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Preface

The U.S.-Japan Bilateral Seminar “Stochastic Analysis on Infinite Dimensional
Spaces” was held at Louisiana State Univérsity, January 4-8, 1994. The seminar
covered the following topics:

(1) Stochastic analysis related to Lie groups.

(2) Stochastic partial differential equations.

(3) Stochastic flows and analysis on Wiener functionals.

(4) Large deviations.

(5) White noise calculus.

(6) Stable laws.

This volume is the collection of all lectures delivered during this seminar. We
would like to thank all contributors for their participation in this seminar and for
their effort to prepare the manuscript in a timely manner.

This seminar was supported by the National Science Foundation and the Japan
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We thank also the Mathematics Department and the College of Arts and Sciences
of Louisiana State University for their assistance to the seminar. Our special thanks
go to student worker Cam Nguyen who did a superb job in handling the secretarial
work for the meeting and to Fukuko Kuo who wrote beautiful calligraphic name
tags for the participants. Finally, we would like to thank the members of the Local

Committee, W. G. Cochran, A. Sengupta, and P. Sundar, for their contribution to
the success of the meeting.

May 25, 1994

Hiroshi Kunita
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B. K. DRIVER :
g‘he non-equivalence of Dirichlet forms on
path spaces

E

,1 Introduction

;I‘o each finite dimensional Riemannian manifold M with covariant derivative V is
an associated Dirichlet form (£V) on the path space W(M) of M. If M = R?¢ and V
ng the Levi-Civita covariant derivative on R¢, then Q = £V is the “usual” Dirichlet
‘form on the classical Wiener space. These lecture notes will discuss the relationship
T’(or lack of) between £V and Q as (M, V) varies.

2. Smooth Preliminaries

Let (M9, (-,-),V,0) be given, where M is a compact connected manifold (without
boundary) of dimension d, (-, ) is a Riemannian metric on M, V is a ., -)-compatible
covariant derivative, and o is a fixed base point in M. Let T = TV and R = RY,
denote the torsion and curvature of V respectively. We denote parallel translation
up to time “s” along a smooth path ¢ : [0,1] = M by Py(0) = PY (o).

Standing Assumption: The covariant derivative (V) is assumed to be Torsion
Skew Symmetric or TSS for short. That is to say, if T = TV is the torsion tensor
of V, then (T'(X,Y),Y) = 0 for all vector fields X and ¥ on M. (With the TSS
condition, the Laplacian on functions (Af = tr(Vgradf) associated to V is the same
as the usual Levi-Civita Laplacian.)

2.1. Examples of (M, V)

Example 2.1 Let M = SO(n) - the n x n real orthogonal matrices g with det(g) =
1. (In this case d = n(n — 1)/2.) Take 0 = I, (A, B) = tr(A*B) for 4,B € T,G —
the set of n x n real matrices (4) such that g~ A is skew symmetric. There are
three natural covariant derivatives on G : namely the left (VL), right (VR), and
Levi-Civita (VE*¥*) covariant derivative. The left and right covariant derivatives
may be described by describing how they act on a vector field A(t) € Ty()G along

a curve g(t) € G. The formulas are:

viA(t) d(g(t)~1A(t))
AL dt
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and

VRA(t) _ d(At)g(t)™?)
at a9t

The Levi-Civita covariant derivative is the average (VL“" = (VL + VE) /2) of the

left and the right covariant derivatives.

With these definitions we have the following table

v PY(0)A RV <A B>C TV <A B>
A o(s)A 0 ~glg™' A, 971 B]
% Ao(s) 0 [Ag~!,Bg~!]g
Vievi * % x gllg™1A,g71B],g~1C]/4 0

where A, B,C € T,G and [A, B] = AB—BA when A and B are square matrices. The
entry for parallel translation for the Levi-Civita covariant derivative is left blank,

since no explicit formula for PY(g) can in general be given when V has nonzero
curvature.

Example 2.2 Let M be an oriented hyper-surface in R? and (-,-) be the usual
inner product on R%. Let N : M — S9! ¢ R? be a smoothly varying unit normal

vector on M. If X(t) is a smoothly varying tangent vector to M along a smooth
curve o(t) in M, define

VX(t)/dt = Q(a(t))dX (t)/dt = dX(t)/dt + {X(t) - dN(a(t))/dt} N(a(2)),

where Q(o(t)) denotes orthogonal projection onto the tangent plane to M at o(t).

This covariant derivative is the Levi-Civita covariant derivative on M. The torsion

tensor (T'V) is zero and the curvature tensor (R = RV) is given by
R(v,w)z = (dN(w), z)dN(v) — (dN(v), z)dN(w),
where v, w, z are tangent vectors to M at (say) z € M and

dN(v) = % 0N((I(t)),

where 0 : (—1,1) = M is any smooth curve in M such that ¢(0) = z and ¢(0) = v.
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i3, Stochastic Preliminaries

‘Let

%

)P =

W(M) =
W = {w € C([0,1], T M)|w(0)

{o € C([0,1], M)|o(0) = o},

=0¢€ T,M},

(ie. W = W(T,M)), p be Wiener measure on W, and v be Wiener measure
“on W(M). As usual H C W will denote the Cameron-Martin subspace of W

con51st1ng of those paths h € W such that (h,h)n fo |h'(s)|?ds < oo, where
(h'(s), h'(s)). Let {PY},¢po,} denote a fixed version of the stochastic

: parallel transport process on W(M). So

P,V(a) :ToM = To()M

is an isometry for all s € [0, 1].

Example 3.1 Take M = G = SO(n) and V to be either VL or VB, then PL(c)A
P,VL (0)A = o(s)A and PR(0)A = P_,VR(O')A = Ao(s) respectively.

Example 3.2 If M is an embedded hypersurface of RY, then PY(0) may be thought
of as a version of the d x d-matrix valued solution to the stochastic differential

equation

dPY (o) N{S(N(a(s))}EPY (o) = 0 with Py (o) =1, (3.1)

where § denotes the Stratonovich differential.
3.1. Stochastic development

There is a well known measure theoretic isomorphism (¥V) between (W,u) and
(W(M),v). The map ¥ = ¥V is defined uniquely up to pu—equivalence as the solu-

tion to the stochastic (functional) differential equation:

§0,(w) = PY (¥.(w))éw with ¥o(w) = o, (3.2)

where § is used to denote the Stratonovich differential and w is a Wiener path in W,
see Eells and Elworthy [8] and Malliavin [16]. The measure theoretic inverse to A4
will be denoted by bY. Notice that bY is an R%—valued Brownian motion defined on
the probability space (W(M),v).

It is well known that ¥ carries the measure p to v and that ¥ is invertible up

to equivalence. However, as pointed out by Malliavin [17, 18], the map ¥ does not
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p e rve the natura.i “Riemannian metrics” on W and W (M) except in the case that
| Ajf V) itself has trivial geometry. )

Example 3.3 Let M = G = SO(n), V = VX or VB, and ¥L = ¥V or ¥F E
~ ¢V” respectively. Then the functions ¥~ and ¥* are solutions to the stochastic

differential equations

SVl (w) = WL (w)bw(s) with ¥ (w) =T

and
SR (w) = Sw(s) ¥R (w) with ¥ (w) =T

respectively.

Remark 3.4 For embedded surfaces, bounding an open convex subset of R3,
equipped with the induced Riemannian structure, the map ¥ has the int.erpreta-
tion of transferring the path w in R? to a path on the surface by “rolling” the
surface along w without slipping.

3.2. Flows, quasi-invariance, and integration by parts

The space W(M) is to be thought of as an infinite dimensional manifold. To un-
derstand the notion of a tangent vector to W(M) at 0 € W(M), consider a dif-
ferentiable curve (t € (=1,1) = f(¢t,-) € W(M)) such that f(0,-) = o(-). The
derivative X (s) = %|of(t, s) of such a curve in W(M) is a vector-field along o, i.e.
X € C([0,1),TM) such that X(s) € To(s)M for all s € [0,1]. So it is reasonable
to say that a vector-field X along ¢ € W(M) is in the tangent space (To W(M)) to
W(M) at o.

Example 3.5 For each h € H let X* be the vector-field on W(M) defined by

X"(0)(s) = PY(0)h(s) Vs € [0,1]. (3.3)

Notice that X"(0) € T, W (M).

Theorem 3.6 (Quasi-invariant Flow) Let h € H and X" be the vector-field in

(3.3). Then X" admits a flow (e‘xh)ten on W (M) which leaves Wiener measure
3). , )

(v) quasi-invariant. That is for eacht € R, v o e'*" and v are mutually absolutely

continuous relative to each other.
This theorem was first proved in Driver [4] (see Theorem 8.5.) under the hy-
pothesis that h € H N C*. The extension to the h € H was proved by Elton Hsu
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in [13, 14]. In the case that the manifold M = G is a Lie group or a homogeneous

space, the quasi-invariance of left and right multiplication by finite energy paths has
been extensively studied, see 1, 10, 19, 20, 21].

Definition 3.7 A smooth cylinder Junction on W(M) is a function f of the form
f(0) = F(o(s1),0(s2),...,0(sp)),

where F : M™ — R is smooth and {s;, s,... »8n} C [0,1). Let F denote the class of
smooth cylinder functions on W(M). B

Theorem 3.8 (Integration by Parts) Let f € F and X = X" be as in (3.3).
Define the action of X on f by the formula:

Xf:Lz—gm(foe‘X—f)/t.

Then the L?-adjoint X* of X is densely defined. Furthermore, X* acting on cylinder
functions is given by:
X*=—-X+z"

where z* is a certain function on W (M) constructed from the curvature tensor, the

torsion tensor, and the parallel translation operator PY . (See Theorem 9.1 of Driver
[4] for the ezplicit formula for zh)

This integration by parts theorem is a Corollary of the previous theorem, see
[4]. 1t is also possible to prove and extend Theorem 3.8 by using ideas of Bismut [2];
see Leandre [15], and Fang and Malliavin [9].

Definition 3.9 The gradient operator DV : F — L?(v, H) is defined by
DVf=Y"X"foh, fe7F
hes
where S C H is an orthonormal basis for H.

Using Theorem 3.8, it is easy to see that DV is a closable operator. We will
continue to denote the closure by DV. Associated to DV is the closed quadratic form
EV(-,-) on L*(v) defined by

£°(0)= [

(DY f,DVg)dv ¥f,g € D(DV), (3.4)
W (M)
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where D(DV) is the domain of DY. The following theorem is from Driver and
Réckner [7}.
Theorem 3.10 The form EV s a local quasi-regular Dirichlet form and hence

there exists an associated diffusion process on W(M). (This process is the Ornstein
Uhlenbeck process when M = RY.)

4. Non-Comparability of the Pull-Back Form

Using the stochastic development map ¥V and its inverse bV it is possible to “pull-
back” Dirichlet forms on W (M) to Dirichlet forms on W. It is natural to compare
these pulled back forms with the “usual” Dirichlet form Q on W.

Definition 4.1 The usual Dirichlet form on W is the closed symmetric quadratic
form Q on L?(W, 1) determined by

QUF.F)= [ (DF.DF)udp, (41)

where D : L}*(W,u) — L%(W, H) is the closed operator determined on cylinder
functions (F : W — R) by

DF =) 0,F®h
hes

Here 8, F(w) = L? —lim;,o(F(w+th)— F(w)/t) and § C H is an orthonormal basis
of H.

Definition 4.2 Let £V be as in (3.4), the pull-back of £V by the development map
UV is the symmetric quadratic form QV on LZ(W, u) determined by:

QV(F,F)=EY(FobY,FobY)VF e D(QY),
where
D(QY) = {F e L*(W,p): FobY e DY) =D(DY)).

(Recall that bY = (¥V)~1.)

Definition 4.3 Let Q and Q' be two closed symmetric non-negative quadratic
forms on LZ(W, 1). Q and Q' are said to be comparable if D(Q) = D(Q’) and there
is a constant 0 < C < oo such that

CTIQf, /) < Q'(f,£) S CQS, f) Vf € D(Q) = D(Q)).
80

Question 1 Are Q and QV comparable?

'Question 2 Given two covariant derivative v() and V() on M, are the Dirichlet
forms £! = £V and £2 = £V comparable?

We have the following negative answer in the case that M = G = SO(n),

v = vL and V@ = V&,

Theorem 4.4 Let M = SO(n) (more generally a compact Lie group), QL= QVL,
QR =Q"", L =€V, and ER = £V". Then '

1. supp Q(F)/QY(F) = 00 and supy QX(F)/Q(F) = oo,

2. supp Q(F)/QR(F) = oo and supg QR(F)/Q(F) = oo.

3. sup; ER(f)/EL(f) = oo and supy EL(S)/ER(f) = oo.
In the above expressions, the supremum is taken over the intersection of the domain
of the quadratic form in the numerator with that in the denominator.

For a proof and a more detailed statement of the above theorem, see (6]. I con-

jecture that analogues of the above result hold for arbitrary Riemannian manifolds

(M) with non-trivial geometry.
5. The (Non) Equivalence of the Forms
Because of the above theorem, it is natural to look for a weaker notion for the

equivalence of quadratic forms.

Definition 5.1 Let (W, ) and (W, u') be two probability spaces and let Q and Q’
be closed symmetric non-negative forms on L?(y) and L?(y'), respectively. Then Q
and Q' are said to be eguivalent if there exists measurable maps ¢ : W = W' and
¥ : W' = W such that:

1. Yo ¢ =idw p-as. and ¢o ¥ = idw: p'-as.

2. D(Q) = {f € L*(w)|f o ¥ € D(Q)} and D(Q) = {f € L*(W)If 0 ¢ € D(Q)}-

3. There is a constant 0 < C < oo such that
ClQ(fol,fol)<Qf,f) SCQ(fol,fo¥) VfeD(Q)

and

ClQ(fod, fod) SQ(f,f) SCQfod,f o) VfeDQ).

We now modify questions 1 and 2 above.

Question 1’ Is Q equivalent to & V or, equivalently, is Q equivalent to QV?
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Question 2’ Let V(1) and V(2) be two covariant derivatives on M. Are the Dirichlet
forms £! = £V and €2 = £V equivalent?

The answer to both questions for M = SO(n) (or more generally a compact
Lie group) with V = VL or V = VB V(1) = YL and V(® = VR is now yes. The
following theorem is essentially Theorem 3.14 in Gross [12].
Theorem 5.2 Suppose that M = G is a compact Lie group (ex. G = SO(n)).
QL=QV", QR=QV", L =€V", and ER = £V". Then Q, QL, QR, €L, and EF
are all equivalent. Moreover:

EL(F o bR, F o bRy = Q(F, F) = ER(F o bL, F 0 bT),

where b = b¥" and bR =bV".

Unfortunately, as we will discuss below, the results of Theorem 4.4 seem to be
essentially restricted to the case that G is a compact Lie group. To investigate this
lack of equivalence of forms, let us attempt to find an invertible measurable map
b: W(M) - W such that (i) b,v = v o b1 is equivalent to u, (ii) b is adapted,
and (iii) Q(f, f) is comparable to EV(f ob, f o b) for all f € D(Q). (Note: it would
be preferable to drop condition (ii) above, but at the present time I do not know
how to handle the anticipatory case.) With the above assumptions, b = ¢ o bV for
some adapted map ¢ : W — W such that ¢.u and p are equivalent. The following
“structure” theorem is proved in Driver [5], see Theorem 2.1.

Theorem 5.3 (Structure Theorem) Let ¢ : W = W be an adapted map such
that ¢.p is equivalent to u and there is an adapted map ¢~ : W — W such that
$od™! and ¢~ o0 ¢ are both equal to the identity map p—a.s. Then there erists an
O(d) x R%—valued predictable process (0,&) on W such that

#w) = [O@)dw+ [ awds, (5.1)

and fol |ay [2ds’ < 00 p-a.s.

Because of this theorem, we learn that b = ¢ o bY may be written as

b= / OdbY + / ads, (5.2)

where O = OobV and a = @0 bV. So our goal is to choose a predictable O(d) x R%-
valued process (O, a) on W (M) such that Q(f, f) is comparable to £V (f ob, f o b).
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Notation 5.4 For a,b € T,M and an isometry u : TobM = T, M, let

Q,{a,b) = u~'RY (ua, ub)u € End(T,M)
O.{a,b) = u~'TV (ua,ub) € T,M.
Lemma 5.5 Leth € H, X" be as in (3.3), then

XY = 4

= bvoetX" =/Ch5bv+h,

0
where

ch= /0 ey (h(), 867 (5")) + Ouiory (h(s'), ),
and u(s) = PY.

Proof See Theorem 5.1 in [4]. Q.E.D.

Assuming sufficient regularity on b (i.e. on the “kernels” O and «) it is possible

to compute X"b as:

xhp= L poetxt
dt|,

= / (x*0)dbY + / 0d(X"bY) + / (XPa)ds

- / (X0 +0C"db¥ mod H,

= /(X"O +0C*0™1db mod H,
= A(b)h + N(b)h,

where

A(b)h = / (X*0 + 0C™)0~1db (5.3)

and N(b) : H = H is a bounded random linear operator on H. Working somewhat
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informally we have

EV(fob,fob)= Z/ |X"(f o b)|Pdv

hes

-3 / (Df o b, X b)%dv
hes Y W(M)

_Z/ (Df ob, (A(b) + N(b))h)4dv

hes Y W(M)

- / I(A(b) + N(b))* Df o blZ,dv.
W(M)

If this last expression is to be finite for all f € D(Q), it seems likely that A(b)* and
hence A(b) must be a bounded linear operator on H. But this is only the case when
A(b) = 0, since otherwise A(b)h is expressed as a stochastic integral relative to b.
Since b is a Brownian motion on (W (M), 7) where i is a measure which is equivalent
to v, it follows that A(b)h is not in H a.s. except when A(b)h = 0.

For the reasons described above, we will try to choose (O, a) such that A(b) = 0.
By (5.3) A(b) = 0 is equivalent to:

X*0+0C*"=0vVheH. (5.4)

In general a system of first order partial differential equations as in (5.4) will not have
a solution unless the Frobenius integrability condition is satisfied. This condition
is determined by formally requiring the equality of mixed partial derivatives of a
supposed solution to (5.4). The next theorem describes the integrability conditions
for (5.4). To avoid technical difficulties, I will state the theorem with W (M) replaced
by the Hilbert manifold H(M) of finite energy paths in W(M).

Theorem 5.6 The differential equations in (5.4) are locally solvable on H(M) iff
RV = 0, where RV is the curvature tensor of the covariant derivative VonM
defined by

VxY =VxY -TY(X,Y). (5.5)
Moreover, if RY =0 and b= bV then EV(f ob, fob) = Q(f, f) for all f € D(Q).
Remark 5.7 Inthe case that M = G = SO(n) as in Example 2.1, then VL = VR
YR = VL and RY" = RV" =0 and R¥" = RV" = 0. Thus Theorem 5.6 explains
“why” Theorem 5.2 is valid.

QA4

Aroof (I will sketch only the proof of the first statement in Theorem 5.6. A detailed
proof will appear in future work.) Let O(M) be the orthogonal frame bundle over
§1. (The fiber Oy (M) of O(M) over m is the set of isometries u from ToM to Trn M .)
fet & be the connection 1-form on O(M) corresponding to V. More explicitly, for
rany path u(s) € O(M),

o(u'(s)) = u(S)'lf’u(f)/d&

"_'Also let C{-) denote the L?([0,1], so(n)) - valued 1-form on H'(M) determined by

:g’(X") = CP for all h € H, where so(n) = T;SO(n) is the set of all real n X n skew

symmetric matrices. (Recall that C? was defined in Lemma 5.5.)
We now have the following facts:
1. C = —(PV)*®, where (PV)*® denotes the differential form on H'(M) found
by “pulling-back” & by PV.
2. The integrability condition for (5.4) is equivalent to the statement that —C has
“zero curvature.” That is

Using these two facts, we learn that the integrability condition for (5.4) is
equivalent to
0= (PY)*(do+oAd)=QPY- PY-), (5.6)

where § = do + @ A @ is the equivariant form of the curvature tensor RY. Let
7 : O(M) = M denote the natural projection map and e, : W(M) = M be the
evaluation map: e,(0) = o(s). Since 7 0 PY = e,, it easily follows that (PY).
maps T, H'(M) onto the “horizontal” vectors in Tpv(,yO(M). Since ) annihilates
“vertical” vectors it follows from (5.6) that €} = 0 or equivalently RV =0. Q.E.D.
The integrability condition in Theorem 5.6 is very restrictive as the next theorem
indicates. For the statement of the theorem it is necessary to recall the notion of a
Killing vector field.
Definition 5.8 A Killing vector field on M is a vector field X on M such that the
flow ¢*X preserves the Riemannian metric (-,-). That is (e!Xv, etXv) = (v,v) for all
veTM.
Theorem 5.9 - Assume that M is a simply connected Riemannian manifold with

Riemannian metric (-,-). Then there ezists a covariant derivative V on TM such
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that RY = 0 (V as in (5.5)) iff there exists a global orthonormal frame of Killing
vector fields {X.-}:-Ll on M. In particular, M is a homogeneous space with a trivial

tangent bundle.

Example 5.10 Suppose that G = SO(n) and {A;}¢,; (d = n(n—1)/2) is an
orthonormal basis for so(n) = TrSO(n). Set X¥(g) = gA; and XE(g) = Aig for all
g € G. Then {X}}&, and {XR}4_, are two orthonormal frames of Killing vector
~ fields on G.

This example and its minor generalization to Lie groups of compact type are the
only examples that I know of manifolds which admit an orthonormal basis of Killing
vector-fields. It is well known that the generic Riemannian manifold does not admit
any Killing vector fields, see Bochner [3]. In conclusion, it seems that the Dirichlet
forms constructed in (3.4) are typically non-equivalent to the usual Dirichlet form
Q on W (at least if the map b: W(M) — W is required to be adapted.)
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