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INTEGRATION BY PARTS FOR HEAT
KERNEL MEASURES REVISITED

By Bruce K. DRIVER (*)

ABSTRACT. — Stochastic calculus proofs of the integration by parts formula for cylinder functions of parallel
translation on the Wiener space of a compact Riemannian manifold (M) are given. These formulas are used to
prove a new probabilistic formula for the logarithmic derivative of the heat kernel on M. This new formula is
well suited for generalizations to infinite dimensional manifolds.
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704 B. K. DRIVER
1. Introduction

Let (M9, (-,-),V,0) be given, where M is either R? or a compact connected manifold
(without boundary) of dimension d, (-,-) is a Riemannian metric on M, V is a metric-
compatible covariant derivative, and o is a fixed base point in M. Let T = TV and
R = RY, denote the torsion and curvature of V respectively. If M = R?, we take (-.-)
to be the usual dot product on R? and V to be the Levi Civita covariant derivative. In
all cases we will assume that V is Torsion Skew Symmetric or TSS for short, i.e. that
(T{(X.Y).,Y) = 0 for all vector fields X and Y on M. Let {3;},>0. {//t}¢>0, and
{b(t)}¢>0 be three adapted continuous processes on a filtered probability space such that
Y. is an M-valued Brownian motion, // is stochastic parallel translation along ¥, and
b(t) = fot //-16%, — a T, M—valued Brownian motion. See sections 3.1 and 3.2 for more
details on this notation.

For any finite dimensional inner product space V, let H(V') denote the Cameron-Martin
Hilbert space of paths & : [0,0c) — V which are absolutely continuous and satisfy

(h.h) = / |h(t))2dt < .
Jo
Given h € H(T,M) let X" denote the Cameron-Martin vector field on W (M) given by
XM = //,h(t). It was shown in [7] that X" may indeed be considered as a vector field on
W (M) in the sense that X" generates a quasi-invariant flow, at least when A is C''. This
theorem was extended by Hsu [21, 22] to include all h € H(T,M). Also see Norris [33],
Enchev and Stroock [17], and Lyons and Qian [29] for other approaches.

It was also shown in [7] (see Theorem 9.1 on p. 363 where X" was written as J),)
that X" may be viewed as a densely defined closed operator on the path space of M.
This last result relies on an integration by parts formula which, in the special case of
X" acting on functions of the form f(o) = F(o(t)), is due to Bismut [4]. Moreover,
by Proposition 4.10 in Driver [8] (also see Enchev and Stroock [17]), it was shown that
these integration by parts formula extend to cylinder functions of the parallel translation
process, //. In this paper we will give another elementary proof of the integration by parts
formula for cylinder functions of //. As a corollary (see Theorem 4.1 and Corollary 4.3
below) we find the following integration by parts formula. Let ¥ be a smooth vector
field on M and [ : [0,T] — R be an absolutely continuous function such that {(0) = 0,
(T) =1, and fOT P(t) dt < oo, then

By = By e, | ' (it - tie ) Bin) |

In this formula V Y is the divergence of Y, Ric ,;, = //; 'Ric //,. Ric is the Ricci tensor

and db denotes the backwards Ito differential.

There have been numerous proofs and extensions of integration by parts formulas on
W(M). See, for example, {1, 2, 15, 18, 19, 20, 27, 28, 30, 31, 33] and the references
therein for some of the more recent articles. Moreover, there are many results in the
literature closely related to Eq. (1.1), see for example [3, 4, 12, 14, 15, 20, 23, 32, 34,
35, 36, 37] and the references therein.
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INTEGRATION BY PARTS FOR HEAT KERNEL MEASURES 705
In order to explain the relationship of Eq. (1.1) to the current literature it is useful

to rewrite the left hand side of this equation. Let 0 = ¥y and p,(r,y) denote the heat
kernel on M, then:

E[(V-Y)(Er)] = -/M pr(0.2)V - Y (2) dx
= — '[\1<6mPT((),.’L‘)7 Y(z)) du

- /\1<6I Inpr(o.2),Y (%)) pr(o,z)dx

-E[«ﬁ hlpT(Ov ))(ET) Y(ET»]

Il

where ¥ f is used to denote the gradient of f. Therefore, if we were to “condition”
Eq. (1.1) on the set where ¥y = z (x € M is a fixed point), we would learn that

1:2) (Fpr(o)o) = |1/, | T(l‘(t) - SleRic . )T

ET = ZL':|,

where v = Y(Xr) € T, M. Hence, we see that Eq. (1.1) gives a probabilistic representation
for the logarithmic derivative, in the second variable, of the heat kernel pr(-,-). Whereas
Bismut’” s [4] formula (see Theorem 5.1 below and literature cited above) gives a similar
representation for the logarithmic derivative, in the first variable, of the heat kernel. Of
course, since pr(o,x) is symmetric in o and z, one may obviously obtain a probabilistic
formula for V, In pr(o,2) from Bismut’ s formula.

As the above discussion indicates, when M is a finite dimensional Riemannian manifold
there is no advantage of Eq. (1.2) over Bismut’s formula, Eq. (4.17) below. However,
Eq. (1.1) is better suited for the purpose of generalization to the case where the finite
dimensional manifold M is to be replaced by an infinite dimensional manifold. Indeed,
if M is infinite dimensional one can no longer hope to write the law of X, as a density
times “Lebesgue” measure because Lebesgue measure will not exist. Thus for each o € M,
we must view pr(o,-) as a measure and here we will lose the symmetry between the
two arguments in py.

In fact, the results in this paper were motivated by the desire to find integration by
parts formulas for the heat kernel measures on (infinite dimensional) spaces of loops into
a compact Lie group. For applications of the results in this paper to loop groups the reader
is referred to Driver [10].

2. The Euclidean Prototypes
As a warm up for the next two sections, we will recall Cameron’s integration by parts
formula on classical Wiener space along with an “elementary” stochastic calculus proof.

The method of proof used here and the next section has already been described by Elton
Hsu [24].
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706 B. K. DRIVER
2.1. Cameron’s Integration by Parts Formula

2.2. Notation

Let {b(t)}+>0 be a Ré-valued standard Brownian motion on a filtered probability space
(W, {Fi}t50, F, P). Assume that (W, {F;}s>0,F, P) satisties the usual hypothesis, i.e.
F is P-complete, F, contains all of the null sets of F, and the filtration {F;}:>o is right
continuous. Let H(R?) be the Cameron-Martin Hilbert space of the absolutely continuous
functions & : [0,00) — R? such that k(0) = 0 and

mmzAme%<m.

Given a partition P = {0 < t; < ty < --- < t, = T} of [0,T] and f € C=((R*)")
let fp : W — R be defined by

(2.1) I = f(b(t1),b(t2) ..., b(ts))
We will call such a function fp on W a cylinder function of b.
NoTatioN 2.1. — Given a differential operator A acting on C=(R4), fori € {1,2,...,n}
and f € C®((RH™) let
(A f )@, @2, .-y 3n) = (Af(@1, . Tio1, - Tig1s -5 Tn ) ) (T4),

where x; € R? for each i. That is A;f denotes A acting on the i variable of f.
If fp is a cylinder function as in Eq. (2.1), we will abuse notation and write A, fp
Jor (A;f)(b(t1),b(t2)...,b(t,)). In particular if n = 1, then we will write Afp for
(Af)(B(T)).

For f € C®(RY), let Df € C®(R? (R%)*) denote the differential of f, i.e.
Df(z)a = L|of(z + sa). Notice that D : C>°(R?) — C*°(R?,(R%)*) is a differential
operator and hence

d

(Dif)(x1,22,...,20)a = E;|of(l”1, Ty, T+ 5G4, Tyt Tp).

For k € H(R?) and fp as above, set

(2:2) XEfp =Y (Dif)(blt1),bits) ..., blta) h(t:)-

=1
The following lemma is a simple application of It6’s Lemma and will be left to the reader.

LemMa 2.2. — Let T > 0, A = 3.0, 82/8z? be the Laplacian on R® and f be a smooth
vector valued function on R® with compact support. Define

(CtA/Zf)(I) = { Ad pt(x - y)f(y) dy ift > 0,
f(z) if t =0,

TOME 76 - 1997 — N° 8



INTEGRATION BY PARTS FOR HEAT KERNEL MEASURES 707
and for all t € [0,T), N; = (eT-94/2£)(b(t)) and
W, = (D982 1) (b(1)) = (eT~92/2D f)(b(t)).

(Here p,(x) = (2mt)~%? exp(—|z|?/2t) is the convolution heat kernel on R?.) Then N,
and W, are L*-martingales for t € [0,T] and dN, = W,db(t).

The following theorem is well known, see Cameron [5]. In order to illustrate the methods
to be used in the next section we will not give Cameron’s original proof which is based
on the Cameron-Martin theorem but instead give a (harder) “stochastic calculus” proof.

THEOREM 2.3. — Let k € H(R?) and fp be a cylinder function as in Eq. (2.1), then

(23) BIX*f5] = B|f» | k. )

Moreover, if fp and gp are two cylinder functions,

(2.4 E[(X* fp)gp) = E[fp (~ng¢ - ks db)gp)}

Proof. — Let us first notice that Eq. (2.4) is a consequence of Eq. (2.3) with fp replaced
by frgr = (fg)p and the product rule, X*(fpgp) = (X*fp)gp + fr(X*gp). Therefore
we need only consider the proof of Eq. (2.3). Since the proof here is to illustrate the
ideas to come, let us only prove Eq. (2.3) for partitions of the form P = {0 < T} and
P={0<u<T}

Case 1. — Suppose f € C®(R?), fr = f(b(T)), and N; and W, are defined as in
Lemma 2.2. Then X*fp = Df((T)k(T) = Wrk(T), so that

(25)  E[X*fp] = E[Wyk(T)] = E[/OT{de + de}} = E[/OT Wik(t) dtJ,

wherein the last equality we used the fact that W is an L%-martingale and k is bounded
on [0, T]. Using the L2-isometry property of the Itd integral and Lemma 2.2,

(2.6) E[/OT Wk (t) dt} _ EUOT Wb /OT(k,db)}
= B[ - | ik |- Bls | ', .

since Ny = Efp is a constant and Ny = fp. Combining Eq. (2.5) and (2.6) proves
Eq. (2.3) in the case that P = {0 < T}.

Case 2. — Suppose P = {0 < u < T}, f € C.((RY)?), and fp = f(b(u),b(T)). Now let

(T-t)Ay

frite) = e 1) = | paolu= (e e

N, = fr(t,b(u),b(t)) for all t € [u,T)
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708 B. K. DRIVER

and W, = Dyfr(t,b(u),b(t)), where Dy denote the differential of fr(¢,z,y) in the
y-variable. Again a short computation with Itd’s lemma shows that W, and N, are
L?-martingales for t € [u,T] and that dN;, = W,db(t).
Now
XF¥fp = Dy f(b(u),b(T))k(u) + Do f(b(w),b(T))k(T)
= Dy f(b(w),b(T))k(u) + Wpk(T),
so that
E[X* fp] = E[D: f(b(u),b(T))k(u) + Wrk(T)]

= E[D1f(b(u).(T))k(u)] + E [Wuk(u) + / {dWEk + de}}
T
= E[D; fr(u,b(u), b(u))k(u)] + E {W”k(u) + / Wik(t) dt}

wherein we have used the fact the W, is L?-martingale and the Markov property to show
E[D, f(b{u),b(T))k(w)] = E[Dy fr(u,b(u),b(u))k(u)]. As in Eq. (2.6),

E [/T Wik (1) dt] - E [(NT ~ N /T<k db)} > {fp ‘/T'T<1;-, db)].

s

Since W, k(u) = Da fr(u,b(u),b(u))k(u), combining the two above displayed equations
gives:
(2.7)

E[X* fp] = E[Dy fr(u,b(w), b(u))k(u) + Do fr(u, b(u), b(u))k(u)] + E [fp /

T

{k,db)].
Letting f = fr(u,b(w),b(u)) and noting that

X5 f = Dy fr(u,b(uw), b(u))k(w) + Do fr(u,b(u), b(u))k(w),

Eq. (2.7) may be written as

(2.8) E[X*fp) = E[X*f] + E [fp ‘ / T<l%:,db>].

u

By case 1) already proved,

U,

29 XA = B|F [ than| = | a0 [ )

40

-5 [f(b(u), ) [t db>] -5 [fp [t db>] ,

wherein the third inequality we have used the Markov property of b. Combining
equations (2.8) and (2.9) gives (2.3). The general case can be proved similarly using
induction on the number of partition points in P. Q.E.D.
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INTEGRATION BY PARTS FOR HEAT KERNEL MEASURES 709

2.3. Heat Kernel Integration by Parts

Let Y : R — R? be a smooth vector field on R? and V - Y be its divergence. Assume
for simplicity that ¥ has compact support. A simple integration by parts shows that

1
./Rd (V-Y)(2)pr(z)de = — /‘«d Dpr(z)Y (z)dz = T /Rd pr(z (Y (z),z) dz
or equivalently that,
(2.10) FIY - Y)(b(T)] = 2 BUY ((T)), bT))]

In Section 4 we will derive an analogous formula in the case where R? is replaced by a
compact manifold M. In order to illustrate the proofs that will be given in section 4, I
will give two alternate (harder) proofs of Eq. (2.10).

First Alternative Proof of Equation (2.10). — Choose an orthonormal basis S for R? and

for c € S set ho(t) = e, X¢ = X[ = h.(t), and

zfz/ﬂ (hc,db):%(c,b(t)), Vt € [0, 00).

Let 1 denote the constant cylinder function “one” of the Brownian motion b. Since
X1 =0,

0= E(X1)X:, YD) = Y E(X) (X5, Y(b(T))]

= D Bl(= X 4 25) (e, Y(H(T))
= S BXe YO+ FEQY (0(T), H(T)).

wherein the second equality we have used Eq. (2.4). This proves Eq. (2.10), since after
unwinding the definitions we have that

Y X (e, Y(H(T))) = (V- Y)(B(T)).

c€S

Q.E.D.

Second Alternative Proof of Equation (2.10). — For t € [0,T], set
Wio) = (€Y@ = [ peroole = n)¥ )y
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710 B. K. DRIVER

and

(2.11) Qr = (V- Y3)(b(1)) — (b(£), Ye(b(£)))-

A(V-Y,) (1), and 1td’s lemma, we find

1
2

Using 0Y;/0t = -+ AY,, O(V - Y;) /0t = —

dQ, = (V- Y)(b(£))dt + (D) V - Y2)(b(H))
— (db(t). Y2 (b(t))) — ((Qav(y Ye)(b(£)), b(£)) — {db(t), (Dun(ry Y2 ) (b(t)))
= Do)V - V) (b(1)) — (db(t). Ya(b(£))) — ((Danny Y2 ) (B(£)), (1)),

Therefore, (9, is an L*-martingale and in particular EQr = EQq. This proves Eq. (2.10),
since Qr = T(V - Y)(b(T)) — b(T) - Y (b(T)) while Qo = 0. QE.D.

3. Integration by Parts for “Curved” Wiener Space

3.1. Differential Geometric Preliminaries

Let (M? (.,-),V,0) be given, where M is a compact connected manifold (without
boundary) of dimension d, (-,-) is a Riemannian metric on M, V is a (-, )-compatible
covariant derivative, and o is a fixed base point in M. Let T = TV and R = R, denote
the torsion and curvature of V respectively. So

R(X,Y>Z = V‘\'VyZ - V)V\Z - V[X’y]Z

and
TX.Y)=VyxY - VyX - [X,Y]

for all smooth vector fields X, Y, and Z on M.

Standing Assumption: The covariant derivative (V) is assumed to be Torsion Skew
Symmetric or TSS for short. That is to say (T(X,Y).Y) = 0 for all vector fields X
and Y on M.

The Laplacian (A) with respect to (V) is the second order differential operator acting on
the smooth functions f € C=(M) given by Af = uVdf =5 {EE;f - df (Vg Ei)}.
where {E;}"_, is a local orthonormal frame. We recall from Driver [6] that this Laplacian
is the same as the Levi-Civita Laplacian due to the TSS condition on (V).

For m € M, let O,,(M) denote the collection of linear isometries of T, M to T, M,
O(M) = UpnemM, and 7 : O(M) — M denote the projection map, 7(O,,(M)) = {m}
for all m € M. The principal bundle 7 : O(M) — M is a convenient representation
for the orthogonal frame bundle over M. The structure group of this bundle is the group
O(T,M) of isometries of T,M. Let so(T,M) be the Lie algebra of O(T,M) consisting
of skew-symmetric linear transformations on 7, M.

(') We have used the fact that the Laplacian and the divergence operator commute on R™. For general
Riemannian manifolds this is not the case. It is at this point that the geometry enters into the argument.
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Given smooth paths u in O(M) and ¢ in M such that u(s) € Oy(M), let
Vu(s)/ds : T,M — T, M denote the linear operator defined by (Vu(s)/ds)a =
V{(u(s)a)/ds for all a € T, M. Notice that V(s) = u(s)a is a vector field along o so that
VV(s)/ds = V(u(s)a)/ds makes sense.

DeFNTION 3.1 (Canonical 1-form). — Let 8 be the T, M -valued 1-form on O(M) given
by 0(&) = (w(€)) 'w.&. In particular, if s — u(s) € O(M) is a smooth path and
a(8) = w(u(s)) then 8{u'(s)) = u(s)~la'(s).

DerINITION 3.2 (Connection 1-form). — Let w be the so(T, M )-valued connection 1-form
on O(M) given by w{u'(0)) = u(0)"'Vu(s)/ds|s=0, where s — u(s) is any smooth curve
in O(M). Notice that a path v is parallel or horizontal in O(M) iff w(u') = 0.

DerNiTion 3.3 (Horizontal Vector Fields). — For a € T,M and u € O(M) let B,(u) €
T.O(M) be defined by w(B,(u)) = 0 (i.e. By(u) is horizontal) and 7, B,(u) = ua.

Let S be an orthonormal basis for T, M. Let £ denote the flat or Bochner Laplacian
on O(M), £L = Y .sB? A key fact about the Bochner Laplacian is that for all
f € C®(M), L(for) = (Af)or.

Given a complete vector field Z on a manifold Q, let ¢*Z denote the flow of Z. So
for each ¢t € R, ¢*Z : Q — Q is diffeomorphism and if o(t) = e'?(q) for some q € Q,
then do(t)/dt = Z(o(t)) with o(0) = g¢.

NotatioN 3.4. — For a,b € T,M and an isometry w: T,M — T,, M (ie. u € O,,(M)),
define
Qula,b) = v RY (ua, ub)u € so(T,M),

Ric ya = Z Qu(a,c)c

ceS
O.(a,b) = u'TV (ua,ub) € T,M

and

0,0 = z(B(;@)u<av ),

ceS

where

T ds

d
(Bc®)u<a,c) = @esBc (u)<a,c).
0

So 2, Ric, and © are the equi-invariant forms of the curvature tensor, the Ricci tensor,
and the torsion tensor respectively. Similarly, ©, is the equi-invariant form of a contraction
of VTV. It is well known that the Ricci tensor, Ric, is symmetric if V is the Levi-Civita
covariant derivative on M, i.e. TV = 0. More generally we have the following lemma.

LeEMMA 3.5. — Suppose that V is torsion skew symmetric, then

(3.1) Ric} = Ric, + ©,.
Proof. — By Theorem 9.4 of [8] for any a,b,c € T,M,
(3.2) (b, a)c, by — (b, c)a, b) — (ByO{a,c),b) = 0.

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES



712 B. K. DRIVER

Using Q(b,a) = —Q{a,b), (O{a,c),b) = —(O(a,c),b)) (since V is TSS), and the fact
that Q,(a,b) € so(T,M), Eq. (3.2) may be written as,

(Qa,byb, ¢) — (e, bb, a) + (ByO{a,b),c) = 0.
Summing the above equation over b € S yields,
(Rica, ¢y — (Rice,a) + (Oa, ) = 0
from which Eq. (3.1) follows. QE.D.

3.2. The Basic Processes

Notation 3.6. — Given a (vector valued) semi-martingale X, 6X will denote the
Stratonovich differential of X while dX will denote the Ité differential of X.

Let (W, {F:}+>0,F. P) be a filtered probability space satisfying the usual hypothesis,
ie. F is P-complete, F; contains all of the null sets of F, and the filtration {F;}:>¢
is right continuous. We also assume that there are three adapted continuous processes
{Xi}i>0, {//t}0, and {b(t) }150 on WV, {Fi}i>0, F, P) with values in M, O(M), and
T, M respectively such that ¥ is a M-valued Brownian motion, // is parallel translation
along ¥, and b(t) is the “undevelopment” of %. To be more precise, we are assuming:

1. £9 = o and ¥ is a diffusion process on M with generator 3 A, i.e. forall f € C>°(M),

1

FS0) = (%) - 5 /O'm 1) )dr

is a martingale.
2. /Jo=1p,p, 7m0 /)y =%, forall £ > 0, and ](:w(é//ﬁ is the zero process.
3. b is an T,M-valued Brownian motion,

ot
(3.3) b(t) = / 0(6//+)-
JO
and //; solves the Stratonovich stochastic differential equation,
(3.4) 6//v = Bssy([/1) = ZBC(//t)ébc(t),
ceS

where b.(t) = (b(t),c).

The fact that such processes exist is well known by the works of Eells and Elworthy and
Mailiavin, see for example Elworthy [13], Kunita [Ku], Malliavin [MO, M1], Emery [16],
Theorem 3.3, p. 297 in [7], and also [9]. For later purposes, recall that a process satisfying
item 2 above is called stochastic parallel translation along ¥ and that stochastic parallel
translation exists uniquely along any M-valued semi-martingale Y.

Now let W(M) denote the space of continuous paths ¢ : [0,00) — M such that
0(0) = o and H(T,M) be the Cameron-Martin space:

H(T,M) = {k :[0,00) — T, M |k is absolutely continuous and / [k(t)|?dt < %}

40
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INTEGRATION BY PARTS FOR HEAT KERNEL MEASURES 713

Given k in the Cameron-Martin space H (T, M), let X* denote the Cameron-Martin vector
field given by XF = //:k(t). (Notice that {X}},>0 is a TM-valued process on W.) It
was shown in [D5]: if W = W(M), ¥ is the canonical process (i.e. (o) = o(t) for
t € [0,00) and 0 € W(M)), P is Wiener measure on W (M) and k is C', then X* may
be considered as a vector field on W (M) which generates a quasi-invariant flow. This
theorem was extended by Hsu [21, 22] to include all k € H(T,M). Also see Norris [33],
Enchev and Stroock [17], and Lyons and Qian [29] for other approaches.

It was also shown in [7] (where X* was written as J;), Theorem 9.1, p. 363 , that
X* may be viewed as a densely defined closed operator on L?*(W (M), P). This last
result relies on an integration by parts formula which in the special case of X* acting on
functions of the form f(o) = F(o(t)) is due to Bismut [4]. There have been numerous
proofs and extensions of integration by parts formulas on W (M), see for example [1, 2,
8. 15, 18, 19, 20, 27, 28, 30, 31, 33] and the references therein for some of the more
recent articles. In the next subsection, we will give an alternate proof of this integration by
parts formula. The method to be used here has also been discussed by Elton Hsu [24]. My
motivation for developing this method stems from its application to the situation where M
is replaced by an (infinite dimensional) loop group, see Driver [10].

3.3. Another Integration by Parts Argument
NoOTATION 3.7. — Suppose that k € H(T,M) is given, let

(3.5) t t
at= [y ko) = [0 6eam) 55 [ 8.0,
where
X d
(3.6) (B,Q),(b,c) = s OQeLBa (u)<b,c>.

NOTATION 3.8. — To each A € C(O(M) — so(T,M)), let A denote the vertical vector
field on O(M) defined by

_4

(3.7) (AF)(u) = —

F(uesA(u))
0

for all F € C=(O(M)). An important special case is when A € so(T,M) is a constant
function.

DerINTION 3.9 (Cylinder Function). — Given T > 0, a partition P = {0 < t; < ty <
o <ty =T} of[0,T],and F € C*(O(M)") let Fp denote the function on W defined by,

(38) FT’:F(//h?//tz""//tn)'

Any function Fp of the form given in Eq. (3.8) will be called a cylinder function of parallel
translation or more simply a cylinder function of //. When given a cylinder function
f of /| which may be written in the form Fp, we will say that f is based on P and the
degree of f is less than or equal to n.
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Notarion 3.10. — Given a differential operator A acting on C*(O(M)), for i €
{1,2,...,n} and F € C®(O(M)") let

(A F)(ur,uo, . stn) = (AF(Uy, i, s Uig 1y - - Un ) ) (1),

where u; € O(M) for each i. That is A;F denotes A acting on the i-th variable of F.
If Fp is a cylinder function as in Eq. (3.8), we will abuse notation and write A, Fp for
(AFY// o]ty ---+//v,)- In particular if n. = 1, then AFp = (AF)(//1).

Let D : C*(O(M)) — C*(O(M) — (T,M®so(T,M))*) be the first order differential
operator given by

DF(u)(a+ A) = ((B, + A)F)(u).

Hence by the above notation, D; Fp : W — (T,M & so(T,M))* is defined by:

(3.9) D,Fpa = dii- F(/Jevioo i/t € (1) ] ersys-- v /1) and

]

(3.10) DiFpA = di

S

F(/Jeiseoi/ e 0 i ] ]0)

0

where a € T,M and A € so(T,M).

DEFINITION 3.11. — Given k in the Cameron-Martin space H(T,M), let X* denote the
Cameron-Martin vector field on W (M) given by XF = //,k(t). We let X* act on the
cylinder function Fp given in (3.8) via

(3.11) XFEp = zn:Din(k(ti) ~- A}).

1=1

To motivate this definition, suppose for the moment that W = W(M) and P is Wiener
measure on W. Recall that X* should be thought of as a vector field on W(M). Noting
that parallel translation //, is an almost everywhere defined function from W to O(M), it
makes sense to try to compute the differential (//;).X* of //, in the direction determined
by the vector field X*. The result is

(3.12) (//0:X" = Bagoy(/11) = AL (/1)

see Theorem 2.2 on p. 282 of [7] for a proof of (3.12) for smooth paths and the proof of
Theorem 5.1 on p. 320 of [7] for the stochastic version. So if F' € C*(O(M)),

(3.13) XHE(/[1)) = (/1) X*)F = (DF)(/ [7)(k(T) — A}).

Clearly, Eq. (3.11) is the natural generalization of Eq. (3.13) to cylinder functions of //
of degree greater than one. »

The main result of this section is the following integration by parts theorem (see
Theorem 9.1 in [7]) which will be proved at the end of this section.
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THeEOREM 3.12. — Let k € H(T, M) and Fp be a cylinder function of //, as in Eq. (3.8),
then

(3.14) E[X*Fp| = E[20Fp),

where

(3.15) b= '/Ot<{1;:(r) + -;—Ric’j/Tk(T)},db(T)>.

Let G be the o-subalgebra of Fr which is the completion of the s-algebra generated
by {//+}tejo,r)- Note that one would get the same c-algebras if //, was replaced by
b(t) or ¥; above.

COROLLARY 3.13. — For each T > 0 and k € H(T,M), X* may be considered to be a
densely defined closable operator on L*(W, Gy, P) with domain D(X*) consisting of the
cvlinder functions based on [0, T). Moreover, —X* + zp C (X*)*, where (X*)* denotes
the L*(W, Gy, P)-adjoint of X*.

Proof. — Let Fp and Gp be two cylinder functions of //. Upon noting that
XM FpGp) = (X*Fp)Gp + FpX*Gp, Theorem 3.12 with Fp replaced by (FpGp)
implies

(3.16) E[(X*Fp)Gp) = E[Fp(—X* + 2r)Gp].

Suppose that Fp and Hp: are two cylinder functions based on [0,7] (P’ is possibly
another partition of [0, 7]) such that Fp = Hp: ae. Let P be any partition of [0, 77 such
that PUP’ C P and G5 be any cylinder function of // based on P. Then by Eq. (3.16)
with Fp replaced by Fp — Hp: and Gp replaced by G5,

(317) E[(XkFT’ — Xkap/)Gf,] = E[(Fp - Hp/)( X + ZT)G ] 0.

Since (X*Fp — X*Hp:) is Gr measurable and the collection of cylinder functions G5 as
above are dense in L2(W,Gr, P), it follows that X*Fp — X*Hp, = 0 a.e. This shows
that X* is well defined as an operator on L2(W, Gr, P) with domain D(X*). Given this,
the assertion that —X* + 27 C (X k )* follows directly from Eq. (3.16). This in turn shows
that (X*)* is densely defined which implies that X* is closable. QE.D.

Before beginning the proof of Theorem 3.12, let us recall some facts about the degenerate
parabolic partial differential equation,

(3.18) OG(t,u) /Ot = %EG(t,u) with G(0,-) = F(-),

where F' € C>°(O(M)). The following theorem is a restatement of Theorem 3.1, p. 259
in Ikeda and Watanabe [25] specialized to the setting of this paper.

THeorReM 3.14. — To each F € C>(O(M)), there is a unique function G €
C([0,00) x O(M)), such that G € C>®((0,00) x O(M)) and G solves Eq. (3.18).
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Moreover, if |[¢ denotes the solution to the stochastic differential equation (3.4) with
//4 = u € O(M), then

(3.19) G(t,u) = E[F(//{)]-

(In the sequel we will often write E[F(//%)] as (et“/*F)(u).)

The following lemma is a slight extension of the above Theorem 3.14. The proof is
a very minor modification of the proof given for theorem 3.1 on p. 259 of Ikeda and
Watanabe [25] and hence will be omitted.

LemMA 3.15. — Suppose that Q) is another compact manifold and F € C™(QxO(M)). Let
e'“F(q,u) = BIF(q, /1)),

then the function (t,q,u) — et* F(q, u) is continuous on [0, 00) x Q@ x O(M) and infinitely
differentiable on (0,00) x O(M) x Q.

Remark 3.16. — If FF = fonw, where f € C°(M), then LF = (Af)or and
efF = (et2f) om.

LemMA 3.17. — Fix T > 0, P = {0 < t; < tp < - < t, = T} and
F € C=(O(M)"). Define /7 = (/)1 /] tasr-s /], ,) (an O(M) ™~V valued process),
Fr(t,u) = ((e(T‘t)L/QF(/_/), () (a random function of (t,u) € [t,—1,T] x O(M)), and

N; = Fp(t,//:) for t € [t,_1,T],

then {N; : t € [tn-1,T]|} is a martingale and dN, = W,db(t), where W, is the
(T,M @ so(T,M))*-valued process defined by

(3.20) Wila+ A) = (Ba + AYFr)(t, //,) for all t € [t,_;.T),
where (a + A) € T,M @ so(T,M). Moreover, the differential of Wy is given by
(3.21) dW,(a+ A) = (Bap(Ba + A)Fr)(t, / /1)
+ %Wt(Ric sa+ 3 (B, (e a)dt
ces
= > (B e, a)Fr)(t, /1) dt.
ces

Here Qc,a) = A as in Eq. (3.7) where A(u) = Q,{c,a).

Proof. — By definition of solving the stochastic differential equation in (3.4) and Itd’s
Lemma, for t € [t,_1,T],

AN, = Y (BuFr)(t,/[2)8ba(t) — 5 (CFr) (0. /)t

a€S

= ST BBt/ /dbat) + 5 S (BEFG, /)t ~ 5(LEr)(, /)i
acsS a€csS

— W,db(t).
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A similar computation shows that
(3.22) dWy(a+ A) =Y (Be(Ba + A)Fr)(t,//:)db.
cES

+ 512, (Ba+ AP /)t

Using the commutator formulas in Lemma 7.3 of the Appendix, Eq. (3.22) may be
expressed as

dWi(a+A) =) (Be(Ba+ A)Fr)(t.//:)dbe
ceS

~

+ 5 3 ({~2Be.a) + Bic., + (BO{e.))} Fr)(/ /i,

ceS

from which Eq. (3.21) follows. Q.E.D.
The following corollary is a special case of the above lemma.

COROLLARY 3.18. — Let P = {0 < T}, Fp = f(Xr) = F(//1), where f € C=(M)
and F = f o w. Define

N, = (eTD22f)(%,) forall t € [0,T).

Then N, is a martingale and dN, = W,db(t), where W, is the (T,M)*-valued process
defined by

(3.23) Wea = (V,).e T D2 6)(5,) forallt € [0,T).
Moreover, the differential of W, is given by
(3.24) dWia = (V) anessae’ P22 )(E0) + %thcj J.a dt,
where for f € C®(M), V2f is the tensor field defined by

v%{@)ff =X(Yf) - (VxY)f.

Here X and Y are arbitrary vector fields on M.

Proof. — This is a straight forward application of Lemma 3.17 using the following
remarks. For F = fom, (AF)(w) =0, (BoF)(w) = Voo f, (BaB.F)(u) = V2., f, and
P = (e!Af)om. QED.

The proof of Theorem 3.12 is slightly cumbersome. So before proving it, let us practice
with the following special case which already contains the main ideas.

THEOREM 3.19. — Let k € H(T,M), f € C®°(M), and Fp = f(Xr), then
(3.25) E[X*Fp) = ElzrFp),

where z is defined in (3.15).
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Proof. — Let

(3.26) K() = k(1) + /0 Ric, k(r)dr.
so that
K(1) = k(1) + jRic, k() with K(0) = 0.
Let W, be defined as in Eq. (3.23) and notice that
X Fp = (BreryF)(/ [7) = Wrk(T)

T
= Wok(0) + / {Wdk + dWk}
T = 1
= /0 {de + §WR10 ’;/tkdt}—k

T
+ / (v?/tdb(t)@//tae(T_t)A/Qf)(Et)7
40

wherein the last equality we have used Eq. (3.24) of Corollary 3.18. Taking expectations
of this identity gives:

T 1 T .
(3.27) E[X*Fp)=E / {de+ 5 WRic /!kdt}: E / WK (t) dt.
JO

JO

Since Ny = Ny + fOT W.db(t), Eq. (3.27) and the L*-isometry properties of the Itd’s
integral implies

E /OT WK (t)dt = E(/OT W,db(t) - /OT(K, db))

- E((NT —N) /0 (K,db))

= E{NT /OT<K,db>}: E{Fp /OT<K,db)}.
QED.

Proof of Theorem 3.12. — Let Fp be a cylinder function of // as in Eq. (3.8),

K(t) be as in Eq. (3.26) W, as in (3.23), and // = (//u,,//0ss. ... //i,_,). Since
Wr(a+ A) = (BoF + AF)(//71).

(328)  EX*Fp =Y BIDiF(J],//r)(k(t:) - Ay)]

= " EIDF(]/[x)(k(t) = As)] + BWr(K(T) — Ar)]
where A, = A¥ as in Notation 3.7.
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Now by Itd’s Lemma, Eq. (3.26), Lemma 3.17 and Eq. (3.5),
EWr(k(T) = Ap)] = EW,,_, (k(tn-1) = A, )1+ Ty + T2 + T,

where
T T 1
leE/ Wd(k—A):E/ {W(dk—a
tho1 trn—1

T
TQEE/ dW (k — A)
tn—l

Z(ch//xk(t),cmt)},

ceS

T
__F [ S (B, k() Fr) (2, /1) dt

Jtny ceS

+1E ﬁ WaRic, k(t) + 3 (Bef2) 7, (e, (D)t

ceS
and

T
T3 = -E/ dWdA

trn—1

c€S

T

=—E [ S(BAFn) ams, w00
th—1
T

— —E/ Z(Bcfl(k(t), o) Fr)(t, / /) dt

th-1 cc§

T ~
‘B / S (B, k(D)) Pr)(L, /) de

tho1 oS
T

=B [ B ) Fr)E ) de
th-1 ceS

+E [ S (Wl(Bef)y, ((t), ) dt.

tho1 oS

Therefore, we obtain

T +Ty=E /t WK - (B.9), k(). )t}

B [ (B kO /)

n-1 CGS
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and
T+ +T; = / WdK

= </ Wdb - / de)

_ E((NT N ) /, (K,db))

- E‘(Fp /tT (K,db)),

where we have used dM = Wdb in the third equality and

T
E(Ntul/ <K,db)>:
[ Y

and Ny = Fp in the last. Hence

EWe(K(T) - Ap)] = E[We,_, (k(ta 1) ~ A, )]+ E(F»p [ db>)

which combined with Eq. (3.28) gives

n—1
(329) EX*Fp =3 BIDiF(//,[[2)(k(t) = Ae)] + EWe, ., (k(tn-1) = A0, ,)]

+E(Fp/fl(f(,db)).

The rest of the proof will now proceed by induction on n. The case n = 1 follows directly
by taking t,_; = 0 in Eq. (3.29).

Now suppose that Eq. (3.14) holds for all cylinder functions Fp of degree n — 1 or less.
We wish to show that it holds for a cylinder function of degree n. To simplify notation, let

Fluy,. .. tn_1) = (T 705 2BY (uy, . Uy, U 1))
= E[F(U]_, Uy ooy Up—1, //?i:”tnﬁl))]

(see Theorem 3.14 and Lemma 3.15) and Fpp denote the cylinder function of // given by

= F(]]) = (T2 FY (] e ).

Notice that

(330)  X*Bp= S (DeT RN e KE) - A

+ (D1 T2 BN ] o Y(k(tnor) — Ar, )

+ (DTt L2RY ([ e, (k(fus) = Ar, ).
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By the Markov property or by 1t6’s Lemma, for any i < n,
(3.31)
— —
E[D;F(/],]]7)(k(t:) — Ae)] = BT =05 2DiF) (/[ )1, ) (k) — As)).

Therefore
n—1

STEDF(]],/])(k(t:) = Ar) + EWe,_, (k(tar) = Ar, )

i=1
n-2

= BT DN k() — An))

+ E((eTt=52D, Y], o ) ((Ea1) = Ar, )
+ BE(Do(eT 02 RY (] o V(k(taer) = Ar, )

Using the fact that I); commutes with £,, for ¢ < n, this last expression combined with
Eq. (3.30) and the definition of W, in Eq. (3.20) shows:

(332) 3 EIDF(/] //)(k(t:) = Ax)] + EWa, _ (k(tuos) = A, )] = BIX*Fr.
So by Eq. (3.32) and Eq. (3.29),

T .
(3.33) EX*Fp = E[X"Fp] + E(Fp / (K,db)).

Applying the induction hypothesis, this gives

EX*Fp :E(}fp /0 "k db))+E(Fp /t ' (K,db))

n—1

:E(FP/OM<K,db>)+E(FP /til(f(,db))
:E(Fp /OT(K,db)),

wherein the second equality we have again used the Markov property to replace Fp by
Fp. Q.E.D.
4. Consequences for Heat Kernel Measures on M.

The notation of Section 3 will be use in this section as well. Also if Y is a smooth
vector field on M, let V .Y denote the divergence of Y i.e.

d
(4.1) (V-Y)(m)=uVY =Y (VpY, E),

i=1

where {Ei};i:1 is any orthonormal basis for 7, M.
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THEOREM 4.1. — Let T > 0 and | € H(R) such that I(T) = 1. Then for all smooth
vector fields Y on M,
(4.2)

E[(V-Y)(Sp)] = E[<//;1Y(2T), /01 (i(t)— %l(t)Ric//n>db(t) - % /: l(t)J//tdt>].

where for v € O(M),

(4.3) Jy = Z(B Ric (y¢)y ZRlceua ()€
ceS OCGS
=yt Z(VMRic)uc
c€S

COROLLARY 4.2. — If Y is a smooth vector field on M and f € C*(M), then

an B NE) = B[1e0 (/7Y e, [ (1o - jone, )i
-3 [ w0 a)] s )

and

(4.5) E[V-Y(Zr)] = E[<//;1Y(2T), &;j) - 51-1;/0 t{Ric ;,,db(t) + J//tdt}>].

Proof. - Because V- (fY) =Y f + fV-Y, Eq. (4.4) follows by replacing Y by fY in
Eq. (4.2). Taking I(t) = t/T in Eq. (4.2) proves Eq. (4.5). QED.

First proof of Theorem 4.1. — This proof is modeled on the first proof of Theorem 2.3.

Choose an orthonormal basis S for T,M and for ¢ € S set h.(t) = [(t)c and
X¢ = X = //he(t) for t € [0,00). Then using the integration by parts Theorem 3.19,

0= E(X°1)(X5,Y(Er)) = Y E[(X)"(X5,Y(Sr))]

ceS ceS
=Y E[(—X°+ 25)(X5. Y (Sr))] = E(~I + IT),
ceS

where

1= XX5,Y(Sr)) and IT =Y 24:(X5, Y (51)),
cES ceS

TOME 76 — 1997 — N° 8



INTEGRATION BY PARTS FOR HEAT KERNEL MEASURES 723

and

= /0 T<%Ric7 L helt) + hc(t),db(t)>

-/ T< [I—(—QQRiC ot i(t)] : db(t)>
= /0T< [égi)Ric//t + i(t)] db(t), c>.

Notice that ¢ = (X%,Y(Xr)) = F(//r), where F(u) = (c,u™'Y(m(u))). Hence
g = (X5,Y(Xr)) is a cylinder function of // as defined in Section 3 and moreover
by Eq. (3.11),

(46) X¢g = DF(/[r)(~ Az + he(T)).

Note

(4.7) DF(u)A = % (c,e™ ™Y (7(uw)) = —{c, Au" 'Y (n(u))), VA € so(T,M)
0

and

(4.8) DF(u)a = {c,u™'V,.Y) = {uc,V,,Y) VAeT,M.

Using equations (4.6-4.8) and Eq. (3.59),
1= {{//1¢.V12eY) + (e, AF [ [7Y (S1))}

cES

=@ )+ X (e ([ uodessson) 1z o)

c€S

- @i+ 3((f U, (60001, e /7Y (5
=(V-Y)}Zr)+ </OTl(t)Ric//téb(t), //;1Y(2T)>

L (V-Y)(5r) + </0Tl(t)Ric .db(E) + %/OT
where we have used

1
(4.9) Ric /7, 8b(t) = Ric 17, db(t) + 3 ) (B.Ricc),,, dt
cES

1)), dt, //;1Y<2T>>,

1
= Ric //tdb(t) + EJ//zdt'
Similarly, we have

I1="Y"2{//r¢,Y (Zr))

c€S

=3 e, //;1Y(2T)></OT [l—(;—)Ric /)0 + i(t)} db(t),c>

ceS

- </OT [@Ric o+ z’(t)} db(t), //;IY(ET)>.
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Combining the above expressions shows
0=FE[-T+11

_ E{_(V YY) + </07 [(t)db(t), //r;lY(zT)ﬂ
_ %E</0T I(t)Ric ;,db(t) + AT l(t)J//tdt,//%IY(ET>>'

This finishes the first proof of the Theorem. Q.E.D.

Second proof of Theorem 4.1. — This proof will follow the strategy of the second proof
of Eq. (2.10) of Section 2. To simplify notation, we will write dQ; = dV, if  and V are
semi-martingales such that ¢); — V; is a martingale.

Let YV(u) = u~ Y (w(u)) and set Y(u) = (eT~D2/2Y)(u) = (eT~DE/2Y)(u). Define

B-Y, =) (B.Y,c) =Y Be(Yi,0)

ceS ceS

and set

t
Q= 10E- )1 - (Y. [ )
Jo
By It0’s Lemma, as in the proof of Lemma 3.17,

diYy(//)] =Y (BY)(//0)dbe(t) = (Baey Y/ /)

c€S
and
\ L
dIB-Y:(//)) =Y B.B-Yi(//1)8bc(t) — B (514) (/)
ces
1 , r
) cezs BeB -1/ a)dbelt) + 2 ; B:B-Yi(//+)dt - B - (gyt) (//e)dt

= 3" BB/ fdbi(8) + S 1L BVl 1)t
ceS

Therefore, we obtain

4Q. = (B -V (/0 dt+ (1L BV 1) dt = (B V1), K )ab(1)

= {imvoun + S w1 - (BRI 000 |

cES
)
=
= D 70, 317 + STUBY ), Ric 11,00} di.

)
ceS

([£, B]Y:)(//+) dt
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wherein the last equality we have used the commutator formula in Eq. (7.6) of Corollary 7.4
from the Appendix below.

Unlike the proof of Eq. (2.10), @; is not a martingale and hence we will have to modify
Q. Set N; = Q,; + V; where

V. = %</0 l(T){J//T dr + RiC//r db(T)},Yt(//t)>

Notice that

o~

vz W4, vy S iRic 1, dbe). (Bay V(1)

= S V1 SR (B )

2
c€S

=~ —dQ;.

Hence we have shown that dNV; = dQ; + dV; = 0, thatis N is a martinge}le. Therefore we
conclude that ENr = ENy = 0, since Ny = Qo + Vo = 0. Since B-Y = (V-Y)om,
and {(T)(B - Yr)(//7) = (B-Y){//r) = (V- Y)(Z7),

Nr=Qr+Vp

=UT)B-Yr)(//7) - <YT(//T)'/'/O.Tl.db>

o~

+ %</OT I(F){J,,. dr +Ric . db(r)},YT(//T)>
=@ - (e, [ i)

1/ 7 . _
b5 { [ 00 di+Ric g, o /7 V(o) )
J0O
It is now clear the statement F Ny = 0 is equivalent to Eq. (4.2). Q.E.D.

4.1. Backwards Integrals

The “J” term in Eq. (4.2) is somewhat undesirable, since it involves derivatives of
the Ricci tensor. This is in contrast with Bismut’s formula which is reviewed in the next
section. Before ending this section I would like to point out that by using a “backwards”
It&’s integral, we may eliminate the “.J” term.

Let 7 = {0 =t < t) <ty < --- < t, — oo} denote a partition of [0,00),
|7| = max; |tiy1 — t;|. For 7 = t; € m, let 7+ = £(;41) be the successor to 7 in 7. Suppose
that V is a finite dimensional vector space, X is a V-valued continuous semi-martingale
and A is a End(V)-valued continuous semi-martingale. Then the backwards stochastic
integral of A relative to X is

7| —0

(4.10) /[;t AdX = llim ZA(t ATH)X(EA (74)) — X(7 A L)),
[Sd
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where the limit exists in probability uniformly for ¢ in compact subset of [0, oc). Recall
that the forward and Stratonovich integrals may be defined similarly as

0 7] —0

(4.11) ! AdX = lim Y A(T)(X (LA (74)) — X(7 A1)
TET
and

(4.12) /t ASX = lim Y %(A(t AT+) + AT)X(EA (74) = X (7 A L)

|7|—0
TE

respectively. We also know that the joint quadratic variation “ [ dAdX” is given by

(4.13) / dAdX = lim Z(A(t ATH) = AT X (A (T4)) = X(T A L))

7| —0

TET

It is a trivial exercise to prove that

ot ot ot
(4.14) / AdX :/ AdX + [ dAdX.
S0 J0

40

and

37 -t 1 24 ot ‘ ot
(4.15) / A6X = / AdX + - / dAdX = / AdX - 1 / dAdX.
0 40 2 J0 J 0 2 (

J0

From the computation given for Eq. (4.9) we know that
(4.16) d(Ric /7 )db(f) = ']//1 dt.

Using this equation and Eq. (4.14) we find that Theorem 4.1 may be written as:

COROLLARY 4.3. — Let T' > 0 and | € H(R) such that I[(T) = 1. Then for all smooth
vector fields Y on M,

(4.17) E[(V-Y)(Z7)] = EK//,;W(ET),/(;T (i(t) - %Z(t)Ric//,>%(t)>].

5. Bismut’s formula
For the sake of comparison and completeness, let us include Bismut’s formula, see

Eq. (2.77) in [4]. (Note: Bismut uses 6 for the Itd’s differential and d for the Stratonovich
differential.)

TrHeEOREM 5.1 (Bismut). — Let f : M — R be a smooth function, then for any 0 < t < T,

Sersrpo = (| t Qubr) (e 0372,

([ t Q) ) (51)|
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where (Q; is the unique solution to the differential equation:
1 e
(51) de/dt = —§QtRlC//t Wlth QO = ]

Proof. — The proof given here is modeled on Remark 6 on p. 84 in Bismut [4] and the
proof of Theorem 2.1 in Elworthy and Li [14]. Also see Norris {33].
For (¢t,m) € [0,T] x M let

F(t,m) = (779272 f)(m).
Also let ) € End(T,M) be an adapted continuous process to be chosen later. Consider
2 = ( fof Qrdb(r))F(t, ¥:). We wish to compute the differential of z;. First notice that
dF(t, %) = (VamF(t,-))(X:) and therefore:
o1
dzy = Qudb(t) - F(t,5¢) + (/ Q,,db(v-))(v//‘db(t)F(t, N(E)
0

+ 374Que (V. F(t, ) (S0) dt.

ceS

From this we conclude that:

Ez=FEz+ E/(; Z Qrc(V ), F(r, )NE,) dr

ceS

=0+ E/O > Qrel/fre, VF(r,5,)) dr

ceS

= E/ ZQw(e, //;1§F(r, )y dr
0

cES

_ E/‘t Q. /7 F(r,5,) dr.
0

Suppose that we can choose @, such that Q,.//, "V F(r,¥.,) is a martingale and Qp = I.
For such a @),

t
Ez=E / Qo/ /5 VF(0,%0) dr = 1V (e"2/2 f)(o).
0
That is to say

Sy = 8] [ ) @702 ()

. [( / t Qrdb(r)>f(ET)]7

wherein the second inequality we have used the Markov property of ;.
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We will now show how to choose ;. To this end let W, = //,'1617(1%‘ ¥.4). Then by
Corollary 3.18 we know that

1
dW, = d(martingale) + 5 Ric 7 Wedt.

So if () is the solution to Eq. (5.1), then we will have that ¢, W, is a martingale by [td’s
Lemma. QE.D.

Let us write Theorem 5.1 out in the special case where M = (@ is a compact Lie group.
Suppose (-,-) is an Adg-invariant inner product on g = 7. — the Lie algebra of G.
We extend (-,-) to a metric on G by requiring left translations to be isometries. Since
(-.-) is Adg-invariant, it follows that (-, ) is a bi-invariant metric on G. Let V denote the
left covariant derivative, i.e. V ;B = 0 for all A, B € g where A denotes the unique left
invariant vector field on G such that A(¢c) = A. Also let § C g be a fixed orthonormal
basis of g. Let {b(¢)}:>0 be a g-valued Brownian motion and X, denote the solution to
the stochastic differential equation:

(5.2) 83 = 5,6b(t) with Xy = ¢ € G.
More precisely, Eq. (5.2) is short hand for the stochastic differential equation

(5.3) 805, = D A(S)0b* (1) with g = ¢ € G.

A€S

where b*(t) = (b(t), A). Now V is a flat connection and parallel translation (relative to
V) along Xy is // = Lx,.. In particular, the triple of processes (¥,//.b) satisfy the
assumptions described in Section 3.2.

PROPOSITION 5.2. — Suppose (G.{-.-). V. %, //.b) are as above. Then
(5:4) (VT2 f)(e) = £ B (b0 f ()

Proof. — The covariant derivative is flat, and hence the Ricci tensor is zero. Thus (), = [
in this case. Therefore Eq. (5.4) is a direct consequence of Theorem 5.1. Q.E.D.

6. Applications to Compact Lie Groups with Left Invariant Metrics

For this section we will suppose, to avoid technical complications, that G is a compact
Lie group. (Actually the results of this section are valid for general unimodular Lie groups.)
Let o = e € G, g = T.G be the Lie algebra of G (¢ € G is the identity element), (-, -)
is an inner product on g which we also view as a left invariant Riemannian metric on G,
and V is the Levi-Civita covariant derivative associated to (-, -). Notice that we do not
assume here that (-,-) on g is Ad-invariant or equivalently that the Riemannian metric
made from (-,-) is bi-invariant.

Notation 6.1. - If h € g, let h denote the unique left invariant vector field on G such
that h(e) = h. Also let D denote the Lie algebra version of V. i.e. for each h € g, Dy is
the linear operator on g defined by Dyk = (V;k)(e).

TOME 76 — 1997 — N° 8



INTEGRATION BY PARTS FOR HEAT KERNEL MEASURES 729

One of the major simplifications when working with Lie groups is that computations
involving G may often be reduced to computations essentially only involving the Lie
algebra g. For example, since (-, -) is a left-invariant metric on G, one has V;ll;' = (Dpk).

Now suppose that ¢ and v are Cl'-curves in G and TG respectively and that
plt) = [O' Lo(ry-1.0(7)dr and a(t) = Lygy-1.0(t). If Vo(t)/dt denotes the covariant
differential of v along o, then:

‘ Vu(t) da(t)
((il) T = Lo‘(t)* <—dt‘~ + ‘Dﬂ(t)a(f) .
To prove this equation, notice that v may be written as
(6.2) v(t) = Lyea(t) = (a())(o(t) = Y _(a(t), h)h(a(t)),
heS

where, as above, S is an orthonormal basis for g. Hence,

VZE” - Z{<%§Q h>fl(a(t>) + <a(t),h>v(~,(t)iz,}
=

da(t)
dt

= Ly(t)s + > {a(). B (Dir,,, . senh) (o))

Now let {3(t)}+>0 be a g-valued Brownian motion on the filtered probability space
(W, {F:}1>0, F, P) with covariance E((5(t), h) - (3(1),k)) = t AT{h, k) forall h, k € g.
Also let {Et}f,zo be the solution to the stochastic differential equation,

(6.3) 0% = Ly, .60(t) with ¥4 = e.

This last equation may be written more explicitly as

(6.4) 85 =Y h(Z,)88" () with £y = ¢,
hesS

where S C g is an orthonormal basis, 5"(t) = (5(t),h) (a real Brownian motion for
h € S) and h denotes the left invariant vector field on G such that h(e) = h.

Lemma 6.2. — The process {X;}1>¢ is a Brownian motion on the Riemannian manifold
(G 0D
Proof. — Since G is compact it is also unimodular. For unimodular Lie groups it is well

known that the Laplace Beltrami operator A is given by A =", h?, see for example
Remark 2.2 in [11]. Therefore for f € C*(G),

d(f(£0) = > _(hH)(Z)66" (1)

heSs

= STRNENB ) + 5 S0t
hes hesS

= STRAEIAS 0 + (AN,
hes
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which shows that ¥ satisfies the martingale characterization of a Brownian motion, see
Section 3.2. Q.E.D.

Continuing the notation of Section 3.2, let // denote stochastic parallel translation (for
the Levi-Civita covariant derivative V) along > and b be the g-valued Brownian motion
defined in Eq. (3.3). In the next theorem we will give a more concrete description of
the processes // and b.

THEOREM 6.3. — Let 3, ¥, //, and b be the processes described above and set
(65) Lf(f) = ,LE(i)—l*//f.

Then U(t) is the O(g)-valued adapted and continuous process satisfying the stochastic
differential equation

(6.6) AU (H) + Daso U (1) = 0 with U(0) = I,.
(6.7) bi) = /0 U(r)~'88(r).

and also

(6.8) b(t) = /0 U(r)~Ldg(r).

Proof. — The proof of Eq. (6.7) is easy:
ob(t) = /Y68 = /)7 L, .08(t) = U(t)~'64(t).

We now will show that Eq. (6.6) holds. Define F': O(G) — O(g) by F(p) = L) 4P
where 7 : O(G) — G is the fiber projection map. (Recall that O(G) = U,ecOy(G) and
0,(G) is the set of isometries from g = T.G to T,G.) Since U(t) = F(//), in order to
find the equation satisfied by U(t) we will need the horizontal derivative of F.

CLamm. — For h € g, let B, be the associated horizontal vector field on O(G) defined
in Definition 3.3. Then (B, F)(p) = —DLW), Lon ().

To prove this claim let g(t) be a curve in G such that g(0) = 7(p) and §(0) = ph.
Define O(#) € O(g) to be the solution the ordinary differential equation

(6.9) dO(t)/dt + Do O(t) = 0 with O(0) = Ly 1.p,

where a(t) = Lyt)-1.9(t) € g. (Notice that «(0) = L(,)-1,ph.) Let p(-) be the curve in
O(G) defined by p(t) = Ly O(t) € O(G). By Eq. (6.1), Vp(t)/dt = 0 so p is horizontal.
Also we have p(0) = p, and 7.p(0) = §(0) = ph and hence p(0) = By (p). Therefore:

(BP0 = 7| Ftt) = | Lo roptt)
R Y 10
dt |, g(t)~ '+ Hg(t)x
= LV o) = =Dy 0(0)
dt|, °
=Dy, )
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This proves the claim.
Because of the claim, we now know that

dU(t) = dF(//+) = (Bsuy F)(//+)
= -‘D(L,—,(//,)‘lv;.//f(Sb(t))F(//r')
=D, j5000pU)

= =DwmsanU(t).

which in view of Eq. (6.7) proves Eq. (6.6).
To complete the proof we need only verify Eq. (6.8). Now

(6.10) b(t) = /tU(f)"léﬁ(t)z /t Ut)~'dg(t) + Vi,

J0

where V is the process of bounded variation given by

OE /0 AU(r) " )dp(r) =

1/t 1t
= 5 /O U(T)—lDdﬂ(T)dﬂ(T) = 5 /] U(T)—I(Z th)dT.

s hes

Using Lévy’s criteria, it is easily checked that fot U(t)~'dB3(t) is a Brownian motion. But

we know a priori that b(t) is also a Brownian motion on g. In order for these statements

to be consistent with Eq. (6.10) is is necessary for V = 0, i.e. Eq. (6.8) is valid. Q.E.D.
As a bi-product of the proof we have shown that

(6.11) > Dyh=0.

hesS

We could also verify this equation more directly as follows. For k € g let

™ (g) = Rou(g) = ge'™,

then ¢* is the flow of k. Because G is compact and hence unimodular, the Riemannian

volume form on G which is a left invariant volume form is also a right invariant volume
form. Therefore right translation preserve the Riemannian volume form and hence the
flow e* preserves the Riemannian volume form. Consequently, the divergence of k is
zero. On the other hand, we may also compute the divergence of k using the Levi-Civita
covariant derivative V via,

(6.12) Vek=uVk=Y (Vikh) =Y (Dyk.h) == (k Dyh),
hesS hes hes

wherein the last equality we have used the metric compatibility of V to conclude that
Dy, is skew adjoint on g. Since, as already noted, V - £ = 0 for all £ € g, Eq. (6.11)
follows from Eq. (6.12).
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We now wish to write down Theorem 4.1 in the context of this section.

CoroLrary 6.4. — Let (G, {-,-), V) be as above. Also let f € C*(G), h € g, T > 0,
and | € H(R) such that [(T) = 1, then

(6.13) EUBA(E)] = E| 1 (Ve [ s (it - o, Jasn )|
_ %E[f(ZT)<U(T)‘1h, /UF l(t)U(t)‘l,L,dtﬂ.

where Ric . is the Ricci tensor restricted to § = T.G and .J is defined in Eq. (4.3).

_ Proof. ~ Applying Theorem 4.1 with Y = f h, using the fact that V-(fh) = hf+fV-h=
hf, shows that

(6.14) E[(hf)(S1)]

= B[{soryien, [ (i~ Juowie,, Jaety - 3 [wo )]

Since (-,-) is left invariant, it follows that Ric and VRic are also left invariant, i.e.
L, !Ric Ly, =Ric and Ly, (Vy, sRic)Lgk = (ViRic )k for all g € G, therefore,

Ric ;;, = Ric, y@w = U™ (t)Ric,, U(t) = U™ (t)Ric U(t),

and
Ty = Jig, iy = 3 (Lo U0) ™M (Vi vwnRic) Ly, U(t)h
hes
=Y U Y (t)(VyuRic)U(th = U™ (1) ..

heS
Also notice that

/17 h(Sr) = UHT) Ly, (Sr) = U (T)h.
Using these last three equalities and Eq. (6.8) in Eq. (6.14), one finds that:

Bl(hf)(Sr)] = E[f(zT)<U-1(T>h, / T(l’(t) - %l(t)v-%wmeev(t))U-1<t>fw<t)>]

_ %EKU‘I(T)h, /OTl(t)U(t)”lJedt>],

from which Eq. (6.13) clearly follows. Q.E.D.

CoROLLARY 6.5. — Let (G, (-.-).V), f € C®(G), h € g, T > 0, and | € H(R) such
that [(T) = 1 be as in Corollary 6.4. Then

(6.15) E[(hf)(Sr)] = E[.f(zT><U<T>*h, / st (z‘u) - SR )
(6.16) ) [f(ET) '/O'T<U<t»,T)h, (l’(t) - %l(t)RicE)&B(t)ﬂ,

TOME 76 —~ 1997 — N° 8



INTEGRATION BY PARTS FOR HEAT KERNEL MEASURES 733

where :Jl_/} denotes the backwards Ito’s differential and U(t,T) = UR)U(T)™ ! for
0<t<T.

Remark 6.6. — Notice that the process U(t,T)h is not adapted to the forward filtration.
The stochastic integral in Eq. (6.16) is to be interpreted as a limit in probability of Riemann
sums of the form in Eq. (4.10) with A(t) = (I(7) — sU(T)Ric )U (¢, T)h and X (t) = B(t).
The convergence (in probability uniformly on compact subsets of [0.00)) of these sums
follows from the corresponding convergence of the Riemann sums defining the stochastic
integral in Eq. (6.15). In fact U(t,T) solves the (non-adapted to the forward filtration)
Stratonovich differential equation,

dU(t-, T) + D(s’g(t)U(t, T) = 0 with U(T7 T) = [g.

From this it follows that U(¢,7) may be chosen to be o(3(r) — B(T) : t < v < T)-
adapted. Hence the backward Itd’s integral is an adapted integral when “run” in reverse
time. This fact will be exploited in Section 6 in Driver {10] where the reader may find
more details on this remark.

Proof of Corollary 6.5. — Equation (6.16) follows directly from (6.15) and the proof
of Eq. (6.15) is basically the same as the proof of Corollary 4.3. Just apply Eq. (4.14)
to Eq. (6.13) using

d(U ™" (t)Ric . )dB(t) = (U™ (t)DygsyRic . )dB(t)
= U(t)(DuRic Jhdt = U~ (t)] dt

heS
and . .
d(U™(t))dB(t) = U " (t) Das(rydp(t)
= Z U~Yt)Dyh dt = 0.
hesS
wherein the last equality we used Eq. (6.11). Q.ED.

7. Appendix: Geometric Identities

The purpose of this Appendix is to recall some basic commutator formulas for the
operators used in the body of the paper. First recall that if A : O(M) — so(T,M)
is a smooth function let A denote the vertical vector field on O(M) defined as:
(Af)(w) = L]of(ue'*™). Let (a,b) denote the vertical vector field A, where
A(u) = Q,(a,b). Similarly, let Bg(, ;) denote the horizontal vector field on O(M)
defined by u € O(M) — Bo, (a,4y(u) € TO(M). The following lemma is standard, for a
proof see Kobayshi and Nomizu [26] or Lemma 9.2 in [8] for example.

Lemma 7.1. — Let a,b € T,M and A,C € so(1,M), then
1. [A,C] = [A, (:"], and

2. [B., By) = —¥{a,b) — Boap);

3. [A,B,] = Ba..
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Remark 7.2. — The last commutator formula easily generalizes to
(7.1) [4,B.] = Baa — B.A

when A : O(M) — so(T,M) is a non-constant smooth function.
Lemma 7.3. — Let a € T,M and A € so(T,M). then (L, A] = 0 and
(7.2) [, B = _{(BSc.a)) — 2B e, a)} + BRic -
ceS

Proof. — We compute,

(73) [,C, A] = Z B(L[Ba-, A} Bu A = Z{BtlBACL + B4<1B1L}
a€S agS
=~ 3 {B.B.+ B.B,}(Aa,c).
a,cES

which is zero, since (Aa,c) is skew symmetric in o and ¢ while {B.B.+ B.B.} is
symmetric. Similarly,

[£.B.] =Y (B2 B =Y {BB.. B + [B.. B.)B.}

ceES cES

= =S {Be.a) + Qc.a)B.} = Y {B.Bexeay + Boeoy Be}

cES ceS
=- Z{QB(Q((:, a) + e, a), B}
cES
_ Z{Z (B.By + ByB){(O{c,a),b) + Bp,o(ca) }-
ceS beS

Now

Z (BrBh + B(7lg(-)<(")<(:7 (),>, [)> =0,
b.ceS

since (B.By + ByB..) is symmetric in b and ¢ while (6(c, a),b) is anti-symmetric in b
and ¢ because of the TSS assumption. Also

S {%e,a), B + B owa} = O {Botewe — (BSHe,a))} — Bag

ceS perd
= ~BRic. = )_(B-¥c,0))} - Be,
ces
= =B Ricat+ea) ~ Z(B(-Q<C,(l,>)
€S
= —DBRic-o ~ Z(BFQ((;(L}).
ceS
Assembling the last three displayed equations proves Eq. (7.2). QE.D.
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We now apply the formula for [£, B,] to functions on O(M) coming from functions and
vector fields on M. To state the next result, if Z : O(M) — T, M is a smooth function, let

(7.4) B-Z=Y (BuZ,a)=) B.(Z.a).
a€eS acs
COROLLARY 7.4. — Suppose that F € C*(O(M)) and Z € C*(O(M) — T,M) such
that F(ug) = F(u) and Z(ug) = g~ 'Z(u) for all ¢ € O(T,M), ie. F = for and
Z(u) = u= Y (n(u)), where f (Y) is a smooth function (vector field) on M., then,

(7.5) [£.B.F = Bpjc. . F
and
(7.6) [£,B)Z=L(B-Z)~B-LZ=—(Z,])= > (B.Z.Rica),
a€S
where
(7.7) J =" B.Rica.
a€eS

Remark 7.5. — The commutator formula in Eq. (7.6) may be written directly for the
vector field Y as,

[AV]Y =A(V-Y)=V-AY = —(Y.j) — (VY,Ric),

where j is the vector field on M such that j(m) = Y __o(V.Ric)c for all m € M and
any orthonormal basis S of T,, M.

Proof. — Suppose that p : G = SO(n) — Aut(V) is a representation, A : O(M) —
so(T,M), and W : O(M) — V are smooth functions and that W{ug) = p(¢g~")W(u
for all w € O(M) and g € G, then
d

(AVV)(“) = -L—l- W(u(H(“)) -

Tt pr p(e A NW (u) = —p.(A(u))W (u),

0

where p.(A) = L|op.(e'?). In particular,

(AZ)(w) =&

20

Z(uettW)y = % e~y Y (r(w) = - A(u) Z(u).
@

which we abbreviate as: AZ = —AZ.
We then have the following important commutator formula:

[£. BJW = > {(BOc, “a)) — 2B.(e,a)}W + Bpic., W
ceS
= {=pu(Be, a))W + 2B(p. (e, a))W)} + Bric., W
cE€S
= Z{p*(BCQ((:, a))W +2p.(Qc,a)) BW} + BRic.o W
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Eq. (7.5) follows by taking W = F\, in which case p, = 0. If W = Z in the above
equation (in which case p. = [d). then

[£.B,)Z = Z{ (B.Qe.a))Z + 29, a)B.Z} + Brie. , 2.

€S
Hence, we have

> (L. Bl Z.a)

il

Y (B a))Z )+ 2(c.a)BeZ.a)} + Y BRic.,(Z-a)

aES w,cES aesS
= Z {—(Z.(B.Q{c.a))a) — 2B Z.Qc.a)a) + (B.Z.a)(Ric "a.c)}
w,c€S
= - {{Z. BRicc) + 2(B.Z Ric¢) — (B.Z.Ric c)}
cesS
= —(Z.J) =) (B.Z.Ricc)}.
€S
which is Eq. (7.6). © QED.
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