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Towards Calculus and Geometry on Path Spaces

BRUCE K. DRIVER

ABSTRACT. In this note I will discuss some differential and geometric prob-
lems on path space W (M) of a finite-dimensional manifold M. (The in-
terested reader should also consult the lecture notes in this volume given by
H. Airault, L. Gross, E. Hsu, P. Malliavin, and I. Shigekawa.) The organi-
zations of this paper is as follows. Section 1 is a review of some facts from
finite-dimensional manifold theory. Section 2 is a discussion of calculus on
classical Wiener space. In Section 3, more general path spaces are consid-
ered. Section 4 considers the question of whether certain natural Dirichlet
forms are comparable.

Disclaimer. Although a number of references to the literature are given,
the references are by no means complete. I have only included references
which I thought most directly pertained to the discussion in the paper.

1. Some facts, tools, and properties for Riemannian manifolds

1.1. Notations. Let (W, G, v) be the triple consisting of a smooth com-
pact (for simplicity) N-dimensional manifold W, a Riemannian metric G
on TW, and a smooth volume measure v on W. ( TW denotes the tangent
bundle, and for w € W, T_ W denotes the tangent space to W at w.) Let
A = A(W) be the exterior bundle of the dual bundle 7" W , and let C*(A)
be the smooth differential forms on W. The metric G on W induces a
metric on A and hence we may also talk about L’-differential forms. The
space of L’-differential forms will be denoted by LZ(A) = L2(A ,v). Let d
denote the exterior derivative which we view as a closed unbounded operator
on L*(A) which preserves C*°(A). Let d* denote the L-adjoint of 4, and
notice that d* also preserves C™(A). Finally set L = —~(dd* +d"d). If v
is the volume measure on W then L is the Laplacian on (A) on W. In
general L = A+ R, where R is a first-order differential operator.
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1.2. Vector fields, flows, and quasi-invariance. Given a smooth vector field
X on W, there is a unique flow e* : W - W such that %]Oe'x = X.

Furthermore, e leaves v quasi-invariant; i.e. e:X v=2~2,-v, where Z, :
W — (0, oo) is a smooth density.

1.3. Divergence and integration by parts. Given X as above, there is a
unique function div,(X) (called the divergence of X) on W such that, for
all Borel subsets B C W,

(1.1) %}Ou(e'X(B)) = /B div, (X)dv.

So div, (X) measures the rate of spreading of the flow e* as seen by the
measure v. The relationship between Z, and div, (X) is

. d
(1.2) div, (X) = = Z1oZ,

From this fact it is easy to show the Lz-adjoint (X*) of X is given by
(1.3) X' =-X —div (X)

when acting on smooth functions. (This last equation is of course an integra-
tion by parts formula.) Applying X" to the function 1 gives another formula
for div, (X):

(1.4) div, (X) = -X"1.

It is also possible to recover the density Z, from knowledge of div, (X)
and the flow ¢'*" Indeed, from (1.3) one shows that Z, satisfies the first-
order p.d.e.,

Z,=X"Z,=-XZ,—div,(X)Z, with Zy=1on W.

The differential equation for Z, is easily solved using
ad—t(z, oe™) = —div,(X)oe™ . Z, 0.

The result is

(1.5) Z(w)=e N diVu(X)oe_tx(w)dr.

REMARK 1.1. Another common formula for div, (X) is
div,(X) = —D'X,

where D is the gradient on C*°(W), and D" is the Lz-adjoint. This for-
mula is the least desirable method of computing div, (X) in the infinite-
dimensional setting. This is because D* depends on the metric in two ways:
(i) in the definition of D, and (ii) in the definition of D*. In a sense, be-
cause the metric is used an even number of times, the dependence on the
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metric “cancels” out leaving div,(X) to depend only on v. The problem in
the infinite-dimensional context is that the domain of D" will fail to contain
a large class of vector fields which nevertheless do have a divergence in the
previous sense.

1.4. Spectral properties of L. L is a second-order elliptic differential op-
erator and the general properties of the spectrum o(L) of L are
well understood. For example one knows that dim(Nul(L)) < oo and
a(L)\ {0} C [m, x) for some m > 0. The best m is called the spectral gap
or the mass gap.

1.5. Sobolev inequalities. Sobolev inequalities involving L are well known.
These Sobolev inequalities are qualitatively the same as the Sobolev inequal-
ities involving the standard Laplacian on RY.

1.6. Diffusions associated to A and L. There exist diffusions on W with
infinitesimal generators A and L. A process associated to the Laplacian ( A)
will be called a Brownian motion on W and its path space measure will be
called a Wiener measure on W, '

1.7. Geometry and topology.

THEOREM 1.2 (De Rham’s theorem). The De Rham cohomology of W is
isomorphic to the real topological cohomologies of W. Recall that the De Rham
cohomology is the cohomology of the differential complex (C™(A), d).

THEOREM 1.3 (Hodge’s theorem). The De Rham cohomology of W is iso-
morphic to the kernel of L, i.e. the L-harmonic forms.

THEOREM 1.4 (Riemann’s theorem). The Riemannian manifold (W, G)
is flat iff the Riemannian curvature tensor R is identically 0. (Recall that
(W, G) is said to be flat if there is a (local) diffeomorphism of ¥ of R" to
W such that the differential of ¥ is an isometry at all points in ]RN.)

2. Classical Wiener space as a model

Our general program (which was initiated by L. Gross) is to consider the
analogous properties described in the last section when W is an infinite-
dimensional manifold. In this section, the path space of R? will be consid-
ered.
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2.1. Preliminaries. Let
W = W([R’) = {we C(0, 1], RY)|w(0) = 0},

let v = 4 be Wiener measure on W, H C W denote the Cameron-Martin
space, and G(h, h) = fo1 |h'(s)|2ds forall h € H. Since W is a vector space,
T W can be naturally identified with W. Hence, the inner product G may
be thought of as a Riemannian metric on T W. There is of course a problem
with this definition since G is not well defined on W. One way around this
is to interpret 7, W to be H rather than all of W . The Cameron-Martin
theorem supports this point of view. (Recall, the Cameron-Martin theorem
states that u is quasi-invariant under the transformation w — w + h iff
h € HC W.) I hope to convince the reader that H should, in fact, net be
considered as the tangent space to W .

The following theorem is an attempt to motivate the notion of adapted
tangent vector fields on W = W(Rd) to be defined below. In this theorem
and the sequel, O(d) will denote the Lie group of d x d-real orthogonal
matrices.

THEOREM 2.1. Let ¢ : W — W be adapted and assume: (i) ¢ u is
equivalent to u (let Z = %ﬁ), and (ii) there is an adapted map o'
W — W such that o ¢~ and ¢~ ' o ¢ are both equal to the identity map
u-as.

Then the following hold:

(i) d):' U1 Is also equivalent to u.

(i) There exist two O(d) x RY-valued predictable processes (0, a) and
(O, a) on W such that fol |asl|2ds' < 00, fol |ds,|2ds' < oo p-as.,

@2.1) $(w) = / Olw)dw + / a(w)ds,
and
(2.2) ¢ (w) = / O(w)dw + / &(w)ds.

(iii) Let O=00¢™", and G=ao¢™". Then OO =1 and a = —Oa.
(iv) Z =252 is given by

faod™ (@) -do -} [} aos™ () ds]
— Jo - 0de — } [ |a(w) %ds] .

(2.3) exp

= exp

PrROOF. Since x4 and ¢, u are absolutely continuous with respect to one
another we know that Z > 0 p-a.s. Let f be a nonnegative measurable
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function on W ; then

1

b, w ) =ufod ) = MZ  fodT) = mp o

f)-

—1 1y
(¢.'u denotes the law of the process ¢~ '.) It follows that 7— = g5 OF

¢:‘u = Z—Lq; - u. This proves the first assertion of the theorem.
Set U = z+>¢ and notice that u(U) = ¢, u(+) = u(%) = 1. By Protter [27,

Corollary 4, p. 157], there exists an R?-valued predictable process J on W
such that fol |Js|2 ds < oo p-as. and

(2.4) Us=exp[/0SJ-dw——/|J| a’s],

where U; = E (U |#,). By the first assertion of the theorem it follows that

u= ¢*¢:l u= ¢, (U-pu). In other words ¢ is a U - Brownian motion.
Hence, by Girsanov’s and Lévy’s theorem it follows that ¢ = b + A, where
b is a p-Brownian motion and

2.5) Astd[%,¢1=fUd[%,b1=/—(J-a’w)db

is a process of bounded variation. Because we are on the canonical path
space with the natural filtration it follows that

(2.6) b(w) = / O(w)dw

for some predictable process O; see for example [27, Corollary 2, p. 156].
Since the process b is a u-Brownian motion it follows by computing the
quadratic variation of b that the process O is O(d)—valued pu-a.s.. It is
now easy to conclude from (2.4),(2.5),(2.6) that

/ (J - dw)O(w)d / 0Jds.

So if we define a = —0J, it follows that (2.1) holds. The same logic implies
the existence of a process (O, a) such that (2.2) holds.
Now use oo~ ! =id u-a.s. and the computation

pod (w)= / 00 ¢ (0)[O(w)dw + &(w)ds] + / aod (w)ds

to conclude that OO0 = I p-a.s. and that Oa+ & = 0 u-a.s. This proves
assertion (iii) of the theorem.
Now insert J = —0"'a into (2.4) to get

5ot 1[5
U=exp|— | O a-da)—E/ lal"ds| ,
0 0
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from which it follows that

1 1
(2.7) Zop=— =exp / 0“a-dw+1/ la’ds] .
U1 0 2 0

By right composing (2.7) with ¢>_1 we learn that
1 ~—1 _ 1 ! 2
Z =exp / o d~[0dw+dds]+§/ |&]"ds]| .
0 0

Because of item (iii) of the theorem the above equation may be rewritten as
1 1 1 ’
Z =exp / d-dw—&-dds]+—/ |&|"ds
0 2Jo

! 1 ' 2
= exp /d-dw——/ & ds| ,
0 2Jo

which is the same as the first equality in (2.3). The second equality in (2.3)
follows easily from the first equality using & = —0 'a — by item (iii)
again, 0O

Now suppose that ¢, : W — W is a flow on Wiener space such that, for
each t € R, ¢, isan adapted processon W and ¢, leaves u quasi-invariant.
Then by the above theorem, ¢, necessarily has the form

¢ (w) = /0,(w)dw+/at(w)ds,

where for each 1€ R, (0,, a,) is an O(d) x R?-valued adapted process on
W. Assuming sufficient regularity on the coefficients (0,, ,), we learn the
“adapted vector-field” X = §7|0¢, must have the form

(2.8) X(w) = / Clw)dw + / Hw)ds

where (C, r) is an adapted so(d) x R -valued process. (so(d) is the Lie
algebra of O(d)—i.e. the space of skew symmetric d x d-matrices.)

DEFINITION 2.2. An adapted process X : W — W is an adapted vector
field on W if X has a representation as in (2.8) such that fol |r(w)(s)|2ds <
oo a.s. (u).

Open problem. Determine the set of nonadapted tangent vector fields on
W. That is, find all infinitesimal generators of flows on W which leave u
quasi-invariant. See, for example, [7, 26, 32] for some examples of non-
adapted vector fields.

2.2, Flow and quasi-invariance. Although the following theorem does not
explicitly appear in [8] it is implicitly proved in course of proving Theorem
6.1 of [8]. Before stating this theorem we need the following norms.
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DEFINITION 2.3. Suppose ¢ : W — W is a semimartingale of the form
d(w) = /A(a))da)+ /a(a))ds,

where (A, «) is an End(]Rd) x R?-valued adapted process. (End(Rd) de-
notes the real d x d-matrices.) For each p > 1, set

191122 = 115up 1AC)(S) g0y + 1l 58P (S Nz

THEOREM 2.4. Suppose X(w) = [ C(w)dw + [ r(w)ds is a adapted tan-
gent vector field on W such that

(2.9) IFsup [r(-)(s)l 1l () < 00

and for some p > 2 there is a function K : Ri — (0, oo0) such that
[X oS —XoS|g < K(ISlge s ISlgee)IS — Sligo

where S and S are semimartingales of the form

S(w) = / O(w)dw + / a(w)ds,

and
S(w) = /O(w)dw+/a(w)ds,

where O and O are both assumed to be O(d)-valued and ||S| g , ||S|lz <
oo (Notice by Girsanov’s theorem, S and S have laws equivalent to i, Sso
XoS and X oS are well defined independent of the version chosen for X.)

Conclusion: The vector field X admits an adapted flow e on W which
leaves Wiener measure (u) quasi-invariant.

PROOF. (Sketch) If ¢, = e'X exists, it must be of the form
(2.10) 6, =X (w) = / O(w)dw + / a,(w)ds,

where for each 1 € R, (O,, a,) is an O(d) x R -valued adapted process.
Inserting (2.10) into the differential equation for ex,

d

. 0X
(2.11) Ee Y= Xoe™ withe =1d,,,
yields the equations:
a0 (Cowo im0t
& = (Cog¢)a,+rog, with a,=0,

where the dot above a function always refers to a derivative relative to .
The equations in (2.12) can be solved by iteration as follows. Let Ot0 =1,
and a? = 0. We will now define 0" and " inductively. Assume O" and
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a" have already been defined, and set ¢; = [ O (w)dw + [ o} (w)ds. Then

define 0"*! and o™ as the unique solutions (path-wise) to the ordinary
differential equations:

o' (w) C o ¢/ ()0 (w) with O (w) =

at(@) = Cogl(@)a (@) +rog)(w) with af'(e)

I,
0.

It is now possible to show that the lim,  __ ¢; exists in || - [z, and the

resulting process satisfies the conclusion of the theorem. 0O

It may be somewhat surprising that in the above theorem no uniform
boundedness assumption is made on C(w). The reason no such bound is
needed is related to the fact that C(w) is skew symmetric. To understand
the basic idea involved, let C,(¢) and C,(t) be two deterministic curves in
so(d) and assume that O, and O, are solutions to the following differential
equations:

O(t) = C(1)O(t) with 0,(0) =1, i=1, 2.

Because C, and C, are skew symmetric it follows that O, and O, are
orthogonal matrices. An easy computation shows

d, -1 -1
(2.13) E(Ol 0,)=0, (C,-C))O0,.
Now for any d x d-matrix A, let |A| = tr'/ 2(A"A) denote the Hilbert-
Schmidt norm. Notice for this norm, |OA4| = |A0| for any orthogonal matrix
0. Now take the norm of both sides of (2.13) and integrate to find the
estimate:

(2.14) [0,() - O,(1)] = 10; ' (N0,(1) — 1| < ‘/0 ICy(1) — Gy(7)ld7|.

The important point is that neither |C|| nor |C,| appears in the above esti-
mate, only |C, — C,|. More general estimates of this nature can be found in
Lemma 6.1. of [8].

REMARK 2.5. Elton Hsu in [19] makes the following very nice observation.
By replacing everywhere the measure dA(s) = ds by another measure it is
possible to lessen the restrictive hypothesis in (2.9). For example, if dA(s) =
p(s)ds with p € Ll(ds) and p > 1, one can replace the bound in (2.9) by
the bound

I 5up [r(Y )1/ Pl =) < 0.

For the quasi-invariance property of the flow, it will still be necessary to
assume some boundedness for the function w — fol |r(a))(s)|2ds .

The other differences between [8] and [19] are in technical points in the
proof. In particular, the ideas involved in (2.14) are not used in [19]. Instead,
for the particular C(w) of interest, a truncation argument is used coupled
with an estimate showing C has Gaussian-like tails.
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Elton Hsu [20] has also outlined another proof of Theorem 2.4 using an
Euler method. The idea of the proof is to first choose a “good approximation”
(¥, : W — W) to the flow e* when ¢t is small. More explicitly, choose
¥, such that ¥y(w) = @ and %|,¥,(w) = @ for w € W, and such that
¥, o ¥, is approximately equal to ¥, . for ¢ and 7 small. Then construct

e'* as the limit:

tX _ . 2"
e’ = lim ‘Pt/zn,

n—oo

where ‘I’?n) denotes ¥, composed with itself 2"-times. Following Bismut
[6] (also see Fang and Malliavin [14]), Hsu chooses the following approximate
flow:

(2.15) ¥, (w) = /etc(w)dw+t/r(w)ds.

The idea of using ¥, defined above for proving integration by parts formulas
is due to Bismut [6]. Leandre [21] and Fang and Malliavin [14] use Bismut’s
ideas to prove integration by parts formulas in the geometric setting described
in §3. We now discuss the integration by parts formulas in the context of
Theorem 2.4.

2.3. Divergence and integration by parts.

CoRrROLLARY 2.6 (Integration by parts). Let X be an adapted vector field
as in Theorem 2.4 and define

1
div,(X) = - /0 (r(®), do).

Then div (X) is the unique function on W such that, for all Borel subsets
Bcw,

Sloute™(8) = [ aiv,0d

Furthermore, if Z, denotes the density of eixu relative to u, then

. d
div,(X) = - 21Z,,

! di —tX
(2.16) Zt(w) —e Jo div, (X)oe™ ™ (w)d7 ’
and acting on cylinder functions (for example)
X" = ~X ~ div,(X)

where X* denotes the Lz(u) adjoint of the vector field X thought of as a
differential operator on L* (u). Given a smooth cylinder function (f € Lz(u))
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with at most polynomial growth, we may define X f by
Xf=L"-lim(foe" — 1)/t
or

Xf=L~lim(fo¥, - f)/t.

ProoF. Let us check that (2.16) holds. We know from Theorem 2.1 that

1
Zt(w)=exp[/ atoe' dw - = /|a oe' |ds},
0

so that

15 ! X 1! 2
(2.17) Z,0e” (w) = exp [/0 a,(w)-de” (w) - 5/0 la,(w)] ds] .

Let W, denote the right-hand member of (2.16). Then

W o X = ok div, (X)oe"""¥dz
(218) = e~ f(; div“(/\’)oer,\'d‘r
exp’o o (roe™" de™)] v

Comparing the above two displayed equations we see it suffices to show that

1 1 1
x x,  d 1 2, | .
(2.19) /O(roe , de >_d—t[/0 o, - de —5/0 o ds] — 4

We now compute the right-hand member of (2.19):

dln X 1 ! 2
4:=2 /<a,,de' >—§/ o ds]
/<a,,0db+ads /1a,| ds]
d | —1 2
-4 /0<0, at,db)+§/0 o ds].

Using the differential equations for O, and «,, one finds that

&.'g‘

%[Ot_laz] = Ot_lroetx >

‘and

dt2/ | ,|ds—/(a,,COe a+roe ds_/(roe , a,)ds.
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Combining the last three equations gives

1 1 1
A=/ (roe”‘,o,db)+/ (roe”‘,a,)ds=/ (roe'*, de'y,
0 0 0

which is the left-hand side of (2.19) as desired. O

2.4. Spectral properties of L. It is possible to define L acting on func-
tions via the formula L = —D*D, where D is the gradient operator on W,
Alternatively, if S ¢ H is an orthonormal basis for H and

Opf = L-Lm(f(- + 1) = FO))/1,

then L = Zhes —8; d,. The operator L in this case is the Ornstein-
Uhlenbeck operator (or number operator from quantum field theory). The
spectrum of L is known to be discrete and in fact o(L) consists of the
nonnegative integers. Each positive integer occurs with infinite multiplicity,
while 0 € (L) occurs with multiplicity one. In particular, L has a spectral
gap.

2.5. Sobolev inequalities. Standard Sobolev inequalities do not hold in infi-
nite dimensions. However, L does satisfy the logarithmic Sobolev inequality
of L. Gross (see [18]).

2.6. Diffusions associatedto A and L. Let A=}, . 8,12 be the Laplacian
on W. It is well known that there exist diffusions B (Brownian motion) and
X (Ornstein-Uhlenbeck) on W with infinitesimal generator A and L

respectively. In fact, when B starts at the zero path, B is the R?-valued
Brownian sheet.

2.7. Hodge’s theorem. The LZ-Hodge theorem was proved in this context
by Shigekawa [31].

3. Wiener space based on a manifold

We now wish to consider the issues discussed in the last section in the
case that R? is replaced by a compact Riemannian manifold M. As we will
see there are many open problems in this setting. There are even more open
problems when one uses loop space instead of path space.

3.1. Preliminaries. Our starting point is a tuple: (Md , €,V,0), where
M is a compact connected manifold (without boundary) of dimension d, g
is a Riemannian metricon M, V is a g-compatible covariant derivative,
and o is a fixed base point in M. The symbol V will also be used to
denote the the gradient operator acting on functions on M. It will always be
assumed that the covariant derivative (V) is “Torsion Skew Symmetric” or
TSS for short. That is to say, if T = TV is the torsion tensor of V , then
g(T(X,Y),Y) =0 for all vector fields X and Y on M. With the TSS
condition, the Laplacian on functions ( Af = tr(Vgradf)) associated to V is
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the usual Levi-Civita Laplacian. Let » denote Wiener measure concentrated
on the paths (W (M)) starting at o € M :

(3.1) W(M) = {o € C([0, 1], M)|a(0) = o}.

Let {PSv }sero, 1) denote a fixed version of the stochastic parallel transport
process on W(M). So Psv(a) LM — T,
{0, 1].

DEFINITION 3.1. The continuous tangent space to W (M) at ¢ € W (M)
is the set CT_W (M) of continuous vector fields along ¢ which are zero at
s=0:

M is an isometry for all s €

CT,W(M)={X € C([0, 1], TM)|X(s) € T, ,\ M

a(s)

(3.2) Vs €[0, 1] and X(0) = 0}.

To motivate the above definition, consider a differentiable curve in W (M)
going through ¢ at t=0: (t — f(¢,+): (-1, 1) —» W(M). The derivative
X(s) = %|0 f(t, s) of such a curve should, by definition, be a tangent vector
W (M) at o. This is indeed the case.

We now wish to define a Riemannian metric on W (M). We know from
the case that M = R? that the continuous tangent space is too large for this
purpose. The continuous tangent space is also too large from the point of
the view of the Cameron-Martin theorem. We will have to introduce the
Riemannian structure on a subbundle which we call the Cameron-Martin
tangent space. In the sequel, set

1
H={h:[0,1]— T,M:h(0)=0, and (h,h)s/ K (5)]: ds < oo).
0 0

H is just the usual Cameron-Martin space with R? replaced by the isometric
inner-product space (T M, g ).

DEFINITION 3.2. The Cameron-Martin tangent space (H7 W (M)) to ¢ €
W(M) is the set of vectors X € CT_W (M) such that the function h(s) =
Pv(a)—lX(s) is in H. We define a metric on HT _W (M) by requiring

(3.3) GY(X, X)=(h,h).

ReMARK 3.3. Notice, if ¢ is a smooth curve then the expression in (3.3)
could be written as

1
v v v
67X, X) = [ a(X (), LX),
where % denotes the covariant derivative along the curve ¢ which is in-
duced from the covariant derivative V. This is the usual metric used by

differential geometers on path and loop spaces.
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The function G" is to be interpreted as a Riemannian metric on W (M).
Notice that the vector bundle HTW (M) = UaeW(M)HTa W(M) over W (M)
is trivial and the map

(3.4) (6, h) — PY(a)h) : W(M) x H— HTW (M)

is an isometric trivialization of HTW (M).

3.2. Flows, and quasi-invariance. The following theorem is the main result
in Driver [8] (see Theorem 8.5).

THEOREM 3.4. Let he HNC' andlet X" be the Cameron-Martin vector
field on W (M) given by Xh(a)(s) = Psv(a)h(s). Then the vector field x"

h
. t . .
admits a flow (&% ) g o W(M). This flow leaves Wiener measure v
quasi-invariant.

REMARK 3.5. The unnatural restriction that 4 bein H N C' rather than
in H has been removed by Elton Hsu; see [19, 20]. Also see Remark 2.5.

In the case that the manifold M = G is a Lie group or a homogeneous
space, the quasi-invariance of left and right multiplication by finite energy
paths has been extensively studied; see [4, 16, 25, 29, 30].

The idea of the proof of this theorem is to use the stochastic development
SO W(T M) — W(M) map (see Section 4.1. below) to pull back the vector

field X" on W (M) to a vector field Y " on W(T,M). The vector field Y h
then has the form

(3.5) Y(w) = / Clw)do + / Haw)ds,

with (C, r) an so(d) x R“-valued adapted process on W(T M). One then
h
applies Theorem 2.4 to Y” to construct a flow ¢'Y on W(T,M). The de-

. 1X'l . .
sired flow e~ is then given as
X" v ot v, -1
e’ =% oe” o(¥') .

3.3. Divergence and integration by parts. The following integration by parts
formula is a corollary of the previous theorem (see {8]). This theorem is
essentially in Bismut [6]. See also Leandre [21}, Hsu [19], and Fang and
Malliavin [14].

THEOREM 3.6 (Integration by parts). Let f be a smooth cylinder function
on W(M) and X =X % be the vector field on W (M) in the above theorem.
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Define the action of X on [ by the formula
X[ =L-lim(foe™ - f)/t.

Then the Lz-adjoint of X on cylinder functions is given by
X' =-X -div (X),

where

1
v, (X)) = = [ #s), dots) - 3 [ RicteT @hio), B (@)oo

1
3 [T @7 @ho). BT (@)dais),

Ric denotes the Ricci tensor, TV is a contraction of the covariant derivative
( vrY ) of the torsion tensor TV, and w = ¥Y) Y(a). Recall ¥ is the
stochastic development map; see Section 4.1. Furthermore, as before, div,,(X)
is the unique function on W(M) such that

d
T [011 / div(

for all Borel subsets B C W (M).

3.4. Spectral properties of L. One may again construct an
Uhlenbeck” operator L on Lz(z/) by setting

Lzz_(Xh)*Xh

hes

33

Ornstein-

(see Driver and Rockner [10]). Detailed information about the spectrum of
L is not known except in special cases where L is unitarily equivalent to the
Ornstein-Uhlenbeck operator on W(Rd). (This can occur in the case that M
is a compact Lie group.) However, there has been a recent beautiful paper
of S. Fang [13], in which he shows L does have a mass gap and the kernel
of L consists of the constant functions.

3.5. Sobolev inequalities. Except in the special case of a compact Lie group,
it is not known whether L satisfies a log-Sobolev inequalities. The Krée-
Meyer inequalities are also unknown. One possible method of proof here is
to use the Bakry-Emery method [5]. However, in these path space situations
the Bakry-Emery conditions are hard to check. It is also quite possible that
their hypothesis is not generally satisfied in these examples. See [17] for an
example in the loop group case.

3.6. Diffusions associated to A and L. Because (W (M), GV) 1s formally
a Riemannian manifold, one can formally construct a Laplacian on W (M)
(there will be domain questions). Again, for general Af, the existence of
a Brownian motion associated to the Laplacian on W (M) is still up in the
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air—but see [15] for the local theory. (I have heard rumors that some version
of this problem may be in the process of being solved.) A diffusion associated
to L has been shown to exist (see Driver and Réckner [10]).

4. Noncomparable Dirichlet forms

Using the stochastic development map wv (described below) it is possible
to pull-back Dirichlet forms on W (M) to Dirichlet forms on W(T M).
The question I wish to address is whether the pull backed Dirichlet form is
comparable with the “natural” Dirichlet form on W(T M).

4.1. Stochastic development. There is a well-known measure-theoretic iso-
morphism (¥") between (W(T,M), u) and (W(M),v), where u de-
notes standard Wiener measure on W(7 M). The map ¥ = ¥V s defined
uniquely up to p-equivalence as the solution to the functional stochastic dif-
ferential equation

(4.1) oY (w) = P (¥.(w))dw with ¥o(w) = 0,

where ¢ is used to denote the Stratonovich differential and « is a Wiener
path in W(T M) (see Malliavin [22] and Eells and Elworthy [11]).

REMARK 4.1. For convex surfaces embedded in R* equipped with the
induced Riemannian structure, the map ¥ has the interpretation of trans-
ferring the path @ in R® toa path on the surface by rolling the surface along
w without slipping.

It is well known that ¥ carries the measure z to v and that ¥ is invert-
ible up to equivalence. However, as pointed out by Malliavin [23, 24], the
map ¥ does not preserve the Riemannian metrics on W(T M) and W (M)
except in the case that (M, V) itself has trivial geometry. In fact, the map ¥
does not even preserve the notion of Cameron-Martin tangent spaces. This
fact has already manifested itself in the appearance of the [ C(w)dw term
in (3.5).

Let Q denote the usual Dirichlet form on Lz(W(ToM )) determined by

42 o N=[  0fDNudu=Y [ (@1 du,
W(T M) hes Y W(T,M)
where D denotes the gradient operator determined by (-, ), and S is

an orthonormal basis for H. Let &° denote the usual Dirichlet form on
L%(W(M)) determined by

(4.3) & (F,F) = /

G (DYF,D Fydv =" / (X"F)dv,
W(M)

hes * W M)
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where DV denotes the gradient operator determined by G". We now wish
to consider the Dirichlet form QY on L? (W(T,M)) given by

QY (f, N=& (fop", fog"),

where ¢V = (‘I-’V)—l is the inverse of ¥¥. In particular, is it possible that
QV is comparable to Q? This will be the topic of the next section in the
case that M = K is a compact Lie group.

4.2. Compact Lie group examples. For the rest of this paper let M = K
be a compact Lie group, which, for simplicity of notation, is assumed to
be a matrix group. The base point o is taken to be the identity element
(e) in K. I will write k4 and 4k for L, A and R, A respectively, where
Aet=LieK)=TK, keK, and L, (R,) is left (right) translation
by k. We construct a metric on K by translating over the group K a fixed
Ad, -invariant inner product ( (-, -),) on €.

Let V- (VR) denote the covariant derivative on K determined uniquely
by requiring left (right) invariant vector fields are covariantly constant. Given
apath o € W(K), the left and right parallel translations operators are given

R

by PV (6) = L,,, and P¥ (6) = R

L
map WX =¥V is determined by ¥* (w) = g where g solves the stochastic
differential equation

respectively. The development

o(s)* o(s)=

(4.4) 00 = gdw with 6(0) =e.

R
Similarly ¥R =9V is determined by the stochastic differential equation

(4.5) do = dwa with g(0) = e.

L R L
THEOREM 4.2. Let 0 =0Q¥ , 0%=0Q", &' =&V, and &* =
R
&V . Assume that ¥ is non-commutative; then the Jollowing hold.

(i) sup,Q(f)/Q"(f) = oo and sup,Q"(f)/Q(f) = .
(i) sup,Q(f)/Q"(f) =oo and sup,Q"(f)/Q(f) = co.
(ili) supp &X(F)/&"(F) = co and sup, &"(F)/&"(F) = .
In the above expressions, the supremum is taken over the intersection of the
domain of the quadratic form in the numerator with that in the denominator.

For a proof and a more detailed statement of the above theorem, see [9].
I conjecture that analogues of the above result hold for arbitrary Rieman-
nian manifolds (M) with nontrivial geometry. For related issues concerning
Sobolev spaces determined by L and domains of essential selfadjointness
for L, see[l, 2, 3].
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