U,1ly,v)
KCiV

and if £ € Fy, then

ECI\I}%OY <Uv].v,’U> = <Uv].E,’U> .
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Proof. The proof of these statements are elementary consequences of
Lemma, and the fact that u, is a Radon measure. [

Theorem 5.14. The map, ¢ : £ (Y, Fy) — B (H) in Definition has the
following additional properties over those stated in Theorem [5.].

1. 9 satisfies Eq. , i.€.
<7/’(f)U,U>:/ fdu, ¥ fet> (Y, Fy) and u € H.
Y

This identity, because of Lemma uniquely specifies ¥ (f) and hence
shows that ¥ is independent of the choices made in the cyclic subspace
decomposition of H.
2. v is reqular in the following sense;
a) if E € Fy then
v(p) = inf v(ly)

VY

or by abuse of notation
Y(E)=inf{y(V):ECV C,Y}.

[We abuse notation here and are writing v (E) to mean ¢ (1g) where
E is a Borel set.]
b) If V C, Y, then
¥ (1y) = sup (1)

KCrV

or by abuse of notation, ¥ (V) =sup{¢ (K): K CcC V}.

Proof. Let dm, =3 ;. \9a|” dps,,, as in Eq. l) in Theorem

1. By item 1. of Exercise |ga |2 du,,, is a regular Radon measure and then by
item 3. of the same exercise it follows that m,, is a Radon measure. Therefore
from Eq. and the uniqueness assertion in the Riesz-Markov theorem,
we may conclude p, = m, which coupled with Eq. completes the
proof of item 1.

2. The regularity statements follows by combining Lemmas and Lemma
I3l

Theorem 5.15. There is exactly one C*-homomorphism, ¢ : ¢ (Y, Fy) —
B (H) such that Properties 1.-4. of Theorem and the reqularity property in
item 2. of Theorem [5.14]

macro: svmonob.cls date/time: 13-Feb-2020/12:28



Proof. We have already proved existence and so we now need only prove
uniqueness. Let ) : £>° (Y, Fy) — B(H) be another C*-homomorphism satis-
fying the stated properties in the statement of the theorem. Following the proof
of Proposition we already know that ¢) = ) on £ (Y, Fo) . We now need to
use the regularity assumption to extend the identity to all of £*° (Y, Fy) which
we now do.

Let V C, Y. By item 4. of Theorem to each compact set, K C V, there
exists a Baire measurable compact set Ko such that K C Ko C V. Thus by the
given regularity and equality of 1) and v on Baire sets we may conclude that

¥ (1y) = sup {w (1g,) = zﬁ (1g,) : V D Ky compact & Baire} = 1& (1y).

Then given any Borel measurable set £ C Y we find,
v () =inf {o(ly) =$(1v) : ECV S, V| =4 (1p).

By linearity, ¢ = 7,@ on all Borel simple functions and then by taking uniform
limits we conclude that ¢ =1 on > (Y, Fy). |

Proposition 5.16. If f € (> (Y, Fy), then ¥ (f) € B", i.e. if [A,B] =0 for
all B € B then [A, v (f)] = 0. In words, ¥ (f) commutes with every operator,
A € B(H), that commutes with every operator in B.

Proof. Suppose that A € B'. As ¢ (f) = p(f) € Bforall f € C(Y) it
follows that [¢ (f), A] = 0. An application of the multiplicative system Theorem
then shows that [¢ (f), A] = 0 for all Baire measurable bounded functions,
f:Y — C. Now suppose that V C, Y. By item 4. of Theorem to each
compact set, K C V, there exists a Baire measurable compact set Ky such that
K C Ky C V. Therefore by the regularity of ¢ as proved in Theorem [5.14] we
may conclude that

¢ (lv) = sup ¥ (1k,)
KoCcV
which along with Lemma shows that [t (1y),A] = 0. Then given any
FE € Fy, we have

Y (1g) = Eci‘f}f Y (ly)

CoY

also commutes with A, again by Lemma Therefore [¢ (f),A] = 0 for
any simple function in £*° (Y, Fy) and therefore by uniformly approximating
f € £= (Y, Fy) by Borel simple functions shows [¢) (f),A] = 0 for all f €
(> (Y, Fy).

]
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5.4 Appendix: Operator Ordering and the Lattice of
Orthogonal Projections

Exercise 5.2. Suppose that T' € B(H), M is a closed subspace of H, and
P = Py is orthogonal projection onto M. Show 0 = [T, P] := TP — PT iff
TM Cc M and T*M C M.

See Definition 7?7 and related material for operator ordering basics.

Definition 5.17. If P and Q are two orthogonal projections on a Hilbert space
H, then we write P < @ to mean Ran (Q) C Ran (P). This defines a partial
ordering on the collection of orthogonal projection on H. If P is an family of
orthogonal projections on H then an orthogonal projection, Q, is an upper
bound (lower bound) for P if P < Q (Q < P) for all P € P.

Remark 5.18. The notation P < @ is also consistent with the common meaning
of ordering of self-adjoint operators given by A < B iff (Av,v) < (Bv,v) for all
v € H. Indeed if Ran (P) C Ran (@) and v € H then Qv = PQu+w = Pv+w
where w L. Pv and hence,

(Qu,v) = |1Qu* = [|Pu|* = (Pv,v).

Conversely if (Pv,v) < (Qu,v) for all v € H, then by taking v € Ran (Q)L we
learn that
1Pv]|* = (Pv,v) < (Qu,v) =0

so that v € Ran (P)L, i.e. Ran (Q)l C Ran (P)l. Taking orthogonal compli-
ments then shows Ran (P) C Ran (Q), i.e. P < Q as in Definition

Lemma 5.19. If P is a family of orthogonal projections on a Hilbert space H,
then there exists unique orthogonal projections, Py, and Py, such that

1. Pyyp is an upper bound for P and if Q is any other upper bound for P then
Psup < Q

2. Pyt is a lower bound for P and if Q is any other lower bound for P then
Q < ]Dinf~

We write Psyp = sup P and Pps = inf P.
Proof. If @ is an upper bound for P (which exists, take Q = I) then
Ran (P) C Ran (Q) for all P € P and hence
Mgy = Z Ran (P) C Ran(Q).
PeP

It is now easy to verify that Py, defined to be orthogonal projection onto My,
is the desired least upper bound for P.
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If @ is an lower bound for P (which exists, take @ = 0) then Ran (Q) C
Ran (P) for all P € P and hence

Ran(Q)CZAﬂM:::ﬂpngan(P).

It is now easy to verify that Pi,¢ defined to be orthogonal projection onto Mi,¢
is the desired greatest lower bound for P. [

For the next result recall Lemma [9.29] which states; If A is a * subalgebra
of B(H), K is a closed subspace of H, and P is the projection on K, then K
is and A — invariant subspace iff P € A’

Lemma 5.20. Let P be a family of orthogonal projections on a Hilbert space
H. IfAe P e [A,P]=0 for all P € P’ then [A,inf P] =0 = [A,supP].

Proof. As AP = PA for all P € P, by taking adjoints we also have A*P =
PA* for all P € P. From these equation it follows that

ARan (P) C Ran (P) and A*Ran(P) C Ran(P) V P € P. (5.16)

By Eq. (5.16),

A[Npep Ran (P)] C [Npep Ran (P)] and
A* [Npep Ran (P)] C [Npep Ran (P)]

and therefore both A and A* both preserve Ran (Pi,y) , i.e.
APt = Pt APs and A* Py = Pt A" Pos.
Taking adjoints of these equations also shows,
Pint A" = Ping A" Pins and Pt A = PingAPint

and therefore [A, Py = 0.
Similarly by Eq. (5.16]) we may conclude that

A Z Ran (P) C Z Ran (P) and A* Z Ran (P) C Z Ran (P)

PeP PeP PeP PeP

and then by taking closures we learn that A and A* both preserve Ran (Pyyp) -
The same argument as above then shows [A, Py,p] = 0. |

Lemma 5.21. Let P be a family of orthogonal projections on a Hilbert space
H.

1. If there exists and orthogonal projection @ such that (Qu,v) =
suppep (Pv,v) for allv € H, then Q = Pyyyp.
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2. If there exists and orthogonal projection such @ such that (Qu,v) =
inf pep (Pv,v) for all v € H, then Q = Piyt.

Proof. Since P < Py, for all P € P, it follows by Remark that

(Qu,v) = sup (Pv,v) < (Psypv,v) Vv e H
PeP

which then implies P < @ < Py, for all P € P and hence Q = Pyyp.
Similarly, since Pyt < P for all P € P, it follows by Remark that

= 1 > H
(Qu,v) 1;1611; (Pv,v) > (Ppgv,v) Vv e H
which then implies P < Q < P for all P € P and hence Q = Pi,s. [
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Part 111

Structure Theory of Commutative C*-algebras






Throughout this part, B will be a complex unital commutative Banach alge-
bra. So far we have been considering a single operator and its spectral properties
and functional calculus. What we would like to do now is to simultaneously di-
agonalize a collection of commuting operators. The goals of this part are;

1. study the structure of B,

2. show that when B is a C*-algebra, that B is isomorphic to C (X) for some
compact Hausdorff space, X,

3. develop the continuous functional calculus for commutative C*-algebras,

4. and simultaneously diagonalize all of the operators in commutative unital
C*-subalgebra of B (H) where H is a separable Hilbert space.

The following two notions will play a key role in our discussions below.

Definition 5.22 (Characters and Spectrum). A character of B is a
nonzero multiplicative linear functional on B, i.e. a : B — C is an algebra
homomorphism so in particular a(ab) = « (a) a (b).

The spectrumof B is the set B (or denoted by spec (B) of all characters
of B.

Please note that we do not assume « to be bounded (i.e. continuous). How-

ever, as shown in Proposition below the continuity is automatic. If o € B
then o (1) = 1 because a(12) = a(1)®> so a(1) =0 or a (1) = 1. If a(1) = 0
then o =0 so a (1) = 1. Given this information,

B:={aeB :a(1)=1and a(4B) = a(A)a(B)}. (5.17)
For the next definition, let Func (g — (C) denote the space of functions from
Bto C.

Definition 5.23 (Gelfand Map). For a € B let a : B — C be the function
defined by a (o) = a(a) for all a € B. The map

BBa%&GFunc(g—)((»

is called the canonical mapping or Gelfand mapping of B into
Func (g — C) . [This definition will be refined in Definition|7.17 below.]

Before getting down to business, we will pause to motivate the theory by
first working in a finite dimensional linear algebra setting. This is the content
of the first chapter of this part.

2 We will see shortly that B # @, see Lemmas and






6

Finite Dimensional Matrix Algebra Spectrum

For the purposes of this motivational chapter, let V be a finite dimensional
inner product space and suppose that B is a unital commutative sub-algebra of
Endc (V)

6.1 Gelfand Theory Warm-up

Proposition 6.1. If B is a commutative sub-algebra of Endc (V') with I € B,
then there exists v € V' \ {0} which is a simultaneous eigenvector of B for all
B € B. Moreover, there exists a character, o € B, such that Bv = « (B)wv for
all B € B.

Proof. Let {Bj}?zl be a basis for B. Using the theory of characteris-
tic polynomials along with the fact that C is algebraically closed, there ex-
ists Ay € C which is an eigenvalue of Bj, i.e. Nul(B; — A1) # {0}. Since
By Nul (B; — A1) C Nul(B; — A1) it follows in the same way that there exists a
A2 € C so that Nul (By — A2) NNul (By — A1) # {0} . Again one verifies that Bs
leaves the joint eigenspace, Nul (B — Ay) NNul (B; — A1), invariant and hence
there exists A3 € C such that

Nul (Bg - )\3) N Nul (BQ - )\2) N Nul (Bl - )\1) 75 {0} .

Continuing this process inductively allows us to find {)\j}le C C so that

ﬁle Nul (Bj — A;) # {0} . Let v be a non-zero element of O;?:l Nul (B; — Aj).
As the general element B € B is of the form B = Z?Zl b;B;, it follows that

k
Bv = Z bijU = ZbJAJ v (61)
Jj=1

Jj=1

showing that v is a joint eigenvector for all B € B.
For the second assertion, let « : B — C be defined by requiring Bv = « (B) v
for all B € B. Then for A,B € B and A € C we have a () v =Iv = v,

a(A+AB)v=(A+ AB)v=Av+ ABv = [a(A) + Aa(B)] v,

and

a(AB)v=ABv=Ala(B)v]|=a(B)Av=a(B)a(A)v
1.

which altogether shows « is linear, multiplicative, and « (I) = ]

Corollary 6.2. For every B € B and o (B) = {a (B):a€ B} , where o (B) C
C is now precisely the set of eigenvalues of B.

Proof. If a € B is given and b := o (B), then o (B — b) = 0 which implies
B — bl can have no inverse in B which according to Lemma [3.9] implies that
B —bI has no inverse in End (V') and hence b € o (B) . Conversely, if b € o (B)

is given, in the proof of Proposition choose By = B and and \; = b. Then
the proof of Proposition produces a «a € Bsothat a(B) =X\ =b. ]

Definition 6.3 (Joint Spectrum). For {Bj}?zl C B, the set,
o(Biy,...,By) Co(B)) x--xa(B,) cC"

defined by
o (Bi,...,By) = {(a(Bl),...,oz(Bn)) Lae B}

will be called the joint spectrum of (By,...,B,).

Corollary 6.4. Under the assumptions of this chapter, B, isa non-empty finite
set.

Proof. Suppose that {B; }§:1 is a basis for B (or at least a generating set).
Then the map,

Bsa— (a(By),...,a(B,)) €o(By,...,By)

is easily seen to be a bijection. As o (By,...,B,) Co(B1) X -+ x 0 (By) and
the latter set is a finite set, it follows that # (l’;’ < 00. The fact that B is not

empty is the part of the content of Proposition [

The general converse of the second assertion in Proposition [6.1] holds. The
full proof of this Proposition is left to the appendix. Here we will prove an easier
special case. Another, even slightly easier case (and all that we really need) of
the next proposition may be found in Proposition where we further restrict
to B being a commutative C*-subalgebra of End (V') where in that proposition
V' is an inner product space.
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Proposition 6.5. Let B be a commutative sub-algebra of Ende (V) with I € B
and suppose that « : B — C is a homomorphism. [We require o (I) = 1.] Then
there exists v € V' \ {0} such that Bv = o (B)v for all B € B.

Proof. We give a proof here under the added assumption that every element,
A € B, is diagonalizable. Let {A; }?:1 be a subset of B which generates lﬂ and
then let a; := a (A;) for j € [n]. For each j € [n] let us define the polynomial,

z—aj

pj (2) == S
A€o (A5)\{a;} /

This polynomial has the property that p; (A\) = 0 for all A € 0 (A4;) \ {a;} and
pj (aj) = 1. Since A; is assumed to be diagonalizable we know that

V = @)\EG(AJ) Nul (AJ — )\)

and (you prove) p; (4;) is projection onto Nul (4; — a;) in this decomposition.
Next let @ := H?:l p;j (A;), order does not matter as B is commutative. Since

(@ =TT () = I (@) = [[p@@) =1,

we know @ # 0 and so there exists w € V so that v = Quw # 0.
Again, since{p, (Aj)};;l all commute with one another it follows that v €
Ran (p; (A;)) = Nul (4, — a;) for each j € [n] and this implies A;v = a;v for
all j € [n]. Since the general element A € B is of the form, A = p(44,...,4,),
for some polynomial p, we conclude that

Av=p(Ay,..., A)v=p(a1,...,a,)v=a(A)v.
| |

Remark 6.6 (Joint Spectrum Characterization). Altogether Propositions
and shows the following characterization of the joint spectrum from Defini-
tion If B C End (V) is a commutative sub-algebra generated by {Bj}?zl )
then

o (Bi,...,Bn) = {(M,...,\) € CF: i Nul(B; — \j) # {0}} .

That is (A1,...,Ax) is an element of o (By,..., By,) iff there exist v € V' \ {0}
such that Bjv = \jv for all j € [k].

! One could simply let {A; }7_, be a basis for B.
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Lemma 6.7. The Gelfand map in Definition[5.23 is an algebra homomorphism.
The range, B:= {B :Be B} , 18 a sub-algebra which separates points but need
not be closed under conjugation. The Gelfand map need not be injective.

Proof. The homomorphism property is straightforward to verify, I (a) =
a(I)=1so that I =1,

(B1+AB2) (a) =a(B1+ AB3) = a(B1) + Aa (Bs)
= (Bl + )\B2) (Oé)

and

(B1Bs) (a) = a(B1Bs) = a(B)) a(Bs) = (BIBQ) (@).

If a1 # ap are two distinct elements of 5’ then by definition there exists B € B
so that a (B) # s (B), i.e. B (1) # B (ag). This shows B separates points.

Lastly if B = 0, then 0 = B(a) = a(B) for all @ € B which implies
o (B) = {0} and hence B must be nilpotent. This certainly indicates that the
Gelfand map need not be injective. For an explicit example, let

01
4= (o)
so that A%2 = 0 and hence

Bi= (A) = span {I, A} = {(82) :a,bE(C}.

((5)) =

and hence B consists of this single cv. If

= (3!

In this case we must have

then B (o) = a(B) = a and hence B = 0 iff B = 8 8 for some b € C. The
kernel of the Gelfand map is called the radical of B and in this case we have
shown, rad (B) =C - A. |

6.2 Restricting to the C*-case

In the this and then next section, we now restrict to the finite dimensional
C*-algebra setting.
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Notation 6.8 Let (V = H,(-,-)) is a complex finite dimensional inner product
space that B C End (H) is unital commutative x-algebra (i.e. A € B implies
A* € B). Further (as dim B < 00), let {B; }?:1 which is a basis for B.

We could construct B by choosing commuting normal operators, {B; }?:1 ,
and then letting B be the C*-subalgebra of End (H) generated by these opera-
tors. According to the Fuglede-Putnam Theorem [2.68] it is automatic that the
collection of operators, { B;, By }j: | » all commute with one another and hence

B consists of all elements of the form p(Bi,..., By, B},...,B}) where p is a
polynomial in 2k -complex variables.

From Proposition above, if @ : B — C is an algebra homomorphism,
there exists a vector v € H \ {0} such that Bv = « (B)wv for all B € B. Let us
pause to give another proof of this statement in current C*-algebra context.

Proposition 6.9. Let B be a unital commutative x-subalgebra of End (H). If
a € B, there exists v € H\ {0} such that

Bv=a(B)v for all B € B. (6.2)

Proof. This is of course a special case of Proposition Nevertheless, as
the proof of this special case is a fair bit easier we will give another proof here.
Moreover, the idea of this proof will be used again later.

Let {Bi,...,Bi} C B be a generating set for B, let A\; := a(B;) for 1 <
j <k, and define

k
Q:=> (B Bj—\;) €B.

Jj=

=

We then have

J=1
k k
= (B = 2)) a(B;=X) =3 la(B; - X)) =0.

If Q' were to exist, Lemma would imply that Q~! € B and therefore,

l=a(l)=a(QQ ") =a(@a(@")

which would contradict the assertion that « (Q) = 0. Thus we conclude @ is
not invertible and therefore there exists v € H \ {0} so that Qv = 0. Since
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k
0=(0,v) = (Qu,v) :Z Bj — \j)v,v)
k " k
:Z«Bj —Aj) v, (B Z Dol

it follows that Bjv = A;v for all j. As the general element B € B may be written
as, B= P (B,.. Bk) for some polynomlaﬂ, P, it follows that

Bv=P(A\,...,x)v=a(P(Bi,...,Bg))v=a(B)v for all B € B.
[

Corollary 6.10. If a € B, then o : B — C is a x-homomorphism, i.e. o (B*) =
a(B) for all B € B.

Proof. We choose a unit vector v € H so that Bv = a (B)wv for all B € B
in which case we have

a(B) = (Bv,v) ¥ B € B. (6.3)

It then follows from this equation that

a(B*) = (B*v,v) = (v, Bv) = (Bv,v) = a(B).
n

Proposition 6.11. If X is a finite set and A is a sub-algebra of C (X) that
separates points and contains 1, then A = C(X). [We do not need to assume
that A is closed under conjugation, this comes for free in this finite dimensional
settingl.]

Proof. By assumption for each z,y € X there exists f € A so that f (x) #
f(y). We then let

1
fy=—F=f—FwleA
BaFIoEyIn R
where now f, (z) =1 and f, (y) = 0. Thus it follows that
b= [ fse A
y#z

where §, (y) = 1,=, for all y € X. As {6, },x is a basis for C'(X), the proof
is complete. [

2 If B were non-commutative, we would have to take P to be a non-commutative

polynomial.
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Theorem 6.12. If B is a unital commutative C*-subalgebra of End (H) , then
the Gelfand map,

BsA—AecC (B)
is an isometric C*-isomorphism.

Proof. Let A := {B :Be B} ccC ([;’) be the range of the Gelfand map.

Then A is a sub-algebra of C (B) which contains 1. If a1, ag are two points in
B such that B (a1) = B (as) for all B € B then

a1 (B) =B (a1) = B(az) =as(B) for all Be B

from which it follows that a; = as. This shows that A separates points and
hence by the finite set version of the Stone-Wierstrass theorem, see Proposition

6.1, A=C (B) and so the Gelfand map is surjective. Lastly

IB|| =r(B) =max{|\| : A € 0 (B)}
- max{\a(B)\ - ’B(a)’ Lae B} - HBH :
which shows the Gelfand map is isometric which of course implies that it is
injective. ]
The previous results illustrate well the key new result we are going to prove

in the next chapter for general commutative C*-algebras. The rest of this section
is optional at this point.

6.3 Toward’s Spectral Projections

Notation 6.13 For ecach a € B, let
H,:={ve H:Bv=«a(B)v for all B € B}.

Lemma 6.14. Let B be a commutative x-subalgebra of End (H) with unit. The
inner product space, H, admits the orthogonal direct sum decomposition;

H=¢o H,.

a€B

Proof. If o7 and «a are distinct elements of 5’, then there exists B € B so
that Ay := a1 (B) # az (B) =: Ao. Thus if v; € H,;, then

A1 (vi,v2) = (Bui, va) = (v1, B ) = (v1, o (B*) v2)
= <Ul, 5\202> = A (v1,v2)
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from which it follows that (vy,vs) = 0. This shows H,, L Ha,,.

Let Hy := ®,c3Hao and Hy := HOL. Since Hy is a B-invariant subset of H

it follows that H; is also B-invariant. Indeed,
<BH1,H0> = <H1,B*H0> C <H1,H0> = {O} for all B € B.

If H; # {0}, we may restrict B to H; and use Proposition to ﬁndE| a
simultaneous eigenvector v; € Hy \ {0} of B. Associated to this vector is the
character, «, of B such that Buv; = «(B)v; for all B € B. But this then leads
to the contradiction that v; € H, C Hy. [ ]

Notation 6.15 For each oo € B, let Py : H — H be orthogonal projection onto
H,.

For v € H, we have, with v, = P,v, that v =7} 3v, and so for B € B,

Bv = ZBUQ = Za(B)va = Za(B)PaU.
acB acB acB
Thus we have shown that
B=> a(B)P, forall BB (6.4)
a€eB
Corollary 6.16. For each o € B, P, € B.
Proof. Let Q. € B be the unique element such Qn = d,, i.e. o (Qa) =
la=ar. Then by Eq. (6.4)

Q(x: ZQI(QQ)P(X/:P(X

a’eB
]
Corollary 6.17. For f € C (B) , let
Y=Y fla) - P.eB.
aeB
Then C (B) > f — fY € B is the inverse to the Gelfand map.
Proof. We have
(f) =D fla)-Pa=> f(a) da=1
acB acB
]
3 Here is where we use the assumption that B is commutative.
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6.4 Appendix: Full Proof of Proposition 6.5

Proof of Proposition Suppose that B is generated by {A4; }le and let
a; = ca(A;) . Let us further choose an N € N sufficiently large so that

Nul ([Aj - A]N“) — Nul ([Aj - )\]N) V1<j<kand\eo(A).

Thus Nul ([Aj — )\]N) is the generalized A-eigenspace of A; for each j and
A € 0 (A;) and recall that

V= Dareo(4;) Nul ([Aj — )\]N)

for each j. We then let

o= 11 (‘_AA)N

A€o (A;)\{a;}

so that « (p; (4,)) = p; (a;) = 1, p; (A;) annihilates Nul ([Aj - )\]N> for ever
A€o (Aj)\{a;}, and

Ran [p; (4;)] = p; (A;) Nul ([A]- - aj]N) C Nul ([Aj - aj]N)

for each j. From this it follows that 1 = « (H?:l D (Aj)> and hence there exists

v # 0in V so that
k

[Iri4)v=0 (6.5)

j=1
As the {p; (Aj)};;l commute along with the above remarks we learn that v €

ﬁ?zl Nul ((Aj - aj)N> . We now have to modify v a bit to produce an non-
zero element of N¥_; Nul (4; — a;) which suffices to complete the proof of the
proposition.
Start by choosing 0 < ¢; < N so that
vy = (A1 —a1)" v e Nul(4; —ap) \ {0}

Applying (A; —al)El to Eq. (6.5) (while using p1 (A1)v1 = p1(a)vy = v1)
shows,

k
Hpj (Aj)v1 = vr. (6.6)
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Next we choose ¢5 so that
vy = (Ag — ag) vy € Nul (Ay — ap) \ {0}.

Applying (As — ag)[2 to Eq. (6.6) shows,
k
Hpj (Aj)va = vs. (6.7)
j=3

Let us note that Asvy = asve and
Al’Ug = A1 (AQ — ag)gz v = (A2 — a2)€2 A1’1}1 = aj (Ag — ag)e2 V1 = a1Vy
and so
k N
vy € Nul (Ag —az) NNul (41 —aq) N [ﬂj:3 Nul ([Aj = )} .
Again choosing 0 < ¢3 < N so that
vy = (Ag — a3)£3 vy € Nul (A3 — (13) \ {O} .

Applying (A3 — ag)f3 to Eq. shows,
k
Hpj (AJ) V3 = V3. (68)
j=4
Working as above it not follows that v # 0 and

vg € [M3_; Nul (4, —a;)] N [m§:4 Nul ([Aj - A]N)} .

Continuing this way inductively eventually produces 0 # v, €
ﬂ;?:l Nul (A] — aj) .

6.5 *Appendix: Why not characters for non-commutative

B

Question: why don’t we use characters when B is non-commutative?
Answer: they may vary well not exists. For example if B is all 2 x 2 matrices
and « is a character, then « ([A, B]) =0 for all A, B € B. When

_lad |00 ;101
B_[cd}’ A_[l()]’ andA—{OO}
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we find

| -b 0 , _|lcd—a
[A,B] = {a—db] and [A', B] = [0 . }
Taking b = 0 in the first case and ¢ = 0 in the second case we see that

span {[A, B] : A, B € B} contains A, A’, and then it also follows that it con-
tains

{C 0 } for all ¢ € C.
0—c

In other words, span {[A, B] : A, B € B} is precisely the set of trace free matri-
ces. Thus it follows that « (A) = 0 whenever tr A = 0. For a general matrix, A,
we then have A — 1 tr (A) I is trace free and therefore,

0:a<A—;tr(A)I) :a(A)—%tr(A).

Thus the only possible choice for o is o (4) = 1 tr (A) . However, this functional
is not multiplicative.

A point to keep in mind below. When B is a non-commutative Banach
algebra and if M C B is a proper two sided-ideal, then M can not contain any
element, b € B, which have either a right or a left inverse. Whereas when B is
commutative, this condition reduces to the statement that M can not contain
any invertible elements, i.e. B C S where S is the collections of non-invertible
elements. In particular if we are expecting to use characters to find the spectrum
of operators, b € B, as {a (b) : a runs through characters of B} we are going to
be sorely disappointed as we see even in the finite 2 X 2 matrix algebra.

As another such example, let S : £ — (2 be the shift operator and S* be
it’s adjoint;,

S(x1,22,...) = (0,21, 22,...), and S* (z1,22,...) = (T2, 23,...)
and suppose that « is a character on some algebra containing {S,S*}. Since

SS* =1 +# 5*S, it follows that 1 = o (I) = a (S) a (S*) even though neither S

nor S* are invertible.



7

Commutative Banach Algebras with Identity

Henceforth B will denote a unital commutative Banach algebra over C.

A good reference is Vol II of Dunford and Schwartz.) Recall from Definition

that a spec(B) = B is the set of characters, a : B — C, where a is a

character if it is, non-zero, linear, and multiplicative. [See Corollary for
more motivation for the terminology.]

7.1 General Commutative Banach Algebra Spectral
Properties

Lemma 7.1. If o € B = spec (B), then o (a) € o (a) for all a € B.

Proof. Let A = a(a) and b = a — Al so that a(b) = 0. If b~! existed in B
we would have
l=al)=a(®'b) =a( ') alb)
which would imply « (b) # 0. Thus b is not invertible and hence A = a (a) €
o(a). ]

Proposition 7.2 (Continuity of characters). Fvery character o of B is con-
tinuous and moreover ||af| < 1 with equality if |1|| = 1 which we always assume
here.

Proof. By Lemma[7.1] o (a) € o (a) for all a € B and therefore,
| (a)] <7 (a) <|lal| .
[

Definition 7.3 (Maximal Ideals). An ideal J C B is a mazimal ideal if
J # B and there is no proper ideal in B containing J.

Example 7.4.If o € B, then J, := Nul(a) is a maximal ideal. Indeed, it is
easily verified that is proper ideal. To see that it is maximal, suppose that
be B\ Jyand let A = a(b) so that a(b—A) =0, i.e. b— X € J,. This shows
that B = J, @ C1 and therefore .J, is maximal.

Notation 7.5 Let S := B\ B,,, be the singular elements of B. [Notice that
S is a closed subset of B.]

Lemma 7.6. If J is a proper ideal of B, then J C B \ Biny. Moreover, the
closure (J) of J is also a proper ideal of B. In particular if J C B is a mazimal
ideal, then J is necessarily closed.

Proof. If J is any ideal in B that contains an element, b, of B;,,, then J
contains b~'b = 1 and hence J = B. Thus if J ¢ B is any proper ideal then
J C B\Biny. As B\Bip, is a closed, J C B\ Bjn.,. Moreover if b = lim,, o b, € J
with b, € J and z € B, then zb = lim,,_,oc zb, € J as xb,, € J for all n. Lastly
if J is a maximal ideal, then J C J & B and hence by maximality of J we have
J=J. ]

Lemma 7.7. If B is a commutative Banach algebra with identity, then;

1. Every proper ideal Jy C B is contained in a (not necessarily unique) maxi-
mal ideal.

2. An element a € B is invertible iff a does not belong to any mazximal ideal.
In other words,

S := B\ Biny = U (mazimal ideals) . (7.1)
Proof. We take each item in turn.

1. Let F denote the collection of proper ideals of B which contain Jy. Order
F by set inclusion and notice that if {.J,} . 4 is a totally ordered subset of
F then J :=UgeaJq C S is a proper ideal (1 ¢ J, for all ) containing Jo,
i.e. J € F. So by Zorn’s Lemma, F contains a maximal element .J which is
the desired maximal ideal.

2. If a € S, then the ideal, (a), generated by a is a proper ideal for otherwise
1 € (a) and there would exists b € B such that ba = 1, i.e. a=! would exist.
By item 1. we can find a maximal ideal, .J, which contains (a) and hence a.
Conversely if @ is in some maximal ideal, J, then a~! can not exists since

otherwise 1 = a~ta € J. This verifies the identity in Eq. (7.1).

]

As is well known from basic algebra, the point of ideals are that they are

precisely the subspaces which are the possible null spaces of algebra isomor-
phisms.
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Exercise 7.1. Suppose B is a Banach algebra (not necessarily commutative)
and K C B is a closed proper two sided ideal in B. Show (items 1. and 3. are
the most important);

1. B/K is a Banach algebra.
2. The bijection of closed subspaces in the factor Theorem given by,

closed subspaces closed subspaces
{ ochontainingK}aNﬁﬁ(N)E{ of m(B/K) }’

restricts to a bijection of two sided closed ideals in B containing K to two
sided closed ideals in B/K.
3. If [[1]| 53 = 1, then H?T(].)HB/K =1.

Proposition 7.8. If J C B is a maximal ideal, then B = J®C1, where 1 = 13.

Proof. Let a € B and @ := 7 (a) € B/J and A € ¢ (@) and set b :=a — A
Then b = 7 (b) = @ — A is not invertible in B/J and therefore (b) is a proper
ideal in B/J. If b # 0, then 7! ((5)) would be a proper ideal in B which was
strictly bigger than J contradicting the maximality of J. Therefore we conclude
0 =b=n(b) = m(a—\) which implies a — A € J. Thus we have shown
a=AmodJ ie. B=J+C1. Since 1 ¢ J as J is a proper ideal the proof is
complete.

]

The next two result are optional at this point and the reader may safely
skip to Lemma [7.11]

Theorem 7.9 (Gelfand — Mazur). If A is a complex Banach algebra (A)
with unit which is a division algebrcﬂ then A is isomorphic to C. In more
detail we have A=C-14.

Proof. Let x € A and A € o (x). Then x — Al is not invertible. Thus
x — Al =0 so x = Al. Therefore every element of A is a complex multiple of 1,
iee. A=C-1. ]

Proposition 7.10 (Optional). If B is a commutative Banach algebra with
identity, then;

1. If {0} is the only proper ideal in B then B =C - 1.
2. If J is a maximal ideal in B then B/J = C-1p,; is a field.

Proof. 1. If a € B let (a) denote the ideal generated by a. If a # 0 we must
have (a) = B and in particular @ must be invertible. Moreover, because we are
working over C, B = C -1 by the Gelfand — Mazur Theorem

! Recall that A is a division algebra iff every non-zero element is invertible.
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2. Since the ideals of B/.J are in one to one correspondence with ideals J C B
such that J C J, it follows that J is a maximal ideal in B iff (0) is the only
proper ideal in B/J. The result now follows from item 1. [

Lemma 7.11. The map
B > a — Nul(a) € {mazimal ideals in B}

is a bijection. In particular, B # 0 because of Lemma .

Proof. If « is a character then Nul («) is a maximal ideal of B by Example
Conversely if J C B is a maximal ideal, then by Proposition[7.8] B = C-1&.J
and we may define a : B — C by

a(AMl+a)=AVAieCandacJ

It is now easily verified that o € B and clearly we have Nul (o) = J.
Finally if o, 3 € B and J = Nula = Nul 3, then for A € C and a € J we
must have,
a(Al4+a)=A=F(A1+a)

which shows (as B=C-1& J) that a = §. ]

Corollary 7.12. If B is a commutative Banach algebra with identity, then b €
S = B\ Biny iff 0 € o(b) iff there exists o € B such that a(b) = 0. More
generally,

U(a):{a(a):aeg}.

Proof. The first assertion follows from Lemmas [[7 and [Z111 It can also be
seen by Propositionbelow. For the second we have A € o (a) iffb=a—-\ € S
iff 0=« (b) = a(a) — X for some o € B. L]

Notation 7.13 Because of Lemma B is sometimes referred to as the
mazimal ideal space of B.

Let us recall Alaoglu’s Theorem 77.

Theorem 7.14 (Alaoglu’s Theorem). If X is a normed space the closed unit
ball,

Cri={feX":[fl <1} Cc X7,
is weak-x compact. [Recall that the weak-x topology is the smallest topology on
X* such that 7, = & : X* — C is continuous for all x € X, where & (£) = £ (x),

see Definition[A.18 ]

Corollary 7.15 (B is a compact Hausdorff space). B is a w* —closed subset
of the unit ball in B*. In particular, B is a compact Hausdorff space in the w*
— topology. [Here w* is short for weak-*.]
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Proof. Since {a € B* : a(ab) = a (a) a (b)} for a,b € B fixed and {a € B* :
a(1) = 1} are closed in the w*~topology,

B={aeB :a(1)=1}n (] {a€B :a(ab)=a(a)a(b)}

a,beB

is w* — closed — being the intersection of closed sets. Since B is a closed subset of
a compact Hausdorff space (namely the unit ball in B* with the w* — topology),
B is a compact Hausdorff space as well. [

Remark 7.16. If B is a commutative Banach algebra without identity and we
define a character as a continuous nonzero homomorphism « : B — C. Then
the preceding arguments shows that B C (unit ball of B*) but may not be closed

because 0 is a limit point of B. In this case B is locally compact.

We now recall and refine the definition of the Gelfand map given in Definition

Definition 7.17 (Gelfand Map). For a € B, let a € C (g> be the function
defined by @ (o) = a (a) for all a € B. The map

Bsa—acC (g)
is called the canonical mapping or Gelfand mapping of B into C (g)
Proposition 7.18. If B is a commutative Banach algebra with identity, then

1.7 is the constant function 1 in1 e C (B’) .

2. Fora € B, }
o(a) =Ran(a) = {a(a): a € B}

3. The spectral mapping Theorem[3.]3 is a consequence of the previous asser-
tion.
4. The spectral radius of a € B satisfies (compare with Exercise ,

r(a) = llall, <llall, r(a+b) <r(a)+r(b), andr(ab) <7 (a)r(b).
Proof. We take each item in turn.

1.1(a)=a(1)=1for all a € B, so 1 is the constant function 1 € C (B) .
2. This was proved in Corollary
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3. If p € C[2] is a polynomial, a € B, and a € B, then
p(a) (a) = a(p(a)) = p(a(a)) = pla(e)) = (pea) (a)
and therefore
o(p(a)) = Ran(p (a)) = Ran(p o ) = p(Ran (@) = p(o (a)).

4. This is an easy direct consequence of the spectral mapping theorem of item
3. Indeed we always know r (a) < ||a|| and

r(a) =sup{|A|: A€o (a)} = sup{\a(a)| T € B}
—sup {Ja(a)| : a € B = fall,

The remaining inequalities are now easily proved as follows;

r(ab) = [abl| = a5 <lal o] =r@r)
and similarly,
r(a+0b) = Ha/jr\bH = H&+ZA7H
< llall +|jp]_=r@-+r0).

]

For more on the general Gelfand-homomorphism theory, see the optional

Appendix below. For our immediate purposes we are going to now restrict
to the C*-algebra setting.

7.2 Commutative C*-algebras

For this section, B is a commutative C*—algebraﬂ with identity.

Lemma 7.19. If o € B, then a(b*) = a(b) for all b € B. Equivalently, the

Gelfand homomorphism is a x-homomorphism, i.e. b* =b for all b € B.
Proof. If b € B is decomposed as b = x + iy with x,y are Hermitian, then

a(b) = a(z) +ia(y)

2 Recall the C* — definition requires that [la*a| = ||a||® for all a € B, see Definition

5%
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80 7 Commutative Banach Algebras with Identity

where a (z) € o (z) and « (y) € o (y). By Lemma [4.5| we know that o (z) and
o (y) are contained in R and therefore,

a(b") = ale —iy) = a(2) - ia(y) = a ).
| |

Remark 7.20 (Second proof of Lemma . If « € B is Hermitian, then (by

Example [2.66) u; := e is unitary for all ¢ € R and so by Lemma
lut|| = 1 for all ¢ € R. Now for a € B, a (u;) = (@) and hence

e~ timlala)] — |gitala)| — la (ug)| < |l Juel| =1Vt € R.

This last inequality can only hold if Ima(a) = 0 and hence o(a) =
{a(a):aEB}CR.

Let us recall the Stone-Weierstrass theorem.

Theorem 7.21 (Complex Stone-Weierstrass Theorem). Let X be a lo-
cally compact Hausdorff space. Suppose A is a subalgebra of Cy (X, C) which is
closed in the uniform topology, separates points, and is closed under complex
conjugation. Then either A = Cy (X, C) (which happens if 1 €A) or

A=1I$ = {f € Cy(X,C) : f(zo) =0}
for some xy € X.

Theorem 7.22 (Commutative C*-algebra classification). If B is a com-
mutative C*-algebra with identity, then the Gelfand map,

Bab—=beC (1’5’) ,
is an isometric *x—isomorphism onto C (E) .

Proof. Since, for b € B,
Ran (l;) = {a(b) NS B} =0 (b)
and 7 (b) = ||b]| as b is normal (see Proposition [4.3)), it follows that
o] =r@® =10

This shows the Gelfand map is isometric and in particular injective. From this
we find that the range, B, of the Gelfand map is closed under uniform limits
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and moreover, B is an algebra closed under complex conjugation because the
Gelfand map is a *-homomorphism. Also note that 1 =1 € B and B separates
points. Indeed, if «, 8 € B are such that b(«) = b(8) for all b € B then
a(b) =p(b) for all b € B, i.e. iff a = 8. Given all of this, an application of the
Stone-Weierstrass theorem implies B = C (Z;’)

]

Corollary 7.23. A commutative C*-algebra with identity is isometrically iso-
morphic to the algebra of complex valued continuous functions on a compact
Hausdorff space.

Notation 7.24 If B is a unital commutative C*-algebra, let pp : C (3) - B

be the inverse of Gelfand isomorphism, B> A — AecC (l’;’) , in Theorem|7.22
That is pp (f) = A iff A= f, i.e. g (f) is the unique element of B such that

a(es (f) = f(a) forall o € B.

[We might also write fV for op (f) so that fV is the unique element of B such
that ()" = f)]

Theorem 7.25 (Spectral Theorem). Let H be a separable Hilbert space and
B be a unital C*-subalgebra of B (H) . Then there efm'sﬁ Ay ={1,2,...,N}NN
(for some N € NU{oo}), a probability measure u measure on 2 := An x B

equipped with the product o — algebra, and a unitary map U : L? (u) — H such
that

U*AU = My, on L?(u) for all A € B, (7.2)
where @ : 2 — B is the second factor projection map, i.e. 7 (j,a) = « for
(J,a) € £2.

Proof. Let pp : C (l;’) — B be the inverse to the Gelfand isomorphism

as in Notation Then by Theorem {4.16} there exists an N € NU{oc}, a
probability measure p on {2 as in the statement of the theorem, and a unitary
map U : L? (u) — H such that

Usop (f)U = Mpor ¥ f€C (3).

The result in Eq. || now follows by taking f = A while using 5 (/1) = A.
]

Corollary 7.26. If {E}zlil C B(H) is a collection of commuting normal op-
erators, then there exists a probability space (2,F,v), a unitary map, U :
L?(v) — H, and functions, {fl}ii1 C L* (v) such that U*T,U = My, for
all 1.

3 If there is a cyclic vector, v € H, for 3, then we can take N = 1.
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7.2.1 Spectral Theory of Compact Hausdorff Spaces

Exercise 7.2. If A is an n—dimensional commutative C*-algebra with identity
show that the spectrum of A consists of exactly n points (n < o0).

Notation 7.27 Forx € X (X is a compact Hausdorff space), let o, : C'(X) —
C be the evaluation map,

az (f) = f(z) forall f € C(X).

Theorem 7.28. If X is a compact Hausdorff space, then

—~—

C(X)=spec(C(X))={az:xz€ X}

and moreover, the map

P

X3z—a,€C(X) (7.3)

is a homeomorphism of compact Hausdorff spaces.

Proof. It is easily verified that « is a character with corresponding maximal
ideal being
T, =Nul(a,) ={feC(X): f(z)=0}.

To finish the proof it suffices to show that every maximal ideal of C (X) is of
the form Z, for some x € X.

Let Z C C (X) be a maximal ideal. If Z did not separate points there would
exist © # y in X such that f(x) = f(y) for all f € C(X). Since Z is an ideal
we could use Uryshon’s lemma to find ¢ € C (X) such that ¢ (x) = 1 while
¢ (y) = 0 and hence we learn that

fx) = (@) f(z) = (pf) (2) = (0f) (y) =¥ (y) f(y) =0

for all f € Z. Thus it follows that f € Z, NZ, and Z would not be maximal.
Thus we know that Z separates points and therefore by the Stone-Weierstrass
theorem we must have Z C Z, for some z € X. [ ]

Exercise 7.3. Prove the second assertion in Theorem [7.28| stating X > z —

ay € C(X) is a homeomorphism.

Exercise 7.4. If X and Y are compact Hausdorff spaces and ¢ : C'(X) —
C (Y) is a C*-isomorphism, show there exists a unique homeomorphism T :
Y — X such that ¢ = T*, where T* : C'(X) — C (Y) is defined by T*f = foT
for all f € C(X).

The remainder of this section is optional and has not been fully edited as of
yet.
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Notation 7.29 (Optional) Suppose that X is a compact Hausdorff space and
A = C(X,C) be the algebra of continuous function on X. To an set E C X, let

I(B):={f e A: flp =0}
be the closed ideal in A of functions vanishing on E. To any subset T' C A, let
Z(T) ={xeX:f(x)=0 forall f €T}

denote the subset of X consisting of the common zeros of functions from T.
When E = {z} with v € X, we will write mg := I ({z}).

Proposition 7.30 (Optional). Suppose that X is a compact Hausdorff space
and A := C(X,C). Then

1. For any subset E C X, Z(I(E)) = E.

2. Forany T C A, I(Z(T)) = (T) - the closed ideal in A generated by T.
(Items 1. and 2. implies that closed subsets E C X are in one to one
correspondence with closed ideals in A via E — I(E) and J — Z(J).)

3. For each x € X, my := I ({z}) is a mazimal (necessarily closed) ideal in
A.

4. Let m denote the collection of mazximal ideals in A, then the map ¢ : X — m
defined by ¥ () = my is bijective.

5. If we view m as a topological space by transferring the topology on X to m
using v, the closed sets in m consist precisely of the sets

Cyj:={mem:JCm}
where J is a closed ideal in A.

Proof. We take each item in turn.

1. Since Z(T) C X is closed for any T C A and E C Z(I(E)), E C Z(I(E)).
If z ¢ E, then by Uryhson’s lemma, there exists f € A such that f (z) # 0
while f|z =0, i.e. f € I(E). This shows z ¢ Z(I(F)) and we have proved
the first assertion.

2. Since I(E) is a closed ideal for any subset £ C X and (T') is easily seen to
be a subset of I(Z(T)), it follows that (T) C I(Z(T)). — the closed ideal
in A generated by T. Let Xy := X \ Z(T), a locally compact space. If
f e I(Z(T)) then f|x, € Co(Xo,C) and if f|x, = 0 then f = 0 since by
assumption f =0 on Z(T). So using this identification we have

(T) c I(Z(T)) C Cy (Xo,C) (7.4)

and in particular (T) is a closed ideal in Cy (X, C). Suppose there exists
x # y in Xg such that f (z) = f(y) for all f € (T). Let ¢ € Cy (Xp,C) be

chosen so that ¥ (z) = 1 while ¥(y) = 0, then for f € (T), ¥ f € (T) and so
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82 7 Commutative Banach Algebras with Identity
f@)=@f)(x)=(f)(0)=0

which shows f (z) = 0 for all f € T. But this is impossible because of the
definition of Xo = X \ Z(T). So the locally compact form of the Stone-
Weierstrass theorem is applicable and implies (T') = Cy (X0, C) . Hence by
Eq. (74), (T) = 1(Z(T)) = Co (X,,0).

3. Suppose x € X and f € A\ m, and let I be the closed ideal generated by
f and mg. It is easily checked that I separates points and Z(I) = () and
hence by the Stone-Weierstrass theorem I = A. This shows that m, is a
maximal ideal which is necessarily closed by the comments at the start of
the proof.

4. Clearly the map @ : X — m is injective. To prove surjectivity, suppose
m € m is a maximal ideal. Using the same sort of argument to in the proof
of item 2. above, it follows that m separates points. Since m is a closed
proper subalgebra of A, the Stone-Weierstrass theorem implies m = m,, for
some z € X.

5. For a closed subset EF C X,

Y(E)={m,em:zeE} ={mem:I(E)=I(E)Cm}.
Therefore the closed subsets of m are precisely sets of the form
Cyj={mem:JCm}

where J is a closed ideal in A.

7.3 Some More Spectral Theory

Proposition 7.31 (Continuous Functional Calculus II). Suppose that B

is a commutative unital C*-algebra generated by a = (ay,...,a,) € B". Let
ga=@1 X -+ X ap : B— C™ and o (a) C C™ be defined by

ga (@) = (a1 (a),...,an () = (a(a1),...,a(an)) (7.5)
and

o(a) = ga (B) = {a (a):ac€ B} (7.6)
be the image of ga. Then;

1. o (a) is compact and go : B — o (a) is a homeomorphism of compact Haus-
dorff spaces.
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2. There exists a C*-isomorphism, ¢, : C (o (a)) — B, uniquely determined
by
©va (zi) =a; forien]={1,2,...,n}. (7.7)
In the sequel we will denote wa (f) by f(a) for any f € C (o (a)).
3. If f € C(o(a)), then f(a) is the unique elemenﬁ of B such that

a(f (@) =alpa(f) = f(a(a)) ¥ aeB, where (7.8)
a(a):=ga(a) = (a(ar),...,ala,)),

i.e.
a(f(ar,...,an)) = f(alar),...,a(a,)) foralacB.  (7.9)
4. The spectral mapping theorem holds in the form, o (f (a)) = f (o (a)).

Proof. 1. First off g, is continuous because, by the definition of the weak*-
topology, each of the components, a;, of ga are continuous. Since the continuous

image of compact sets are compact, it follows that o (a) = ga (l’;’) I ga () =

ga (B) for some «, 8 € B, then since a and § are *-homomorphism it follows
that @ = 8 on the *x-algebra generated by a and then by continuity on all of .
Thus ga (@) = ga (8) implies & = B which means g, is injective and therefore
ga : B — o (a) is continuous bijection. Since B and o (a) are compact Hausdorff
spaces it follows automatically that g, has a continuous inverse and hence g,
is a homeomorphism.

2. and 3. Let pp : C (5’) — B be the inverse to the Gelfand isomor-

phism as in Notation and note that C(K) 3 f — foga € C(B) is
also a C*-isomorphism. Therefore ¢, : C (K) — B defined by the composition
isomorphism,
va (f) :=¢p(foga) forall feC(K),
is again a C*-isomorphism. Moreover, ¢, is uniquely determined by the equation
Pa (f) =wB(foga) =foga
which is equivalent to

a(f (@) =a(ea(f) =¢al(f)(a)=fogala)=f(a(a) VaceB.
Taking f (2) = z; in Eq. implies

4 This is the analogue of the statement for matrices that if a;v = Ajv, then

flar,...;an)v=Ff(A1,..., A\n) 0.

Also note that if f is a polynomial function as above then we would clearly have
Eq. (7.9) holding as « is a *-algebra homomorphism.
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a(z () = a(pa(z)) =z (a(a)) = a(a;) for all « € B
which proves Eq. (7.7), i.e. z; (a) = a;.
4. Item 4. follows directly from item 3.,
o(f(@) = {a(f@):aecB)={f(a@) acB}=/(@).
[
Notation 7.32 Let B be a C*-algebra with identity and a = (a1, ...,a,) € B™.

1. Let 8g = B\ Biny denote the non-invertible (singular) elements of B.
2. For A€ C™ let

bri=(a= A" (a=X) =3 (af = A;) (a5 = Ay).

j=1
Proposition 7.33. Continuing the notation and assumptions in Proposition
7.31), we have

o@ ={A=A...,\n) €C": b\ €S}.

Proof. If A = a(a) € o (a) for some o € B, then

a(by) =) la(a) - X =0 = br€S.

j=1

Conversely if A €C™ is chosen so that by € S, then there exists a € B such that
0=ar) = la(a) -\
j=1

For this o we have A = a/(a). |

Corollary 7.34. If B is a unital C*-algebra (not necessarily commutative) and
b € B is a Hermitian element, such that b= exists in B, then b=+ € C* (b,1).

Proof. Since b~ ! is still Hermitian and commutes with b, we may conclude
that A := C* (b,b71, 1) is a commutative C*-subalgebra of B with b=! € A.
By Corollary we may view b ail_(iﬁ’l to be continuous functions on the
compact Hausdorff space, Y = C* (b,b=1,1). As b= € C (Y), it follows that
Ran (b) is a compact subset R\ {0} and so by the Weierstrass approximation
theorem we may find p,, € C [z] such that

1

pn () — =

lim sup =0.

N0 zcRan(b)

Therefore =1 is the uniform limit of p, (b) € C*(b,1) C C(Y) and hence
b=teC*(b1). [
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Theorem 7.35 (04 (a) = og(a)). Suppose that B is a unital C*-algebra and
A C B is a unital C* —sub-algebra with no commutativity assumptions on A or
B. Then for every a € A, o4 (a) = o (a). In particular, for any a € B we have

0C*(a1) (a) =0p(a).

Proof. Recall that we always have,
op(a) Coa(a) Coce(an)(a). (7.10)

If A\ ¢ op(a), then a — XA € By, and therefore b := (a— )" (a— ) is a
Hermitian invertible element of 5. By Corollary b=teC*(b1) C C*(a,1)
and therefore

(a—XN""=b"1a-N e€C (a1),

ie. A € 0c(q1) (a). Thus we conclude that o5 (a)® C 0¢e(q1) (@) or equiva-
lently, 0¢+(q,1) (@) C o5 (a) which along with Eq. (7.10) completes the proof.
n

Corollary 7.36 (Positivity). Let a be a Hermitian element of a unital C*-
algebra, B, then the following are equivalent;

1. a = b*b for some normal| element b € B,

2. 0 (a) C [0,00),

3. a = b2 for a unique Hermitian element b € B with o (b) C [0, 00). [We will
denote this b by v/a.]

Proof. 1. = 2. If a = b*b with b normal. If we let By = C* (b,1) (a
commutative C*-algebra), then

o(a) =op, (a) = {a(a) fa € Bo} = {|a(b)\2 fa € l”;'o} C [0, 00).

2. = 3. This was proved in Corollary For completeness we repeat a
proof here. For existence let b = \/a := ¢, (\/) . For uniqueness suppose that c
is a Hermitian element of B such that a = ¢. Then working in By = C* (¢, 1) , we
have & = ¢* which implies |¢| = v/a@. Choose p,, € C [z] such that p, (z) = /z
uniformly for x € o (a) = Ran (@) . If we now let ¢, (z) = py, (2?) , then

max |q, (t) — |t|| = max |p, (tQ) — V12| = max ’pn () — \/:E|
t€o(c) teo(c) z€o(c)?
= me%)g) ’pn (z) — Vx| = ma(x) |pn (z) = Vz| = 0 as n — oo,
xco(c xco(a

i.e. g, (t) — |t| uniformly on ¢ € o (¢). Thus we may conclude,

5 The condition that b is normal may be omitted from this statement, see Lemma
when B = B (H) and Theorem for the general case.
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84 7 Commutative Banach Algebras with Identity
b=+a= lim p,(a) = lim p, (¢*) = lim g, (c) =|c|.
n—oo n—oo n—oo

If we further assume that o (¢) C [0, 00) we will know that |z| = 2 on o (¢) and
hence b = |¢| = ¢ and the uniqueness or b is proved.
3. = 1. This is obvious. ]

Definition 7.37. We say A € B(H) is non-negative (and write A > 0) if
(Av,v) > 0 for all v € H. [Recall from Lemma [3.27 that (Av,v) € R for all
v € H implies A = A*.] Moreover, if A,B € B(H) are self-adjoint operators
then we say A > B iff A— B > 0.

Lemma 7.38. Suppose that H is a separable Hilbert space and A € B (H) is a
self-adjoint operator, then the following are equivalent;

1.A>0

2.0 (A) C[0,00) and

3. A= B? for some B > 0.

4. A= B*B for some B € B(H).

Proof. (1) = (2). Proof 1. Suppose that A > 0. By Eq. (3.7) with 5 =0
and a > 0,

(A + a) ¥ = [|A9]* + 2a(Ap, ¥) + o) |[4]* > |af® v

which implies by Lemma —a ¢ 0 (A). That is to say o (A) C [0, 00).

Proof 2. By the spectral theorem, we may assume there exists a finite
measure space (£2,F, ) and a bounded measurable function, f : 2 — R, such
that A= M; on H = L? () . The condition A > 0 is then equivalent to

OS(Ag,g>=/9f|9|2dqu€L2(u)~

Taking g = 1p for E € F shows [, flgdu > 0 and this is sufficient to show
f >0 a.e.. Since o (A) = essran,, (f) C [0, 00), the proof is complete.

(2) = (3). Take B = v/A which exists by the functional calculus or in the
model above, take B = M\/?

(3) = (4) is obvious and (4) = (1) is easy since
(Az,z) = || Bz||> > 0 for all z € H.
[

Exercise 7.5. Suppose that H is a separable Hilbert space and A € B (H) and
A > 0. Show A~! exists iff there exists ¢ > 0 so that A > I, i.e. iff

¢:= inf (Az,z)>0.

llzll=1
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Corollary 7.39 (Joint approximate eigensequences). Suppose H is a sep-
arable Hilbert space, {Tj}y=1 C B (H) are commuting normal random variables,

and B = C* ({Tj}?zl ,I) . Then X € o (T, ..., T,) iff there exists {xy} ., C H
such that ||zk|| = 1 and limg_oo (T — Aj) z = 0 for all j € [n].

Proof. Recall that A € o (T1,...,T,) iff by = 37, (T — Aj)" (T — N) is
not invertible. Since by > 0 the following statements are equivalent;

1. by is not invertible,
2. inf“a:H:l <b)\1‘,58> = 0,
3. there exists {z}},-, C H such that

n

0= kli_glo (bazg, 1) = kli_)noloz (T — Nj)* (T — Aj) wp, )

=1
= li T — ) x|
ki{&z;”( 5 — A @l
j:

4. there exists {@y},o; C H such that limy_,o (T} — \j) x = 0 for all j € [n].
]

Exercise 7.6. Let (£2,F, ) be a o — finite measure space, H = L* (2, F, ),
f; + 2 = C be bounded measurable functions for 1 < j < n, and let a; :=
My, € B(H). Letting a = (ay,...,a,) and f = (f1,..., fn) : 2 — C", show
o(a) = essran, (f).

Corollary 7.40 (Spectral Theorem III). If {T;}" | C B(H) is a collection
of commuting normal operators and K = o (T1,...,T,) C C*. Then there exits
N € NU{cc}, a probability measure, p on 2 := K x ([N]JNN), and a unitary
map, U : L? (u) — H so that U*T;U = M. o for j € [n], where zjom (A7) = \;
for all (A, i) € £2.

Proof. Let B := C*(T1,...,T,,I) and ¢ : C (o (T1,...,T,)) — B be the
unique C*-isomorphism such that ¢ (z;) = T; for i € [n] as developed in Propo-
sition [7.31] with a; = T;. The result now follows as a direct application of
Theorem E.T6]

]

Remark 7.41. For multiplicity theory for normal operators, see Conway [7], p.
293 where invariants are assigned to normal operators which can be used to
classify normal operators up to unitary equivalence. The finial theorem in The-
orem 10.21 on p. 301.Given a measurable set K C C™, let B<°(K) denote the
bounded complex valued Borel measurable functions on K and let B<(K,R)
denote the subspace of real valued functions. The following theorem is Theorem
VIIL.2 on p.225 of Reed and Simon.
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Theorem 7.42 (Functional Calculus). Let T = (T1,Ts,...,T,) €
B (H)" be a collection of commuting bounded normal operators on a separable
Hilbert space H. Then there exists a unique map ¢ : B> (o (T)) — B (H) such
that;

1. ¢ is a * — homomorphism, i.e. @ is linear, (fg) = p(f)p(g) and ¢(f) =
o(f)" for all f,9 € B* (o (T).

2 16(Dll,y < Il for all f € B (o (T).

3.0(01) = I and p(z;) = T; for all 1 < i < n where z; : C" —
C is projection onto the i — coordinate. Alternatively stated, if p €
Clz1,--y2n,21,- -5 20, then @ (p) = p (T, T*) where p (w) := p(w,w).

4. 1If fr, € B® (0 (T)) and f, — [ pointwise and boundedly, then ¢(f,) —
o(f) strongly.

Moreover this map has the following properties

5. If f >0 then ¢(f) > 0.

6. If T;h = A\;h fori=1,...,n then o(f)h = f (A) h where A = (A\1,..., \p).

7.1If B € B(H) and [B,T;] =0 fori =1,...,n then [B,o(f)] = 0 for all
f € B (a(T)).

Proof. Uniqueness. Suppose that ¢ : B> (¢ (T)) — B (H) is another map
satisfying (1) — (4). Let

H:={f € B* (a(T),C):¢(f) = ()}

Then H is a vector space of bounded complex valued functions which by prop-
erty 4. is closed under bounded convergence and by property 1. is closed under
conjugation. Moreover H contains

M={p:peClz1,...,2n,Z1,---,2n]}

and therefore also C'(o (A), C) because of the Stone — Weierstrass approxima-
tion theorem. Therefore it follows from Theorem that H = B> (o (A)), i.e.
Y=g

Existence. Let 2 = Ay x o(T), p, and U : L?(2,1) — H be as in
Corollary and let 7 : £2 — o (T) be projection onto the second factor so
that U*TU = M, For f € B* (¢ (T)), define

o(f) :=UMso U".

One easily verifies that ¢ satisfies items 1. — 4. Moreover we can easily verify
items 5-7 as well.

5.1f f >0, then f = (y/F)? and hence o(f) = ¢ (VF)* > 0.
6. If Th = Ah and g := U*h, then M,;g = A\g from which it follows that
(mj —A;)g = 0 p — a.e. which implies 7; = \; p — a.e. on {g # 0}. Thus it
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follows that fom = f(A\) u — a.e. on {g # 0} and this implies Mforg = f(\) g
which then implies,

e(f)h=@(f)Ug=UMong =Uf(A) g = f(A)h.

7. First recall from Theorem that we also know that [B,T;] = 0 for
1 <i < n and therefore [B,p (T, T*)] =0 for all p € C|z, z]. We now let

H:={f € B> (a(T),C): [B,¢(f)] = 0}.

Then H is a vector space closed under conjugation (again by Theorem [2.68)
and bounded convergence. Thus applying the multiplicative system Theorem
with M = {p (T, T*) : p € C|[z, 2]} completes the proof.

Example 7.43 ( [43, Exzample 10.8]). If B = (2 1) and A = <1 O), then
0 < A < B while

det (B> — 4%) :det<§g) =-1<0

and therefore A? £ B2

Theorem 7.44 (Léwner-Heinz inequality). Suppose that A and B are non-
negative bounded operators on a Hilbert space, H. If 0 < A < B, then 0 < A* <
B? for all z € [0,1].

The first result of this form was for matrices in Lowner [25] and then later
in the Hilbert space setting by Heinz [22]. The result as stated can be found
in Theorem 277 of Kato [24, Theorem 27]. For a short proof in the bounded
operator setting see [31] and also see [30, Theorem 18]. For a general result for
x > 1 when B is bounded above and below, see |12] and for a variant of this
theme see Ando and Hiai [2]. We will give a (new??) proof of Theorem ?? based
on complex interpolation. For the case of unbounded self-adjoint operators,
see |43, Proposition 10.14]. [A useful reference for the material here is [43], see
Chapter 10 in particular.]

Proof. First let us assume that B! exists as a bounded operator. (The
general case follows by perturbing B and by truncating A and then passing to
the limits. Below we will use the following are equivalent characterizations of
0<A<B;

1.0<A<B,
2. 0 < (Ap, ) < (Byp, By)
3. 0 < (AB~12p, B~120) < (p,¢) = |lol?,
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86 7 Commutative Banach Algebras with Identity

4. 0 < B Y2AB~Y2 <, and
5. HA%B_l/QQDH < |l for all ¢ wherein we have used

<AB*1/2¢,B*1/2¢> = <A%B*1/2¢,A%B*1/2¢>.
Given p € I and z € C let
Fz) = <sz/2Azsz/2<p,sp> _ <AZ/QB’Z/290,A5/2B’5/2¢>

so that f is a holomorphic function of which is bounded on the strip, 0 < Re z <
1. Moreover if z = iy with y € R then

f ()| = |(A/2Bv/2p, 422G )] < g
and for z =1 + 4y,

If (1 +iy)| = <A(1+iy>/2B—(1+iy)/2% A(l—z‘y)/2B—(1—w>/2(p>

_ <Aiy/2A1/2371/2qu/2%Afiy/2A1/2Bf1/2Biy/2(p>’
< ‘Aiy/2A1/QB—1/2B—iy/2<pH ) "A—iy/zAl/zB—l/zBiyﬂ@H

_ ‘A1/QB—1/2B—¢y/2(pH ] HA1/QB—1/2B¢y/2(pH

IN

N L

Therefore by Haddamard’s three line lemma we may conclude that |f (z)| <
llo||? for all 0 < Rez < 1. Taking z = 2 € [0, 1] then implies,

2
HAm/2B7I/2¢H _ <Az/2B71/2¢’A2/2371/2@> _ f(ZL') _ \f(x)| < ”@”2

for all ¢ € K and thus we may conclude that 0 < A* < B* for all z € [0,1]. m

7.4 Exercises: Spectral Theorem (Multiplication Form)

Exercise 7.7. Suppose that H is a separable Hilbert space and T € B (H) is
a normal operator. Show T'=T"* iff ¢ (T) C R.

Exercise 7.8. Suppose that H is a separable Hilbert space and T' € B (H) is
a normal operator. Show 7' is unitary iff o (T) C S :={A € C: |\ =1}.
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Exercise 7.9. Let A be a self-adjoint operator on an n—dimensional Hilbert
space (n < oo) V. Show that the general spectral theorem of Theorem
or Corollary [7-40] implies that A has an orthonormal basis of eigenvectors.
Hints: you may assume from the outset that V = L? (2, F, ) and A = My
where (£2,F,p) is a finite measure space such that dimL? (u) = n and
f: 2 — R is a bounded measurable function. [A preliminary result you might
want to first prove is; if dim L2 (2, F,u) = n, then there exists a partition
II={,...,02,} C F of 2 so that p(£2;) > 0 and (for any A € F) either
w(AN) =p(2;) or p(AnNgy)=0for1 <i<nl]

Exercise 7.10. Suppose that T = (Ty,Ts,...,T,) € B(H)" is a collection of
commuting bounded normal operators on a separable Hilbert space H. Show;
if D € B(H) is an operator such that [D,T;] = 0 for all 1 < j < n, then
[D, f (T)] = 0 for all bounded measurable functions, f : o (T) — C. [Note: by
T heoremlw, the assumption that [D, T;] = 0 automatically implies [D7 T;] =
0.]

Exercise 7.11. Suppose that h is an strictly increasing bounded continuous
positive function on R and T'f = hf for f € L? (R, m). Show if £ (z) > 0 and
2 € L? (m), then 2 is a cyclic vector for C* (T, I). Further find the unitary
map, U : L% (0 (T), ugn) — L? (m) in the spectral theorem and show by direct
computation that

U*TU = M, on L? (o (T) , ) -

Hint: use the multiplicative system theorem to show if (g, h"{2) = 0 for all
n € Ny, then g =0 a.e.

Exercise 7.12. Let H be a Hilbert space with O. N. basis e, eg,... . Let 0;
be a sequence of real numbers in (0,7/2). Let

T = (cos Gj)ezj + (Sinﬁj)ezj_1 Jj= L2,...
and
y; = —(cosbj)ea; + (sinbjlegj—1 j=1,2....
Let
M, = closedspan {z,}72, and
M; = closedspan {y;}52,.

1. Show that the closed span of M; and M; (i.e., the closure of M; + Ms) is
all of H.
2. Show that if ; = 1/ then the vector

oo
_ —1
2—2 J €2i-1
j=1

is not in My + Mo, so that My + My # H.
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Exercise 7.13. Define f on [0, 1] by

2 if z is rational
ro={

x if x is irrational °

Find the spectrum of My as an operator on L?(0,1).

Exercise 7.14. Let

oo

H=02)={a={a;}52__ :llall* == ) la;]> < oo}.

j=—o0

Define U : H — L?*(—m,7) by

(Ua)(&):\/% 3 anei.

n=—oo

It is well known that U is unitary (see Theorem ?7?). For f in ¢! (Z) define

o
(Cra)n =Y f(n—k)ax.
k=—oc0
1. Show that C'y is a bounded operator on H and that [|Cyl|,, < || f[]; -
2. Find C} explicitly and show that Cy is normal for any f in (7).

3. Show that UC;U ! is a multiplication operator.
4. Find the spectrum of C'¢, where

RN

0 otherwise

Exercise 7.15. Find a bounded self-adjoint operator, A, with both of the fol-
lowing properties:

1. A has no eigenvectors, and
2. 0(A) is set of Lebesgue measure zero in R.

Hint 1: Such an operator is said to have singular continuous spectrum.
Hint 2: Consider the Cantor set, see [40, Section 7.16.].






8

*Gelfand Theory Expanded

This chapter is highly optional and the material here will not be used later.

8.1 More on the Gelfand Map

Definition 8.1. Given a commutative Banach algebra (B) with identity we de-

fine;
1. The radical of B is the intersection of all the maximal ideals in B,
rad (B) = N{J : J is a mazimal ideal in B}.

[The radical of B is the intersection of closed ideals and therefore it is also a
closed ideal. Let us further note that a € rad (B) iff a(a) = 0 for all a € B.]
2. B is called semi-simpleif rad (B) = {0}. [In our finite dimensional exam-

ples in are semi-simple. ]
Theorem 8.2 (Gelfand). Let B be a unital commutative Banach algebra.
Then the canonical mapping, B > a — a € C (g), is a contractive homo-

morphism from B into C (g) with rad (B) being its null-space. In particular (/3
is injective iff rad (B) = {0} i.e. iff B is semi-simple.

Proof. Let a,b € B and a € B. Since
ab(a) = afab) = a(a) a (b) =@ (a) b (a),

Bsa—acC (E) is a homomorphism. Moreover,

@ ()| = |a(a)] < ||a|| for all a € B.

Hence ||a]|, < |la|l, i.e. canonical mapping is a contraction. Finally, @ = 0 iff
a(a) =0 for all « € B iff a is in every maximal ideal, i.e. iff a € rad (B). |

Proposition 8.3. If B is a commutative Banach algebra with identity, then
1. The radical of B is given by
rad (B) = {a € B:r(a) =0}.

2. The canonical map™: B — C (5’) is an isometry (i.e. ||a||,, = |la| for all

a € B) iff ||a2| = ||a|? for all a € B.
3. 1f ||a?|| = |a||® for all a € B, then B is semi-simple.

Proof. We prove each item in turn.

1. Using Theorem and item 2. of Proposition we have a € rad (B) iff
a=0iff ||al]| , =0iff r (a) = 0.

2. By item 4. of Proposition , |[a| ., = |a| iff 7 (a) = ||a||. If r (a) = ||a| for
all a € B then (by the spectral mapping Theorem @

la®[] = r(a®) = (@) = flall*.
Conversely if ||a?|| = lla||® for all a € B, then by induction, for all a € B we
also have
la®"|| = [la]*" <= [all = [|a*"||'/*" for all n € N.

The last equality along with Corollary gives,

on

12" =1 (a) YaeB.

lall = lim_[la

3. By item 2. the map a — a is isometric and hence its null-space, rad (B),
must be {0} . Alternatively, item 2. gives ||a|| = ||a|| ., = r () and therefore,

rad(B)={a€B:r(a) =0} ={a € B:|al]| =0} ={0}.
[

Remark 8.4. If B does not have a unit then a similar theory can be developed
in which B is locally compact.

For the rest of this section we will assume that B is a commutative unital
Banach algebra with an involution, (*) . The main goal of this section is to prove

Theorem [7.22| which asserts that the Gelfand map, B > b — beC (B) , is an

isometric isomorphism of C*-algebras.
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Definition 8.5. An element a is Hermitian if a = a*, strongly positive if
a = b*b for some b, positive if o (a) C [0,00) and real if o (a) C R is real.

Definition 8.6. An involution * in a Banach algebra B with unit

1. is real if o (a) C R when a = a*
2. is symmetric if 1 + a*a is invertible for all a € B. [This is a repeat of

Definition [2.75 ]

A Banach algebra B equipped with a (real) symmetric involution will be called
a (real) symmetric Banach algebra. [We will see that every C*-algebra with
unit is real, symmetric, and the notion of strongly positive and positivity agree.]

Ezample 8.7. Let H be a Hilbert space, then B = B (H) is a real and symmetric
Banach *-Algebra where A* is the adjoint of A for all A € B(H). Any C*-sub-
algebra of B (H) is also a real and symmetric Banach x-algebra, see Lemma

and the next proposition.
Proposition 8.8. Let B be a symmetric Banach algebra and a € B.

1. If a is Hermitian then a is real (o (a) C R if a = a*), i.e. B is real.
2. If a is strongly positive then a is positive, i.e. o (x*z) C [0,00) for all x € B.

Proof. We take each item in turn.
1. If a is Hermitian (a* = a) and A = a + i € C with  # 0, then
B a-N=(@-Bla)—i=a—i
where z := (a — 7' a) is still Hermitian. Since

(r—4)" (x —i) =2"r+ 1 and
(x—i)(z—4) =xz" +1
we discover that
(zz+1) " (z—9) (x—1i)=1and
(x—i)(z—i) (za* +1)"" = 1.
These equations shows = — ¢ has both a right and a left inverse, z — ¢ is
invertible and therefore so is a — A. This shows A € o (a) implies Im A = 0,
ie. o(a) CR.

2. Suppose that a is strongly positive, a = b*b. Then a* = b*b = a showing
that a is Hermitian and hence by (1) that o (a) C R. If @ > 0, then
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which is invertible showing o (b*b) C [0, 00).

]
Our first order of business towards proving this theorem is to give conditions
on (B, *) so that the Gelfand-map is a *-homomorphism.

Proposition 8.9. Let B be a commutative, unital, and x-algebra. The following
are equivalent:

1. B is symmetric, i.e. a*a + 1 is invertible for all a € B.
2. Every Hermitian element, a € B, is real, i.e. if a* = a, then o (a) C R.
3. If a € B then a(a*) = a(a) for all a € B. [Alternatively put the Gelfand

map, B>a —aeC (B) 18 a * — homomorphism of Banach algebras, i.e.

a* =a for all a € B.]
4. Bvery maximal ideal, J, of B is a x-ideal, i.e. if a € J then a* € J.

Proof. 1) = 2) This is Proposition
2) = 3) Let a € B,

1 1
b=Rea:= i(a—&—a*) and ¢c=Ima:= Z(a—a*).

Then b and ¢ are Hermitian and so by Proposition a(b) € o(b) C R and
a(c) € o(c) CR for all a € B. Since a = b+ ic it follows that

a(a®)=ab—ic)=a() —ia(c) = a(b) +ia(c) = a(a).

3) = 1). For any a € B and o € B, we now have,

a(a’a) = a(a”)a (a) = a(a)a(a) = |a(a) |

and therefore
a(l+a*a) =1+ |a(a)|* #0.

As this is true for all @ € B we conclude that 0 ¢ o (1+ a*a) by Proposition
B3] i.e. 1+ a*a is invertible.

3) = 4) Let J be a maximal ideal and let o € B be the unique character
such that Nul (o) = J, see Lemma Since a(a) = 0iff 0 = a (a) = a(a*)
and J = Nul (), it follows that a € J iff a* € J.

4) = 3) Given a € Band o € B, let b = a — a(a) € Nul(a) =: J. By
assumption we have a* — «a(a) = b* € J = Nul («) and therefore,

macro: svmonob.cls date/time: 13-Feb-2020/12:28



Theorem 8.10 (A Dense Range Condition). If B is a commutative Banach
* -algebra with unit which is symmetric (or equivalently real), then the image,

B:{Bec(é):beb’}, (8.1)
of the Gelfand map is dense in C (E) .

Proof. From Proposition the Gelfand map is a * — homomorphism
and therefore B is closed under conjugation Hence, by the Stone-Weierstrass
theorem it suffices to observe; 1) 1 =1 € B and 2) B separates points.
Indeed, if oy, ap € B such that a (c;) = @ (ag) for all @ € B then

a1 (a) =a(ar) =a(az) =az(a) VaebB,

ie. a1 = as.
[ |

Lemma 8.11 (An Isometry Condition). If B is a unital commutative *-
multiplicative Banach algebra [i.e. ||a*al| = ||a*|| ||a|| as in Definition ??], then
the Gelfand map is isometric, i.e.
lall = llallo = 7 (a) ¥V acB. (8.2)
In particular, B is semi-simple, i.e. rad (B) = {0} .
Proof. If b is Hermitian, then

18| = 16"l = [[6*|| []b]| = [|b])?

and by induction, Han | = ||b\|2n . It then follows from Corollary that

n 27n
r(b) = lim ‘zﬂ H A

n—oo
If a € B is now arbitrary, then a*a is Hermitian and therefore
r(a*a) = [la*all = [[a”[ fla] -
On the other hand by Proposition [8:3]

L If a € B, then cong (a) = a* € B.
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la* [l lall = r(a*a) <r(a®)r (a) <la*| (a)

from which it follows that r (a) > |la|| or ||a*|| = 0. (If ||a*|| = O then a* =0
and hence a = ¢ = 0 and we will have r (a) = ||a]|.) Since 7 (a) < ||la| by
Proposition we have now shown ||a|| = r (a).

For the semi—simplicity of B we have by Item 5 of Proposition that

rad (B) = {a€8:r(a):0}

while from Lemma [8.11) we know r (a) = ||a|| and thus rad (B) = {0}, i.e. B is
semi-simple. [ |

We are now going to apply the previous results when B is a C*-algebra. As
we have claimed in Remark 2.52] every C*-algebra can be viewed as a C*-sub-
algebra of B (H) for some Hilbert space H. This comment along with Lemma
then implies that every C*-algebra is symmetric whether it is commutative
or not. As we have not proved the claim in Remark for completeness we
will prove directly the symmetry condition for commutative C*-algebras.

Lemma 8.12 (Commutative C* — algebras are symmetric). A commu-
tative C*-algebra, B, with identity is symmetric. [This is equivalent to every
a € B being a x-homomorphism.]

Proof. By Proposition [8:9] to show B is symmetric it suffices to show B
is real, i.e. we must show o (a) C R if a € B is Hermitian. However, this has
already been done in Lemma Alternatively we may appeal to Lemma
which asserts that every a € B is a *-homomorphism. [

Remark 8.13. The Shirali-Ford Theorem asserts that a Banach algebra with in-
volution is symmetric iff it is real. We will prove a special case of this below
for commutative Banach algebras in Proposition In fact almost all of the
algebras we will consider here are going to be symmetric. [For example Lemma
shows every commutative C*-algebra is symmetric.] For some examples of
non-symmetric Banach algebras, see Tenna Nielsen Bachelor’s Thesis, “Hermi-
tian and Symmetric Banach Algebras” where it is shown that ¢! (F,,) is not a
Hermitian (hence not symmetric) Banach algebra if F,, is the free group on n
— generators with n > 2. The reader can also find a proof of the Shirali-Ford
Theorem stated on p. 20 of this reference, also see [3].

Theorem 8.14. If B is a commutative Banach * -algebra with unit which is
symmetric and =-multiplicative [i.e. ||a*al| = ||a*|| || as in Definition [2.47),
then the Gelfand map, B > b — beC (B) , s an isometric *—isomorphism

onto C (g) . In particular, it follows that B is a C*-algebra.
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Proof. By Proposition the Gelfand map,

Bab—ﬁyel’;’cC(B,C),

is a * — algebra homomorphism. Lemma [8.11] may be applied to show that

Gelfand map is an isometry which in turn implies that the image (l';’) of the

Gelfand map is complete and therefore closed. By Theorem [8.10 B is dense in

C (B) and therefore (being closed) is equal to C (l’;’) and the proof is complete.
]

8.2 Examples of spec (B)

Ezample 8.15. Letn € N,T € B(F"),and B= {p(T) : p € Clz]} . From Corol-
lary we know that o (T') = o (T) — the eigenvalues of T. Thus if a € B,
then a(T) = A € o(T) and hence a(p(T)) = p(a(T)) = p(A). Conversely
if \ € o(T) then T — X is not invertible and there exists a € B such that
a(T'—A) =0, ie o(T) =X and we denote this o by a. We have shown that
the map

c(T)3X—ayeB

~

gives a one to one correspondence between o (T) and B. In short spec (B) =
o(T).

Ezxample 8.16. Continuing the notation of the previous example,we have
rad (B) = Naeo(ry Nul (ax) = {p(T) : p (o (T)) = {0} }.

Thus if # (0 (1)) < n, it follows that pmin (2) := [[\co(r) (2 — A) is a polyno-
mial such that pmin (T) € rad (B) and in fact

rad (B) = {q(T) : ¢ € (pmin)} -
For example if T is nilpotent so that o (T') = {0} we have pmin (2) = 2z and so
rad (B) = {p(T) : p € F[z] with p(0) =0}.

On the other hand if T' € B (C") is normal (TT* = T*T), then ppiy (T) = 0
and we learn that
rad (B) = {0} .

Ezample 8.17. As another example, suppose that T' € B (F") is the block diag-
onal with blocks of the form A;I + N; where A\; € F and N; is nilpotent. Then

o (T) = {\;};_, and
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x>~

Pmin (NI + Nj) H (A = M) T+ Nj] =Ny - [T = M) T+ N
=1 1£j
= Nj lejl + g5 (Nj)].-

where ¢ (0) = 0 and ¢; # 0. Take N; to be the matrix of 1’s just above the
diagonal (Jordan canonical form) so that N;g; (N;) has no ones on the entries
just above the diagonal hence shown pmin (A\;I + N;) = ¢; N; + O (NjQ) = 0 for
all j. In this case rad (B) = (pmin (T')) # {0} .

Ezample 8.18 (Continuation of Example 77). Let us continue the notation
in Proposition Our goal is to work out B = spec(B) where B =

{p(z) :peClz]} “and A=C (51) . [Please note that B is not a C*-algebra as
it is not closed under the involution, f — f.] Here are the salient features.

1. By the maximum principle if p,, € C[z] and p,, — f on S!, then p, — F €
C (D) N H (D) on D. Thus to each f € B we have an uniquely determined
F; € C (D) N H (D) such that Ff|s: = f. Notice that Fp, = p for all
peClz].

2.1f f,g € B then FtF; = Ft4. In particular if f,g € B with fg = 1, then

F;Fy = 1. In particular, this shows if f € Bis invertible in B then Fy (A) # 0
for all z € D.

. Similarly, if f € B and p € C[z], then pFy = Fps.

4. If X € D, we may define v (f) := Fy (\). Then by item 2 we will have that
o) € B

5. Conversely if o € B, then A = a/(z) € o5 (2) C D (as ||z[|, = 1). Iff A€ S,
then \ € o4 (z). While if |\| < 1, then we have

w

Since « is continuous it follows that in fact a (f) = Fy (A) for all f € B.
Thus we have shown. R B
6. There is a one to one correspondence between B and D given by

B>a—a(z)eD.
The inverse map is given by

Do X—a\(f):=Fr(N).

7. As a consequence, if f € B we have og(f) = {F;(\): A€ D} while
f) = {f N:Ae Sl} and in particular typically,

oa(f) Cos(f).
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8. Note if f € B, I think we should be able to prove that f (ei‘g) =30 cne™
and therefore

Fr(A) =Y caA" for [A < 1.

n=0

The point is that these assertions are true when f (z) = p(z) with p € C[z]
and then the general result follows by taking limits. Thus we learn more

explicitly that
o (f) = {ch)\” A < 1}
n=0

where one has to interpret Y- (¢, A" as f ()) for A € ST
Ezample 8.19. Let T = My, then spec (C* (T)) = o (T).

Ezample 8.20. Let B= (' (Z).If a € Band z := a (6;) € C then |z| < |0, =1
and |z7| = | (6_1)| < [|0-1]| = 1. This shows that z € S and for f € B we
have,

F=Yfm)é, = a(f)=>_ fm)a@)= > f(n)"

n=—oo
Conversely given z € S* we may define a, € B so that
a:(f)= ) fmz"VfeB

and so we have shown

B =spec(B) ={a.:z€5"}.
Consequently for f € B we have
o(f)= {az(f):zesl} =Ran (S' 3z = a.(f)).
From this we may conclude that f € B is invertible iff
S'sz—a.(f)= Z f(n)z"

is never zero. Since f~1f = §y we find that

Ty 1 B 1
L e v R Sha T TP
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which implies the result if f € ¢* (Z) such that a, (f) # 0 for all z € S! then
there exists a unique g € ¢! (Z) such that

for all z € S*.

1
&z(g)zm

Further notice that a, (f) = 0 for all z € S! implies (Fourier theory) that f =0
and this shows rad (B) = {0} so the Gelfand map

CZ)3 = (2= a.(f) € C (S

is an injective * — homomorphism with dense range.

8.3 Gelfand Theory Exercises

In each of the following two problems a commutative * algebra A with identity
is given. In each case

1. Find the spectrum of A.

2. Determine whether A is semi-simple or symmetric or a C*-algebra, or sev-
eral of these.

3. Determine whether the Gelfand map is one to one, or onto or both or neither
or has dense range.

Exercise 8.1. Let A be the x-algebra of 2 X 2 complex matrices of the form

ab . « f(ab
A= (Oa) but with A* := (0(1)'

The norm on A is still taken to be the operator norm, ||A]|, associated to the
usual inner product on C? with associated norm

|G - g a2

Exercise 8.2. A = (! (Z) where Z is the set of all integers. For f and g in A
define

(f9)(x) = > flz—n)g(n)

n=—oo

and f* (z) = f(—x). Show first that A is a commutative *-Banach algebra with
identity which is not a C*-algebra. You may cite any results from [41].
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9

* More C*-Algebras Properties

This is another optional chapter which contains some more interesting
C*-algebra properties along with some alternate proof of results already proved
above. Warning: this chapter has not been properly edited!!

Lemma 9.1. If p : A — B is a homomorphism between two unital C*-algebras,
then

1.0 (p(a)) Co(a) and r(p(a)) <r(a) for all a € A.

2. p is contractive, i.e. ||p||,, < 1.

3. If a € A is normal, then
f(p(a))=p(f(a)) forall f€C(o(a)).

Proof. 1. If a is invertible in A then p(a™') = p(a)”" so that p(a) is
invertible in B. From this it follows o (a)° C o (p(a))®, ie. o (p(a)) C o (a) and
this suffices to show r (p (a)) < r(a).

2. Using the C*-condition and its consequence, r (b) = ||b|| when b = b* in
Proposition we find

lp @I = |lp (@) p(@)]| = lIp (a"a)|
—r(p(a’a)) < r(a*a) = [la"a]| = [|a*.

3. Let Ag = C* (a,1) and By = C* (p(a), 1) and recall that for f € C (o (a))
that f(a) is the unique element of Ay such that a(f (a)) = f(«(a)) for all
a € Ay, see Eq. . Since o (p(a)) C o (a), f(p(a)) is well defined and of
course also uniquely determined by 8 (f (p(a))) = f (B (p(a))) for all 3 € By.

Since pg = pla, : Ao — Bo is a C*-homomorphism, if 8 € l’;’o, then o =
Bopo € JZO and hence

B (po (f (@) = (Bopo)(f(a))=f((Bopo)(a))=Ff(B(p(a))).
As this holds for all 8 € By if follows that
p(f(a)) =po(f(a))=f(po(a))=f(p(a)).
]

Lemma 9.2. If p : A — B is an injective unital *-homomorphism and a € A
is a normal element, then o (p(a)) =0 (a).

Proof. By Lemma we know that spec(p(a)) C spec(a). For
sake of contradiction, suppose that spec(p(a)) & spec(a). Let f(z) :=
dist (x,spec (p (a))) in which case f is non-zero continuous function on spec (a)
which vanishes on o (p (a)) . As we have already shown in Lemma p(f(a)) =
f(p(a)) =0. As p is injective this would lead to the contradiction that f (a) =0
which is a contradiction since f is not the zero function on o (a). ]

Theorem 9.3. If p: A — B is an injective unital x-homomorphism, then p is
isometric.

Proof. If a € A is self-adjoint, then by Lemma llp(a)|| = r(p(a)) =
r(a) = ||a|| . For general a € A,

lo (@)* = [lp (@) p(@)|| = llp(aa)l| = [la"al| = [la]*.

]
Next we give another (more elementary but trickier) proof of a special case

of Theorem [7.35]

Theorem 9.4. Suppose that B is a unital C*-algebra (not assumed to be com-
mutative) and A C B is a unital commutative C* —sub-algebra. Then for every
ac€ A o4(a)=0p(a).

Proof. Since it is easier to find an inverse if we are allowed to look for this
inverse in B rather than just in A, it follows that if a € A is invertible in A
then it is invertible in B. The contrapositive is that if a is not invertible in B
then it is not invertible in A which directly shows that o (a) C o4 (a) for all
a € A. To prove the converse inclusion it suffices to show o5 (a)® C 04 (a)°
which amounts to showing if @ € A has in inverse in B then a has an inverse in
A.

So suppose that a € A has an inverse in B. Then a* € A also has an inverse
in B and hence b = a*a € A has an inverse in B. As we have now seen we also
know

op(a*a) Coa(a*a) = {a(a*a) o€ j} = {|a(a)\2 o€ JZ}

So we may conclude that
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op(a*a) C o4 (a*a) C[0,]a”al]

and a*a is invertible in B we know that 0 ¢ o (a*a) . Since o (a*a) is compact
there exists 6 > 0 such that

op(a*a) Coy(a*a) C 4, |la*all].

We now work as in Proposition Let A:= (6 + ||a*al]|) /2 so that

" N [ et
oa(a*a—X) Co,]a a]—)\—{ 2,2},

a*a — \ c _ii
TANT AN

“*“A_)‘ H < % =: 7 < 1 and therefore

a*a — A\ !
(1 + \ ) exists in A.

A > {/2 and

From this it follows

From this we conclude that

/\<1+aa_)\>—/\a*a

A

is invertible in A and so is a*a. Finally this implies that a=! = (a*a)f1 a* exists
in A and the proof is complete. ]

Lemma 9.5. Suppose a is a self-adoint element of a unital C*— algebra B (not
assumed to be commutative. Then the following two statements hold;

1. If o (a) C [0,00), then for allt > |la|, ||t — a] < t.
2. If there exists t > 0 such that ||t — a]| < t, then o (a) C [0, 00).

Proof. Let A:= C*(I,a). Since o (a) = 0.4 (a), by the continuous form of
the spectral theorem we may assume that a is a compactly supported function
on R. For the first item we know that 0 < a < ¢t and hence 0 <t —a < t
which implies ||t — a|| < ¢. For the second item, if ||t — a|| < ¢ then [t —a| < ¢
pointwise and therefore ¢ — @ < ¢t which implies a > 0. ]

Corollary 9.6. If a,b € B (unital C*-algebra) such that o (a) and o (b) are
contained in [0,00), then o (a + b) C [0, 00).

Page: 96 job: 241Functional_2020s

Proof. By Lemma[9.5] for s > ||a|| and ¢ > ||b|| we know that
ls—a| <sand ||t —0|] <t.
This inequalities along with the triangle inequality then implies,
[(t+5) = (a+b)| <[ls—all+[lt-bl <s+1
which, by Lemma again, shows o (a + b) C [0, 00). ]

Theorem 9.7. A is a unital algebra and a,b € A, then o (ab) \ {0} = o (ba) \
{0}. In fact, if 0 £ X & o (ab), then

_1 1 -1 \-1 . -1
x—/\—l-/\b()\ ab)” a= X [1+b(>\ ab)” " a

is the inverse to (A — ba) .

Proof. To motivate the formula for z, let us note that for |A| large,

D 1 R S
A~ ba) _/\—ba_l—)\—lba_nz::o)\ (ba)

o0 1 oo
=14 A0 (ba)" T =14 3 > AT (ab)"a

n=0 n=0
=1+ lb i A" (ab)" | a
)\ n=0
1 1 1
14 -b—— a=1+5b
DN T T pr

and so we expect that

a1 1
(A —ba) =5 {1+b/\_aba].

For the formal proof we need only shows (A —ba) = 1 = (A —ba)z. For
example,

o (A — ba) = AL [(A “ba) +b(A—ab) " a(h — ba)]
=\ [()\ —ba) +b(\—ab)~ (A — ab) a]
= A" [(A—ba) +ba] =1

and
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(A —ba)x = A1

—~

A — ba) [1+b(A—ab)*1a]

AL [(A —ba) + (A —ba)b (A — ab) " a]
-1 [(A —ba) +b(\— ab) (A — ab) ! a}
(X = ba) + ba] = 1.
| ]

Corollary 9.8. If a Banach algebra has unit 1, then 1 cannot be a commutator;
i.e., 1 # [z,y] for any z,y € B.

Proof. This is because xy and yx have the same spectrum except possibly
0 while if xy = 1 4+ yz we would have ¢ (zy) = 1+ o (yx). |

Theorem 9.9 (Positivity in a C*-algebra). Let a = a* in a unital C*-
algebra A. Then a is positive (i.e. a = b*b for some b € A) iff o (a) C [0,00).

Proof. We have see that if o (a) C [0, 00) then we a = (\/5)2 which shows
a is positive. So we now need to show that if a = b*b for somd!] b € A, then
o (a) C [0,00). To this end let g () = (—x) V0. We then hope to show g (a) =0
which would then imply that g|,) = 0 and hence o (a) C [0, c0).

To carry out the proof we consider ¢ = bg (a) so that

¢“c = g(a)b*bg (a) = g (a) ag (a) = —g (a)”.
Moreover if we write ¢ = x 4 iy with = and y being self-adjoint in 4, then
et oct = (z—iy) (z +iy) + (xz+iy) (z —iy) = 2 (2* + y*)

or equivalently,

cc*:2(x2+y2) 70*0:2(x2+y2)+g(a)3.

Since t — 2t? and ¢* are positive functions it follows that 222, 2y2, and ¢ (a)3
are self-adjoint with spectrum in [0, 00) and therefore by Corollary[9.6] o (cc*) C
[0,00). On the other hand o (¢*c) = o (—g (a)g) C (—00,0]. But an application
of Theorem with @ = ¢ and b = ¢*, show o (cc*) \ {0} = o(c*c) \ {0}
which along with the previous inclusions shows o (c*c¢) = {0} which implies
lel? = |lete|| = r (¢*¢) = 0. Therefore g3 (a) = 0 and as g > 0 on (—o0, 0) it
follows that o (a) C [0, 00). |

L If b is assumed to be normal, life is easier as we saw in Corollary
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Corollary 9.10 (Polar Decomposition). Suppose that x € B is an invertible
element of a unital C*-algebra. Then there exists a unique u € B and Hermitian
a € B with o (a) C [0,00) such that x = ua.

Proof. If such a decomposition exists we must have

¥ = au*ua = a®

and so a = vx*z. In order for this to make sense we are going to need to know
that o (z*z) C [0, 00). |

9.1 Alternate Proofs

The goal of this section is to give an elementary proof of Proposition ?7, i.e.
without the aid of the spectral theorem. We need to do some preparation first
which is of interest in its own right. The results in this section could be proved
using the spectral theorem as shown in Proposition 7?7 below.

Proposition 9.11. If A = A*, then o (A) C [_ 1A, . 1A, | and if A >0,

op?
then o (A) C [O, HA||OP} and moreover

H(A + A)_lH <AL for all A > 0. (9.1)
Proof. First proof. By the spectral theorem we may assume there exists

a probability space, (§2, F, ) and a bounded measurable function, f, on {2 so
that A = My acting on H = L? (). We then know A = A* iff f is real a.e. and

o (A) = essrany, (f) C [= |flloo s [1flloc] = [— Al - ||A||op} -
Moreover, A > 0 iff f9f|g|2du > 0 for all g € L? () and this then implies

by taking g = 14, that [, fladu > 0 for all A € F. This last assertion is
equivalent to f > 0 a.e. and hence

o (4) = o (My) € [0, [1f1c] = [0, 14],,]

Finally if A > 0, then f 4+ A > X a.e. and therefore

0< 1 < 1
— < - a.e.
“fEANT A
L. . -1 1 1
which implies H(A+ A) H = HmHOO <3
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Second proof. If A = A* and A = a + ib € C, then

I
= [(A=a) fI” = 2Re (A —a) f,ibf) + * | fII”
(A= a) fIP + 02 £ = 021 £
Hence if b # 0, then Ran (A — )) is closed and hence

Ran (A — A) = Nul (A — X)" = {0}

where the latter assertion follows from the inequality we have proved with A
replaced by A. Thus we see that A — X is a bijection with

< (Im\) ! < oo
op

Ja-n

So we have shown o (A) C R and this completes the proof that o (A) C
[ 1411, - 141, since (as always) o (4) < D (0,]14],,)-
If we further assume that A > 0 and A\ > 0, then we have
[(A+ ) fIF = | AF + A1
= [ AfI” +2Re (AfAf) + X[ £11”
> JASIP+ AP AIP = A2 (AP

The same argument as above now shows that (A + \)"" exists and Eq. (9.1)
holds. ]

Lemma 9.12. Suppose A € B(H) with A > 0 (this means A = A* and
(Az,z) >0 for allx € H), then
1.Nul(A) ={z € H: (z, Ax) = 0} .
2. Nul(A) = Nul(A?).
3.If A,B € B(H) are two positive operators then Nul(A + B) = Nul(4) N
Nul(B).

Proof. Items 2. and 3. are fairly easy and will be left to the reader.

To prove Item 1., it suffices to show {x € H : (z, Az) = 0} C Nul(A) since
the reverse inclusion is trivial. For sake of contradiction suppose there exists
x # 0 such that y = Az # 0 and (x, Az) = 0. Using = L y, we have for A € R
that

(x+Ay), Az + M\y)) = (z + Ay, y + \Ay)
= Mz, Ay) + A |y||* + 2 (Ay, )
=2X[|y[|* + A\ (Ay,y) .
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From this expression we easily deduce that
0<{(z+X\y),Ax+Ay)) <0

for all A < 0 sufficiently close to zero which is a contradiction. But this contra-
dicts the positivity of A. [
We can make item 1. of Lemma [9.12| more quantitative as follows.

Theorem 9.13. If A > 0 and A™! exists then there exists § > 0 so that A > 1.
Conwersely if A > 01 for some § > 0 then A™1 exists and HA’1||OP <5 L

Proof. First proof. By Propositionwe know that opg) (A) C [0,00)
and by Corollaryit follows that oc«(a,1) (A) = o) (A) C [0,00). Hence
we may apply Corollary (or Corollary ?? below) with B = C* (A,I) to
find Hence we may apply to find B € C* (A, I) so that B = B*, op) (B) =
oo (aq (B) C [0,00) and A = B2 Thus if A > 61, then |Bz|? = (Az,z) >
§||||? implies B~ exists in B (H) and 1B~ < % and therefore A~ exists
and

=) < 5

Conversely if A~! exists then B~ exists and there exists § > 0 so that || Bz >
§ ||lz||? for all z € H. As in the above argument, it now follows that A > 61.
Second proof. [This proof uses no C*-algebra technology.] Suppose that

A~ exists and let € := ||A_1H;p1 > 0. We then have
AT < [[ATH],, £ = I < (| AT, TAF], de.
[Afl = ellf|| forall f e H.
If A>0and f € H with ||f|| =1, then
0 <(A(f—=XAS), (f = MAf)) = (Af — MAPf, f — AAS)
= (Af, f) =2 [JAfII® + 3> (A°F, )
<(Af, f) — 22 + N2 ALL, -

Minimizing the right side of this inequality by taking A\ = &2/ ||A||§p shows

U

=:6>0.
= 3 3 14
1Al Al 1AM,

Conversely if A > §I, then A — 61 > 0 and (by Proposition [9.11)) it follows
that o (A — d8I) C [0,00), i.e. 0 (A) C [§,00). Hence 0 ¢ o (A), i.e. A™! exists.
Moreover,

SIFIP < (AL, £) < NAFIIFI = IAFIl > 8 1I£]
from which it follows that HA_1 Hop <§ 1 [ ]
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Lemma 9.14. If B is a C*-sub-algebra of B (H) with unit and B € B with
B >0, then (I + B)™' € B. Actually what is proved here is; if B € B (H) with
B >0, then (I+B)"' € C*(I,B).

Proof. Let Ay := I+ AB for all A > 0. As Ay > I we know that A;l exists

in B (H) by Theorem Moreover if 0 < A < \|B||;p1 , then
AP =D (-1)"A\"B"€B.
n=0

Suppose that we have shown that Ay € B for some A > 0. Then for € > 0 we
have
Axye = Ay +eB = Ay [I +cA]'B]

where A;lB € B. Thus if € HA;lBH < 1, then
oo

I +eA'B] T =3 (-1)" A" (BAY) " € B

n=0

and so A ! = [I + EAng]_l A;l € B. On the other hand, from Proposition

A e
1 —1
B _
( - A)

<\t (/\_1)71 =1forallA>0

a5 =+ amy =2

and so
€ HA;IBH <e|B]

and the previous construction works provided € < || B ||;p1 where the bound on
¢ is independent of A! Putting this all together if we fix n € N so that 1/n < &,
then we can show inductively that Ay, € B for k=1,2,... and hence 4; € B.
]

Corollary 9.15. Let B be a C*-sub-algebra of B (H) with identity and A € B
with A > 0. If A=" exists in B(H) then A=' € B. [In other words, if A € B
and A > 0, then invertibility of A in B (H) and in B are the same notions./

Proof. By Theorem if A~! exists there exists § > 0 so that A > §1.
We may replace A by 6 1A and henceforth assume that A > I. Then B :=
A—TeBand A=1+ B with B > 0. It now follows from Lemma that
Al=(I+B)'eB. "
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Proposition 9.16. Suppose that A is a self-adjoint operator on a Hilbert space,
H, such that A > €I for some € > 0. Then A™' exists and if M is chosen so
that eI < A< MI and A := (M +¢) /2, then

oo

1
71_ n
AT = Y e M- A

n=-—0

Proof. The key idea of the proof is to shift A by some A € R in such a way
that we make [|A — AI[|,, as small as possible. To this end let a := (M —¢) /2
and set A= (M +¢)/2=¢+a =M — a and note that

A=/\I+(A—/\):/\{I+1(A—A)]

where 1 1 1
- NI<Z(A-N<—(M-NI
SE-NT< T (A-X) < 5 (M-
and 1 )
Q o
—(e=A)=- d - (M-MX)=
5 (e T 2nd 5 )=
and hence 1
@ Q
— I<—-(A-)N< I.
e+t _)\( ) cta
From this we conclude that
1
H(AA) <% <1
A e+«
op
and hence I + + (A — A) is invertible and moreover,
1 = 1 =1
A"l =2 — (N -A)" = —— (M- A)".
Anzfo )\”( ) n;0 A”Jrl( )

Corollary 9.17. If T € B (H) is an invertible operator, then there exists \ €
(0,00) such that

— > 1 * N %k
lezw(MfTT) T (9.2)
n=-—0

and in particular T~ € C* (I, T) where C* (I,T) is the C*~algebra generated
by {I, T}, i.e. C*(1,T) is the smallest Banach sub-algebra of B (H) containing
{I,T,T%}.
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100 9 * More C*-Algebras Properties
Proof. Let € > 0 be defined so that HT‘1||OP = 1/2 je.

HT_1UH2 <& |? for all v € H.
Replacing v by T in this inequality and then multiplying by ¢ shows,
2 2 %
elloll” < |To]” = (T*Tv,v).

Hence A = T*T is a self-adjoint operator such such A > eI for some ¢ > 0,
hence by Proposition [0.16] there exists A > ¢ > 0 such that

— 1 — 1
-1 _ n o __ * n
ATt =3 it M= A)" = > it M =TT
n=—0 n=—0
Equation (9.2) follows from this equation and the observation that T—! =

ATLT™. n
As a consequence of Corollary if T'e B(H), then

OB(H) (T) = 0C+(1,T) (T)

9.2 The Spectral Theorem Again

In this section, let H be a complex Hilbert space. Our goal here is to give
another C*-algebra style proof of the spectral theorem.

9.2.1 First variant of the spectral theorem proof.

Theorem 9.18. Let H be a Hilbert space, B, be a commutative C*-subalgebra

of B(H) with identity, v € H \ {0}, and H, := Bz, Then there exists a
compact Hausdorff space, X, a Radon measure y on X, and a unitary map,
U: L?*(X,u) = Hy, and fa € L™ (X,p) such that U*AU = My, for all
AeB.

Proof. Let X := B = spec(B) and f4 := A € C (B) for all A € B. To

construct the measure, u, let A be the linear functional on C (B) defined by,
A (/1) = (Az,z) for all A € B.

If A > 0 then \/E e C (5’) and \/E = B for some B € B and moreover,
B = B* and B? = A since B% = B% = A. Therefore,
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A (4) = (B*2,2) = (Bx, Bx) = | Bal]

which shows A is a positive linear functional on C (l’;’) . An application of the

Riesz-Markov theorem (see [41, Theorem 3.14, p. 69]) there exists a unique
Radon measure such that A (f) = [, fdu for all f e C(X), ie.

(Az, ) :A(A) - /AduVAe B.
B
Let us further observe that
A~ 2 —_
/ ‘A‘ dy = /A*Adu = (A* Az, z) = || Az||?. (9.3)
B B

From this identity it follows that A=0 u—a.e. iff Az = 0. Thus we may define
a linear operator, Uy : C' (l”;') — H, C H by defining

UOA = Ax for all A € B.

This map is an isometry on the dense subspaceﬂ C(X), of L?(X,p) and
therefore extends uniquely to an isometry U : L?(X,u) — H,. As the
Bx = Ran (Up) C Ran (U), Bz is dense in H,, and Ran (U) is complete and
hence closed, we conclude that Ran (U) = H,. This shows U : L? (X, ) — H,
is unitary. Finally if A, B € B, then

U*AUB = U*ABxz = AB = AB = M B.

Since C (5’) is dense in L? (u) we may conclude that U*AU = M  and the

proof is complete.
]

Corollary 9.19. Let H be a separable Hilbert space and B be a commutative
C*-subalgebra of B (H). Then there exists a finite measure space (X,F,pu),
fa € L% () for all A € B, and a unitary map, U : L? (u) — H, such that
U*AU = My, for all A € B.

Proof. Follow the same proof strategy as in the proof of Corollary [7.40] with
Theorem playing the role of Theorem ?7?. [ |

2 Recall that C (X) is a dense subspace of L? (X, u) for an 1 < p < oo, see |41}

Theorem 3.14, p. 69].
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9.2.2 Second variant of the spectral theorem proof.

In this section we are going to give another variant of the proof of Corollary[9.19]
The key idea is to take B and embedded it in a larger (maximal) commutative
C*-subalgebra A of B (H) . We then show that A has cyclic vector and therefore
we will get the result of Corollary [9:19] by directly applying Theorem [9.18 with
B replaced by A as long as we choose = to be cyclic vector for A.

Notation 9.20 If S C B(H) then
S'"={AeB(H): AB=BAVYB e S}.

S’ is clearly a subalgebra of B (H) for any set S. S’ is called the commutator
algebra of S.

Remark 9.21. Recall from Proposition ?? that S’ is w.o.t. closed and hence also
s.0.t. and operator norm closed. It is of course easy to directly verify that S’
is closed under operator norm convergence. Indeed, if A, € S" and A € B (H)
such [|A — A,||,, — 0, then for any B € S,

[B,A] = lim [B,A,]=0foral Be S

n—oo

which shows A € §.
Also observe that if S is * — closed then so is S’. Indeed, if A € S’, then

[A*,B] = —[A,B*]* =0 for all B € S.

Definition 9.22. A maximal abelian algebra on H is a commutative subal-
gebra, A C B (H), which is not contained in any larger commutative subalgebra

of B(H).
Proposition 9.23. Let H be a Hilbert space and A be a sub-algebra of B (H) .
Then;

1. AC B(H) is a mazimal abelian subalgebra iff A’ = A.
2. If A is mazimal abelian then A is operator norm closed. [More generally A
is w.o.t. and s.o.t. closed.]

Proof. We consider each item separately.

1. Suppose A is a maximal abelian algebra and B € A’. Then the algebra
generated by A U {B} consisting of operators of the form

Ao+ A1B+ AyB* + -+ + A, B™ with 4; € A

is a commutative algebra containing A and therefore it is .A. Thus we have
shown A’ C A and as A is commutative we also have A C A’, i.e. A’ = A.
Conversely, if A is not maximal abelian then there exist a commutative
algebra, B C B(H), such that A G B. As B C A’ it follows that A G A'.
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9.2 The Spectral Theorem Again 101
2. This follows from item 1. and Remark [0.21]

Definition 9.24. A mazimal abelian self-adjoint (m.a.s.a.) algebra on
H is a commutative x-subalgebra, A C B(H), which is not contained in any
larger commutative x-subalgebra of B (H) .

Proposition 9.25. Let H be a Hilbert space and A be a *-subalgebra of B (H) .

1. A is a maximal abelian self-adjoint algebra iff A’ = A.
2. A m.a.s.a. algebra A is a C*-algebmﬂ

Proof. 1. If A’ = A, then A is maximal abelian by Proposition and in
particular A must be a m.a.s.a. Conversely if A is m.a.s.a. and B € A’, then
B* € A’ by Remark and hence

X::ReB:%(B—ﬁ-B*)GA/ and
Y::ImB:%(B—B*)EA’.
i

Since X and Y are self-adjoint, the algebras generated by AU{X} and AU{Y'}
are both commutative self-adjoint algebras containing A and hence must be A.
This shows that both X,Y € A and hence B = X +iY € A. Thus we have
shown A" C A and therefore A" = A as we always have A C A" when A is
commutative.

2. If A is m.a.s.a., then A = A’ is operator norm closed by Remark [0.21] and
is #-closed by definition, i.e. A is a C*-subalgebra of B (H). ]

Definition 9.26. Let (X, u) be a measure space. The multiplication alge-
bra (denoted by M(X,p)) of (X,u) is the algebra of operators on L*(X, )
consisting of all My, f € L*.

The next proposition is essentially a repeat of item 1. of Proposition 77
below.

Proposition 9.27. If (X, u) is a o—finite measure space, then M(X,u) is a
m.a.s.a. algebra.

Proof. Assume first 1 (X) < co. Write M = M(X, 1) and assume T' € M'.
Let g = T(1). If f € L* then TM1 = M;T1. Therefore T(f) = fg. Thus
Tf = Mgf for fin L>. The proof in the preceding example shows [|g|| ., < ||T]|.
Since M, is bounded the equation T' | L>® = M, | L>, already established,

3 Tt also a von Neumann algebra.
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extends by continuity to L?. Hence T € M and M is maximal abelian. Since
My = Mgz, M is self-adjoint.

In the general case, write X = U72, X, where the X; are disjoint subsets
of finite measure. If T is in M’ it commutes with M, X, and therefore leaves
invariant the subspace L?(X;) which we identify with {f € L*(X) : f =
0 off X;}. Apply the finite measure case and piece together the result to get
the general case. [

Definition 9.28. If A is a subalgebra of B(H) a vector x in H is called a
cyclicvector for A if Ax ={Ax: A€ A} is dense in H.

Lemma 9.29. Let A be any * subalgebra of B (H). Suppose K is a closed sub-
space of H and P is the projection on K. Then K is invariant under A iff
PeA.

Proof. (This result may be deduced rather quickly from Exercise Nev-
ertheless, we will give the proof here for completeness.)
(<) If Pe A and x € K, then

Ax = APr = PAxrc KV Ac A.

(=) If AK C K, then for any z € H, Px € K and so APz € K. Thus it
follows that APx = PAPx for all A € A and x € H, i.e. AP = PAP for all
A € A. Since A* € A for A € A we also have A*P = PA*P for all A € A.
Using these observations we find,

PA=P*A=(A"P)* = (PA*P)* = PAP = APV A € A,

ie. Pe A
Alternative proof. Let z,y € H and A € A, then using APx € K and
A*Py € K we find,

(APz,y) = (APx, Py) = (Px, A" Py)
= (z, A*Py) = (PAx,y) .

As z,y € H were arbitrary we have shown [A, P] =0 so that P € A’. ]

Lemma 9.30. If H is separable and A is a m.a.s.a. on H then A has a cyclic
vector.

Proof. For any = € H, let Ax be the closed subspace containing Az. Since
I € A, x € Az. Since Az is invariant under A, so is Az. If y L Az then
Ay L Ax since (Ay, Bx) = (y, A*Bzx) = 0. Let E = {z,} be an orthonormal
set such that Az, L Azg if o # . Such sets exist (e.g. singletons). Zorn’s
lemma gives us a maximal such set. For this E, H = closed span,{Az,} for
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otherwise we could adjoin to E any unit vector in (span{Az,})*. Now, since
H is separable, E is countable; E = {z1,22,...} put 2 =Y, 27 "x,.

Claim: z is a cyclic vector for A. To prove this recall from Lemma [9.29]
that the orthogonal projection operator, P,, from H onto Az, is in A" = A.
Therefore,

Az D AP,z = A2 "z, = Az, Vn € N

and hence o
H = closed span,{Az,} C A=.

Theorem 9.31. Let A be a m.a.s.a. on separable Hilbert space H. Then there

exists finite measure space (X, ) and a unitary operator U : H — L?(X, u)
such that UAU 1 = M(X, u).

Proof. Let z be a unit cyclic vector for A and then apply Theorem [9.18
with B replaced by A and z = z in order to find a Radon measure, y , on
x := A such that

UAU ' =M forall A€ A. (9.4)

Let N =UAU ! and let M = {My: f € L (X, )} be the multiplication
algebra of (X, ). Then

N' = [UAUTY) =N =UAU =N =UAU" =N
and N'C M by Eq. (9.4). Therefore, (using Proposition [9.27) we find
M=M cN =NcCM,

ie. M =N.
=

Remark 9.32. The compact Hausdorff space, X = spec (A) in the above proof
is rather pathological. It has the bizarre property that every element, f €
L> (X, u), has a continuous representative!

Theorem 9.33 (Spectral Theorem). Let {Ay}acr be a family of bounded
normal operators on a complex separable Hilbert space. Assume that the family
is a commuting set in the sense that:

AQAB = ABAQ Va,ﬁ

and
AaA;; = A;;Aa Va,

Then there exists a finite measure space (X, ) and a unitary operator U :
H — L*(X, ) and for each « there exists a function f, € L™ such that

UAanl = My, .
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Proof. Let Ay be the algebra generated by the {A,, A% }ocr. Then Ay is a
commutative x algebra. Order the set of all commutative self-adjoint algebras
containing Ag by inclusion. By Zorn’s lemma there exists a largest such algebra,
A. [Bruce does not see the need for the following argument as it seems to me that
clearly A is m.a.s.a. by construction. We assert that A = A’. Indeed if B € A’
then B* € A’ also because A is self-adjoint. Hence C := B + B* € A’. But
the algebra generated by A and C' is commutative and self-adjoint. Therefore
C € A. Similarly i(B — B*) € A. Hence B € A. So A’ = A. Therefore A is
maximal abelian and self-adjoint.]

Now by the Theorem [0.31] there exists a measure space (X, 1) with p (X) =
1 and a unitary operator, U : H — L*(X), such that UAU ! = M(X, ).
Therefore UA,U~! = My, for some f, € L. ]






10

*Projection Valued Measure Spectral Theorem

It is natural to put this material here but in fact I will likely be able to
avoid using projection valued measures in the remainder of these notes. So for
the time being you may consider this chapter optional as well. [This chapter
needs editing]]

Recall that if A is a n x n self-adjoint matrix, then one may express the
spectral theorem as,

A= AE),
Aeo(A)

where E} is orthogonal projection onto Nul (A — AI) for all A € o (A) . The goal
of this chapter is to rewrite the general spectral theorem in this same form. The
statement we are aiming for is if A € B (H) is self-adjoint, then there exists a
unique “projection valued measure,” E (-), on o (A) so that

A= / AE ().
o(A)

Clearly to make sense of this assertion we have to develop the notion of projec-
tion valued measures.

10.1 Projection valued measures

Definition 10.1. A sequence A,, of bounded operators on a Banach space B
converges strongly to a bounded operator A if A,x — Ax for each x € B.
A, converges weakly to A if (A,x,y)pxp — (Ax,y)pxp~ for all x € B,
y € B*. If B is a Hilbert space weak convergence is equivalently defined as
(Apz,y)y = (Az,y) y for all z,y € H.

Definition 10.2. If P and Q are two projections in H, then P is called or-
thogonal to @ if Ran(P) L Ran(Q).

Proposition 10.3. A bounded operator P with range M is the orthogonal pro-
jection onto M iff P2 = P and P* = P.

Proof. We already know that the orthogonal projection onto a closed sub-
space M has these properties. Suppose then that P2 = P and P* = P and

M = Ran (P). If x € M then 2 = Py for some y. Hence: Pz = P?y = Py = x.
So P|y = In. The subspace, M, is closed since, if ©,, € M and z, —
then Pr = lim Px,, = limx,, = z. Hence x € M. It remains to show that
Nul(P) = M*.
If x € M and Py = 0 then

(z,y) = (Pz,y) = (z, Py) =0
and therefore Nul (P) C M*. If y € M~ then

(z,Py) = (Pz,y) =0V ax € H

which implies Py =0, i.e. y € Nul (P). ]
Note: Henceforth projection means “orthogonal projection”.

Corollary 10.4. If Py, P, are two projections with ranges My, Mo, respectively,
then

J.MlJ_MQ impliesP1P2:P2P1 =0.
2. P1P2 =0 zmplles M1 1 Mg.
3. In case of 1. or 2., P, + Py is the projection onto span {My, Ms}.

[If either of the equivalent conditions in items 1. or 2. hold we say P is
orthogonal to Py and write Py L Ps.]

Proof. We will take each item in turn.

1. If My L My, then for any € H, Pix € My C My = Nul(P) and hence
P, Pyx = 0. Similarly one shows P; P, = 0.
2. f PP, =0and x € My, y € M, then
(,y) = (Piz, Pay) = (z, P1 Pay) =0,

which shows M7 L Ms.
3. If P1P2 = O, then

(PL+P)2 =P+ PP, + PP +P?=P + P,
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and moreover (P; + P2)* = P, + P5. Therefore by Proposition P =
P, + P; is the projection onto some closed subspace M. If x € M7, y € M
then

Plz+y)=Piz+ Pox+Piy+ Pby=Pia+ Py=x+y
and therefore M O My+Ms. If z € M, then z = Pz = Piz+Pyz € My+ M.
[

Proposition 10.5. If P, is a sequence of mutually orthogonal projections, then
strong limy, . ZZ=1 Py, exists and is the projection onto the closure of span
{Ran(P,) o2,

Proof. Let Q, = ZZ=1 Py. Then @Q,, is the projection on My + - -+ + M,
where M; = Ran(FP;) by Corollary and induction. The Proposition is now a
consequence of the Martingale Convergence Theorem of Exercise ??. For those
who did not do that exercise, I will complete the proof here.

As Q,, is orthogonal projection we know, for all # € H, that ||Q,z||2 < ||z|*.
This inequality is, by Pythagorean’s theorem, equivalent to

n 2 n n n
3P| = <2ka,zﬂ-x> =3 P
k=1 k=1 Jj=1 k=1

from which it follows that Y ;- | || Pex||? < |z]|%. But if n > m,

2
[ =

n

1(Qn — Qu)z|* = Z | Prz||> = 0 as m,n — oc.
k=m+1

Hence Qx := lim,,_,, @,z exists for all x € H. The operator @ is clearly a
bounded linear operator and ||Q] < 1. Since

(Q,y) = lim (Qnz,y) = lim (z,Qny) = (z,Qy) V 2,y € H,
Q* = Q. Using QnQn = Q if n = m, it follows that for any © € H,

Q%z = lim Q,,Qz = limlim Q,,Q,z = lim Q,,z = Qx,

i.e. Q2 = Q. Thus Q is the projection on some closed subspace M.

If £ € My, then Q,z = z for n 2 k and therefore Qx = x. This shows
M, € M and as k was arbitrary we may conclude N := span{M,} C M.
Finally, if z € N+, then L M,, for all n € N, i.e. Q,z = 0 for all n. Therefore
Qz = 0 and we have shown N+ C M~ which implies M C N. n
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Definition 10.6 (Projection valued measures). Let 2 be a set and let S
be a sub o-field of 2°. A projection valued measure on S is a function E(-)
from S to projections on a Hilbert space H such that

1. E(0) =0,
2. B(Q) =1,
3. E(ANB) = E(A)E(B) where A,B € S, and
4. if Ay, Ag, ... is a disjoint sequence in S, then

B(U;2,An) = > E(Ay) (strong sum). (10.1)
n=1
Remark 10.7. Ttems 1. and 3. of Definition imply; if AN B = () then E(A)

and F(B) are mutually orthogonal. Hence the strong sum in Eq. (10.1) con-
verges to a projection by Proposition [T0.5]

Remark 10.8. If E(-) a projection valued measure on a measurable space, (£2,S),
then for every xz,y € H, S B — (E(B)z,y) is a complex measure on S.

Notation 10.9 If E(-) a projection valued measure on a measurable space,
(£2,8), and v € H we let p, denote the positive measure on S defined by

Wy (B) :=(E (B)v,v) for all B€S.

Ezample 10.10. Suppose (£2,S) is a measure space, (Z, M, p) is a o — finite
measure space, and G : Z — (2 is a measurable function. Then one easily
checks F (A) := My, oc = M, € B(L*(X,p)) for all A € S defines a
projection valued measure.

G—1(a)

Ezample 10.11. Suppose that T = (11,7»,...,T,) are n — commuting normal
operators, 2 =0 (T), S =B (04, (T)), and for A € S, let E(A) :=14(T) :=
@1 (la). Then {E(A): A€ S} is a projection valued measure. We will see
shortly that in this case, if v € H and p, is the measure in Notation [I0.9] then
1y agrees with the measure used in Eq. (??) of Theorem ?7.

Definition 10.12. Let E(-) be a projection valued measure (£2,S). As usual if
f:02—Cisan S -simple function, then we define

fAE:=> AE(f =))
© AeC

where
E(f=N=E({we:flw=A)=E(({\).
[To simplify notation we will often write [ fdE for [, fdE.]
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As for any vector valued measure, the above integral is a B (H) — valued
linear transformation on the & — simple functions, see the proof of Proposition
[I:28 which goes through without any significant change. Let us summarize some
more properties of this integral.

Proposition 10.13 (Properties of f — [ fdE). The map
{S-simple functions} > f — / fdE € B(H)
Q

is a linear transformation. Moreover this integral satisfies the following identi-
ties;

/?dE = (/ fdE)*, (10.2)

[ roar - ( / de) ( / ng) , (103)
and for x,y € H,

<</Qf(w) dE (w)> a:,y> = /Qf(w)d<E (w)z,y) and (10.4

<(/ d dE) , ( / ng) y> — [ t9a(E()20). (105

In particular,

~—

H(/de)x 2 :/Q|f(W)|2duw (w) and (10.6)
H/de o < sup |f(w)]. (10.7)

Proof. We take the identities in turn. Equation (10.2)) is proved by;

(/de)*: (Z/\E(sz)>*:Z/\E(f:)\)

AeC AeC
=Y AE(f=X)=)_AE(f=)) :/de.
AeC AeC

For Eq. (10.3]) we first observe that

fg= Z offli_qlg—p = Z aBlif=a,g=p}

a,BeC a,BeC
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and hence,

[toaE= Y asE(f=ag=0)= 3 afE(f=a)Eg=7)

a,BeC a,BeC
=(§CaE(f=a)ﬂze;cﬂE(g=ﬁ) = </de) (/ng) :

For Eq. (10.4)) we have

<</Q fr <“’>> l‘y> = < (;C NE (f = A)) xy>

=) MES =)y

AeC
:/ fA(E()z,).
(9]

Equation ((10.5) now follows easily from what we have already proved, namely;

() o)) ) ()
() (-}
()

=/fgd<E<->m,y>.

Taking g = f and « = y in the above identity implies Eq. (10.6|) and Eq. (10.7))
casily follows since pg (22) = ||z|°.
[

Definition 10.14. If f is a bounded measurable function, let f, be a sequence
of simple measurable functions converging to f uniformly. Then by FEq.
of Proposition

H/fndE—/fde

Hence we may define [ fdE by, [ fdE = lim,_,« [ fndE (in operator norm
topology).

— 0 as m,n — oo.
op

The majority of the proof of the following corollary is straightforward and
will be left to the reader.
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Corollary 10.15. All of the properties of the integral in Proposition ex-
tend to the integral on bounded measurable functions in Definition|10.14 More-
over, if fn, — f boundedly then

/fndE—S>/de and n — oo.

Proof. We only verify the last assertion here. The key point is that for any

x € H we still have have
2
H(/de)x — [ 172 d

as it holds for simple functions by Proposition [10.13| and then for bounded
measurable functions by taking uniform limits. Thus if f,, — f boundedly we

() (1)

by DCT. n

2
:/|f—fn|2duz—>0asn—>oo

Remark 10.16 (Truncation). If B € S and f is a bounded measurable function
on {2, then

</de)E(B): </de> (/1BdE> :/1deE.

As usual we let
dE = dE = dE | E(B).
/Bf /ngf (/Qf ) (B)

Ezample 10.17 (Continuation of Example|10.1(}). Let us continue the setup in
Example [10.10} i.e. (£2,8) is a measure space, (Z, M, u) is a o — finite measure
space, G : Z — {2 is a measurable function, and

E(A) := M), oq = M € B(L?(Z,p)) forall A € S.

a1

In this case if f : 2 — C is a bounded measurable function then
/ fdE = Myoq.
2
Indeed, if f =14 for some A € S then

/ 14dE = E(A) = M ,0c
2
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and hence if f is an S — simple function,

/de =D AE(f=X=) M,

= Z AMy o6 ny = Myoc-

For general bounded & — measurable functions f, we may choose S — simple
functions, f,, so that f,, — f uniformly and therefore,

/de = lim /fndE = lim anog = MfoG
n— o0 n— oo
wherein we have used

1My,0c — Myogll,, < sup 1fn (G (2)) = F (G ()| < |lfn = fllo = 0 as n— oo

10.2 Spectral Resolutions

Definition 10.18 (Support). The support of a projection measure E on
(C™,B(C™)) is the set

supp (E) :={A € C": E(B()\¢)) #0 for alle > 0}.
Remark 10.19. Here are a few simple remarks about supp (E) .

1. C™ \ supp (F) is an open set and hence supp (E) is a closed set.
2. If K =supp (F) and f: C" — C is a bounded measurable function, then

f(2)dE (2) = / 1 (2) f (=) dE (2).
. .

This follows directly from Remark|10.16/and the observation that E (K) = I
so that and hence

L JE= ([Cnde>E(K)=/ande.

3.If A C C" is a Borel set and v € Ran E (A), then supp (1,) C A. Indeed
we have

fo (B) = (E (B)v,v) = (E(B) E(A)v,v)
=(E(BNA)v,v) =pu, (BNA).

Thus if A € C™ and € > 0 so that B (\,¢) N A = () we must have
po (B (A,€)) = po (B (A, 6) N A) = pio (0) = 0.
This shows that if A € A° then A € supp (u,)¢, i.e. supp () C A.
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Lemma 10.20 (Optional). Suppose that E is a compactly supported projec-
tion valued measure on (C™, B (C™)) and for 1 < j <mn,

T, ::/szdE(z)

where K = supp (E). Then supp (E) = o4y (T) where T = (T1,...,T),) .

Proof. First observe if A € C" and v € H, then

S = X0l =3 [ ey = Al (2
j=1 j=1vK

:/ |z — A dp, (z) . (10.8)
K

If we now assume A € supp (F) and € > 0, we can find v, € Ran E (B (), ¢))
such that ||ve|| = 1. Taking v = v, in Eq. (10.8) and making use of Item 3. in
Remark [10.19] we find,

B(X.e)

2 2
ST =Nl = [ o= A d, (@)
j=1

<ol =

and as ¢ > 0 was arbitrary we have shown A € o4, (T). Conversely if A ¢
supp (E) there exists € > 0 so that E (B (\,e)) = 0 and hence for any v € H
we also have p, (B (A, e)) = 0. Using this remark back in Eq. (10.8) shows,

SO - M) ol = / 12— A dpsy (2) > € |Jo]?
= K\B(\e)

and hence A ¢ o4, (T). ]

Definition 10.21 (Spectral resolution). Suppose that T = (T1,...,T,) is a
list of commuting normal operators in B (H). A spectral valued measure, E, on
(C™, B(C™)) is a spectral resolution for T provided E is compactly supported
and

T, = / z;dE (z) for1<j<n. (10.9)
Uap(T)

Theorem 10.22 (Spectral Resolution Theorem). If T = (Ty,...,T,) is
a list of commuting normal operators in B (H), then T has a unique spectral
resolution, namely E (B) = 15 (T) for all B € B(C™). Moreover, supp (E) =
oap (T).
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Proof. Uniqueness. Let E (-) be a spectral resolution of T and K :=
supp (E) U ggy (T) . For any bounded measurable function, f, on K let

v(f)i= [ fae.

It is now easily verified that v is a * — homomorphism satisfying the hypothesis
of satisfying the same properties as ¢ in Theorem and hence we in fact
must have ¥ (f) = ¢ (flaap(T)) by the same uniqueness proof used there.
Existence. Let E (B) = 1png,, (1) (T) for all B € B(C") in which case
supp (E (+)) C 04p (T). Moreover, by the spectral Corollary we may find a
finite measure space (X, F, ) and a measurable functions 7 : X — 0, (T) C
C™ such that T; = UM,,U* for some unitary map, U : L? (1) — H. With
this notation we have E (B) = UM ,0-U*. If f : 04, (T) — C is a bounded

measurable function and E (A) := M ,or, it is easy to verify that

/ fdE =U / fdE
Uap(T) O'ap(T)

From Example [10.17] we know that

/ fdE = Mjo,
Tap(T)

U-.

and therefore,
/ fAdE =UMo:U" = f(T).
Tap(T)

Taking f (z) = z; then shows that E is a spectral resolution of T. ]

Corollary 10.23. Let T = (T1,...,T,)be a list of commuting normal opera-
tors in B (H) and E (-) be the corresponding spectral resolution. If D € B (H)
satisfies [Tj, D] =0 for 1 < j <m, then [E(B),D] =0 for all B € B (04, (T)).
In other words, E(B) € C (I, T)" — the double commutant of C' (I, T).

Proof. This follows directly from item 7. of Theorem [7.42] and the fact that
E(B) =7 (1p) for all B € B(04,(T)). |

Corollary 10.24. If A is a bounded normal operator on H with spectral reso-
lution E(-) then support E = o(A).

Proof. From the construction of F, we see that the support of F is the
essential range of f. But essential range of f = o(My) = o(A) since unitary
equivalences preserve spectrum. |
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Lemma 10.25. For any bounded operator A,
o(A*) =conj(o(A))={z:2€0(A)}.
Furthermore, if A is invertible, then (A=) = o(A)~L.
The proof follows easily from the definitions of o(A4), A* and A~1.
Proposition 10.26. If A = A* then o (A) C R and if U is unitary then
o(U)cS':={zeC:|z|=1}.

Proof. The first assertion easily follows from Lemma[I0.25] For the second,
since |U]| =1 we know o(U) C{z:|2| <1}.If0 < |2] < 1 and 2z € o(U) then

zrteoU ) =0U*) Cc{z:|z| <1},

a contradiction. Finally, it is clear that 0 ¢ o(U). Alternatively just notice that
U is unitarily equivalent to M for some function f which is necessarily taking
values if S!. Indeed if f took values outside of S with positive measure it would
be easy to show M/ is not an isometry. [

Corollary 10.27 (Spectral theorem for a bounded Hermitian opera-
tor). If A is a bounded Hermitian operator on a separable Hilbert space H,
then there exists a unique projection—valued Borel measure E(-) on the line
with compact support such that

A:/Z)\dE(/\).

For all real Borel sets B, E(B) C {A}".
Proof. o(A) C (—o0,00) by the proposition. Apply Corollary ]

Corollary 10.28 (Spectral theorem for a unitary operator). If U is
a unitary operator on a separable Hilbert space, then there exists a unique
projection—valued Borel measure E(-) on [0,27) such that

2
U= / edE(9),
0

and E(B) C {U}" for all Borel sets B.

Proof. The same as for Corollary if we map [0,27) onto {z : |z] = 1}
with 6 — e, ]
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10.3 Spectral Types

Definition 10.29 (Atoms). Suppose that E is a projection valued measure on
a measurable space, (2,S). We say A € S is an atom of E provided E (A) # 0
and either E (AN B) = E(A) or 0 for every B € S.

Exercise 10.1. Suppose that F is a projection valued measure on a measurable
space, (R™,B = Bgn) for some n € N. If B € B is an atom of E, then there
exists a unique point A € B such that E (B) = E ({\}).

Definition 10.30 (Point spectrum). If T = (T1,...,T},) be a list of bounded
operators and A € C", let

Nul(T — A) == "y Nul (T — \;)

and let
op(T) :={A e C":Nul(T - \) # {0}}.

In other words, A € o, (T) iff there exists v # 0 so that Tjv = Ajv for all
1<j<n.

Theorem 10.31 (Joint eigen-vectors). Let T = (Ty,...,T,) be a list of
commuting normal operators in B (H) and E (-) be the corresponding spectral
resolution. Then for all A € C™ we have

Nul (T — ) = Ran E ({\}) (10.10)
and in particular A € o, (T) iff E({\}) # 0.

Proof. For A € C" and v € H we have

SN AP =30 [P o)
Jj=1 J=1 oap(T)

= D SRV e
oap(T) j=1
:/ 12— A dpy (2). (10.11)
oap(T)
Hence if v € Nul (T — \), then

0= [ le=MPdu(2)
Tap(T)

from which it follows that p, ({A\}) = 0. This then implies that
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[0l = o ({A}) = [ E({AD) v]* = v € Ran(E({A})).
[This is true even if v = 0.] Thus we have shown
Nul (T — \) C Ran E ({A}).
For any A, B € B (04, (T)) we have
sy (A) = (B(A) E(B)v,E(B)v) = (E(ANB)v,v) =, (BN A).

Therefore if follows from Eq. (10.11]) with v replaced by E (B)v that
S = A E Bl = [ 2= A d ().
j=1 B
In particular if B = {\}, this shows
3T =) E ()l = [l A ) =o.

Hence if v € Ran E' ({A}), then v € Nul (T—\) and the proof of Eq. (10.10) is
complete. [

Definition 10.32. Let A be any bounded operator. The set o,(A) of all eigen-
values of A is called the point spectrumof A. Let H, be the closed subspace
of H spanned by the eigenvectors of A. If H, = H then A is said to have pure
point spectrum.

Ezample 10.83. H = (2. If x = {a, }52, € (%, put

1 o0
Az = {an} .
n n=1

Then A is a bounded multiplication operator by a real function, and is hence
Hermitian.
o(A)=1{1,1/2,1/3,...,0}.
Each point is an eigenvalue, except 0. The eigenvector corresponding to 1/n is
xn = (0,0,...,1,0,...).
In this example, H, = H but 0,(A) # o(A) since 0 ¢ o,(A).

Remark 10.34. Every element © € H), is of the form, ¢ = Z;v:1
{acj};vzl is an orthogonal set of eigenvectors of A /[ N = oo allowed). As-

suming Ax; = A;jx; it then follows that

x; where
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N N
EB)z=Y E(B)z;=)» lp(X
and hence
N N
e (B) = (E(B)z,x) = <ZIB ()‘J)xj’m> = ZlB( ) Nl
j=1 =

which is to say
N
2
pa = |lz;l1° 6x,-
j=1

Definition 10.35. If H, = {0} then A is said to have purely continuous
spectrum.

Example 10.36. H = L?(0,1), A = M, 5. Then A has no eigenvalues, as we
have seen before. Hence o,(A) = (. Thus A has purely continuous spectrum.
Note that o(A4) = [2, 3].

Ezample 10.37. Let Q = rationals in [0, 1] with the counting measure. Let A =
M, 4o. Then
0(A) = essran(z + 2) = [2, 3].

But every rational number in [2, 3] is an eigenvalue of A because the function

1if T=r
f(x):{Oifx;ér, x € [0,1]

is an eigenfunction associated to the eigenvalue 2 4 r if r is a rational in [0, 1].
Since these functions form an Orthonormal basis of H we have H, = H. Thus
A has pure point spectrum in spite of the fact that o(A) = [2, 3], which is the
same spectrum as in Example

Exercise 10.2. Suppose that p is a measure on (R, B) such that B € B is a
finite atom, see Definition Show there exists a unique point A € B such
that p ({A\}) = p(B). [This exercise easily extends to the case of measure on
(R™, Bgn) as well.]

Exercise 10.3 (Decomposition by spectral type). Let A be a bounded
Hermitian operator on a complex Hilbert space H. Suppose that A =
ffooo ME ()) is its spectral resolution. Denote by H,. the set of all vectors x

in H such that the measure B — pu, (B) := ||[E(B)z||? is absolutely continuous
with respect to Lebesgue measure.

1. Show that H,. is a closed subspace of H.
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2. Show that H,, 1 Hg,.
3. Define Hy. = (Hp+ Hye)t. (So we have the decomposition H = H,® H,. ®
H,..) Show that if x € Hs. and x # 0 then the measure

B~ iy (B) = (E(B)z, ) = || E (B) ||”

has no atoms and yet there exists a Borel set B of Lebesgue measure zero
such that E(B)z # 0.

4. Show that the decomposition of part c¢) reduces A. That is, AH; C H;, for
1 =D, ac, or Sc.

10.4 More Exercise

Exercise 10.4 (Behavior of the resolvent near an isolated eigenvalue).
We saw in the proof of Corollary [3.44] in Chapter [2] that if A is a bounded
operator on a complex Banach space and ) is not in o(A4) then (A —\)~! has
a power series expansion: (A — X\)™! = > (X — X\g)"B,, valid in some disk
A — Xo| < &, where each B,, is a bounded operator.

1. Suppose that A is the operator on the two dimensional Hilbert space C?
given by the two by two matrix

31
A= ( 5 3> |
As you (had better) know, o(A) = {3}. Show that the resolvent (4 — \)~!
has a Laurent expansion near A = 3 with a pole of order two. That is

(A=XN"T'=A=3)2B+(A=3)""B_i+ ) (A= A)"B,
n=0
which is valid in some punctured disk 0 < |\ — 3| < a. Find B_5 and B_;
and show that neither operator is zero.
2. Suppose now that A is a bounded self-adjoint operator on a complex, sep-
arable, Hilbert space H. Suppose that Ag is an isolated eigenvalue of A, by
which we mean that, for some ¢ > 0

a(A)N{AeC: A= Xo| <e} ={Xo}.

Prove that (A — X\)~! has a pole of order one around \g, in the sense that,
for some § > 0,

(A=N""=A=X)"'Bor+ > (A= 2X0)"Bn, 0< A= Xo| <3,
n=0
where the operators Bj, j = —1,0,1,... are bounded operators on H. Ex-
press B_1 in terms of the spectral resolution of A.
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Definition 10.38. A one parameter unitary group is a function U : R —
unitary operators on a Hilbert space H such that

Uit+s)=U{t)U(s) Vs, teR.

Exercise 10.5. Let A be a bounded Hermitian operator on a separable Hilbert
space H. Denote by E(-) its spectral resolution. Assume that A > 0 and write
P = E({0}) (which may or may not be the zero projection). Prove that for any
vector u in H

tA

lim e "“u = Pu.
t——+oo

Exercise 10.6. Let V be a unitary operator on a separable complex Hilbert
space H. Prove that there exists a one parameter group U (t) on H such that

() U(1) =V,
(b) U(+) is continuous in the operator norm.
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11

Unbounded Operator Introduction

Definition 11.1. If X and Y are Banach spaces and D is a subspace of X,
then a linear transformation T from D into Y is called a linear transformation
(or operator) from X toY with domain D(T) =D. If D(T) is dense in X, we
say T is said to be densely defined.

Notation 11.2 If S,T are two operators from X toY we say T is an exten-
ston of S if D(S) CD(T) and S =T on D(S). We abbreviate this by writing
S C T, see Remark[I1.8

Definition 11.3. If S,T : X — Y are linear operators we define S + T :
X =Y by setting D(S+T) :=D(S)ND(T) and for v € D(S+T) we let
S+T)x=8Sx+Tz. If T : X - Y and S :' Y — Z are linear operators we
define ST : X — Z by selting

D(ST):={zxeD(T): Tx€D(S)}
and for x € D(ST) we let (ST)x =S (Tx).

Proposition 11.4 (Properties of sums and products). Let A, B and C be
operators from H to H, then

1. A(BC)=(4B)C

2. (A+B)C =AC+ BC

3. AB+ AC C A (B + C) with equality if A is everywhere defined.

Proof. The only real issue to check in each of this assertions is that the
domains of the operators on both sides of the equations are the same because
it is easily checked that equality holds on the intersection of the domains of the
operators on each side of the equation.

1. We have
D(A(BC))={heD(BC): BCheD(A)}
={heD(C):CheD(B) and BCh e D(A)}
while

D(AB)C) ={h e D(C):CheD(AB)}
—{heD(C): CheD(B) and BCh € D(A)}.

2. For the second item;

D((A+B)C)={heD(C):CheD(A)ND(B)}
=C ' (D(A)ND(B))

while

D(AC + BC)=D(AC)ND(BC)
={heD(C):Che D(A)ND(B)}
=C'(D(A)ND(B)).
3. Lastly, we have h € D (AB + AC) =D (AB)ND (AC) iff h € D(B)ND (C)
and Bh,Ch € D (A) which implies h € D(B)ND(C) and (B+C)h €

D(A),ie. h € D(A(B+C)). If we further assume that A is everywhere
defined then

D(AB+ AC)=D(AB)ND(AC)=D(B)ND(C) and
DAMB+C)=D(B+C)=D(B)ND(C).
]

Remark 11.5. The inclusion in item 3. may be strict. For example, suppose
A=B=-C = - with common domains being C} (R) C L* (R) = H. Then
D(AB+ AC) = {h cCl(R):h' €C! (R)}
=CZ(R) S C: (R)=D(A(B+C)),

wherein we have used B + C = 0|1 ).

Exercise 11.1. Suppose that A, B : H — K are (unbounded) operators such
that; 1) A C B, 2) A is surjective, and 3) B is injective. Show A = B. [Hint:
this result would hold for arbitray functions A, B between two abstarct sets H
and K. This has nothing to do with linearity! In general if A C B and B is
injective, then A is injective and A=! € B~1.]

We note that X x Y is a Banach space in either of the equivalent norms;
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1@, y) | = llzll + lly]l or (11.1)

I G@,9) I = /el + llyll*. (11.2)

When H and K are Hilbert spaces, then H x K and K x H become Hilbert
spaces by defining

<($,y) ’ (x/7y/)>HxK = <1‘,JL‘/>H + <y7y,>K and (113)
(2), (0,2 ) geum = (@2 ) g + (00 )k (11.4)

respectively. The Hilbert norm associated to the inner-product in Eq. (11.1)) is
the norm in Eq. (11.2)).

Definition 11.6 (Graph of an operator). If T is an operator from X toY
with domain D, the graphof T is

I'T):={(z,Tz) : 2 € D(T)} C H x K.
Note that I'(T) is a subspace of X X Y.

The linearity of T assures that Z := I' (T') is a subspace of X x Y. Moreover
it is easy to check that nx (Z) = D(T) and #{y €Y : (z,y) € Z} = 1. The
next lemma shows that operators 7': X — Y are in one to one correspondence
with subspaces Z C X x Y such that Z passes the vertical line test, i.e.

#{yeY :(z,y)eZt=1forallz e nx (Z). (11.5)

Lemma 11.7 (Vertical line test at « = 0 suffices). If Z is a subspace of
X xY such that (0,y) € Z happens iff y = 0 (i.e. [{0} xY]NZ = {(0,0)}),
then Z is the graph of an operator T : X — Y. Explicitly, D (T) := nx (Z) and
for x € D(T) we let Tx = y where y € Y is uniquely determined by requiring
(z,y) € Z. Alternatively stated, T = my o (7rX|21) .

Proof. Suppose that Z is a subspace of X x Y satisfying the assumption of
the lemma. If z = (z,y) € Z is such that mx (2) = 2 = 0,then (by assumption)
y = 0 and hence z = 0. This shows that x|z : Z = 7x (Z) =D (T) is a linear
isomorphism and hence we may define T’ = 7y o (rx|;') : D (T) — Y. Clearly T
is linear and moreover for « € D (T) and Tz = y we have (x,y) € Z. Similarly,
if (z,y) € Z, then 7x (z,y) = 2 € D(T) and therefore mx|,' (z) = (z,y) and
so Tx = y. Thus we have shown I' (T') = Z.

[

Remark 11.8. The reader should verify for herself that if S and T are two op-
erators from X to Y, then S C T'iff I (S) Cc I' (T) .
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Definition 11.9 (Closed operators). We say an operator T : X — Y is
closed if I' (T) is a closed subspace of X x Y. Recall the closed graph theorem.

Remark 11.10. An operator T : X ~» Y is closed iff for all sequences {z,} C
D(T) such that 2, = = in X and Tz, — y in Y implies © € D(T) and
y = Tx. In other words, lim, o Tx, = T lim,_ . x, provided lim, o, x,
and lim,, ,o, Tz, exist. So T is closed if lim,, .o, Tz, = T lim,,_, x,, for all
{xn}fbozl C D (T) where both lim,, , z, and lim, . Tz, exists. [If T : X —
Y everywhere defined, then T is continuous iff lim, oo T2, = T lim, o zn
whenever lim,,_, o &, exists in X.]

Example 11.11. f T : X — Y is an everywhere defined bounded operator then
T is closed. Indeed, if (zy,yn) = (2, Txy,) € I'(T) and (x4, yn) — (x,y), then
y= lim y, = lim Tx, =T lim z, =Tx

n—o00 n—o0o n—o00
so that (z,y) € I' (T) . It turns out the converse is true as well provided X and
Y are Banach spaces.

Theorem 11.12 (Closed Graph Theorem). If X and Y are Banach spaces
and T : X — Y is closed and everywhere defined and linear operator, then
T is bounded. Moral: Unbounded closed operators from one Banach space to
another cannot be everywhere defined.

Exercise 11.2. Suppose that (X, p) is a measure space and that p (X) < occ.
Let T': L?(u) — L?(u) be a bounded operator. Suppose that range T is con-
tained in L5(u). Show that T is bounded as an operator from L?(u) into L°(p).
Hint: Use the closed graph theorem. (See [41, Chapter 5, poblem 16.]. The
solution to this problem depends on Theorem 5.10 of the same reference.)

Exercise 11.3. Suppose that X =Y = BC (R,C), the bounded continuous
functions on R equipped with the supremum norm. Let D (T) = BC! (R, C)
be those f € X which are differentiable with f' € X and for f € D(T), let
Tf = f'. Show T is a closed operator. [Hint: this is a standard undergraduate
theorem in diguise.)

Lemma 11.13. If X andY are Banach spaces, D (A) is a dense subspace of X
and A : D (A) =Y is a closed operator which is a bijection, then A1 : Y — X
is bounded.

Proof. By the closed graph theorem we need only show A~! has a closed
graph. To this end suppose that {y,} C Y is a sequence such that both

y= lim y, and z = lim A~ 1y,
n—oo n—oo

exist. Letting z, := A~ 'y, we have z, — 2 and Az, =y, — y. As Ais a
closed operator, it follows that € D(A) and Ar = y and so z = A~ !y and
hence A~! is a closed operator. ]
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Theorem 11.14. Let X and Y be Banach spaces and suppose that T : X —Y
is an unbounded densely defined operator. For x € D(T) let

[llp = Nl x + 1Ty -

Then T is closed iff (D (T),||-||;) is a Banach space.

Proof. Short proof. The linear transformation, D(T) 3 x — (z,Tx) €
I' (T) is as surjective isometry of normed spaces. Thus (D (T), ||-||;) will be a
Banach space iff I' (T") is a Banach space which happens iff I' (T') is closed in
X xY.

[

Definition 11.15 (Closable operators). An operator T : X — Y is closable
ifF(T) is the graph of an operator,see Lem. If T is closable, we let
T:X =Y be the unique operator such that I (T) = I' (T) .

Lemma 11.16. An operator T : X — Y is closable iff for every {z,} C D (T)
such that x, — 0 and y := lim,_ ..o Tx, exists Y we must have y = 0.

Proof. Let us first observe that (0,y) € I' (T) iff there exists {z,,} € D (T)
such that (z,,Tz,) — (0,y),ie. iff , € D(T), z,, - 0in X, and Tz,, — y.
Thus according to Lemma [11.7, T is closable iff (0,y) € T (T)) implies y = 0 iff
for every {z,} C D(T) such that z,, = 0 and y := lim,,_, o, Tz, exists ¥ we
must have y = 0. [

Ezxample 11.17. Let 1 <p < oo and T : LP (R) — C defined by D (T') = C. (R)
and T'f = f(0) is not closable. In fact, I' (T') = L? (R) x C. To see this is the
case let ¢y (x) be the tent function which is 0 on R\ [—%, +], ¢ (0) = 1, and
@k 1s linear on [—%,O} and [0, %] . Given f € LP (R), choose g, € C.(R) so
that g, — f in L? (R). Given an a € C, let

fn (@) = gn (2) + (@ — gn (0)) @k,
where k,, T oo sufficiently rapidly so that

(@ = gn (D[ llon, I, = 0 asn — oo

We then have f, — f in LP (R) while Tf, = f,(0) = a — a which shows
(f,a) € I'(T).

Proposition 11.18 (IBP — Closable). Suppose that 1 < p < oo and X =
Y =L (R",m). Let D (T) = C* (R") and for f € D(T), let

Tf= Z ao D f where a, € C™ (R™) and D* = 97" ... 95m.

|a|<m

Here o = (aq,...,00) €EN§ and || =oq +as+ -+ ay. ThenT : X — X is
closable.
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Proof Let ¢ = be the conjugate exponent to p. For f € LP and g € L4,
let (f, ¢ fRn x) dz. Then by integration by parts for f, € D (T),
(Tf.0)=(f TT(,D> where 7T = Z (_1)\04 DM,
|| <m

Thus if f,, € D(T) is such that f, — 0 and Tf,, — ¢ in LP, then for all
e D(T),

(9,¢) = lim (Tfu, ) = lim (fn,T"p) = (0,¢) = 0.

As D(T) = Cg° (R™) is dense in L9 (m), it follows that g = 0 a.e and hence T
is closable. ]

Remark 11.19.1f S : X — Y is a linear operator, then S is closable iff S has at
least one closed extension T'. Moreover, if S is closable and T is a close extension
of S, then S C T. Thus S is the smallest closed extension of S. Indeed, if S is
closable, then S C S and hence S has a closed extension. Conversely if T is a
closed extension of S then I'(S) C I'(T') with I (T') being closed and hence
I' (S) c I' (T') which implies I" (S) is necessarily the graph of a linear operator,
i.e. S is closable. Moreover we see that I" (S) = I' (S) C I' (T) and therefore
ScT.

Remark 11.20.1f S;T : X — Y are linear operators such that S C T and T is
closable, then S is closable and S C T. Indeed, S C T and so the result follows
directly from Remark [T1.19]

Alternatively: if z,, € D(S) C D(T) such that z,, — 0 and Sz, — vy,
then Tx,, = Sz, — y and since T is closable we must have y = 0 showing S is
closable. Moreover, if z € D (S) and Sz = y, there exists z, € D (S) C D (T)
such that z,, — = and Sz, — y. As Tz,, = Sz,, — y it follows that x € D (T)
and Tx = y as well showing S C T.

Definition 11.21 (Cores). A core for a closed operator T is a subspace Dy C
D (T) such that T = T|p,, i-e. T is the closure of its restriction to Dy.

Example 11.22.1f A : X — Y is a bounded everywhere defined operator and
Dy is a dense subspace of X, then Ay := Alp, is not closed but is closable and
Ap = A. So any dense subspace of X is a core for all bounded operators on X.

Notation 11.23 (Multiplication Operators) Given a measure space
(X, M, ) and a measurable function q : X — C, let My : L*(n) — L?*(p) de-
note the operation of multiplication by q. More precisely, M, : D(M,) — L?(u)
is defined by My f = qf where

D(M,) = {f € L*(n) : af € L*(w)} € L*(n).
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Lemma 11.24. Let (2, F, ) be a measure space, q : {2 — C be a measurable
function (not assumed to be bounded!), and M, be the corresponding multipli-
cation operator on H = L? (u). Then M, is a closed operator and

Do = Uy {f € L2 (1) : Ligj<nf = f}
is a core for M,.

Proof. M, is closed. Suppose that {f,} C D (M,) is s such that f, — f
and M, f, = qfn — g in L?(u). By passing to a subsequence if necessary we
may assume f, — f and qf, — ¢ a.e. and from this we learn that ¢f = g a.e.
This shows f € D (M,) and that M, f = g, i.e. My is closed.

Dy is a core. For f € D(M,), let f, := 1j4<nf € Do. Then by DCT,
fn— [ and qf, — qf in L? () which shows M,|p, = M,, i.e. Dy is a core for
M,. u

Definition 11.25. Let (£2,S) be a measurable space, H be a Hilbert space, E(+)
be a projection valued measure (£2,S), pg (B) := (E (B) x,z) for allxz € H, and
f: 82— C be a measurable function. Let

Dty = {we s [ |77 du, < o0}

and for x € D (T}) let

)

n—oo

Notice that for m < n,

2 Y
— 2
2

and so the limit in Fq. exists.

Theorem 11.26 (Projection valued measures IT). Continuing the notation
in Definition D (Ty) is a dense subspace of H and Ty : H — H is a closed
linear operator on H which satisfies, for all x € D (Ty),

2

- / Lim<)f1<ny |f1? dpe — 0 as myn — oo
2

Iyl = [ 11 die ana (11.7)

E({If] <n}) Ty = TyE ({|f] < n}) e = ( /Q f1{|fgn}dE) v (1L8)

Moreover L := U2, Ran (E ({|f| < n})) is a core for Ty.

n=1
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Proof. If z,y € H, then

\taty (B) = [ E(B) (z +y)|| < [|E(B)zl| + | E(B)yll = Vo (B) + /1y (B)

and therefore,

Haty < Ha + oy + 24/ la/Hy < 2 (o + Ny) :

From this one easily shows if z,y € D (Ty) then v +y € D(Ty) and since
fiew = |c|? p1e we also have cx € D (Ty) whenever « € D (T}) . This show D (T})
is a vector space. It is now a simple matter to use the definition of 7% in Eq.
to verify that T is linear and the equality in Eq. holds. To see that
D (Ty) is dense in H let P, := E ({|f| < n}) and observe that P,z € D (T}) for
all z € H. Indeed,

ppye (B) = pa (BOA|f| < n})

and hence
[ 1P dure = [ Ul s duo <0 ol < .
2 2

So it only remains to show T is closed.
Let z, € D(Ty) and z,y € H be chosen so that x,, — x and Tyxz, — y.
Notice that, for any B € S,

fiz, (B) = (E(B) @n,xn) = (E(B)x,2) = piz (B).

Hence if g is any simple function on (2 such that 0 < g < |f|2 , then

/ gdp, = lim / gdps,,
Q n—oo .Q

<timint [ (7P dps, = lin [Ty = ]® < oc.
Q n— o0

n—oo

From this inequality if follows that [, |/ dpe < |ly||> < o0 so that 2 € D (Ty).
So it only remains to show Tz = y.
However, for any m € N and z € D (T}),

n— n— oo

= (/ f1{|f<m}dE) z.
2

Therefore it follows that

FpTyz = lim (Pm/ f1{|f|<n}dE>Z: lim (/ f1{|f|<m}1{f<n}dE>Z
o0 2 2
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PmTfa: = </ fl{f|<m}dE> = lim </ f1{|f<m}dE) Tn
0 n—oo (9
= lim P,T¢x, = Pyy.

n—oo

Letting m — oo in this last equation shows Tyx = y. Since P, Tfx = Ty Ppx,
this also shows L is a core for T7. ]

Definition 11.27. If T : X — Y is a linear operator we let

Nul(T):=={x € D(T):Tx =0} C X and
Ran(T):={Tz €Y :2€D(T)} CY.

Lemma 11.28. If T : X — Y is a closed operator, then Nul (T') is closed.

Proof. If z,, € Nul(T) such that x,, — z, then Tz,, =0 = 0 as n = oo
which shows € D (T) and Tz =0, i.e. z € Nul(T). |

Lemma 11.29. If T : X — Y is a closable operator and there exists € > 0 such
that
[Tx|| =z ellzl| V= eD(T), (11.9)

then Nul (T) = {0} and Ran (T) = Ran(T) and Eq. extends to the
inequality, - -
|Tz|| = elz| VzeD(T). (11.10)
Proof. If z € D (T), there exists z, € D(T) such that z,, — x and
Tz, — Tz and hence

||Tx|| = lim |Thzn| > € lim ||z,| = € ||z
n—oo n—oo

which shows Eq. (11.10) also holds. In is now trivial to verify Nul (T') = {0} .
If y, = Tz, € Ran (T') is convergent to y, then by Eq. (11.9) it follows that
{xn},~, is a Cauchy sequence. Hence it follows that z := lim,, . 2y, € D (T)

and y = Tz, i.e. y € Ran(T). Thus we have shown Ran(T) C Ran (T).
Conversely if y = Tz € Ran (T , there exist x,, € D (T) such that z,, — z and
Tz, — y which shows y € Ran (T). |

Notation 11.30 If T : X — Y is a linear operator we say T is weakly in-
vertible if Nul(T) := {0}. Under this assumption we define T~!:Y — X to
be the linear operator with D (T~') = Ran (T) such that T~y =z € D(T) iff
Tz =y. We say T is invertible if Nul (T) = {0} and D (T~') = Ran (T) =Y.

Proposition 11.31. If T : X = Y is a closed weakly invertible linear operator,
then T~ is closed. Moreover if T is closed and invertible, then T~ is bounded.
[Note well that a weakly invertible bounded everywhere defined bounded operator,
T:X =Y, need not have bounded inverse but it is always a closed operator.]
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Proof. If y,, € D (T~') = Ran (T) is such that y,, - yin Y and T~ 'y, — «
in X. Let z,, :=T 'y, =z and Tz, =y, — y as n — oo. Since T is closed it
follows that # € D (T) and Tz =y, i.e. y € D (T') and T~y = z. This shows
T~ is closed. If T is closed and invertible, then T~! is an everywhere defined
closed operator and hence bounded by the closed graph theorem. [

Example 11.32. Suppose that X =Y = L' ([0,1],dm),
D(A):={f€AC([0,1]): f' € L' (m) and f(0) =0}
(

and for f € D(A) let Af = f'. Then by the fundamental theorem of calculus,
flz) = fow 1’ (y) dy from which we learn that A is invertible with

(A71g) (x) = /Ox g (y)dy.

Let us note that
1
A~ g, < / lg ()| dy = / (1 —w)lgW)ldy <llgl,
0<y<z<1 0

so that A~! is bounded and hence A is a closed operator by Proposition [11.31

Lemma 11.33. Suppose that B :' Y — X is a bounded everywhere defined
weakly invertible operator, A := B~1, Yo is a dense subspace of Y, and Ag :=
B_1|D(AO) where D (Ag) := BYy. Then Ay = A.

Proof. Suppose that € D(A) and Az = y, i.e. By = z. Then choose
yn € Yy so that y, — y as n — oo and let z,, := By, € D(Ap). We then
have x,, = By, — By =:  and Agz,, = y, — y and therefore z € D (Ay) and
Apx = y. This shows that Ay = A. [

Lemma 11.34. For g € L* ([0,1],dm), let

Il
(an)
—

1 ~
g::/o g(x)dz and L' :={g € L' ([0,1],dm) : g :

Then C, := {g € C.(0,1): g =0} is a dense subspace of L.

Proof. Let ¢ € C.((0,1)) be chosen so that fol ¥ (z)dz = 1. Then given
g € L' we may find v, € C, (0,1) so that v, — g in L'. Since 7, — g =0 it
follows that g, := 7, — a1 € C. also converges to g in L' (m). ]

Example 11.35 (Continuation of Example X =Y =LY ([0,1],dm)
and A : X — X be the operator in Example [11.32] Further let D (4y) :
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CL((0,1)), and for f € D (Ap) let Agf = f’ so that Ay C A. Then Ay & A.
More precisely,

D(Ao) ={f:€D(A): f(0)=0=F(1)}.

Indeed, applying Lemma [11.33 with X = L'([0,1],dm), Y = L', Y, =
which is dense in Y by Lemma [11.34] and B = 1|y we have BC,. =
Cl(0,1) =D (Ap) and

D(Ag) =BL'={f:€D(A): f(0)=0=f(1)}.
In particular this shows C! ((0,1)) is not a core for A.

Definition 11.36. If T : X — X is a densely defined linear operator and
D e B(X), we say T and D commute if DT C TD. [The condition DT C T D
is equivalent to; D (D (T)) C D(T) and DT =TD on D(T).]

Exercise 11.4. Let T : X — X be a densely defined closable linear opera-
tor and D € B(X). If D(D(T)) C D(T zand DT = TD on D(T), then
D (D(T)) c D(T) and D commutes with T, i.e. DT =TD on D (T) .

Proposition 11.37. Suppose that T is a densely defined invertible (i.e.
Nul(T) = {0} and Ran(T) = X) and D € B(X), then DT C TD iff
[T~!,D] =0.

Proof. If DT C TD, then D = DTT-! ¢ TDT~! and as D (D) = X we
find D = TDT~'. Therefore T='D = T-'TDT~! = DT'.
Conversely if T7'D = DT, then D =TT~'D = TDT~' and hence

DT =TDT~'T =TDlp¢) C TD.
| ]

Definition 11.38 (Spectrum and Resolvents). For any (possibly un-
bounded) linear operator T : X — X, a complex number A € C is said to
be in the resolvent set(p(T)) of T if T — A is one to one and onto and
(T — MI)~! is bounded. Otherwise ) is said to be in the spectrum(o (T)) of T.
For A€ p(T) we let Ry := (T —\)™"

Proposition 11.39. If T : X — X is an unbounded operator and p (T) # 0,
then T is closed. [So if T is not closed, then o (T') = Cl]

Proof. Let A € p(T), so that Ry = (A—T)"" € B(X). Suppose that
v, € D(T) is such that v, — v and Tv, — w € X. It then follows that
(A =T)v, = Av —w and therefore,
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v=lim v, = lim A=T)"'(A=T)v,

n—o0 n— oo

=A=T)"Ww—w)eD(T).
Applying A — T to this idenity shows,
A=Tv=A=T)A=T)" (M —w) = —w
i.e. Tv = w and we have shown T is closed. ]

Lemma 11.40 (Spectrum of M,). Let (X, M,pn) be a 0 - finite measure
space and q : X — C be a measurable function, then

1. My is always a closed operator, i.e. I'(My) = {(f,qf): f € D(My)} is a
closed subspace of L*(p) x L*(p).
2. Mg is bounded iff g € L in which case || My = |4l 1o,
3. The following are equivalent:
a) My L?(u) — L?(p) exists in the algebraic sense, i.e. My : D(Mgy) C
L?(u ) — L?%(p) is a bijection.
b) M, ' : L*(p) — L*(p) exists as a bounded linear operator.
c)q;téO a.e. and g~1 € L>®(u).
4. 0(M,) = essran,, (q) . [Recall that A € essran,, (q) iff n(Jg— A <€) >0 for
all e > 0, see Definition[1.53]

Proof. We take each item in turn.
1. This was proved in Lemma [11.24

2. Let K := [|q po(,) which we assume to be positive for otherwise M, = 0.
If K < oo, then [g| < K a.e. from which it easily follows that [|M,][,, < K.
We wish to prove the reverse inequality for 0 < K < co. By assumption
of 0 < k < K, then u(|g| > k) > 0. Because p is o — finite we can find a
set A;c € M such that |¢| > k on Ay and 0 < p(Ag) < co. We then take
f=1 41,4, € L?(p) and for this f we have

qu = |q‘ La, > kla,
and therefore,

Mt Kp(A0)
T

=k = [IM]|,, = k.

Since 0 < k < K was arbitrary we may conclude that [|M,]|,, > K.
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3. a. = b. is a special case of Lemma [11.13
b. = c¢. Observe if u(¢ = 0) > 0 there exists A C {g =0} such that
0 < 1 (A) < oo. Then 14 € Nul(M,) and M, is not invertible. So if M !
exists we must have ¢ # 0 a.e. and if f € L? g := M;'f € L?, then
f = M,g = qg a.e. Therefore ¢ = ¢~ 'f a.e. so that M;l is necessarily
given by M,-1. By item (1) this operator is bounded iff ¢=' € L>(y).
c. = a. Indeed, ququ = ID(JV[q) and Mqu—l = ILz(M).

4. By item (1), A € o(M,) iff H(qf)\)_luL = oo iff X € essran, (q).

To prove the last assertion, suppose first that A € essran, (¢). Then

for all ¢ > 0, u(lg— A <e) > 0 and hence H(q—A)_l’L > gt
which implies H(q—)\)_lHL = oo since € > 0 was arbitrary. Con-
versely if H(qf)\)_lHL = oo then for all 0 < M < oo we have

@ (‘(q - A)_1’ > M) >0, ie. i (|(g— N < M) > 0 for all M > 0 which
implies A € essran,, (q) .
| ]

Proposition 11.41. The set p(T) is open and if p(T) # O, then p(T) 2 A —
Ry € B(X) is a continuous and in fact analytic map.

Proof. We may assume p (T') # @ for otherwise there is nothing to prove.
If A€ p(T) and h € C we have,

(T — (A+h)) = I—h(T—A)ﬂ (T —\) = (I —hRy) (T —)).

Thus if |h| |Rx|| < 1, we have (I — hRy) ™" is invertible and we may conclude
that (I'— (A4 h)) : D(T) — H is one to one and onto, i.e. is invertible and
moreover,

Rayn=(T—A+h) " '=T=XN""(I—-hR)".

This show p (T') is open as well as showing A — R} is in fact analytic in A since,

(=R~ = >"h"Ry for [h] < |Rx[ ™"

n=0

If u, A € p(T) with u # X\ then working informally we find,

! 1 T—p—(T-N
Tk ey Nl il SV )
z)\_—ﬂZ(/\—u)R,\R.

T =N T -
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This heuristic computation serves as motivation for the following important
identity.

Theorem 11.42 (Resolvent Identity). Let T : X — X be a densely defined
closed operator and suppose that p, A € p (T) with p # . Then

R)\ — RM = ()\ — M) R)\R# (11.11)

and in particular, [Rx, R,] = 0. [Just interchange the roles of p and X in Eq.

Tz,

Proof. We can basically give the same proof we gave in the bounded case,
namely,

(@- N (@) = (TN )~ (TN (T )
== (@ N T )

wherein the second line we have used Ran ((T—u)fl) = D(T) and so

(T — p) — (T — N)](T — p)~ " is everywhere defined.
[

Lemma 11.43. If T : X — X is a densely defined closed operator and A\ €
p(T), then R\T C TRy and R\T = TRj.

Proof. As Ry = (T + \) ", we have
Ry (T 4+ X) =Ipiry CI=(T+ MR,
which easily implies R\T C T R). Since
TRy=(T+X—X)Rx=1- ARy, (11.12)

TRy is a bounded operator. Hence if € X and {x,} is any sequence in D (T)
such that z,, — x, then

R \Tx, =TR)z, > TR)x as n — oo.
This shows x € D (R)\T) and R\Tx =TRyx. [ |

Remark 11.44. Here is another proof that [Ry, R,] = 0 based on Proposition
Since

(T =N (T—p) = (T =N (T =2+ (A —p))
=I4+M\=p)(T—-X"" onD(T)
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and
(T =) (T =N = (= A+ A=) (T =N =T+ A=) (T =N,

it follows that
(T—N""(T—p)c(T—p)(T-XN"". (11.13)

An application of Proposition now completes the proof.

Corollary 11.45. Let T : X — X be a densely defined closed operator. If
A€ p(T), then

TRAR, = R\TR,, = TR, Ry = R, TR, (11.14)

Proof. From Lemma [11.43| or from Eq. (11.13)) with g = 0 we know that
R\T =TRy on D(T) for all A € p(T). From this assertion and the fact that

R, and R) commute, Eq. (11.14) holds on D (T). Since TR is a bounded
operator for all A € p(T) (see Eq. (11.12), Eq. (11.14) holds on all of X by
[ ]

continuity.

Exercise 11.5. Let T : X — X be a densely defined closed operator. If A, u €
p(T), show [TR\,TR,] = 0.

11.1 Exercises

Exercise 11.6. Let U be an open subset of R"*, g € C (U, (0,00)), and Y
be a Banach space. Given v € R" define 0, to be the unbounded derivative
operator on B,C (U,Y) given as follows. First of we let 9, f (z) := %[0 f (z + tv)
provided the limit exists in Y. We then set D (9,) to be those functions f €
B,C (U,Y) such that 0, f (x) exists for all z € U and for which that the resulting
function 0, f is back in B,C (U,Y). Show 0, is a closed unbounded operator
on B,C (U,Y).

Exercise 11.7. If A; : X — Y, are closed operators for 1 < ¢ < p, the operator
A:X Y :=T["_ Y defined by D(A) =n_;D(4;) and

Az = (Az,...,Apz) €Y
is again a closed operator.

Corollary 11.46. Let U be an open subset of R", g € C(U,(0,00)), and
Y be a Banach space and let 0; := 0., be the operators on B,C (U,Y)
as described in Exercise [I1.60 Then the operator V : X — Y™ defined by
V= (01f,...,0nf) with D(V) =N D(9;) is a closed operator. Moreover,
D (V) = B,C' (U,Y) where f € B,C* (U,Y) iff f is continuously differentiable
and Df € B,C (U, B (R",Y)).
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Corollary 11.47. Let U be an open subset of R", g € C (U, (0,00)), Y be a
Banach space, k € No, and B,C* (U,Y) denote those f € B,C (U,Y) such that
O, - .. Oy, f exists for all1 < ¢ <k and v; € R". For f € B,C* (U,Y) let Jy.f =
{0%f :|al <k} € YN be the k — jet of f, where N := #{a € NJ : |a| < k}.
Then Jy is a closed operator.

Proof. I will only prove the case k& = 2 here leaving the general induction
argument to the reader. Suppose that f, € B,C? (U,Y) such that f, — f and
9* frn = uq for 1 < |a] <2 in ByC (U,Y) . From Corollary [I1.46]it follows that
f € B,C' (U,Y) and that u, = 9*f for |a| = 1. Moreover, given 1 <i,j <n
then we know 0% f,, = 0;fn — u; and ocitef, = 0;0;fn — Ue, e, and
hence by Exercise it follows hat u., = 0% f € D(0;) for 1 < i < n and
ocitei f = 0%Ue; = Ue,te,. As this holds for all 7 and j it now follows that
f € B,C?(U,Y) and u, = 0°f for |a| < 2. ]

Exercise 11.8. Let U be an open interval in R, BC (U) be the bounded con-
tinuous functions on U and BC! (U) denote those f € C* (U) N BC (U) such
that f' € BC (U). Define D (9) := BC' (U) C C*(U) and for f € D () let
df := f'. Show 9 : BC (U) — BC (U) is a closed unbounded operator.

Exercise 11.9. Generalize Exercise to the following set up. Let U be an
open subset of R™, let BC* (U) denote those f € BC (U) such that 9“f exits
for all |o| < k and 0°f € BC(U). Let J : BC(U) = ][4 <x BC (U) be the
linear operator such that D (J) = BC* (U) and for f € D (J) let

Jf={0%f : |a| < k}.

Show J is a closed operator. We refer of Jf as the k-jet of f. Perhaps we
should let g be any positive continuos function on U and generalize the above
considerations to allow for BC' (U) to be replace by B;,C (U) where f € B,C (U)
iff fe C(U) and
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12

Contraction Semigroups

For this section, let (X, || - ||) be a Banach space with norm || - ||. Also let
T :={T (t)}+>0 be a collection of bounded operators on X.

Definition 12.1. Let X and T be as above.

1. T is a semi-group if T(t +s) =T (t) T (s) for all s,t > 0.

2. A semi-group T is strongly continuous if lim (T (t)v = v for all v €
X. By convention if T is strongly continuous, set T (0) := I-the identity
operator on X.

3. A semi-group T is a contraction semi-group if |T (¢t)|| <1 fort > 0.The
following examples will be covered in more detail in the exercises.

Ezample 12.2 (Translation Semi-group). Let X := L*(R%,d)\), w € R? and

(Tw (8) f) (@) := f(x +1).

Then T, (t) is a strongly continuous contraction semi-group. In fact T, (¢) is
unitary for all ¢ € R.

Ezample 12.3 (Rotation Semi-group). Suppose that X := L?(R% d\) and
O : R — O(d) is a one parameter semi-group of orthogonal operators. Set
(To (t) f) (z) == f(O (t)x) for all f € X and x € R%. Then Ty is also a strongly
continuous unitary semi-group.

12.1 Infinitesimal Generators

Definition 12.4. The infinitesimal generator (L) of a strongly continuous
contraction semi-group, {T (t)},5 is the (unbounded) operator on X defined by

Lv = %|O+T(t)v for allv € D (L) (12.1)

where D (L) consists precisely of those v € X for which the derivative in Eq.

exists in X.

Proposition 12.5. Let T (t) be a strongly continuous contraction semi-group,
then;

1.[0,00) 3t = T (t)v € X is continuous for all v € X,

2. D(L) is a dense linear subspace of X.

3. Ifv:[0,00) = X is a continuous, then w (t) := T (t) v (t) is also continuous
on [0, 00).

Proof. We take each item in turn.
1. By assumption v (t) := T (t) v is continuous at ¢t = 0. For ¢ > 0 and h > 0,
[o(t+h) —v @l =T (&) (T (h) = Dol < v (h) = vl = 0as h {0
Similarly if h € (0,¢),
[0t =h) =v@ =T —=h) (I =T ()| <[v—-v(h)| = 0ashl]0.

Thus we have proved item 1.
2. Since 0 — T (o) v is continuous for any v € X, we may define

Vs :z/ T (o) vdo for all 0 < s < o0,
0

where the integral may be interpreted as X—valued Riemann integral or as
a Bochner integral. Note
1

Vs — v
s

1/OS(T (0)v—v)do

S

1
< =
s

/ IT () v — vdo| — 0
0

as s | 0, so that
D:={vseX:s>0andve X}

is dense in X. Moreover for any s > 0 and v € X we have

d d s
— TW)ve = — /Tt—|—avdo’
dt]o, " dtoy Jo ( )
d t+s
= — / T(r)vdr =T (s)v—wv
dtloy Ji

which shows v, € D(L) and Lv, = T (s) v — v. In particular, D C D (L)
and hence D (L) is dense in X. It is easily checked that D (L) is a linear
subspace of X.
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3. This statement is really just a consequence of the fact that the bilinear map,
XxB(X)>0,T)—>TveX

is continuous when X is equipped with the norm topology and B (X) with
the strong operator topology and X x B (X) is then given the corresponding
product topology. For completeness we will give a direct proof in the setting
at hand.

If v : [0,00) — X is a continuous function and w (t) := T (¢) v (t), then for
t>0and h € (—t,00),

wEt+h)—w@t)=(TE+h)—TE))vE)+TE+h)(v(E+h)—v(t))

The first term goes to zero as h — 0 by item 1 and the second term goes
to zero since v is continuous and ||T" (¢ + h)|| < 1. The above argument also
works with ¢t = 0 and A > 0.

Theorem 12.6 (Solution Operator). Let T (t) be a contraction semi-group
with infinitesimal generator L andv € D (L) . ThenT (t)v € D (L) for allt > 0,
the function t — T (t) v is differentiable for t > 0, and

d
ST (0o =LT )v="T(t)Lv.

Proof. Let v € D (L) and ¢ > 0. Then for & > 0 we have

T(t+h)—T@)  T(h)—1I B
W v= W T{)v=—"——"7""0.

Letting h | 0 in the last set of equalities show that T (t) v € D (L) and

d
Srlor T (t+h)v=LT (t)v=T(t) Lv. (12.2)

Similarly for h € (0,t),

T(t—h)—-T(@) T -T(t—-h) T(h)—1
— v= . v=T(t—h) — v (12.3)

In order to pass to the limit in this equation, let u : [0,00) — X be the
continuous function defined by

[ RNT(h) ~ Dvifh >0
“(h)_{ Lv ifh=0
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Hence by same argument as in the proof of item 3 of Proposition , h —
T (t — h)u (h) is continuous at h = 0 and therefore,
T{t—h)—T(t
%v =Tt —h)u(h) =Tt —-0)u(0)=T(t) Lvas h 0.

So we have shown p
& _
dhlo T'(t+h)v=TI(t) Lv

which coupled with Eq. (12.2)) shows

d

%T(t)v: %\OT(t—i—h)v:T(t)Lv:LT(t)v.
[

Proposition 12.7 (L is Closed). Let L be the infinitesimal generator of a
contraction semi-group, T (t), then L is a densely defined closed operator on
X.

Proof. Suppose that v, € D(L), v, = v, and Lv, — w in X as n — oo.
By Theorem [12.6] and the fundamental theorem of calculus, we have

t
T(@) vy, — v, = / T (1) Lu,drt.
0

Passing to the limit as n — oo in this equation (using T () Lv, — T (-)w
uniformly) allows us to show,

t
T@)v—wv :/ T (1) wdr.
0
It then follows by the fundamental theorem of calculus (one sided version) that
v €D (L) and Lv = L[o+T () v = w, i.e. L is closed. |

Definition 12.8 (Evolution Equation). Let T be a strongly continuous con-
traction semi-group with infinitesimal generator L. A function v : [0,00) — X
is said to solve the differential equation

o (t) = Lo (¢) (12.4)

if i) v(t) € D(L) for allt >0, ii) v € C([0,00) — X) N CL((0,00) = X), and
iii) Eq. holds for all t > 0.

Theorem 12.9 (Evolution Equation). Let T' be a strongly continuous con-
traction semi-group with infinitesimal generator L. The for allvg € D (L), there

is a unique solution to such that v (0) = vy.
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Proof. Existence. By Theorem and Proposition v(t):=T(t)vo

solves (|12.4]
Uniqueness. Let v (t) be any solution of Eq. (12.4), 7 > 0 be given, and
12.5]

set w(t) := T(17 — t)v (t). By item 3 of Proposition [12.5) w is continuous for
€ [0,7]. We will now show that w is also differentiable on (0,7) and that
w(t):=0forte (0,7).
To simplify notation let P (t) := T'(r — t) and for fixed ¢ € (0,7) and h # 0
but sufficiently close to 0, let

c(h) ::v(t+hf)L—v(t) — o)

so that limy_,0 e (h) = 0 by definition of the derivative. With this notation we
have

M:%(P(t+h)v(t+h)—P(t)”(t))

(P(t+h) - P(@)

= o(t)+ Pt 4 by LEEM =0 ®)

) h
B (P(H—hZ—P(t))v(t)+P(t+h)(f)(t)+5(h))

— —P(t)Lo(t)+ P ()0 (t) as h — 0,
wherein we have used
1P (t+h)e(h)| < lle (h)]| — 0as h — 0.
Hence we have shown,
w(t)=—P(t) Lo (t) + P (t)o(t) = —P(t) Lo (t) + P (t) Lv (t) = 0,

(
and thus w (t) = T(t — t)v (t) is constant or (0,7') By the continuity of w on
[0, 7] we may now conclude that w (1) = w (0), i

v(r) =w(r) =w(0) =T (r)v(0) =T(r)vo.

This proves the only solutions to Eq. (12.4)) with initial condition, v, is v (t) =
T (t) (LB u

Corollary 12.10. Suppose that T and T are two strongly continuous con-
traction semi-groups on a Banach space X which have the same infinitesimal
generators L. Then T =T.

Proof. Let vy € D (L) then v (t) = T (t)v and o (t) = T (t) % both solve
Eq. with initial condition vg. By Theorem m v = © which implies that
T(t)l)o :T(t) Vo, i.e., T=T. ]

Because of the last corollary the following notation is justified.
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Notation 12.11 If T is a strongly continuous contraction semi-group with in-
finitesimal generator L, we will write T (t) as et’.

If T (t) = e'F is a contraction semigroup we expect L to be “negative” (more
precisely non-positive) in some sense and so working formally we expect to have,
for all A > 0, that

1 -1
t(L )\)|oo _ :()\—L)

> tA tL 1
/0 e e dt:me - tZO_A—L

The next theorem justifies these hopes.

Theorem 12.12. Suppose T (t) = etl is a strongly continuous contraction
semi-group with infinitesimal generator L. For any \ > 0 the integral

o0
/ e Petldt =: Ry, (12.5)
0

exists as a B (X)-valued Bochner-integral (or as an improper Riemann integral).
Moreover, (\— L) : D (L) — X is an invertible operator, (\ — L)™' = Ry, and
[RAll < A1

Proof. First notice that
/ e el ||dt < / et =1/
0 0

Therefore the integral in Eq. (12.5)) exists and the result, Ry, satisfies || Ry| <
A~1. So we now must show that Ry = (A— L) "'.
Let v € X and h > 0, then

o0 o0 o0
ehLR,\v = / e~ et Ly g — / e~ =hAetlydr = eh’\/ e Petludt.
0 h h

(12.6)
Therefore

d oo
—| MRyw=—-v+ / e Petloydt = —v + ARy,
ah o+ 0

which shows that Ryv € D (L) and that LRyv = —v+ARyv,i.e. (A— L)Ry = 1.
Similarly,

Ryelty = ehA/ e Petluydt (12.7)
h

and hence if v € D (L), then
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126 12 Contraction Semigroups
12.2 The Hille-Yosida Theorem

Theorem 12.13 (Hille-Yosida). A closed densely defined linear operator, L,
on a Banach space, X, is the generates a contraction semi-group iff for all

A € (0,00);

1.Ry:=(A— L)_1 exists as a bounded operator and
2. |Ry|| = H()\ - L)_lH <l waso

Remark 12.14. In what follows we will freely use the fact that LRy = RyL on
D (L). Indeed, if v € D (L), then

LRyv=LA—L) "v=L-A+AA-L)""v
= v+ A—L) 'v=—v+ARw

while
RyLv =Ry (L— X+ X)v=—v+ ARyv.

Proposition 12.15 (Approximators). Let L be an operator on X satisfying
properties 1. and 2. of the Hille-Yosida theorem and for each A > 0, let

AL
Ly = ALRy = “ =7
Vi ALRN =TT
Then

Ly = -\ + ARy, (12.8)
ARy =51 as \— oo, and (12.9)
)\lim Lyw=LvYveD(L). (12.10)

— 00

Proof. The first identity is easy;
Ly=AA=L) " =AL-A+NA=L)"" ==X+ \2R,.
To prove Eq. (12.9)), we will use, for v € D (L), that

ARyv = (A— L) "
=A—L) '"A\=L)v+A—L)""Lv=0v+ RyLv. (12.11)

From this idenitty along with assumption 2., if follows that

1
AR v — v|| = |[|RaLv|| < X ILv|| — 0 as A — oo.
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Equation (12.9)), now follows from the previous equation, the fact that ||ARy]|| <
1, along with the standard 3s—argument. Using Eq. (12.9)) along with Remark

12.14} if v € D (L), then
Lyv=ALRyv =AR)Lv — Lv as A —»

and the proof is complete. [

Lemma 12.16. If X is a Banach space and A, B € B (X), then for anyt € R
t
etB _ etA — / e(t—T)A(B _ A)GTBdT.
0
If we further assume that A and B commute, then for each v € X,

t
(B = et4) o < '/O 4] el ar| - 1A - B v (12.12)

< t]- Ma (t) Mp () |(A = B) vl (12.13)

where
My () = sup{HeTAH : 7 between 0 and t}

with an analogous definition for Mg (t). In particular, if ||et*|| and ||etB| are
bounded by 1 for allt > 0, then

H(etA —¢'P) o|| < t||(A=B)v|| forallve X. (12.14)

Proof. By the fundamental theorem of calculus and the product rule we
have,

t t
d
e tetB T = / —e e Bdr = / e T —A+ B)e™Bar.
o dr 0
Multiplying this equation on the left by e shows,
t
etB o 6tA _ / e(tf'r)A(B - A)GTBdT.
0

If we now further assume that [A, B] = 0, the previously displayed equation
may be written as

t
etB _ etA :/ e(t—T)AeTB(B _ A)dT
0

Applying this identity to v € X and then taking norms and using the triangle
inequality for integrals gives FEq. (12.12]) which also clearly implies Eqgs. (12.13))

and (|12.14). [ ]
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With this preparation we are now ready for the proof of Hille—Yoshida The-
orem [[2.T31
Proof. Hille-Yoshida Theorem For A > 0, let

tn
. tLx _ _tLx .__ n
T\ (t) ;=" =" = E —n!L)\.

n=0

The outline of the proof is: i) show that T} (¢) is a contraction for all ¢ > 0, ii)
show for ¢ > 0 that T} (¢) converges strongly to an operator T' (t), iii) we show
T (t) is a strongly continuous contraction semi-group, and iv) the generator of
T(t) is L.

Step i) Using Ly = —\ + AR, (see Eq. we find that e'*» =
e~ et B and hence

IT5 (1) || = [|etPA || < e PN IRl < o=t g2 — q

wherein we have used assumtion 2. to conclude A ||Ry|| <1 for all A > 0.
Step ii) Let o, > 0 and v € D (L), then by Lemma|12.16|and Proposition

(To (t) =T, (t))v]| < t||Lav — Lyv|| = 0 as a, p — o0.

This shows, for all v € D (L), that limy oo Tw (t) v exists uniformly for ¢ in
compact subsets of [0, 00). For generalv € X, w € D(L), 7> 0,and 0 <t < 7,
we have

I(Te (8) = T (D)ol < (T (8) = T (O))wl| + [[(Tea () = T (8)) (0 = w)|
< (Ta (8) = T ()w]] + 2[jv — w].

S 7l Law = Lyw|| + 2[v — w].

Thus
limsup sup ||(Tw (t) — T, ()v] < 2|lv —w| — 0 as w — v.
o,p—00 t€[0,7]
Hence for each v € X, T (t)v := limy_y00 Ty (t) v exists uniformly for ¢ in

compact sets of [0, 00).
Step iii) It is now easily follows that [|T(¢)|| < 1 and that ¢ — T (¢) is
strongly continuous. Let us now fix s,¢t > 0 and v € X and note that
e(a)=Ta(s)v—=T(s)v—=0as alO.
We then have

To(t+s)0=T, () To () v=Ta )T (s)v+Ts (t)e ().
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Passing to the limit as a | 0 in this identity then shows T'(t+s)v =T (t) T (s) v
((i-e. is a semi-group) where we have used

1T (t)2 ()] < [le ()] — 0 as a L.

Step iv) Let L = % lo+T (t) denote the infinitesimal generator of T. We are
going to finish the proof by showing L = L.
If ve D(L) and A > 0, then

¢ ¢
Ty () v = ety = v+ / eI Lyvdr = v + / T (1) Lyvdr. (12.15)
0 0

Let us note that
[T (1) Lav = T' (1) Lo|| < [|[Tx (1) [Lav — Lo]|| + | T (7) Lv = T'(7) Lo||
< ||Lav = Lol + || Tx (7) Lv = T (1) Lo||
and hence

qnax [|Tx () Lyw — T () Lo]|

< || Lav — Lol + Jnax, T\ (1) Lv — T (1) Lv|] - 0 as A | 0,

wherein we have used Eq. (|12.10) and step ii to deduce the limit. With this
result in hand we may let A | 0 in Eq. (12.15) in order to conclude,

t
T(t)v:v+/ T (1) Lvdr for all v € D (L) .
0

It then follows by the fundamental theorem of calculus that Lv = 410+ T (t)v =

Lwv, i.e. we have shown L C L and therefore A—L C A—L for any A > 0. However
both A — L and A — L are invertible and hence by the simple Exercise with
A=X—Land B=X— L, it follows that A= B, i.e. L = L.

For the skeptical reader: here is a direct proof of the last part of the ar-
gument. Suppose that o € D(L). Fix A > 0 and let v := (A — L) " ()\ - E) xS

D (L) so that (A — L)v = ()\ — E) #. Since L C L, we may conclude

(A—E)v:(/\—L)vz(/\—i)@

and because \ — L is invertible it follows that & = v € D (L). ]
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Miscellaneous Background Results

A.1 Multiplicative System Theorems

Notation A.1 Let {2 be a set and H be a subset of the bounded real valued

functions on 2. We say that H is closed under bounded convergence if; for
(o] . .

every sequence, { fn},_, C H, satisfying:

1. there exists M < oo such that |f, (w)| < M for allw € 2 and n € N,
2. f(w):=limy oo [ (w) exists for all w € 2, then f € H.

Notation A.2 For any o-algebra, B C 29, let B(£2,B;R) be the bounded
B/Br-measurable functions from §2 to R.

Notation A.3 IfM is any subset of B ((2, 292, R) , let H(M) denote the small-
est subspace of bounded functions on 2 which contains MU{1}. (As usual such
a space exists by taking the intersection of all such spaces.)

Definition A.4. A subset, M C B (Q, 2, R) , 18 called a multiplicative sys-
tem if M is closed under finite products, i.e. f,g € M, then f-g € M.

The following result may be found in Dellacherie [8, p. 14]. The style of
proof given here may be found in Janson |23, Appendix A., p. 309].

Theorem A.5 (Dynkin’s Multiplicative System Theorem). Suppose that
H is a vector subspace of bounded functions from §2 to R which contains the
constant functions and is closed under bounded convergence. If Ml C H is a mul-
tiplicative system, then H contains all bounded o (M) — measurable functions,
i.e. H contains B (2,0 (M);R).

Proof. We are going to in fact prove: if M C B (Q, PALE R) is a multiplicative
system, then H (M) = B ({2, (M);R). This suffices to prove the theorem as
H (M) C H is contained in H by very definition of H (M) . To simplify notation
let us now assume that H = H (M) . The remainder of the proof will be broken
into five steps.

Step 1. (H is an algebra of functions.) For f € H, let Hf :=
{g € H:gf € H}. The reader will now easily verify that H/ is a linear sub-
space of H, 1 € Hf, and H/ is closed under bounded convergence. Moreover if
f € M, since M is a multiplicative system, M C HY. Hence by the definition of
H, H=H/, ie. fg € Hforall f e M and g € H. Having proved this it now

follows for any f € H that M C H/ and therefore as before, Hf = H. Thus we
may conclude that fg € H whenever f,g € H, i.e. H is an algebra of functions.

Step 2. (B:={AC2:14 € H} is a 0 — algebra.) Using the fact that H
is an algebra containing constants, the reader will easily verify that B is closed
under complementation, finite intersections, and contains (2, i.e. B is an algebra.
Using the fact that H is closed under bounded convergence, it follows that B is
closed under increasing unions and hence that B is o — algebra.

Step 3. (B(£2,8;R) C H) Since H is a vector space and H contains 14 for
all A € B, H contains all B — measurable simple functions. Since every bounded
B — measurable function may be written as a bounded limit of such simple
functions, it follows that H contains all bounded B — measurable functions.

Step 4. (o (M) C B.) Let ¢, (z) = 0V [(nz) A1] (see Figure below)
so that ¢, (z) T 1z50. Given f € M and a € R, let F,, := ¢, (f —a) and
M :=sup,cq |f (w) — a|. By the Weierstrass approximation theorem, we may
find polynomial functions, p; () such that p; — ¢, uniformly on [—M, M].
Since p; is a polynomial and H is an algebra, p; (f — a) € H for all I. Moreover,
pro(f —a) — F, uniformly as [ — oo, from with it follows that F,, € H for all
n. Since, Fj, T 1if54y it follows that 1(ssq) € H, ie. {f > a} € B. As the sets
{f > a} with a € R and f € M generate o (M), it follows that o (M) C B.

MFJ—-

Fig. A.1. Plots of 1, 2 and @3 which are continuous functions used to approximate,
T — 1120.



134 A Miscellaneous Background Results

Step 5. (H(M)=B(£2,0(M);R).) By step 4., o (M) C B, and so
B (2,0 (M);R) C B(£2,B;R) which combined with step 3. shows,

B (2,0 (M);R) C B(£2,B;R) C H(M).

However, we know that B (2,0 (M);R) is a subspace of bounded measurable
functions containing M and therefore H (M) C B (2,0 (M) ;R) which suffices
to complete the proof.

|

Corollary A.6. Suppose H is a subspace of bounded real valued functions such
that 1 € H and H is closed under bounded convergence. If P C 2% is a mul-
tiplicative class such that 14 € H for all A € P, then H contains all bounded
o(P) — measurable functions.

Proof. Let M = {1}U{14 : A € P}. Then M C H is a multiplicative system
and the proof is completed with an application of Theorem [AZ5] |

Ezample A.7. Suppose p and v are two probability measure on (§2, B) such that

/Qfd,u:/gfdl/ (A1)

for all f in a multiplicative subset, M, of bounded measurable functions on 2.
Then g = v on o (M) . Indeed, apply Theorem with H being the bounded
measurable functions on {2 such that Eq. olds. In particular if M =
{1} U{l4 : A € P} with P being a multiplicative class we learn that = v on
o(M)=0(P).

Exercise A.1. Let 2 :={1,2,3,4} and M := {14,15} where A := {1,2} and
B:={2,3}.

a) Show o (M) = 29.
b) Find two distinct probability measures, 4 and v on 2 such that p(A) =
v(A) and p(B) =v(B), i.e. Eq. (A.1) holds for all f € M.

Moral: the assumption that M is multiplicative can not be dropped from
Theorem [A5l

Proposition A.8. Suppose p and v are two measures on (£2,8), P C B is a
multiplicative system (i.e. closed under intersections as in Definition ??) such
that 1 (A) = v (A) for all A € P. If there exists 2, € P such that 2, T 2 and
w(02,) =v(2,) < oo, then p=v on o (P).
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Proof. Step 1. First assume that u(2) = v(£2) < oo and then apply
Example [A.7] with M = {14 : A € P} in order to find = v on o (M) = o (P).

Step 2. For the general case let p, (B) = p(BN§2,) and v, (B) =
v(BnN{2,) for all B € B. Then p,, = v, on P (because 2, € P) and

pin (£2) = 11 (2n) = v (2n) = v (£2)..

Therefore by step 1, p, = v, on o (P). Passing to the limit as n — oo then
shows

w(B)= lim p(BN2,) = lim u, (B)
n—oo n—oo
= lim v, (B)= lim v(BN{,)=v(B)

n—oo n—oo
for all B € o (P). |
Here is a complex version of Theorem

Theorem A.9 (Complex Multiplicative System Theorem). Suppose H
is a complex linear subspace of the bounded complex functions on 2,1 € H, H is
closed under complex conjugation, and H is closed under bounded convergence.
If M C H is multiplicative system which is closed under conjugation, then H
contains all bounded complex valued o(M)-measurable functions.

Proof. Let My = spangs(M U {1}) be the complex span of M. As the reader
should verify, M is an algebra, My C H, M is closed under complex conjuga-
tion and o (M) = o (M) . Let

HE .= {f € H: f is real valued} and
M = {f € My : f is real valued} .

Then HR is a real linear space of bounded real valued functions 1 which is closed
under bounded convergence and M C HF. Moreover, M is a multiplicative
system (as the reader should check) and therefore by Theorem [A.5] H® contains
all bounded o (M) — measurable real valued functions. Since H and M are
complex linear spaces closed under complex conjugation, for any f € H or
f € My, the functions Re f = %(f—i—f) and Im f = %(f—f) are in H or
M respectively. Therefore My = M + iM§, o (M§) = o (M) = o (M), and
H = HF + H®. Hence if f : £2 — C is a bounded ¢ (M) — measurable function,
then f = Re f +iIm f € H since Re f and Im f are in HE. [

Lemma A.10. If —c0 < a < b < o0, there exists f, € C.(R,[0,1]) such that
lim,, s o0 fn = ]-(a,b]'

Proof. The reader should verify lim,, o fn = 1(4,5) Where f,, € C. (R, [0,1])
is defined (for n sufficiently large) by
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0 on (—00,a] U b+ £, 00)
_ ) n(@—a) if a<z<a+y

1—-n(b-—2) if beSb—F%

i
a2 <
-
e
L

Fig. A.2. Here is a plot of f2 (x) when a = 1.5 and b = 3.5.

Lemma A.11. For each A > 0, let ey (x) := e*. Then
Be=0c(ex:A>0)=0(ey' (W):A>0, WeBg).
Proof. Let S':={2 € C:|z|=1}. For -t < a < B <7 let
A(a, p) := {em:a<9<[3}251ﬂ{r6w:a<9<ﬂ, r>0}

which is a measurable subset of C (why). Moreover we have ey (z) € A (a, )
iff Az € ), [(o, B) + 27n] and hence

ey (A, B) =) Ki,f) +27rﬂ €o(ex:A>0).

neZ

Hence if —00 < a < b < 0o and A > 0 sufficiently small so that —7 < Aa <
Ab < 7, we have

ex' (A(Aa,\b)) =Y [(a, b) + 27&]

A
nez
and hence
(a,b) = Masoey ' (A(Aa,Ab)) € o (ex : A > 0).

This shows Bg C o (e) : A > 0). As ey, is continuous and hence Borel measurable
for all A > 0 we automatically know that o (ex : A > 0) C Bg. |
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Remark A.12. A slight modification of the above proof actually shows if {\,} C
(0, 00) with lim, o0 A\, = 0, then o (ey, : n € N) = Bg.

Corollary A.13. Each of the following o — algebras on R? are equal to Bga;

I My =0 {z— f(z): feC.(R)}),

2. My =0 (z— fi(z1)... fa(za) : fi € Cc(R))
S Mz=oc (CC (Rd)) , and

4. My =0 ({x D W= Rd}) .

Proof. As the functions defining each M; are continuous and hence Borel
measurable, it follows that M; C Bga for each i. So to finish the proof it suffices
to show Brs C M; for each 1.

M; case. Let a,b € R with —o00 < a < b < oco. By Lemma [A.10] there
exists f, € C.(R) such that lim, , fn = 1(q). Therefore it follows that
 — 1(ay) (z5) is My — measurable for each i. Moreover if —oo < a; < b; < 00
for each 7, then we may conclude that

d

T — H Liasbs] (%6) = Liay 1] x (aa,ba] (%)
i=1
is M; — measurable as well and hence (a1,b1] x -+ X (ag,bq] € M. As such

sets generate Bra we may conclude that Bra C M;.

and therefore My = Bga.

My case. As above, we may find f; , — 14, ,) asn — oo foreach 1 <i <d
and therefore,

Liar,ba]x - x (aa,ba] (T) = nhﬁrr;o fim (@1) .. fan (xq) for all z € RY.

This shows that 1(4, 5,]x--.x (au,bs) 18 M2 — measurable and therefore (ay,b;1] x
s X (ad,bd] € Mo.

M3 case. This is easy since Bra = My C M3 C Bga.

My case. Let 7 : R? — R be projection onto the j* — factor, then for
A >0, ey omj(z) = e . It then follows that

o’(e,\Oﬂ'j:)\>O):a((e,\o7rj)_1(W):)\>O,WEBC)

(7rj_1 (6;1 (W)) : A>0,W € Be)

= 71;1 (o ((ex' (W)):A>0,W € Be)) = 7r;1 (Br)

wherein we have used Lemma for the last equality. Since
o(exomj: A>0)C M,y for each j we must have

d times

—_——N—
BRd :BR(X)-"@BR:U(?TJ'tlgjgd)c./\/u.
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Alternative proof. By Lemma ?? below there exists g, €Trig(R) such
that lim, o0 gn = 14,5 Since  — gy, (7;) is in the span {x e T\ e Rd}
for each n, it follows that  — 1(44) (7;) is M4 — measurable for all —oo < a <
b < oo. Therefore, just as in the proof of case 1., we may now conclude that

Bra C My. |

Corollary A.14. Suppose that H is a subspace of complex valued functions on
R? which is closed under complex conjugation and bounded convergence. If H
contains any one of the following collection of functions;

1. M := {(E—)fl (xl)fd(xd)fleCc(R)}
2.M:=C., (Rd), or
3. M .= {x—>ei’\"”:)\€Rd}

then H contains all bounded complex Borel measurable functions on RY.

Proof. Observe that if f € C, (R) such that f (z) = 1 in a neighborhood
of 0, then f, () := f(z/n) = 1 as n — oo. Therefore in cases 1. and 2., H
contains the constant function, 1, since

In case 3, 1 € M C H as well. The result now follows from Theorem [A.9] and
Corollary [

Proposition A.15 (Change of Variables Formula). Suppose that —
a<b<ooandu: [ab = R is a continuously differentiable function which
is not necessarily invertible. Let [c,d] = u ([a,b]) where ¢ = minu ([a,b]) and
d = maxu ([a,b]). (By the intermediate value theorem u ([a,b]) is an interval.)
Then for all bounded measurable functions, f : [c,d] = R we have

u(b) b
/ @) de = / ()i (t) dt. (A2)
u(a) a

Moreover, Eq. is also valid if f : [c,d] — R is measurable and

/ If (w ()] | (8)] dt < oo (A.3)

Proof. Let H denote the space of bounded measurable functions such that
Eq. holds. It is easily checked that H is a linear space closed under bounded
convergence. Next we show that M = C ([¢,d],R) C H which coupled with
Corollary will show that H contains all bounded measurable functions
from [c,d] to R.
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If f: [c,d] = R is a continuous function and let F' be an anti-derivative of
f- Then by the fundamental theorem of calculus,

/{lf( t)dt = /F’ i (t) dt

=/a SF () dt = F (u(t) |,
u(b) u(b)
=F(u()) - F(u(a)) :/ F' (z)dx :/ f (z)da.

u(a) u(a)

Thus M C H and the first assertion of the proposition is proved.
Now suppose that f : [c,d] — R is measurable and Eq. (A.3) holds. For M <
oo, let far (z) = f(x) - 1|f(a)|<m — & bounded measurable function. Therefore

applymg Eq. - with f replaced by |fas| shows,

u(b)
[ @il =| [ i @i

(a)
Using the MCT, we may let M 1 oo in the previous inequality to learn

u(b

/ x)| dx
(a)

Now apply Eq. (A.2)) with f replaced by fas to learn

/u:b)fM dx—/ far (u (b)) a(t)dt.

/ [ Far ()] i () d.

</|f DI (t)] dt < .

Using the DCT we may now let M — oo in this equation to show that Eq.
(A.2) remains valid. |

Exercise A.2. Suppose that v : R — R is a continuously differentiable function
such that @ (t) > 0 for all ¢ and lim;—, 4+ u (t) = £oo. Use the multiplicative
system theorem to prove

/R f (&) de = / f (u (1)) i (t) (A4)

for all measurable functions f : R — [0, 00]. In particular applying this result
to u (t) = at + b where a > 0 implies,

/Rf(x)dx:a/Rf(at—&-b)dt
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Definition A.16. The Fourier transform or characteristic function of a
finite measure, u, on (Rd, B]Rd> , is the function, fi : R* — C defined by

A\ = / e Tdy (x) for all X € RY
Rd

Corollary A.17. Suppose that p and v are two probability measures on
(]Rd, B]Rd) . Then any one of the next three conditions implies that u = v;

1. jci{d(ﬁ;})(xl) o fa(zg)dv(x) = fRd fi(@1) ... fa(za)dp(x) for all f; €
[Rcd f(x) dv (z) = [ga f () dp(x) for all f € C. (RY) .

2.
3. L.

Item 3. asserts that the Fourier transform is injective.

Proof. Let H be the collection of bounded complex measurable functions
from R? to C such that

/R = /R . (A.5)

It is easily seen that H is a linear space closed under complex conjugation and
bounded convergence (by the DCT). Since H contains one of the multiplicative
systems appearing in Corollary it contains all bounded Borel measurable
functions form R% — C. Thus we may take f = 14 with A € Bga in Eq.
to learn, u (A) = v (A) for all A € Bga. ]

A.2 Weak, Weak*, and Strong topologies

Another collection of examples of topological vector spaces comes from putting
different (weaker) topologies on familiar Banach spaces.

Definition A.18 (Weak and weak-* topologies). Let X be a normed vector
space and X* its dual space (all continuous linear functionals on X ).

1. The weak topology on X is the X™* topology of X, i.e. the smallest topology
on X such that every element f € X* is continuous. This topology is often
denoted by (X, X*).

2. The weak-x topology on X* is the topology generated by X, i.e. the smallest
topology on X* such that the maps f € X* — f () € C are continuous for
all x € X. In other words it is the topology o(X*, X) where X is the image
of X 32 — & € X**. [The weak topology on X* is the topology generated
by X** which is may be finer than the weak-* topology on X*.]
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Definition A.19 (Operator Topologies). Let X and Y be be a normed vec-
tor spaces and B (X,Y) the normed space of bounded linear transformations
from X toY.

1. The strong operator topology (s.o.t.) on B (X,Y) is the smallest topol-
ogy such that T € B(X,Y) — Tx €Y is continuous for all x € X.
2. The weak operator topology (w.o.t.) on B (X,Y) is the smallest topology

such that T € B(X,Y) — f(Tx) € C is continuous for all x € X and f € Y*.

Remark A.20. Let us be a little more precise about the topologies described in
the above definitions.

1. The weak topology on X has a neighborhood base at zy € X consisting
of sets of the form

N=n_{reX:|fi(x)— fi(zo)| <e}

where f; € X* and € > 0.
2. The weak-* topology on X* has a neighborhood base at f € X* consisting
of sets of the form

N =M {g e X" o [f(zi) — g(z)] < e}

where x; € X and € > 0.
3. The strong operator topology on B (X,Y) has a neighborhood base at
T € X* consisting of sets of the form

N:=n"{SeL(X,Y):|Sz —Txi| <&}

where z; € X and € > 0.
4. The weak operator topology on B (X,Y) has a neighborhood base at
T € X* consisting of sets of the form

N:=n_{SeL(X,Y):|fi(Sz; —Tx;)| < e}

where z; € X, f; € X* and € > 0.

5. If we let 7,, — be the operator-norm topology, 7, be strong operator topol-
ogy, and 7, be the weak operator topology on B (X,Y),.then 7, C 75 C
Top- Consequently; if I' C B (X,Y) is a set, then T cT™ cT™ and in
particular; a 7,-closed set is a 7, — closed set and a 7, — closed set is a 7,
— closed set.

Lemma A.21. Let us continue the same notation as in item 5. of Remark
. Then A€ T iff for every A Cy X x Y™, there exists A, € I' such that
limy, oo f (Anz) = f (Az) for all (f,z) € A and similarly A € T iff for every
A Cy X, there exists A, € I' such that lim,,_,o A,x = Ax for all x € A. [Note
well, the sequences {An} C I used here are allowed to depend on I'!]
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Proof. This follows directly from Proposition ?? and the definitions of the
weak and strong operator topologies.
]

A.3 Quotient spaces, adjoints, and reflexivity

Definition A.22. Let X and Y be Banach spaces and A : X — Y be a linear
operator. The transpose of A is the linear operator At : Y* — X* defined by
(ATf) (z) = f(Az) for f € Y* and & € X. The null space of A is the subspace
Nul(A):={zeX: Az =0} C X. For M C X and N C X* let

M :={feX*: flyy =0} and
Nt:={zeX:f(z)=0 foral f e N}

Proposition A.23 (Basic properties of transposes and annihilators).

1. | Al = ||AT|| and A1t = Az for all x € X.

2. M° and N+ are always closed subspaces of X* and X respectively.

3. (M°)*" = M.

4.N C (NJ-)O with equality when X is reflexive. (See Ezercise ?7, FExample
?? above which shows that N # (NJ‘)O in general.)

5. Nul(A) = Ran(A?)L and Nul(A") = Ran(A)". Moreover, Ran(A) =
Nul(AY)L and if X is reflezive, then Ran(At) = Nul (4)°.

6. X is reflexive iff X* is reflexive. More generally X*** = X+ @ X0 where

X0O={AeX"™ :\(&)=0foralzecX}.

Proof.
1.
|Al = sup ||Az||= sup sup |f(Az)]
llzll=1 lzll=1 | fll=1
— s swp |41 ()] = swp 477 = 7]
Fl=1 [lz]|=1 Ifll=1

2. This is an easy consequence of the assumed continuity off all linear func-
tionals involved. N
3. If x € M, then f(z) = 0 for all f € M° so that € (M) . Therefore

M c (MO)L .If z ¢ M, then there exists f € X* such that f|; = 0 while
f(x) #0,ie f e M°yet f(x)# 0. This shows z ¢ (MO)L and we have
shown (MO)J_ C M.
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4. Tt is again simple to show N C (NJ-)O and therefore N C (NJ-)O . Moreover,
as above if f ¢ N there exists ¢ € X** such that ¢|y = 0 while ¥ (f) # 0.
If X is reflexive, ©p = & for some z € X and since g () = ¢ (g) = 0 for
all g € N, we have z € N*. On the other hand, f(z) = ¥ (f) # 0 so

fé¢ (NL)O. Thus again (NL)O C N.

d.
Nul(A)={zeX: Az =0}={r e X: f(Ax) =0V f e X"}
={zreX :Alf(x)=0V fe X*}
={reX:g(x) =0V ge Ran(A")} = Ran(A4")".
Similarly,

Nul(A) = {f € Y": ATf =0} = {f € Y"1 (4Tf) (2) =0V 2 € X}
={feY": f(Ax)=0Vze X}
={f €Y flran(a) = 0} = Ran (4)°.

6. Let ¢ € X*** and define fy, € X* by fy (x) = ¢ (£) for all z € X and set
Y =1 — fy. For x € X (so & € X**) we have

W (2) = (2) = fy (&) = fy (x) — 2(f) = fu () = fy (x) = 0.

This shows ' € X0 and we have shown X*** = X* + X©. Ify e X+ ﬁXO,
then ¢ = f for some f € X* and 0 = f(&) = 2 (f) = f () for all z € X,
i.e. f =0s01 = 0. Therefore X*** = X*@ X0 as claimed. If X is reflexive,
then X = X** and so X° = {0} showing X*** = X*, i.e. X* is reflexive.
Conversely if X* is reflexive we conclude that X° = {0} and therefore

L\ L N
X ={0}" = (XO) = X, so that X is reflexive.

Alternative proof. Notice that f, = Jt, where J : X — X** is given
by Jx = &, and the composition

. N .
fexr S fexL jtfexr

is the identity map since (JTf) (x) = f(Jz) = f(&) =2 (f) = f (2) for all
@ € X. Thus it follows that X* — X*** is invertible iff J1 is its inverse which
can happen iff Nul(JT) = {0}. But as above Nul(J) = Ran (J)" which will
be zero iff Ran(J) = X** and since J is an isometry this is equivalent to
saying Ran (J) = X**. So we have again shown X* is reflexive iff X is
reflexive.
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Theorem A.24 (Banach Space Factor Theorem). Let X be a Banach
space, M C X be a proper closed subspace, X/M the quotient space, m: X —
X/M the projection map 7 (x) = x+ M for x € X and define the quotient norm
on X/M by

= M — 'f .
I @)l = lla+ Mllxjng = inf 1+l

Then:

1l /s @s @ norm on X/M.

2. The projection map ©: X — X/M is has norm 1, ||| = 1.

3. Foralla€ X and e >0, 7 (BX (a,¢)) = BXM (7 (a) &) and in particular
T 45 an open mapping.

4- (X/M, |I'll x/r) is a Banach space.

5. If Y is another normed space and T : X — Y is a bounded linear transfor-
mation such that M C Nul(T), then there exists a unique linear transfor-
mation T : X/M —'Y such that T =T o7 and moreover | T| = ‘T

6. The map,

closed subspaces closed subspaces
{ of X containing M} >N m(N)e { of m(X/M) }

is a bijection. The inverse map is given by pulling back subspace of m (X /M)
by 7L, [The word closed may be removed above and the result still holds as
one learns in a linear algebra class.]

Proof. We take each item in turn.

1. Clearly ||z + M| > 0 and if ||z + M| = 0, then there exists m,, € M such
that ||z +my,| — 0asn — oo, i.e. x = — lim m, € M = M. Since x € M,

n—oo

x+M=0€ X/M.If ce C\{0}, x € X, then

ez + M| = inf |lcx +m|| = [c] inf [lz+m/c| = |c[lz+ M|
meM meM

because m/c runs through M as m runs through M. Let 21,25 € X and
my,mo € M then

[z1 + 22 + M| < [|z1 4+ 22 + My + ma|| < [lzg + mu || + [lz2 + me].
Taking infimums over mi, my € M then implies
@1 + @2 + M| < [lzy + M| + [lz2 + M].

and we have completed the proof the (X/M, || -||) is a normed space.
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. Since ||7 (z)|| = infpenm |z +m| < ||z|| for all z € X, ||7]] < 1. To see

I=ll = 1, let € X \ M so that w(x) # 0. Given «a € (0,1), there exists
m € M such that
lz+m| < o™ ().
Therefore,
[m(z +m)ll _ llw @)l alzt+m| _
le+mll flz+ml — [z +m]

which shows ||7|| > «. Since @ € (0,1) is arbitrary we conclude that
I ()] = 1.

. Since ||7|| < 1if € > 0 then 7 (BX (0,¢)) € BX/™ (0,¢). Conversely if y €

X and 7 (y) € BX/M (0,¢) then there exists m € M so that ||y +m| < ¢,
ie. y+m € BX(0,¢). Since 7 (y) = 7 (y +m), this shows that 7 (y) €
7 (BX (0,¢)) and so m (B* (0,¢)) = BX/M (0,¢) for all € > 0. For general
a € X and € > 0 we have

7 (B* (a,¢)) =7 (a+ B* (0,¢)) = 7 (a) + 7 (B~ (0,¢))
7 (a) + BX™ (0,e) = BXM (7 (a) ,¢).

. Let 7w(z,,) € X/M be a sequence such that Y ||7(z, )| < co. As above there

exists m, € M such that ||7(z,)|| > 3|z, +m,| and hence Y [z, +my,[| <
(o]

23 |7 (zn)]| < oo. Since X is complete, x := Y (x, +m,,) exists in X and
n=1

therefore by the continuity of ,

m(@) = wlen+mn) =Y w(w)

n=1

showing X/M is complete.

. The existence of T is guaranteed by the “factor theorem” from linear alge-

bra. Moreover

TH = ||T|| because

i1l = || o x| < ]| 4l = || 7]

and
A |7 @) |72
T) =Ssup ————— =

cgm T ()]l z¢M ||IT ()]l

Tx Tx
g 17Tl

z¢ M [l z#0 [zl

macro: svmonob.cls date/time: 13-Feb-2020/12:28
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6. First we will shows that 7 (N) is closed whenever N is a closed subspace
of X containing M. To verify this, let {z,} C N be a sequence such that
{7 (zn)}.—, is Cauchy in m (X/M). As in the proof of item 3. we may find
my, € M such that x = lim,,_, (z, + m,,) exists with x € N as N is closed.
Therefore

7 (z) = lim 7 (x, +my,) = lim 7 (z,) € 7 (N)

n— oo n—oo

which shows 7 (V) is closed. Moreover, x € 7! (7 (N)) iff 7 (x) € 7 (N)
which happens iff z+M C x+ N, i.e. iff z € N. This show 7! (7 (N)
Finally, if N is a closed subspace of 7 (X/M), then N := 7! ( V

Theorem A.25. Let X be a Banach space. Then

1. Identifying X with X C X**, the weak — * topology on X™** induces the weak
topology on X. More explicitly, the map x € X — T € X is a homeomor-
phism when X is equipped with its weak topology and X with the relative
topology coming from the weak-x topology on X**.

2. X C X** is dense in the weak-x topology on X**.

3. Letting C' and C** be the closed unit balls in X and X** respectively, then
C = {& € C** : x € C} is dense in C** in the weak — * topology on X**.

4. X is reflexive iff C is weakly compact.

(See Definition [A.1 for the topologies being used here.)
Proof.

1. The weak — *x topology on X™** is generated by
{firex}=fvex —up(p):fex.
So the induced topology on X is generated by
{reX—2eX">2(f)=f(z): feX}=X"

and so the induced topology on X is precisely the weak topology.
2. A basic weak - * neighborhood of a point A € X** is of the form

Noi=nioi{e € X7 2 [0 (fi) — A(fw)] < e} (A.6)

for some {fix},_, C X* and ¢ > 0. be given. We must now find z € X such
that & € NV, or equivalently so that
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12(fr) = M o) = |fx (@) = A(fx)| <efor k=1,2,...,n. (A7)
In fact we will show there exists + € X such that A(fx) = fx(z) for
k = 1,2,...,n. To prove this stronger assertion we may, by discarding

some of the fi’s if necessary, assume that {f;},_, is a linearly indepen-
dent set. Since the {f;};_, are linearly independent, the map z € X —

(fi(x),..., fa(x)) € C™ is surjective (why) and hence there exists © € X
such that

(fr(x),... fu(2)) =Tz =(A(f1),.--, A(fn)) (A.8)
as desired.

3. Let A € C** € X** and NV be the weak - * open neighborhood of A as in Eq.
(A.6). Working as before, given ¢ > 0, we need to find « € C such that Eq.
. It will be left to the reader to verify that it suffices again to assume
{fr}r_, is alinearly independent set. (Hint: Suppose that {f1,..., i} were
a maximal linearly dependent subset of {fy},_, , then each f; with k >m
may be written as a linear combination {fi,..., f;s}.) As in the proof of
item 2., there exists € X such that Eq. holds. The problem is that
z may not be in C. To remedy this, let N := N7_, Nul(fy) = Nul(T),
7: X — X/N = C" be the projection map and f, € (X/N)* be chosen so
that f, = from for k = 1,2,...,n. Then we have produced z € X such
that

A1) M) = (f1 (@), fu (@) = (Fi(7 (@), Ful(7 (2))).

Since {f1,..., fa} is a basis for (X/N)" we find
?: Oéiﬁ T(T :—L O[i)\ 7
@l = sup ZmehC O], g el
accm\(o} || oimy aifi| accm\fo} 1D iey i fill
A aifi
oy DL )
accn\{0} (122 1aifi||
W22i=1 QiJill o fi

sup
aeC\{0} ”Z 1a2sz

IN

Hence we have shown |7 (x)|] < 1 and therefore for any o > 1 there
exists y = z +n € X such that ||y| < a and (A(f1),...,A\(fn)) =

(f1 (W) ,..., fn(y)). Hence
INfi) = fily/) < |fi(y) — a7 i) < (L= [fi (y)]

which can be arbitrarily small (i.e. less than €) by choosing « sufficiently
close to 1.
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4. Let C:={i:x € C} C C™ C X** If X is reflexive, C' = C** is weak - *
compact and hence by item 1., C' is weakly compact in X. Conversely if C
is weakly compact, then C' C C** is weak — x compact being the continuous

image of a continuous map. Since the weak — * topology on X** is Hausdorff,
—weak—x

it follows that C is weak — x closed and so by item 3, C** = C =C.So
if A e X**, A/ ||\ € C** = C, i.e. there exists © € C such that & = A/ ||A]| .

This shows A = (|[A||z) and therefore X = X**.

A.4 Rayleigh Quotient

Theorem A.26 (Rayleigh quotient). If H is a Hilbert space and T € B (H)
is a bounded self-adjoint operator, then

(75,5 71
M = - = ||T = — .
o ( P f||>

Moreover, if there exists a non-zero element f € H such that

2
171l
then f is an eigenvector of T with Tf = Af and \ € {£||T||}.

Proof. First proof. Applying Eq. (B.5) with @ (f,g) = (T'f,¢) and Eq.
(B.4) with Q (f,g) = (f, g) along with the Cauchy-Schwarz inequality implies,

ARe(Tf,g) =(T(f+9).(f+9) —(T(f—9),(f—9))
< M[If +gl* + 1 = gl?] =20 117 + llgl®]

Replacing f by e f where @ is chosen so that ¢ (T'f, g) = |(T'f, g)| then shows

AT F,9) < 2M [IFIP + gl

and therefore,

1T = sup  [(f,Tg)| <M
I£1=lgll=1

and since it is clear M < ||T|| we have shown M = ||T||.
If f e H\ {0} and |T|| = (Tf, £)|/ |f]|* then, using Schwarz’s inequality,

(TN T A
Tt < < (A.9)

17N =
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This implies [(Tf, )| = ITf] ||f|| and forces equality in Schwarz’s inequality.

So by Theorem ??, T'f and f are linearly dependent, i.e. Tf = Af for some

A € C. Substituting this into (A.9) shows that |\| = ||T||. Since T is self-adjoint,
MIFIP = Nff) = AT F ) = (LT = (FA0) = M) = AP,

which implies that A € R and therefore, A € {£||T||}.

Second proof. By the spectral theorem for bounded operators of Chapter
?? below, it suffices to prove the theorem in the case where T' = M, € B (H)
where H = L? (2, 11), (£2,F, ) is a finite measure space, and g : 2 — R is a
bounded measurable function. In this case,

(TS = ‘/ﬁgldeM‘ < Ngllpee ) /Q 17 = gl oo oy 1F 122 -

If m < |lgll o,y = IT[,, then we can choose f = 14 and £ € {£1} so that
w(A) >0 and eglg > mly. For this f it follows that

2
(L) = [ codn=m e (A) = m g
Combining these last two assertions shows

(TS, P

m < sup ————5— < 1Tl
Ml o

which completes this proof as m < || T[,, was arbitrary.
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B

Spectral Theorem (Compact Operator Case)

Before giving the general spectral theorem for bounded self-adjoint opera-
tors in the next chapter, we pause to consider the special case of “compact”
operators. The theory in this setting looks very much like the finite dimensional
matrix case.

B.1 Basics of Compact Operators

Definition B.1 (Compact Operator). Let A : X — Y be a bounded operator
between two Banach spaces. Then A is compact if A[Bx(0,1)] is precompact
in'Y or equivalently for any {z,}52, C X such that ||x,|| < 1 for all n the
sequence y, ‘= Ax, €Y has a convergent subsequence.

Definition B.2. A bounded operator A : X — 'Y is said to have finite rank if
Ran (A) C Y is finite dimensional.

The following result is a simple consequence of Theorem 7?7 and Corollary
79

Corollary B.3. If A: X — Y s a finite rank operator, then A is compact. In
particular if either dim(X) < oo or dim(Y) < oo then any bounded operator
A: X =Y is finite rank and hence compact.

Theorem B.4. Let X and Y be Banach spaces and K := K(X,Y) denote the
compact operators from X to'Y. Then K(X,Y) is a norm-closed subspace of
B (X,Y). In particular, operator norm limits of finite rank operators are com-
pact.

Proof. Using the sequential definition of compactness it is easily seen that
K is a vector subspace of B (X,Y"). To finish the proof, we must show that K €
B (X,Y) is compact if there exists K, € K(X,Y) such that lim, o || K, —
Klop = 0.

First Proof. Let U := By (1) be the unit ball in X. Given € > 0, choose
N = N(e) such that ||Kny — K| < e. Using the fact that KyU is precompact,
choose a finite subset A C U such that KnU C UyeaBkyo (€). Then given
y =Kz € KU we have Ky € Bk, (¢) for some o € A and for this o;

ly — Knol| = | Kz — Kno|
< ||[Kx — Knz|| + |[Knz — Kno|| < ellz|| + & < 2e.

This shows KU C UyeaBkyo (2¢) and therefore is KU is 2e — bounded for all
€ >0, i.e. KU is totally bounded and hence precompact.
Second Proof. Suppose {z,},., is a bounded sequence in X. By com-

pactness, there is a subsequence {a:}l}zo:l of {x,} -~ such that {le}z}:; is
convergent in Y. Working inductively, we may construct subsequences

{zn}nei D {wi}:il 2 {%21}30:1 D {a Il D

such that {K,,z"} 7 | is convergent in Y for each m. By the usual Cantor’s
diagonalization procedure, let o, := 2%, then {o,}, -, is a subsequence of
{xn},~, such that {K,,0,},- is convergent for all m. Since

1Ko — Kot < (K = Kyn) oull + 1K (00 — o)l + | (Ko — K) 1)
< 2K = Kl + | Km(on — a1l
lim sup ||Ko, — Ko| <2||K — K,,|| = 0 as m — oo,
n,l—oo
which shows {Ko,},, is Cauchy and hence convergent. |
FEzample B.5. Let X = ¢?> =Y and ), € C such that lim,,_,oc A, = 0, then

A: X — Y defined by (Azx)(n) = A,xz(n) is compact. To verify this claim, for
each m € Nlet (A,2)(n) = Az (n)lh<m. In matrix language,

MO -
AL 00 e
0 X O --- Dol Tl T
A=100 N - | and Ay = 0 Xy O ---

0 0°

Then A,, is finite rank and ||A — Am||op = maxXpsm |An| = 0 as m — oo. The
claim now follows from Theorem [B.4]
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We will see more examples of compact operators below in Section [B.4] and
Exercise 77 below.

Lemma B.6. If X A v By 7 are bounded operators between Banach spaces
such the either A or B is compact then the composition BA : X — Z is also
compact. In particular if dim X = co and A € L(X,Y) is an invertible operator
such thaﬂ A"t e L(Y,X), then A is not compact.

Proof. Let Bx(0,1) be the open unit ball in X. If A is compact and B
is bounded, then BA(Bx(0,1)) C B(ABx(0,1)) which is compact since the
image of compact sets under continuous maps are compact. Hence we con-
clude that BA(Bx(0,1)) is compact, being the closed subset of the compact
set B(ABx(0,1)). If A is continuous and B is compact, then A(Bx(0,1)) is a
bounded set and so by the compactness of B, BA(Bx(0,1)) is a precompact
subset of Z, i.e. BA is compact.

Alternatively: Suppose that {z,} -, C X is a bounded sequence. If A is
compact, then y,, := Az, has a convergent subsequence, {y,, } -, . Since B is
continuous it follows that z,, = By,, = BAz,, is a convergent subsequence of
{BAz,},- . Similarly if A is bounded and B is compact then y,, = Axz,, defines
a bounded sequence inside of Y. By compactness of B, there is a subsequence
{Yny }rey for which {BAz,, = Byn, },, is convergent in Z.

For the second statement, if A were compact then Ix := A~1A would be
compact as well. As Ix takes the unit ball to the unit ball, the identity is
compact iff dim X < oo. ]

Corollary B.7. Let X be a Banach space and K (X) := K (X, X). Then K (X)
is a norm-closed ideal of L (X)) which contains Ix iff dim X < oco.

Lemma B.8. Suppose that T,T,, € L(X,Y) for n € N where X and Y are
normed spaces. If T, = T, M = sup,, |T,| < oo and x, — = in X as
n — oo, then Thx, — Tz in'Y as n — oco. Moreover if K C X is a compact
set then

lim sup | Tz — T,x| = 0. (B.1)

N0 zeK
Proof. 1. We have,
1T = Tynll < T2 — Toz | + | Ta — To
< ||Tx — Thx|| + M ||z — 25| = 0 as n — oo.
2. For sake of contradiction, suppose that

! Later we will see that A being one to one and onto automatically implies that A™*
is bounded by the open mapping Theorem ?7.

2If X and Y are Banach spaces, the uniform boundedness principle shows that
T, > T automatically implies sup,, | Tn|| < co.
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limsup sup ||Tz — Tpz| =& > 0.

n—oo zeK

In this case we can find {ng},.;, € N and z,, € K such that
T2, — Thn,Tn,ll > /2. Since K is compact, by passing to a subse-
quence if necessary, we may assume limy_,o %, = « exists in K. On the other
hand by part 1. we know that

lim | Tz, — Th,Tn, | = ’ lim Txz,, — lim T, x,,| = ||Tz - Tz|| = 0.
k—o0 k—o0 k—o0
2 alternate proof. Given ¢ > 0, there exists {x1,...,2x} C K such that

K c UN B, (¢). If x € K, choose I such that z € By, (¢) in which case,
Tz — Thx|| < Tz — Tay|| + || Tz — Trx|| + || Trr — Tnxl|
< (Il + M) & + T2 = T
and therefore it follows that

— < —
:gp T2z — Thx|| (||T||OP+M)€+1r<nle%x T2z — Tha|
and therefore,

limsup sup ||Tx — Trz| < (HTHOP + M) €.
K

n—oo xE

As g > 0 was arbitrary we conclude that Eq. (B.1]) holds. ]

B.2 Compact Operators on Hilbert spaces

For the rest of this section, let H and B be Hilbert spaces and U := {z € H :
[|z]] < 1} be the open unit ball in H.

Proposition B.9. A bounded operator K : H — B is compact iff there exists
finite rank operators, K, : H — B, such that |K — K,|| = 0 as n — oo.

Proof. Suppose that K : H — B. Since K(U) is compact it contains a
countable dense subset and from this it follows that K (H) is a separable sub-
space of B. Let {¢,} be an orthonormal basis for K (H) C B and

n

Pny = Z<y7 @é)@@
(=1
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be the orthogonal projection of y onto span{¢,}}_,. Then lim,_, | P,y—y| = 0
for all y € K (H). Define K,, := P,K — a finite rank operator on H. It then
follows that

limsup | K — K, || = limsup sup | Kz — K,z||

n—oo n—oo xzelU

= limsupsup || (I — P,) Kz||
n—oo zeU

<limsup sup ||(/—P,)yl|=0
N0 weK(U)

by Lemma along with the facts that K (U) is compact and P, - I. The
converse direction follows from Corollary and Theorem
[

Corollary B.10. If K is compact then so is K*.

Proof. First Proof. Let K,, = P,,K be as in the proof of Proposition [B.9]
then K} = K*P, is still finite rank. Furthermore, using Proposition 7?7,

|K*— K| =K —K,| > 0asn— oo

showing K* is a limit of finite rank operators and hence compact.
Second Proof. Let {z,,} -, be a bounded sequence in B, then

|K*2p — K* || = (€0 — T, KK* (2, — 2)) < 2C | KK* (2, — @) ||
(B.2)
where C' is a bound on the norms of the z,,. Since { K*z,,} -, is also a bounded
sequence, by the compactness of K there is a subsequence {z/, } of the {z,,} such
that K K*x, is convergent and hence by Eq. (B.2), so is the sequence {K*x/,} .
[

Ezample B.11. Let (X, B, i) be a o-finite measure spaces whose o — algebra is
countably generated by sets of finite measure. If k € L? (X x X, u® ), then
K : L? (p) — L? (u) defined by

Kf () = /X k(o) f (v) du (v)

is a compact operator.

Proof. First observe that
KT ()2 < I /X e (2 ) i (9)

and hence
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AP <SP [ )l de @) du )
from which it follows that [|K||,, < [kl 2,y -
Now let {t,,} ~, be an orthonormal basis for L? (X, u) and let

N

kn (:v,y) = Z <kv¢m®wn>wm®wn

m,n=1

where f® g (z,y) := f(2) g (y). Then

N

Knf () :Z/szv (@, 9) F W) dp(y) = Y (ks tbm @ Pn) (f,90n) P

m,n=1
is a finite rank and hence compact operator. Since
||K_KNHOP7 ||k kNHLQ(,U,®,u)_>OaSN_>OO

it follows that K is compact as well. [

B.3 The Spectral Theorem for Self Adjoint Compact
Operators

For the rest of this section, K € K(H) := K(H, H) will be a self-adjoint compact
operator or S.A.C.O. for short. Because of Proposition [B-9] we might expect
compact operators to behave very much like finite dimensional matrices. This
is typically the case as we will see below.

Ezample B.12 (Model S.A.C.0.). Let H = {3 and K be the diagonal matrix

where lim,, o |An| = 0 and A, € R. Then K is a self-adjoint compact operator.
This assertion was proved in Example

The main theorem (Theorem [B.15) of this subsection states that up to
unitary equivalence, Example [B.12]is essentially the most general example of an
S.A.C.O. Before stating and proving this theorem we will require the following
results.
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Lemma B.13. Let Q : H x H — C be a symmetric sesquilinear form on
H where Q is symmetric means Q (h,k) = Q (k,h) for all hyk € H. Letting
Q (h):=Q (h,h), then for all h,k € H,

Q(h+k)=Q(h)+Q(k)+2ReQ (h, k), (B.3)
Qh+k)+Q(h—k) =2Q(h) +2Q (k), and (B.4)
Q(h+k) —Q(h—k)=4ReQ (h.k). (B.5)

Proof. The simple proof is left as an exercise to the reader.

Exercise B.1 (This may be skipped). Suppose that A : H — H is a
bounded self-adjoint operator on H. Show;

1. f(z):=(Az,z) e R for all z € H.
2. If there exists g € H with ||ag|| = 1 such that

Ao = sup (Az,x) = (Axg, zo)

llzll=1

then Azg = Agzo. Hint: Given y € H let ¢(t) := ﬁ for ¢ near 0.
H

Then apply the first derivative test to the function g (t) = (Ac(¢),c(t)).
3. If we further assume that A is compact, then A has at least one eigenvector.

Proposition B.14. Let K be a S.A.C.0., then either A = |[K|| or A = — || K||
is an eigenvalue of K.

Proof. (For those who have done Exercise that exercise along with
Theorem constitutes a proof.) Without loss of generality we may assume
that K is non-zero since otherwise the result is trivial. By Theorem there
exists u, € H such that ||u,| =1 and

" = [(tn, Kup)| — ||K|| as n — 0. (B.6)

By passing to a subsequence if necessary, we may assume that A :=
limy, s 00 (U, Kuy) exists and A € {£|K]|}. By passing to a further subse-
quence if necessary, we may assume, using the compactness of K, that Ku,
is convergent as well. We now compute:
0 < | Kup — Mun||? = | Kun||* — 20Ky, uy) 4+ A2
<A = 2M( Ky, up) + N2
= A =2X? + X\’ =0as n — .
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Hence
Kup, — Au, = 0asn — oo (B.7)
and therefore 1
u:= lim u, = - lim Ku,
n— 00 A\ n—o0

exists. By the continuity of the inner product, ||u|| = 1 # 0. By passing to the
limit in Eq. (B.7) we find that Ku = Au. ]

Theorem B.15 (Compact Operator Spectral Theorem). Suppose that
K :H — H is a non-zero S.A.C.0., then

1. there exists at least one eigenvalue A € {£| K||}.

2. There are at most countably many non-zero eigenvalues, {\,})_,, where
N = o0 is allowed. (Unless K is finite rank (i.e. dim Ran (K) < 00), N will
be infinite.)

3. The A\, ’s (including multiplicities) may be arranged so that |An| > |Ant1]
for all n. If N = oo then lim,_ |An| = 0. (In particular any eigenspace
for K with non-zero eigenvalue is finite dimensional.)

4. The eigenvectors {¢, })_, can be chosen to be an O.N. set such that H =

Y
span{yn} @ Nul(K).
5. Using the {¢n}_, above,

N
Kf=>> M(f @n)pn for all f € H. (B.8)

n=1

6. The spectrum of K is o(K) = {0} U{ A\, :n < N+1} if dimH = oo,
otherwise o(K) = {\, : n < N} with N < dim H.

Proof. We will find A,’s and ¢,,’s recursively. Let A\; € {£| K|} and p1 € H
such that K¢; = A\ as in Proposition

Take M; = span(p1) so K(M;) C M. By Lemma KM~ ¢ Mi-.
Define Ky : Mj- — Mj- via K; = K|,;.. Then K] is again a compact operator.
If K1 = 0, we are done. If K; # 0,1by Proposition there exists A €
{£||K1]|} and @s € Mi- such that [|p2]| = 1 and Kips = Kpa = Aapa. Let
My = span(p1, ©2).

Again K (M) C M> and hence K3 := K| Mj- — Mj- is compact and
if K3 =0 we are done. When K5 # 0, we apply Proposition [B.14] again to find
A3 € {£||K |2} and ¢3 € M3 such that ||3] = 1 and Kaps = Kz = A3¢p3.

Continuing this way indefinitely or until we reach a point where K, = 0,
we construct a sequence {\, })_; of eigenvalues and orthonormal eigenvectors
{pn}N_; such that |\,| > |\,41| with the further property that

2l

|/\n| = :
oL{p1.o2on1} 92l

(B.9)
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When N < oo, the remaining results in the theorem are easily verified. So from
now on let us assume that N = oo.

If € := limy 00 |[An| > 0, then {/\T_ngan}:;l is a bounded sequence in H.
Hence, by the compactness of K, there exists a subsequence {ny : k € N} of
N such that {¢n, = A;}}chnk};‘;l is a convergent. However, since {¢y, }ro;
is an orthonormal set, this is impossible and hence we must conclude that
g :=lim, 00 |An| = 0.

Let M := span{g,}52;. Then K(M) C M and hence, by Lemma
K(M*) c M*. Using Eq. ,

K pell < || Klars || = [Anl — 0 as n — oo

showing K|M~* = 0. Define Py to be orthogonal projection onto M=. Then for
feH,

f=Pf+1=P)f=Pf+> (f.on)p

n=1

and
o0

Kf:KPOf+KZ<faSOn Pn Z fv‘;on

n=1 n=1
which proves Eq. .

Since {A\p,}52; C o(K) and o(K) is closed, it follows that 0 € o(K) and
hence {A\,}52, U {0} C o(K). Suppose that z ¢ {A\,}>2; U {0} and let d
be the distance between z and {A\,}52; U {0}. Notice that d > 0 because
lim,,_soo A, = 0.

A few simple computations show that:

(K —2D)f =Y (f.0n) (A — 2)on — 2R f,

n=1

(K — z)71 exists,

(K - ZI)_lf = Z(fv Son>()‘n - Z)_lspn - Z_1P0f7

and

1
(K = 2D)7 f]* = ZI fren)l + ?IIPofH2

n_‘ B
< 1y’ 2 1pfl2 ) = L
<(3) (S 1wmr+inae) = i

We have thus shown that (K — zI)~! exists, ||(K — 2zI)7} < d7! < co and
hence z ¢ o(K). ]
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Theorem B.16 (Structure of Compact Operators). Let K : H — B
be a compact operator. Then there exists N € NU{oco}, orthonormal subsets
{(pn}gzl C H and {wn}fj:l C B and a sequence {an}ﬁ[:l C Ry such that
ay > ag > ... (with limy, oo oy = 0 if N = 00), ||¢n|| < 1 for all n and

N
Kf= Zan<f, On)tn for all f € H. (B.10)

Proof. Since K*K is a self-adjoint compact operator, Theorem [B.15|implies
there exists an orthonormal set {¢,}_; C H and positive numbers {)\n}gzl
such that

N
K*Ky = Z/\n<¢,<,0n>90n for all ¢ € H.

n=1

Let A be the positive square root of K*K defined by

N
A =" /A, @)y for all ¢ € H.
n=1

A simple computation shows, A2 = K*K, and therefore,

|AY|)? = (Ap, Ap) = (v, A%p)
= (¢, K*Ky) = (K, K¢) = | Ky

for all ¢ € H. Hence we may define a unitary operator, u : Ran(A) — Ran(K)
by the formula
uAp = K1) for all ¢ € H.

We then have v
Ktp = udip = /A (), on)upn (B.11)
n=1

which proves the result with 9, := up,, and a,, = VvV Ay,.
It is instructive to find v, explicitly and to verify Eq. (B.11)) by brute force.

Since ¢, = /\El/QAgon,
U = A Pudpn = AP K gy

and
<K(pn7K90m> = <90an*KQDm> = AMOmn-

This verifies that {wn}f:]:l is an orthonormal set. Moreover,
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N N
VA tn = DV Al 0a) A K gy

n=1 n=1
N
=K ZW’: On)pn = K1
n=1

since 22;1(1/1, ©n)n = Pt where P is orthogonal projection onto Nul(K)*.
Second Proof. Let K = u|K| be the polar decomposition of K. Then | K|
is self-adjoint and compact, by Corollary ?? below, and hence by Theorem [B-15]
there exists an orthonormal basis {¢,},_, for Nul(|K|)* = Nul(K)* such that
K| on = An@n, A1 > A2 > ... and lim, 400 A, = 0 if N =o00. For f € H,

N N N
Kf =ulK]Y (fen)en =Y (fron)u|E|on =Y Aulf,n)upn
n=1 n=1 n=1
which is Eq. (B.10) with ¢, := up,. ]

Exercise B.2 (Continuation of Example ??). Let H := L?([0,1],m),
k(z,y) := min (z,y) for z,y € [0,1] and define K : H — H by

Kf(z) = / k(.y) f () dy.

From Example we know that K is a compact operatof’] on H. Since k is
real and symmetric, it is easily seen that K is self-adjoint. Show:

1.1f g € C?([0,1]) with g(0) = 0 = ¢’(1), then Kg” = —g. Use this to
conclude (K f|g"y = —(f|g) for all g € C°((0,1)) and consequently that
Nul(K) = {0} .

2. Now suppose that f € H is an eigenvector of K with eigenvalue A # 0.
Show that there is a Versiorﬂ of f which is in C ([0,1])NC? ((0,1)) and this
version, still denoted by f, solves

A" = —f with f£(0) = f' (1) = 0. (B.12)

where [’ (1) := limg41 f/ ().
3. Use Eq. (B.12)) to find all the eigenvalues and eigenfunctions of K.
4. Use the results above along with the spectral Theorem to show

(Vi (s §) o) sneri)

is an orthonormal basis for L? ([0,1] ,m) with A, = [(n + §) 7] .

3 See Exercise from which it will follow that K is a Hilbert Schmidt operator
and hence compact.
4 A measurable function g is called a version of f iff g = f a.e..
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5. Repeat this problem in the case that k (x,y) = min (z,y) — zy. In this case
you should find that Eq. (B.12)) is replaced by

A" = —f with £(0) = £ (1) =0
from which one finds;
{fn = V/2sin (n7z) :n € N}

is an orthonormal basis of eigenvectors of K with corresponding eigenvalues;
An = (nm) 2.
6. Use the result of the last part to show,

>E= g

Hint: First show
k (:L‘, y) = Z Anfn (x) fn (y) for a.e. (:L‘, y) .
n=1

Then argue the above equation holds for every (z,y) € [0,1]°. Finally take
y = x in the above equation and integrate to arrive at the desired result.

Note: for a wide reaching generalization of this exercise the reader should
consult Conway |7, Section II.6 (p.49-54)].

Worked Solution to Exercise (B.2). Let I = [0,1] below.

1. Suppose that g € C?([0,1]) with g (0) = 0= g’ (1), then

1 T 1
Kyg" (x) :/ z Ayg” (y) dy:/ vg" (y) dy+x/ g" (y) dy
0 0 T

=—/Org’ (W) dy+ v W) 5+ (¢ (1) — g (2))
=—g(x)+9(0)=—g ().
Thus if g € C2 ((0,1)) we have

(Kflg") = (fIKg") = —(flg)-

In particular if K f = 0, this implies that [, f(z)g(z)dz = 0 for all g €
C?((0,1)). Since C° ((0,1)) is dense in L? ([0, 1],m) we may choose g, €
C?((0,1)) such that g, — f in L? as noo and therefore

0= lim f(sc)gn(x)dx:/|f|2dm.
I I

n—oo

This shows that f =0 a.e.
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2. If, for a.e. z,

Af(fv)=Kf(w):/IxAyf(y)dy::F(w)

then F is continuous and F (0) = 0. Hence A~ F is a continuous version of
f. We now re-define f to be A~1F. Since

f(ﬂf)=A_l/lw/\yf(y)dy=A_1 (/Oxyf(y)derx/:f(y)dy)

it follows that f € C* (]0,1]) and

P = (of @) - of (@ /f i) = A /f

From this it follows that f € C([0,1]) N C?((0,1)) and that " = —\"1f

and f'(1) =
. By writing out all of the solutions to Eq. (B.12]) we find the only possibilities

are
fn () =sin <(n+ ;) 71;1:> forn e N

with corresponding eigenvalues being A,, = [(n + %) 7r]72. Notice that if
f" = —=X71f and f satisfies the required boundary conditions, then it fol-
lows from the computations in part 1. that

—f=Kf'=K(-\"'f)=-X"'Kf

and therefore,
Kf=M\f.
. By the spectral Theorem [B.15, we must have that {

fn
£l

orthonormal basis for L2. Since

||an§ = /01 sin? ((n—i— ;) 7733) dx = /01 (; - %COS [(2n + 1)71'90]) dx = %

we find {\@sin ((n + %) ﬂ'x) S N} is an orthonormal basis of eigenvec-
tors for H.
Shorter solution. For f € L% (m), let

F(2) = Kf(:v)=/IxAyf(y)dy=/Owyf(y)dy+x/ £ (v) dy

Observe that F' is continuous and in fact absolutely continuous, F (0) = 0
and
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F'(2) = of (2 /f Yy — xf (z /f )dy ae. z.

If F:= Kf =0 then F/ = 0 a.e. and thereforefx1 f(y)dy = 0 for all z.
Differentiating this equation shows 0 = —f () a.e. and hence f = 0 and
therefore Nul (K') = 0.

If F=Kf = M\f for some X\ # 0 then we learn f has an absolutely contin-
uous version and from the previous equations we find

f0)=0, f/(1)=0, and \f' =F" = —f.

Thus the eigenfunctions of this equation must be of the form f(z) =
csin (kz) with k chosen so that 0 = f/ (1) = ckcos (k), i.e. k= (n+ 1) .

. Modification for Dirichlet Boundary Conditions. If & (z,y) = z Ay —

zy instead, then we have

x 1 1
l”’(l"):Kf(ﬂf):/O yf (y)dy +x f(y)dyfx/O yf (y)dy,
/ f(y)dy — /O yf (y)dy, and

Jald ( o

Thus again Nul (K) = {0} and everything goes through as before except
that now F'(0) = 0 and F' (1) = 0. Thus the eigenfunctions are of the form
f(x) = esinkx with k chosen so that 0 = f (1) = ¢sink. Thus we must
have k = nm now so that f, () = ¢, sinnwz. As A\, f// = —f,, we learn that
An (n7)? = —1 so that

in this case.

. We know that {fm, @ fu},, ,— is an orthonormal basis for L? (I*,m @ m) .

Since

(ko ® ) = [ 6(.9) f o) £ 0) dody
= <Kfn>fm> =An <fn7fm> = )\ném,ny
we find
Z )\n(sm,nfm & fn = Z )\nfn ® fn m & m — a.e.
m,n=1 n=1

As both sides of the previous equation are continuous, we may conclude
that
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Z)\ fn (z) fr (y) for every z,y € 1.

Thus it follows that -
= Z )‘nfr% (:E)
n=1

and then integrating this equation shows

oo 1
;)\n:/lk(a:,x)dx:/o (x—xQ)dxzé—%:é

and hence it follows that ,

=1
S5

B.4 Hilbert Schmidt Operators

In this section H and B will be Hilbert spaces.

Proposition B.17. Let H and B be a separable Hilbert spaces, K : H — B be
a bounded linear operator, {e,}o2, and {um} ._, be orthonormal basis for H
and B respectively. Then:

1.5 | Key|? =3 | K *up||? allowing for the possibility that the sums
are infinite. In particular the Hilbert Schmidt norm of K,

o0

2 2

1K s =D 1 Kenll”,
n=1

is well defined independent of the choice of orthonormal basis {e,}22,. We
say K : H — B is a Hilbert Schmidt operator if | K| ;¢ < oo and let
HS(H, B) denote the space of Hilbert Schmidt operators from H to B.

2. For all K € L(H,B), |K| g5 = |K*|| gg and

K llgs = 1K, :==sup{||[Khll: h € H such that ||h||=1}.

3. The set HS(H, B) is a subspace of L (H,B) (the bounded operators from
H — B), ||Illgg is a norm on HS(H, B) for which (HS(H,B),||-||;5) is a
Hilbert space, and the corresponding inner product is given by

o0
(K1|K2) Z (Kien|Kaen) . (B.13)
n=1
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.If K : H— B is a bounded finite rank operator, then K is Hilbert Schmidt.

. Let Pyx = ZnN:1 (xlen)en be orthogonal projection  onto
span{e, :n < N} C H and for K € HS(H,B), let Ky := KPy.
Then

G R

| K — KN”Op <||K — KN”HS — 0 as N — oo,

which shows that finite rank operators are dense in (HS(H,B), ||| y¢) - In
particular of HS(H,B) C K(H, B) — the space of compact operators from
H — B.

6. If Y is another Hilbert space and A:Y — H and C : B =Y are bounded
operators, then

KAl gs < [Kllgs 1Allo, and [CKlys < 1Kl zs 1C]l,p »

in particular HS(H, H) is an ideal in L (H).

Proof. Items 1. and 2. By Parseval’s equality and Fubini’s theorem for
sums,

|<K€n|um>|2

NE

Z 1K el =

K HM8
\gENd

* 2 * 2
el K wn)[* = > 1K um*.

Il
_

1n

3
I

This proves [|K|| ;¢ is well defined independent of basis and that ||K| ;¢ =
| K*|| g - For x € H\ {0}, z/ |lz| may be taken to be the first element in an
orthonormal basis for H and hence

HKII [ H < s -

Multiplying this inequality by |[|z| shows ||Kz| < | K| gg|lz] and hence

1K op < 1K s -
Item 3. For K, K, € L(H, B),

1Ky + Kall g = 4| D 1 K1en + Kaenl|

n=1

o0

2
< o[ D el + | K]

n=1

= [{lIKrenll + [ K2enl o2,
< K enll oz lly, + I K2enl 30y,
= ”KlHHS + ||K2||HS'
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From this triangle inequality and the homogeneity properties of ||-|| ;¢ , we now
easily see that HS(H,B) is a subspace of L(H,B) and ||-||5¢ is a norm on
HS(H, B). Since

(e Kaen)| <) [ Kien] [ Kol

NE

n=1 n=1
oo 00
2 2
<\ Do el | D0 1Kaenll” = 1Kl s 1Kol s »
= n=1

the sum in Eq. ( is well defined and is easily checked to define an inner
product on HS(H B) such that ||K||HS = (K|K) g -

The proof that (HS(H, B), ””HS) is complete is very similar to the proof

of Theorem ?7. Indeed, suppose {K,} -, is a ||| ;g — Cauchy sequence in
HS(H, B). Because L(H, B) is complete, there exists K € L(H, B) such that
[K — Km,, — 0 as m — co. Thus, making use of Fatou’s Lemma ?7?,

||K—Km||§15 = Z (K — Km )enuz

n=1

Z im 1nf (K — Kom) enll®

< lim inf K — K el

< lmlgw;:l: (G~ K)ol

= lim inf ||Kl—Km||iIS — 0 as m — oo.
l—o0

Hence K € HS(H, B) and lim,,, o0 || K — K, |5 = 0.
Item 4. Since Nul(K*)* = Ran (K) = Ran (K),

N
2 2 2
1K s = 1K s = > 1K vl < o0

n=1

where N := dimRan (K) and {vn} _, is an orthonormal basis for Ran (K) =
Item 5. Simply observe,

IK = Knl2, < 1K = Enlfg =Y [Ken|* = 0as N — co.
n>N

Item 6. For C € L(B,Y) and K € L(H, B) then
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2 2 2 2 2 2
ICK s = Y IICKeal* < IClIg, D IKenl® = IO, 1K Iz
n=1 n=1

and for A e L(Y,H),
KAl gs = IAK | g < (1A op 1K s = 1 Allp 1K N a7 -
[

Remark B.18. The separability assumptions made in Proposition [B17] are un-
necessary. In general, we define

2 2
1K Izrs = D l|Kel

e€p

where S C H is an orthonormal basis. The same proof of Item 1. of Proposition
[B.17] shows ||K| ;¢ is well defined and [|K |5 = [K*[| s If [ K%g < oo,
then there exists a countable subset Sy C 8 such that Ke =0if e € 8\ By. Let
Hy = span(fp) and By := K(Hp). Then K (H) C By, K|y: = 0 and hence
by applying the results of Proposition [B.17] E to Kl|pg, : Hy — BO one easily sees
that the separability of H and B are unnecessary in Proposition |B

Ezample B.19. Let (X, i) be a measure space, H = L?(X, ) and

Zfz gz

where

fiogi € L*(X,p) fori=1,...,n
Define
(Kf) (2) = / k(e w)f (v) dp (y)
X

then K : L?(X,pu) — L?*(X,p) is a finite rank operator and hence Hilbert
Schmidt.

Exercise B.3. Suppose that (X, i) is a o—finite measure space such that H =
L?(X, i) is separable and k : X x X — R is a measurable function, such that

b0 o 3= [ bl )P () do 0) < o
XxX

Define, for f € H,
Kf(z) = /X k() f () dyt ()

when the integral makes sense. Show:
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1. Kf (z) is defined for u—a.e. z in X.

2. The resulting function K f isin H and K : H — H is linear.

3. 1K || srs = 1%l pa(x wx pyey < 00- (This implies K € HS(H, H).)
Exercise B.4 (Converse to Exercise|B.3)). Suppose that (X, ) is a ofinite
measure space such that H = L?(X, u) is separable and K : H — H is a Hilbert

Schmidt operator. Show there exists k € L? (X x X, u ® p) such that K is the
integral operator associated to k, i.e.

Kf(x) = /X k(e ) f () du (v) (B.14)

In fact you should show
k(z,y) = Z (K*¢n) () ¢n (z) (L* (p® p) — convergent sum)  (B.15)
n=1

where {¢,,} -, is any orthonormal basis for H.



1?7

C

Trace Class & Fredholm Operators

In this section H and B will be Hilbert spaces. Typically H and B will be
separable, but we will not assume this until it is needed later.

C.1 Trace Class Operators

See B. Simon [44] for more details and ideals of compact operators.

Theorem C.1. Let A € B(H) be a non-negative operator, {e,} -, be an or-

thonormal basis for H and

o0
Z (Aeylen) -

Then tr(A) = H\/>H

om‘honormal basis for H Moreover if tr(A) < oo, then A is a compact operator.

[0,00] is well defined independent of the choice of

Proof. Let B := /A, then

=3 (Aenlen) = Z<B enlen) = Z<Ben|Ben> = 1Bl -
n=1

n=1

This shows tr(A) is well defined and that tr(A) = “f" If tr(A4) < oo then

2
VA is Hilbert Schmidt and hence compact. Therefore A = (\/Z) is compact

as well. ]

Definition C.2. An operator A € L(H,B) is trace class if tr(JA]) =
tr(vVA*A) < 0.

Proposition C.3. If A € L(H, B) is trace class then A is compact.

Proof. By the polar decomposition Theorem ??, A = w|A| where u is
a partial isometry and by Corollary ?? |A| is also compact. Therefore A is
compact as well. [

Proposition C.4. If A € L(B) is trace class and {e,},—, is an orthonormal

basis for H, then
oo
= Z (Aeylen)
n=1

is absolutely convergent and the sum is independent of the choice of orthonormal
basis for H.

Proof. Let A = u|A| be the polar decomp081t10n of A and {¢,},-, be an
orthonormal basis of eigenvectors for Nul(]A|)*+ = Nul(A)~ such that

|A‘ ¢m - >\m¢m
with A, } 0 and 3%

S (Aenlen)) = S 1A ealuten) = S

= Z Z Am <6n|¢m> <¢m‘U*6n>
< Z Am Z ‘<en|¢m> <u¢m|6n>|
= Z)\m ‘<¢m‘u¢'m>| S Z)\m < o0.

Am < 00. Then

S Al eldm) (dmluen)

m

Moreover,

Z <Aen|€n> = Z <|A‘ en|U*en>

n

- Z Z Am <en|¢m> <¢m|u*en)
- Z Am Z ugbm|en> <en|¢m>
- Z)‘ u¢m‘¢m>

showing > (Aeplen) = >, Am (udm|¢rm) which proves tr(A) is well defined
independent of basis. u



154 C Trace Class & Fredholm Operators

Remark C.5. Suppose K is a compact operator written in the form

N
Kf=>> An(flén)thn for all f € H. (C.1)
n=1

where {¢,}, -, C H, {tn},—, C B are bounded sets and A, € C such that
>0 1 |An| < co. Then K is trace class and

N
tr(K) = Z >‘n<wn|¢n>

BRUCE STOP i
Indeed, K*g = """ X,.(g,%n) ¢, and hence

N
n=1

N
Kf=> An(flén)th for all f € H. (C.2)
n=1

We will say K € IC(H) is trace class if

N
VE*K):=Y X\, <0
n=1

in which case we define
N
tr(K) = An(thnlon).
n=1

Notice that if {em } - _
is not separable) then

; is any orthonormal basis in H (or for the Ran(K) if H

M M N M
Kenlen) = 3 <z Anfemlé) wn|em> S 2 3 (enln) nlen
m=1 m=1 \n=1 n=1 m=1
N
= Z (Partbn|én)
where Py is orthogonal projection onto Span(ey, ..., epr). Therefore by domi-

nated convergence theorem ,
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N N

n=1 n=1

N
Z >\n<¢n|¢n> = tI‘(K).
n=1

i

C.2 Fredholm Operators

Lemma C.6. Let M C H be a closed subspace and V- C H be a finite dimen-
sional subspace. Then M + V is closed as well. In particular if codim(M) :=
dim(H/M) < oo and W C H is a subspace such that M C W, then W is closed
and codim(W) < oo.

Proof. Let P : H — M be orthogonal projection and let V; := (I — P) V.
Since dim(Vp) < dim(V) < oo, Vp is still closed. Also it is easily seen that

1
M+V = M @& Vy from which it follows that M + V is closed because
L
{zn = mp+v,} C M @V, is convergent iff {m,} € M and {v,} C V, are
convergent. If codim(M) < co and M C W, there is a finite dimensional sub-

space V C H such that W = M + V and so by what we have just proved, W
is closed as well. It should also be clear that codim(W) < codim(M) < co. m

Lemma C.7. If K : H — B is a finite rank operator, then there exists
{pn}r_y C H and {1, }i_, C B such that

1. Kz = Zn (| n)thy for all x € H.

2. K*y = Ziﬂ(yh/)n)qﬁn for all y € B, in particular K* is still finite rank.
For the next two items, further assume B = H.

3. dimNul( + K) < o0

4. dim coker(I + K) < oo, Ran(I + K) is closed and

Ran(I + K) = Nul(l + K*)*.
Proof.

1. Choose {1, }} to be an orthonormal basis for Ran(K). Then for z € H,

k k k

Ko=Y" (Ka|t) ¥ Z (@K™ Yn) ¥ = > (@]n)thn

n=1 n=1 n=1

where ¢, := K*,,.
2. Ttem 2. is a simple computation left to the reader.
3. Since Nul(I + K) = {z € H | x = =Kz} C Ran(K) it is finite dimensional.
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4. Since x = (I + K)x € Ran(I + K)for z € Nul(K), Nul(K) C Ran(I + K).
Since {¢1, B2, ..., 01}t C Nul(K), H = Nul(K) + span ({¢1, ¢2, ..., dx})
and thus codim (Nul(K)) < oo. From these comments and Lemma
Ran(I + K) is closed and codim (Ran(I + K)) < codim (Nul(K)) < oo.
The assertion that Ran(I + K) = Nul( + K*)= is a consequence of Lemma
[3.25 below.

Definition C.8. A bounded operator F' : H — B is Fredholmiff the
dim Nul(F) < oo, dim coker(F) < oo and Ran(F') is closed in B. (Recall:
coker(F') := B/Ran(F').) The indexof F is the integer,

index(F) = dim Nul(F) — dim coker(F") (C.3)
= dim Nul(F’) — dim Nul(F™). (C.4)

Notice that equations (C.3) and (C.4) are the same since, (using Ran(F) is
closed)
B = Ran(F) ® Ran(F)* = Ran(F) @ Nul(F*)

so that coker(F) = B/Ran(F') = Nul(F*).

Lemma C.9. The requirement that Ran(F) is closed in Definition 15 Te-
dundant.

Proof. By restricting F' to Nul(F)+, we may assume without loss of gen-
erality that Nul(F) = {0}. Assuming dim coker(F') < oo, there exists a finite
dimensional subspace V' C B such that B = Ran(F') @ V. Since V is finite
dimensional, V is closed and hence B = V@ VL. Let 7 : B — V1 be the
orthogonal projection operator onto V+ and let G := nF : H — V= which is
continuous, being the composition of two bounded transformations. Since G is
a linear isomorphism, as the reader should check, the open mapping theorem
implies the inverse operator G~ : V+ — H is bounded. Suppose that h,, € H
is a sequence such that lim, ,o F'(h,) =: b exists in B. Then by composing
this last equation with 7, we find that lim, . G(h,) = 7 (b) exists in VL.
Composing this equation with G~! shows that h := lim, ,oc hy, = G~ 17 (b)
exists in H. Therefore, F(h,) — F(h) € Ran(F’), which shows that Ran(F) is
closed. ]

Remark C.10. 1t is essential that the subspace M := Ran(F) in Lemma
is the image of a bounded operator, for it is not true that every finite codi-
mensional subspace M of a Banach space B is necessarily closed. To see this
suppose that B is a separable infinite dimensional Banach space and let A C B
be an algebraic basis for B, which exists by a Zorn’s lemma argument. Since
dim(B) = oo and B is complete, A must be uncountable. Indeed, if A were
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countable we could write B = US2 ; B,, where B,, are finite dimensional (nec-
essarily closed) subspaces of B. This shows that B is the countable union of
nowhere dense closed subsets which violates the Baire Category theorem.

By separability of B, there exists a countable subset Ay C A such that the
closure of My := span(Ap) is equal to B. Choose 2y € A\ Ag, and let M :=
span(A \ {zo}). Then Mo C M so that B = My = M, while codim(M) = 1.
Clearly this M can not be closed.

Ezxample C.11. Suppose that H and B are finite dimensional Hilbert spaces and
F: H — B is Fredholm. Then

index(F) = dim(B) — dim(H). (C.5)
The formula in Eq. may be verified using the rank nullity theorem,
dim(H) = dim Nul(F') + dim Ran(F),
and the fact that
dim(B/Ran(F)) = dim(B) — dim Ran(F").

Theorem C.12. A bounded operator F : H — B is Fredholm iff there exists
a bounded operator A : B — H such that AF — I and FA— I are both compact
operators. (In fact we may choose A so that AF — I and FA— I are both finite
rank operators.)

Proof. (=) Suppose F is Fredholm, then F : Nul(F)+ — Ran(F) is a
bijective bounded linear map between Hilbert spaces. (Recall that Ran(F) is a
closed subspace of B and hence a Hilbert space.) Let F be the inverse of this
map—a bounded map by the open mapping theorem. Let P : H — Ran(F)
be orthogonal projection and set A := FP. Then AF — [ = FPF — 1 =
FF — I = —Q where Q is the orthogonal projection onto Nul(F). Similarly,
FA-I=FFP-I= —(I—P). Because I — P and @ are finite rank projections
and hence compact, both AF — I and FA — I are compact. (<) We first show
that the operator A : B — H may be modified so that AF — I and FA — 1T
are both finite rank operators. To this end let G := AF — I (G is compact)
and choose a finite rank approximation G; to G such that G = G + £ where
|El < 1. Define Ay, : B — H to be the operator Ay, := (I + &)~'A. Since
AF =(I+€&)+ G,

AR =(I4+ &) "AF =1+ +&)7'Gi=1+K[

where K, is a finite rank operator. Similarly there exists a bounded operator
AR : B — H and a finite rank operator K such that FAr = I + K. Notice
that A FAr = Ar + K1 Ag on one hand and A FAr = Ap, + A KR on the
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other. Therefore, A, — Agp = AL Kr — K Ar =: S is a finite rank operator.
Therefore FA;, = F(Agp+S) =1+ Kgr+ FS, so that FA;, — I = K — FS
is still a finite rank operator. Thus we have shown that there exists a bounded
operator A : B — H such that AF—I and FA—1I are both finite rank operators.
We now assume that A is chosen such that AF—I = G, FA—I = G4 are finite
rank. Clearly Nul(F) C Nul(AF) = Nul({ + G;) and Ran(F) D Ran(FA) =
Ran(I 4+ G3). The theorem now follows from Lemma and Lemma [ ]

Corollary C.13. If F : H — B is Fredholm then F* 1is Fredholm and
index(F) = —index(F™).

Proof. Choose A : B — H such that both AF — I and FFA— I are compact.
Then F*A* — I and A*F* — [ are compact which implies that F* is Fredholm.
The assertion, index(F') = —index(F™*), follows directly from Eq. (C.4). |

Lemma C.14. A bounded operator F' : H — B is Fredholm if and only if there
exists orthogonal decompositions H = Hy & Hy and B = By & Bs such that

1. Hy and By are closed subspaces,
2. Hy and Bs are finite dimensional subspaces, and
3. F has the block diagonal form

H B
F:(?l ?2>: ® — @ (C.6)
21 1722 H2 32

with Fy1 : Hi — By being a bounded invertible operator.

Furthermore, given this decomposition, index(F) = dim(Hz) — dim(Bs).

Proof. If F is Fredholm, set H; = Nul(F)%, Hy = Nul(F), B; = Ran(F),
and By = Ran(F)*. Then F = <F” 0), where Fiy == Flg, : Hi — B

0 0
is invertible. For the converse, assume that F' is given as in Eq. (C.6)). Let

-1
A= (FH 0> then

0 O
_(IF'F\ (10 0 Fii' Fio
AF_(oo “lor)*t o -1 )
so that AF — I is finite rank. Similarly one shows that FA — [ is finite rank,
which shows that F' is Fredholm. Now to compute the index of F, notice that

(“) € Nul(F) iff

)
iz + Fiaze =0
Fy121 + Faozo =0
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which happens iff 1 = —FﬁlFlngQ and (—FglFﬁlFlg + Fyo)ae =0. Let D :=
(Fay — Fo1 F[;' F13) : Hy — By, then the mapping

-1
_Fll Flg.%'g

x2 € Nul(D) — (
)

) € Nul(F)

is a linear isomorphism of vector spaces so that Nul(F') = Nul(D). Since

By Hy

similar reasoning implies Nul(F*) = Nul(D*). This shows that index(F) =
index (D). But we have already seen in Example that index(D) = dim Hy—
dim BQ . ]

Proposition C.15. Let F' be a Fredholm operator and K be a compact operator
from H — B. Further assume T : B — X (where X is another Hilbert space)
is also Fredholm. Then

1. the Fredholm operators form an open subset of the bounded operators. More-
over if € : H — B is a bounded operator with ||E|| sufficiently small we have
index(F) =index(F + ).

2. F + K is Fredholm and index(F) = index(F + K).

3. TF is Fredholm and index(TF) = index(T) + index(F)

Proof.

1. We know F may be written in the block form given in Eq. (C.6) with
F11: Hi — B; being a bounded invertible operator. Decompose £ into the

block form as
c— <511 512)
Ea1 Ea2
and choose ||€] sufficiently small such that ||£1;]| is sufficiently small to
guarantee that Fy; + &7 is still invertible. (Recall that the invertible oper-
Fii+&n *)
* *

ators form an open set.) Thus F'+ & = ( has the block form

of a Fredholm operator and the index may be computed as:
index(F + &) = dim Hy — dim By = index(F).

2. Given K : H — B compact, it is easily seen that F' + K is still Fredholm.
Indeed if A : B — H is a bounded operator such that G; := AF — I and
Go := FA — I are both compact, then A(F + K) — I = G; + AK and
(F+ K)A—1I = Gy + KA are both compact. Hence F' + K is Fredholm
by Theorem By item 1., the function f(t) := index(F + tK) is a
continuous locally constant function of ¢ € R and hence is constant. In
particular, index(F + K) = f(1) = f (0) = index(F).
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3. It is easily seen, using Theorem that the product of two Fredholm
operators is again Fredholm. So it only remains to verify the index formula
in item 3. For this let Hy := Nul(F)*, Hy := Nul(F), B; := Ran(T) =
T(Hy), and By := Ran(T)* = Nul(T*). Then F decomposes into the block

form:
~ H, B;
F = <§8> : e — &,
H, By

where F = F|g, : Hi — Bj is an invertible operator. Let Y7 := T(Bj)
and Yy := Y& = T(B;)*. Notice that Y1 = T(B;) = TQ(B;), where
@ : B — By C B is orthogonal projection onto Bj. Since Bj is closed
and B, is finite dimensional, ) is Fredholm. Hence T'Q is Fredholm and
Y1 = TQ(By) is closed in Y and is of finite codimension. Using the above
decompositions, we may write 7" in the block form:

B Y;
T = (?11 §12> : EBl — 691
21 £22 32 Y2

. 0 Tio
S R =

ince ( Ty, Toy
H — Y is finite rank, index(T — R) = index(T) and index(TF — RF') =
index(TF). Hence without loss of generality we may assume that 7" has the

form T = (g 8) , (T'=T11) and hence

> : B = Y is a finite rank operator and hence RF :

=~ H, Y
TF:(T()}?S): O — @,
Hy Yo

We now compute the index(7"). Notice that Nul(T') = Nul(T) @ B, and
Ran(T) =T(B;) = Y3. So

index(T) = index(T) + dim(By) — dim(Y3).
Similarly,
index(TF) = index(TF) + dim(H,) — dim(Y3),
and as we have already seen

index(F) = dim(Hs) — dim(Bs).

Therefore,
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index(TF) — index(T) — index(F) = index(TF) — index(T).

Since 1;:‘* is invertible, Ran(T) = Ran(TF) and Nul(T) = Nul(TF). Thus
index(T'F) — index(T") = 0 and the theorem is proved.

C.3 Tensor Product Spaces

References for this section are Reed and Simon [36] (Volume 1, Chapter VI.5),
Simon [45], and Schatten [42]. See also Reed and Simon [35] (Volume 2 § IX .4
and §XIIL.17).

Let H and K be separable Hilbert spaces and H ® K will denote the usual
Hilbert completion of the algebraic tensors H ® ¢ K. Recall that the inner prod-
uct on H ® K is determined by (h ® k|h' @ k') = (h|h') (k|k’) . The following
proposition is well known.

Proposition C.16 (Structure of H ® K). There is a bounded linear map
T: H®K — Bunu(K,H) (the space of bounded anti-linear maps from K to
H) determined by

T(h@ k)k = (k|k')h for all k, k' € K and h € H.

Moreover T(H® K) = HS(K, H) — the Hilbert Schmidt opemtorﬂ from K to
H. The map T : H® K — HS(K, H) is unitary equivalence of Hilbert spaces.
Finally, any A € H ® K may be expressed as

A= " Aohy @ ki, (C.7)
n=1

where {h,} and {k,} are orthonormal sets in H and K respectively and {\,} C
R such that ||A]|? = [An]? < 0o

Proof. Let A:=> aj;h; ® k;, where {h;} and {k;} are orthonormal bases
for H and K respectively and {a;;} C R such that ||4]|* =" |a;;|* < co. Then
evidently, T(A)k := > a;;h; (ki|k) and

ITCARIE = 371D g hilk) [P < 30D sl ()
< lanl

! Don’t we need to use the anti-linear HS operators here. Perhaps we should use the

opposite Hilbert space instead somewhere.
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158 C Trace Class & Fredholm Operators
Thus T': H ® K — B(K, H) is bounded. Moreover,

ITA)Irs = Y ITDkI? =D lagil® = 1A%,

ij

which proves the T is an isometry. We will now prove that T is surjective and
at the same time prove Eq. (C.7). To motivate the construction, suppose that
Q = T(A) where A is given as in Eq. (C.7)). Then

Q*Q="T (i Ankn @ hn> T <i Ahn @ kn> =T (i Nk, ® kn> )
n=1 n=1

n=1

That is {k,} is an orthonormal basis for (NulQ*Q)+ with Q*Qk, = \2k,.
Also Qk, = Aphy, so that h, = A, L1Qk,. We will now reverse the above ar-
gument. Let Q@ € HS(K, H). Then Q*Q is a self-adjoint compact operator on
K. Therefore there is an orthonormal basis {k, }>2; for the (Nul Q*Q)* which
consists of eigenvectors of Q*Q. Let \,, € (0,00) such that Q*Qk, = A2k, and
set h, = A, 1Qk,,. Notice that

= (0N ke A Q7 QK ) = (A RN AL ki ) = G,
so that {h,} is an orthonormal set in H. Define

A= i/\nhn ® ky

n=1

and notice that T(A)k, = A h, = Qk, for all n and T(A)k = 0 for all k €
Nul@ = Nul Q*Q. That is T(A) = Q. Therefore T is surjective and Eq. (C.7))
holds. [ |

Notation C.17 In the future we will identify A € H ® K with T(A) €
HS(K,H) and drop T from the notation. So that with this notation we have
(h® kK = (k|K')h

Let A€ H® H, we set | A1 :=trvVA*A := tr\/T(A)*T(A) and we let
H@H:={Ac H® H : ||A]1 < co}.
We will now compute ||Al|; for A € H ® H described as in Eq. (C.7)). First
notice that A* =3 Ak, ® hy, and

AA = i A2k @ k.

n=1
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Hence VA*A = 3% [Anlkn ® ki, and hence ||A]x = Y7, [An|. Also notice
that [|A]|? = Y07, [\,]? and [|A||,p = max;, |A,|. Since

AR = O Il = D al? = 1417,
n=1 n=1

we have the following relations among the various norms,
[Allop < 1AL < [ All1- (C.8)

Proposition C.18. There is a continuous linear map C : H ®1 H — R such
that C(h @ k) = (h, k) for all h,k € H. If A€ H®, H, then

CA= (em ®em|A), (C.9)
where {em} is any orthonormal basis for H. Moreover, if A € H®1 H is positive,
i.e. T(A) is a non-negative operator, then ||Aly = CA.

Proof. Let A € H®; H be given as in Eq. with 3°0° A ] = [|4]1 <
oo. Then define CA := "7 | A\ (hn, ky,) and notice that |CA| < 3 |A,| = [|A]1,
which shows that C' is a contraction on H ®; H. (Using the universal property
of H®y H it is easily seen that C' is well defined.) Also notice that for M € Z
that

M oo M
Z em®6m‘A Z Z em @ €m, Anhn ®kn7)a (CIO)

m=1 n=1m=1

Mg

n=1

where Pj; denotes orthogonal projection onto span{e,}M_;. Since
A (Parhnlkn) | < [An| and D207 [An] = [|A]1 < oo, we may let M — oo in

Eq. (C.11) to find that

i<em®em\A =§: (hn|kn) = CA.
m=1 n=1

This proves Eq. (C.9)). For the final assertion, suppose that A > 0. Then there
is an orthonormal basis {k,, }22; for the (Nul A)1 which consists of eigenvectors
of A. That is A = > A\,k, ® ky, and A, > 0 for all n. Thus CA = >\, and

[l =22 An-

Proposition C.19 (Noncommutative Fatou’ s Lemma). Let A,, be a se-
quence of positive operators on a Hilbert space H and A,, — A weakly asn — oo,
then
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trA < liminf trA,. (C.12)

n— oo

Also if A, € H®1 H and A, — A in B(H), then
[Alle < liminf [ Ay . (C.13)

]

Proof. Let A, be a sequence of positive operators on a Hilbert space H

and A, — A weakly as n — oo and {ex}32; be an orthonormal basis for H.
Then by Fatou’s lemma for sums,

trdA = kz (Aegler) = kznh—{r;o (Anerler)
=1 =1

oo
< Tim T .
< héglcgf ,;_1 (Anexler) hnrgloréf tra,,

Now suppose that A, € H®; H and A, — A in B (H). Then by Proposition
7?7, |An| — |A| in B (H) as well. Hence by Eq. (C.12)), ||

Allp :=tr|A| < liminftr|A4,| < liminf ||4,];.
n—oo n—oo
| ]

Proposition C.20. Let X be a Banach space, B : H x K — X be a bounded
bi-linear form, and

IB| := sup{|B(h, k)| - [[R[l[|k] <1}

Then there is a unique bounded linear map B:H® K — X such that B(h ®
k) = B(h, k). Moreover ||Blop = ||B|-

Proof. Let A =3"°°  A\,h, ®k, € H®; K as in Eq. (C.7). Clearly, if B is
to exist we must have B(A) := > | A\, B(hn, ky). Notice that

D al[Blhn, k)l <D MallIBI = [[All1 - 1B
n=1 n=1

This shows that B(A) is well defined and that ||B||,, < |B|. The opposite
inequality follows from the trivial computation:

|B|| = sup{|B(h, k)| : [|n]l||k]| = 1}
=sup{|B(h @ k)| : [|h @1 k[l =1} <[ Bllop-
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Lemma C.21. Suppose that P € B(H) and Q € B (K), then PQQ : HQK —
H ® K is a bounded operator. Moreover, P ® Q(H ®1 K) C H®; K and we
have the norm equalities

P ®Qllpaek) = IPllam|IQll 5x)

and
1P ®QllaHe ) = 1Pl Rl Bx)

Proof. We will give essentially the same proof of |P ® Q| prek) =
Pz lQll Bk as the proof on p. 299 of Reed and Simon [36]. Let A € H® K
as in Eq. (C.7). Then

(PRINA=Y APh, ®@ky

n=1
and hence

(PR DA{(P®)A}* = > A:Ph, ® Phy,.
n=1

Therefore,

(P ® DA|? = te(P @ I)A{(P ® ) A}*
=Y Aa(Phn, Pho) < |[PIP DN,
n=1 n=1

= [IPII*]| Al

which shows that Thus [|P® || p(rek) < || P||. By symmetry, [/ @Q| prer) <
|Q|l. Since P® Q = (P®I)(I ® Q), we have

1P ®Qllprsek) < 1Pl Q-

The reverse inequality is easily proved by considering P ® @ on elements of the
form h ® k € H® K. Now suppose that A € H ®; K as in Eq. (C.7)). Then

(P& QAL <D AalllPhy ® Qkally

n=1
< PRI IAal = IPIHIQIIIALL
n=1

which shows that

1P ®QlpHe rx) < 1Pl Rl Bx)-

Again the reverse inequality is easily proved by considering P ® @ on elements
of the form h® k € H ®, K. ]
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Lemma C.22. Suppose that P, and Q,, are orthogonal projections on H and
K respectively which are strongly convergent to the identity on H and K re-
spectively. Then Pp, @ Q, : H ® K — H ®1 K also converges strongly to the
identity in H @1 K.

Proof. Let A=Y A\h, ®k, € H®; K as in Eq. (C.7). Then

[P ® QA — Allx
< Nl Pk @ Qukin — by @ K1
n=1
= Palll(Patin = hn) @ Quukn + hy @ (Quikin — k)1
n=1
S Z P‘M{”thn - hnH”kanH + ”hnn”kan - kn”}
n=1

< Al IPmbn = bl + | Qukn — K|} = 0 as m — oo
n=1

by the dominated convergence theorem. ]
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