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1.

Abstract. LetW(M) be the based (ate M) path space of acompact Riemannian
manifold M equipped with Wiener measuvreThis paper is devoted to considering
vector fields onW(M) of the form x';(a) = Ps(0)hs(o) where Ps(o) denotes
stochastic parallel translation up to tilsealong a Wiener pathr € W(M) and
{hs}seo,1] is an adapted,M-valued process oW/ (M). It is shown that there is a
large class of processbgcalled adapted vector fields) for which we may vid

as first-order differential operators acting on functions\écM). Moreover, ifh
andk are two such processes, then the commutatdtiofvith X is again a vector
field onW (M) of the same form.

Key Words. Wiener measure, dttevelopment map, Lie bracket, Integration by
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Introduction

Let (MY, (-,-), V, 0) be given, whereM is a compact connected manifold (without
boundary) of dimensiod, (-, -) is a Riemannian metric oll, V is a (-, -)-compatible
covariant derivative, andis a fixed base pointiM. Let T = TY andR = RV denote
the torsion and curvature &f, respectively.

* This research was patrtially supported by NSF Grant No. DMS 92-23177.
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Standing Assumption. The covariant derivativéV) is assumed to b&orsion Skew
Symmetricor TSSfor short. That is to sayT (X, Y), Y) = 0 for all vector fieldsX
andY on M. (With the TSS condition, the Laplacian on functionsf( = tr(Vgradf)
associated t¥ is the same as the usual Levi-Civita Laplacian.)

Let v denote Wiener measure on the path space
W(M) = {o € C%(0, 1], M)|o (0) = 0}.

To be more explicit, leEs (o) = o (s) foro € W(M) and letFs be thes -field onW (M)
generated byXy : s’ < s}. Thenv is the unique probability measure W (M), {Fs})
such that{ Xs}sejo.1] is a diffusion process Wit%A as the generator.

Let Ps denote stochastic parallel translation aladgup to times relative to the
covariant derivativé/. Givenh in the Cameron—Matrtin spadt,

1
H= {h : [0, 1] — ToM|h is absolutely continuous ang  |h'(s)|?ds < oo} ,
0

let X" denote theCameron—Martin vector fieldn W(M) given by XQ = Psh(s). It
was shown in [15] thaX" may indeed be considered as a vector field/8(M) in
the sense thax" generates a quasi-invariant flow, at least whas C'. This theorem
was extended by Hsu [34], [35] to include &lle H. See also [44] and [24] for other
approaches.

It was also shown in Theorem 9.1, p. 363, of [15] (whXewas written asd,),
that X" may be viewed as a densely defined closed operatb?OW (M), v). This last
result relies on an integration by parts formula which in the special ca%é a€ting on
functions of the formf (o) = F (o (S)) is due to Bismut [9]. There have been numerous
proofs and extensions of integration by parts formula¥\aiM), see, for example, [4],

[71, [22], [28], [29], [31], [40]-[44], and the references therein for some of the more
recent articles. See also Proposition 4.10 below.

The purpose of this paper is to consider the commutax8r K¥] of two vector
fields X" and XK. It has been known for some time that, in general, the commutator
between two Cameron—Martin vector fields\WA(M) is no longer a Cameron—Martin
vector field. This is explicitly pointed out in Section 6.5 of [14] and in the caselhist
a homogeneous manifold by Aida in [4]. Since so much of differential geometry relies
on the use of the commutator of vector fields, it is highly desirable to have a class of
vector fields which is stable under the Lie bracket operation.

In this paper we study the “adapted vector fields'\W(M) introduced in [18], see
also [14]. (Cruzeiro and Malliavin call the adapted vector fields by the suggestive name
of tangent processes.) Intuitivel}, is an adapted vector field (or tangent process) on
W(M) iff X = (d/dt)|oe:, whereg: W(M) — W(M) is a one-parameter family of
guasi-invariant adapted maps Wh(M) such thatpy = id, see Definitions 3.2 and 4.1
for the precise definition. We cdlp: };cr as above an approximate flow fixr

The main result of this paper is Theorem 7.4 and Corollary 8.4 both of which state:

Theorem 1.1 (Informal Version). The Lie bracket of sufficiently regular “adapted vec-
tor fields” on W(M) is an “adapted vector fieltd
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We may give an informal proof of this theorem as follows. detandY be two
adapted vector fields oW (M) and letg; andy, be approximate flows foX andY,
respectively. Then (formally){, Y] = (d/dt)|o+ n; wheren; is the approximate flow on
W(M) defined by

m=v_goe_yioViogs (1.1)

Thus [X, Y] is also an adapted vector field.

The remainder of this paper is devoted to a precise formulation and proof of the above
stability result. Along the way we develop explicit formulas for the bracket{]. Our
approach here is at the infinitesimal level, viewing vector fields as first-order differential
operators. Making the argument given in the above paragraph rigorous would involve a
more delicate global analysis. See [10] for the beginnings of such an analysis. In [10]
the differential of the flowe'* is computed for certain adapted vector fiekls

As stated above, the reason for wanting vector fields to be stable under the Lie bracket
operation is related to the desire to develop calculus and geomeWy(dh). Recall
that the Lie bracket typically enters into the coordinate-free definition of differential and
geometric objects. At this time, the coordinate-free approach seems to be essential when
working on path and loop spaces. Fmmeof the recent developments on the calculus
and geometry of path and loop spaces, see [1]-[6], [8], [11]-[18], [20]-[22], [24]—[36],
[38], and [44].

2. Background and Notation

2.1. Geometric Notation

Let O(M) denote the orthogonal frame bundle Mf We choos€el,M (0 € M is the
fixed base point) as the model fiberT¥ so that the fiber oO(M) abovem € M is

Om(M) = {u: ToM — TM]uis an isometry.

The structure group of this bundle is the groDpd) of isometries ofT,M. Let so(d)

be the Lie algebra oD(d) consisting of skew-symmetric linear transformations on
ToM. Given smooth paths in O(M) ando in M such thatu(s) € Oy (M), let
vu(s)/ds : ToM — T, M denote the linear operator defined Byu(s)/ds)a =
V(u(s)a)/dsforalla € T,M. Notice thatV (s) = u(s)ais a vector field along so that
VV (s)/ds = V(u(s)a)/ds makes sense.

Definition 2.1 (Connection 1-Form). Leb be theso(d)-valued connection 1-form on
O(M) given byw(U'(0)) = u(0)~1Vu(s)/ds|s—o, Wheres — u(s) is any smooth curve
in O(M). Notice that a pathu is parallel or horizontal irfD(M) iff w(u’) = 0.

Definition 2.2 (Horizontal Vector Fields). Foa € T,M andu € O(M) let B(a)(u)

€ T,O(M) be defined byw(B(a)(u)) = 0 (i.e.,B{(a)(u) is horizontal) andr, B(a)(u) =

ua, whererr: O(M) — M is the canonical projection map. We often wiggu) instead
of B(a)(u).
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LetT = TV andR = RY denote the torsion and curvaturef respectively, and
let {g }i":1 be an orthonormal basis fagM.

Notation 2.3. Fora,b € T,M and an isometryi: ToM — TM (i.e.,u € Oy (M)),
define

Qu(a, b) = u'RY(ua, ubju € End(ToM),

Rig,(a) = Y Qu(a &)e,

d
i=1
Ou(a, by = u™'TV(ua, ub) € T,M,

and
_ d
Oufa) = ) Ba(U)(©.(a &)).
i=1

So L, Ric, and® are the equi-invariant forms of the curvature tensor, the Ricci
tensor, and the torsion tensor, respectively. Simil@lyis the equi-invariant form of a
contraction ofvTY.

2.2. Path Spaces and Development Maps

In this subsection we introduce a number of path spaces and connecting maps between
these path spaces. The reader is referred to [15] and [19] for a more leisurely discussion
of this material.

Definition 2.4 (Path Spaces). Let
W = W(ToM) = {w € C°([0, 1], ToM)|w(0) = 0},
W(sad)) = {A € C%([0, 1], sad))| A(0) = 0},
W(M) = {o € C%([0, 1], M)|o (0) = o},
and
W(O(M)) = {u e C°([0, 1], O(M))|u(0) = id}.
Let .« denote the Wiener measure ¥bhand letv denote the Wiener measure WA M).

A mapb: W(M) — W may be viewed as a continuous processVd(M) with
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values inToM. This is done by writindys for the function fromwW (M) to T,M given by

bs(o) = b(o)(s). Conversely, given a continuous procédgon W(M) with values in

ToM, we may define a map W(M) — W by b(o)(s) = bs(o). Similar identifications

may be made for maps between any of the two path spaces defined above. In what
follows we use both points of view interchangeably. Finally recall from the Introduction
thatz: W(M) — W(M) is the process defined ys(o) = o (s) forall o € W(M).

Definition 2.5 (Connecting Maps). There are the following maps connecting the above
path spaces:

1. (Canonical Brownian Motion) Let g: W — W be the canonical Brownian
motion onW given bySs(w) = w(s) for all w € W ands € [0, 1].

2. (Ito Map) 1: W — W(O(M)) is defined by the Stratonovich differential equa-
tion:

Sls=B(8Bs)(ls)  with lg=id € Oy(M),

where the stochastic integrals are computed relative to the Wiener meagnre
W. Notice thatl is horizontal, in the sense thatsl) = 0.

3. (Projection) 7: W(O(M)) — W(M) is an abuse of notation by which we mean
w(U) =moul.

4. (Horizontal Lift/Parallel Translation) P:W(M) — W(O(M)) is the process
defined byz(P) = =, Py = id|t,m, andw(§P) = 0, where the stochastic
integrals are computed relative to the Wiener measue W (M).

. (Development Map)Let p: W — W(M) denote the composite map= o |.

6. (Inverse Brownian Motion) Letb: W(O(M)) — W be defined as a version of

[ 0(3P) (relative tov), whered (&) = utr,£ for £ € T,O(M).

(€2}

The next theorem is well known. It recalls how the maps above are all related. The
proof may be found in many places, see, for example, Theorem 3.3, p. 297, in [15] and
also [19] and [23].

Theorem 2.6. The following identities hotd

ToP = idW(M) v-a.s.,
.po b= idW(M) v-a.s.,
. bog=idy p-as,

. lob=Pv-as,and

. I =Pogpu-as.

AWM P

Moreoverp,u = Law(p) = v and hov = Law(b) = u.

2.3. A Collection of Norms

In this section(2, F, P) is a probability space, £ p < oo, and(V, | - |) is a finite-
dimensional normed vector space.
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Definition 2.7. Given a jointly measurable functioh: & x [0, 1] — V we define:

1. The root mean square normlir?:

1
‘(/ |f(-,s>|2ds)
0

2. The supremum norm ibP:

172
I fllreevy =

LpP

Ifllseevy = Il

where f*(w) is the essential supremum sf— f (w, S) relative to Lebesgue
measure on [0,1]. (Notice thdt (w) = limp_ o || f (@, ) ||Ln@s) SO thatf*(w) is
measurable.)

Let RP(V) denote thosé : 2 x [0, 1] — V such thaf] f ||re(v) < 00. Let SP(V) denote
thosef: Q2 x [0, 1] — V such thas — f (s, w) is continuous for almost every € Q
and|| f ||sp(v) < Q.

In what follows, we writeRP for RP(V) and SP for SP(V) since the appropriate
vector spac&/ may be determined by looking at the range of the functiowe write
fs(w), f(w,s), f(w)(s), and f (s)(w) interchangeably.

Now suppose thaf2, {Fs}, {Xs}, F, P) is a filtered probability space equipped
with a ToM-valued Brownian motiorX. A function f: Q x [0, 1] — V is aBrownian
semimartingaléf f may be represented in the form

f (s, -)=/ Qs«dX(s’)+/ re ds, (2.1)
0 0

where (Qs,rs) is a predictable process with values iHom(T,M, V) x V.
(Hom(ToM, V) denotes the set of linear transformations frapM to V.) We call

the processe®s andrg the kernelsof f and WriteQSf for Qs andrsf forrg if we are
considering more than one Brownian semimartingale at a time. The Brownian semi-
martingalef is said to have continuous kernelsif> (Qs(w), rs(w)) is continuous for
almost everyw € Q.

Definition 2.8. Let HP(X) denote the set of Brownian semimartingafesuch that
I fll#rx) = IQIIre + lIr [Ire < 00,

and letBP denote the set of Brownian semimartingafesuch thatf has continuous
kernels(Qs, rs) and

I fligexy = I1Qllse + [IF llsp < 0.

Remark 2.9. TheBP-norms are the same as those used in [15]. Howevel{ theorm
differs slightly from theHP-norm used in [15]. In [15] thé{P-norm was theveaker
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norm given by

||(/01|QS|2ds) +/01|rs|ds

To avoid notational clutter, ifQ2, X, P) = (W, 8, u) andf: W x [0, 1] — V, then
we let| f|l» and| f ||ge denotel| f ||1rs) and|l f|lgeg), respectively, wherg is the
canonical Brownian motion oV given by Bs(w) = w(s). Similarly, if (2, X, P) =
(W(M), b,v) and f:W(M) x [0,1] — V, then we let| f|r and | f|gr denote
| fllewy and|l f ||ge), respectively, wherb is the Brownian motion oV (M) defined
in Definition 2.5.

The next lemma is proved by unwinding the definitions and applying Theorem 2.6.

1/2

LPp

Lemma 2.10. Suppose thatsfW — Vﬂisaprocess ancﬂ;: W(M) - V istpe process
defined byfs = fsob, then| flre = || fllre, I fllse = I fllse, [l fll2¢e = I fll2¢0, and
[ fllge = Il fllge.

Note, forallp € [1, o], that|| f ||ge < || fllse @and|| f |p < || f ||ge. Als0 it follows
from Burkholder’s inequality that for eagh € [1, oo) there is a constam, < oo such
that| flls> < Cpll fll2e-

Notation 2.11. Givenp € [1, c0), let LP* = J ., L%andLP™ = ,_, L9. We say

that lim_o f(t) = f in LP* (resp.LP7) if limo f(t) = f in LY for someq > p
(resp. for allg < p). Analogous definitions foRP*, SP*, P+, andBP* are also used.

3. \Vector Fields onW

For motivational purposes, recall Theorem 2.1 on p. 408 of [18].

Theorem 3.1 (Structure Theorem). Letw: W — W be an adapted mgpe., s — Ws

is an adapted procepsuch thatl, u is equivalent tqe. Also assume there is an adapted
map¥ 1 W — W such thatr o W=t and W1 o ¥ are both equal to the identity map

u-a.s. Then there existO(d) x ToM)-valued predictable process€®, y) on W such
that

Y (w) =/O(a))da)+/)/(a))d& (3.1)

andfol lys|2ds < oo p—a.s.

With this in mind, if U;: W — W is an adapted flow oW, then

Yt (w)(s) :/o Ot(w)(S')<1|w(S/)+[0 n(@)(s)ds, (3.2)
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where, for eacht € R, (O, 1) are (O(d) x ToM)-valued predictable processes on
W. Differentiating this equation dt= 0 gives the form of the vector fields which can
generate adapted flows &¥. This motivates the following definition.

Definition 3.2 (Adapted Vector Fields o). An adapted vector fielth is a T,M-
valued Brownian semimartingale & with predictable kernelQ" € so(d) andr! €
ToM such thatfo1 IrM12ds < oo a.s. LetV denote the collection of adapted vector fields
onW andVP =V NHP.

Such processes were called adapted tangent vector field ionDefinition 2.2,
p. 410, of [18] and tangent processes in [12]-[14]. Given an adapted vectoh feedd
above, following Fang and Malliavin [31], let

S S
Eo(th)(s) = / e dB(s) +t / réds. (3.3)
0 0
Notice that formally,(d/dt)|oEg(th) = h, hence if f € LP(W,du) is a function,

it is reasonable to try to define the directional derivatiyéd of f by h by 9, f =
(d/dt)|o f o Ep(th). A minimal requirement for this to make sense is that the law of
Eo(th) must be equivalent tp, since otherwise the compositidno Eq(th) is not well
defined.

Proposition 3.3. Suppose that ke VP (an adapted vector field on W #tP) and rf! (w)
is bounded by a nonrandom constanfTken E(th) has its law equivalent tp. and if
f € LPT(w), then f(Eq(th)) € LP(u) forallt € R. Moreover

d/dDjoEothy =h  in HP. (3.4)

Proof. Girsanov’s theorem shows that, for dlle LY(W, ),

E.(f (Eoth)ef®) =E, f, (3.5)
where
1 N 1
F(t) = —t/ rh. el dg —(t2/2)/ Ir"?ds. (3.6)
0 0

Fromthisitfollows thaEg(th) hasits law equivalent to Brownian motion, see Lemma 8.2,
p. 347, of [15] for details.
Letq > 1 andq’ be the conjugate exponentdoThen, by Hlder’s inequality,

E, | f (Eoth)|P = E, (| f (Eo(th))|PeF /4. e F1/9)
< (E,{I f (Eo(th))[PIe" VY. e " /||
= [ fIB - lle”" 9lq,
where in the last line we have used (3.5). Sirice LP*, g may be chosen sufficiently

close to 1 such thaff ||y < co. By Remark 8.1 of [15]¢*F® e L>~ and hence
||e—F<t)/Q||q, < 00. Thus f (Eg(th)) € LPforallt € R.
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By the fundamental theorem of calculus

1
e :tQh/ etQ" gy, (3.7)
0
Therefore

1
19— 1)/t — Qe = HQh/ @ - 1)du
0

1
_ H (f |Q2Rs(t>|2ds)
0

1
Rs(t) = / % _)du. (3.8)
0

RP
1/2

Le
where

SinceRs(t) — 0ast — 0andRs(t) is uniformly boundecde”tQ? is orthogonalsianQ

isinso(d)), the dominated convergence theorem showsnt(a&?h —1)/t—Q"|gp = O
ast — 0, thatiis,

d/dt))oe'?" = Q" inRP. (3.9)
This proves the proposition since

I(Eo(th) — Eg(0h))/t — hil2e = [I[(L/D(EQ — 1) — Q"][Ire. O
Forh € V2 set

1
z(h) = / rd . da(s). (3.10)
0

With this notation we have the following integration by parts formula. The idea of the
proof already appears in [9], see also [40] and [31].

Theorem 3.4 (Integration by Parts). Suppose that he V8 with rl(w) bounded by
a nonrandom constant,kf, g € L*"(duw), and the directional derivatives, f =
(d/dt)|o f o Eg(th) anddng = (d/dt)|og o Eo(th) exist inL*(du). Then
Eu(n f - 0) = E.(f - 9]0),
where
49 = [—ong + 2(h)g].
Proof. The idea of the proof is simply to compute the derivative of the identity
E.(f (Eo(th))g(Eo(th))e" ) = E,(fg),

with respect td att = 0, whereF (t) is given in (3.6).
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Set j = fg, then by standard arguments involvinglHér’s inequality,j <
L2+ and the derivativé, j = (d/dt)|oj (Eo(th)) exists inL2(x) and is given by

ohj =0t -g+ f-ong.

Using Lemma 3.5 below and standardl&€r’s inequality arguments it follows that

0= (d/dt)|oE, (j (Eo(th)eF V) = E,(3n] + j (—2z(h)))
=E,@nf-g+ f-ong— fgz(h)). O

Lemma 3.5. Suppose that p> 1, h € V*, and assume that"ris bounded by a
nonrandom constant,khen with Kt) as(3.6),

1
(d/dt)|oeF(”=—z(h)=—/ . dB(s) in LP.
0

Proof. To simplify notation, let| f ||, denote thelL P(x) norm of f. By Burkholder's
inequality,

4p

1 1
f rh(l —etQh)dﬁ—(t/Z)/ Ir"2ds
0 0

1 . 1/2
(/ |e'Q — 1|2ds>
0

where|Aj? = tr A*Aif Ais a matrix. By the fundamental theorem of calculus we have

1
HF(t)/t—i—/ rh.dB
0

4p

< K%t]/2 + capk

4p

2
e — 1P = }tQh / ¢'¥dul < t?Q"?,

1
0

where we have used the fact tt?" is orthogonal in this last inequality. Combining
the two above displayed inequalities shows that

1
HF(t)/t+/ rh . dg
0

< [t1(k%/2 + capkllhllz,) > 0 as t— 0. (3.11)
4p

By the fundamental theorem of calculus andldt€i’s inequality the quantity

1
ep(t) = (e':“)—e':(o))/t—i—/ r".dg
0

p
is bounded by

1 1
ep(t) = (F(t)/t)fO e”F(‘)du+/0 r".dp

p
1

< F(t)/t—i—/ rh.dg
0

1
'(F(t)/t)~[f e'FOdu—1]
0

+
p

p



Wiener Space Lie Brackets 189
+ IIF®/tll2p

1
/ e'FOdu—1
p 0

1
FIF®/tl2p / 1€°FO — 1)1, du.
p 0

=

1
F(t)/t+f r".dg
0

2p

=

1
F(t)/t+/ r".dp
0

Because of (3.11) it follows that

1
lim supep(t) < K - limsup / e'FOdu—1
t—0 t—0 0 2p
1
<K -limsup [ [|€"F® — 1|5, du, (3.12)

t—0 0

whereK is a bound orj| F (t)/t|l,, for t near 0 Now

u
”euF(t) _ 1||2p — H/ F(t)evF(t) dv
0

u
< IFOlp- [ 16704y o
2p 0
and by (3.11)|F(t)[lsp < CJt| for some constar€. These observations coupled with
Remark 8.1, p. 348, of [15], which shows tHa'F ¥ ||4, is bounded (by say,) for
0 < v < 1 andt near zero, shows thgie"F® — 1|, < K;C|t|. Hence the limit in
(3.12) is zero. O

3.1. Pull-Back Vector Fields

In the next section certain vector fields (M) are studied. These vector fields may
be pulled back taV by the mapp: W — W(M) in Definition 2.5. In this section we
study these pulled-back vector fields. As abégeis used to denote the Stratonovich
differential of 8 anddg the It6 differential.

Definition 3.6 (Pull-Back Fields). For an adapted vector fiélds V, let Y" denote
the adapted vector field oW given by

Yh = /O chaﬁ(s/) + hs, (3.13)
where

Cl = As(h) + O (hs, ) (3.14)
and

As(h) = /OSQIS/(hS’a 8B(s)). (3.15)

In what follows, we abbreviate (3.13)—(3.15) by
Yh = f C"sg +h,

Ch = A(h) + O, (h, -,
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and
A(h) Efﬂu(h,Sﬂ),

respectively. For future reference, the form of Y is

yh = [(ch +QMdp

+/[rh+%<Ric| )+ O, (h +Z@| )} ds, (3.16)

where{g }id=1 is an orthonormal basis fa,M andRic, ®, and® are defined in Nota-
tion 2.3. The proof of (3.16) is straightforward, for details see the proof of Proposition
6.1, p. 323 in [15].

Equation (3.16) is equivalent to

yh E/QYh dﬂ+/thds, (3.17)
where

Q" =C"+ Q"= A(h) +©(h,) + Q" (3.18)
and

(Y=gl (Ric| (hy + @ (h) +Z@.<Q“a,a>>. (3.19)

Lemma 3.7. Forall p € [2, c0) there is a constant K depending only on p and the
geometry of M such that

1. |A(h) |l < K| h|ne forallh e HP,
2. IYMI3e < K| Ih|le for all h € HP, and
3. IY"|lgs < K|h||ge forall h € BP.

Proof. In the following argumenK denotes a generic finite constant which only depends
on p and the geometry dfl.
ExpressA(h) in Itd form as

At = [2ih.d)+ 3 [120(Qe) + Bnthalds  (3.20)
i
where(B; )y = (d/dt)[oQgs ). Bi = B(a), and{eq}id=1 is an orthonormal basis for
ToM. Using the compactness & and Burkholder’s inequality, we show that
IA(h) s = K{lIhlls> + Q" Ire} < KNl 2¢e. (3.21)
Similarly,

IrY" Ige < IFMlIre + K (IMllso + 1Q"re) < K [[Nl2¢0, (3.22)
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s < IMs + K(hls + 1Q"[1s0)
< Ir"lse + K (Cpllhllze + 1Q"Is0)
< K|hllgs, (3.23)

and, by (3.14) and (3.18),

1Q " Ire = IAC) + O (h, =) + Q"I
< A s + Ihlls + 1Q"[Ire
Klhl|l#e (3.24)

A

A

IA

and

1Q"" s> = IIA) + © (h, ) + QM|
IAh) s + Ihlls + 1Q" s
Kilhllze + [Ihllse < KlIh[lge. (3.25)

=
=

Item 2 of the lemma follows from (3.22) and (3.24) while item 3 follows from (3.23)
and (3.25). O

4. Geometric Vector Fields

Definition 4.1 (Geometric Vector Fields). Given an adapted vector fibjcon W, let
X" denote theadapted vector field onW(M) given by

X"(o) = P(o)h(b(0)),
i.e.,X"(0) isthe vector field along such thaiX! (o) = Ps(a)hs(b(o)) foralls € [0, 1].

We wish to have the vector field$" act as first-order differential operators on a
large class of functions oW (M). Our starting point will be to differentiate functions
along an “approximate” flow tX" for niceh € CV = V N S® N B®. The next lemma
guarantees thatV is sufficiently large.

Lemma4.2. For each pe [2, c0), CV =V N S* N B> isdense inVF.

Proof. First suppose thdit e VN B>, i.e.,(Q", rM" isan €o(d) x T,M)-valued continu-
ous and bounded adapted process. For each imederoses, € C*°(ToM, T,M) such
thaten(x) = X if [x| < n, g (x) = 0if [X] = 2n, |pa(X)| < 2n, and sup ,{lp,(X)| +

lon(X)]} < oo. To construct such functions, |8t € C°(R) such that 0< ¥(x) < 1

for all x and

_J1 if x| <1,
veg = {0 if x| > 2

Then define

@n(X) = W(X?/n?)X.
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It is now a simple matter to verify that the functiops satisfy all of the requirements.
Seth" = ¢, (h), then, by I8’s lemma,

dh" = g ({Q"dB +r"ds} + 3 ) ¢y (h)(Q". Q"e) ds.

Soh" is bounded with bounded kernels:

Q" =gmQ" and M =g (" +3 ) ¢r()(Q"e, Qe),

i.e.,h" e CV. Iteasily follows from the construction of thg’s that(Q"", r ") converges
boundedly ta(Q", r") asn — oo. Therefore, by the dominated convergence theorem,
h" — hinHP asn — oo.

Because of the above paragraph, it suffices to showht@@ (the bounded con-
tinuous adapted processes) are dengeR? (the predictable processesRP). Using
the fact that continuous adapted processes generate the predicialgiebra (see Re-
mark 2.3, p. 16, of [37]) one may mimic the proof of Theorem 2 on p. 126 of [45] to
show thabCP is dense ibP RP—the bounded predictable processes endowed with the
RP-norm. This proves the theorem, since it is easily shownli®aRP is dense irP RP
using a standard truncation argument and the dominated convergence theorerml

4.1. Differentials of | and P

Notation 4.3. Supposethdt € W(O(M))andA € W(so(d)), letl -A € W(T O(M))
be defined by

(I - A)(s) = (d/db)|ol (5)e"A®. (4.1)
Also if | € W(O(M)) andh € W, let B(h)(l) € W(T O(M)) be defined by

(B(h)(1))(s) = B{h(s)) (1 (s)). (4.2)
Theorem 4.4. Suppose thatle CV =V N SN B®. Fort € R let

ut) =1 o EgtY™: W — W(O(M)). (4.3)
Then the process(t) is BP-differentiable for alll < p < oo and

u(0) = —1 - A(h) + B(h)(1). (4.4)
We summarize this formula by writing

LY = —1 - A(h) + B(h)(1).

(The B norms for manifold-valued processes are defined with the aid of an embedding
of the manifoldsee Definitiord.1, Proposition4.1 (p. 301),and Notation5.1 (. 319)
of [15] for more details)

The following lemma is needed in the proof of Theorem 4.4.
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Lemma 4.5. Suppose thatle B~ NV, then

d/dte'? = Q"eQ?"  in S*- (4.5)
and

(d/dt)Eo(th)=/Qhetthﬂ+/rhds in B (4.6)
Moreovey Eq(th) and d B(th)/dt are BP-Lipschitz int for all pe [1, c0).

Proof. Using (3.7) and ldlder’s inequality, for any] < co we have

IHQ/HE =) - Qs = IQ"RM) It < Qs - IRM)|sp, 4.7

where g = 1/r + 1/p andRs(t) is given in (3.8). Since'?" is an orthogonal matrix,
it easily follows from (3.7) and (3.8) that

1
/ [utQ"|du
0

Therefore(d/dt)|oetQh = Q" in S™®~. For generat; € R,

IRMls < <itNQ"ls -0 as t—0 (4.8)

Sp

(d/dd)],e'" = (d/db)|oe® V" = (d/dt)|oe Y e (4.9)

Sincee®?" is an orthogonal matrix-valued process, it follows from the ¢ase0 above
that the derivative in (4.9) exists i8° and is given bthetth. This proves (4.5) and
becauséd/dt)(tr") =r"in SPfor all p € [0, co) holds trivially we have also proved
(4.6).

Again sincee'@ isan orthogonal matrix, it follows from (4.6) thigdd /d t) Eq(th) || ge
= ||h|lgr < oo forall 1 < p < oo. Hencet — Eg(th) is BP-Lipschitz. By similar
calculations to above, we show titEq(th)/dt? = f(Qh)zetthﬂ in B>~ and hence
by Hélder’s inequality,

Id?Eo(th)/dt?ge = 1(QM?lsp < I1Q" 1% < IIN1152p < 00.
This shows that — (d/dt)Eg(th) is alsoBP-Lipschitz. O

Proof of Theoren#.4. Becauséd < CV, it follows by Lemma 3.7 and (3.19) that
YM € B®~ andrY" is bounded. By Proposition 3.3;(t) = Eo(tY") € B® has a law
equivalent tqu so thatu(t) in (4.3) is well defined. By Lemma 45 (t) = dw(t)/dt =
Y in B>~ andw(t) andu (t) are BP-Lipschitz.

Using these observations, the proof of (4.4) may now be given using exactly the
same argument as the proof of Theorem 5.2, p. 321, of [15]. It is only necessary for
the reader to replace(t) used in [15] byw(t) = Eq(tY") and then to evaluate alls
appearing in the proof at= 0. O

Corollary 4.6 (Approximate Flow forX"). Assume that ke CV. For eachte R, let
EtX" = ¢ o EotY") ob. (4.10)
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Then

1. (d/dbt)|oP o E(tX") = —A(hob) - P + B(hob)(P) in B*~(b), and
2. (d/dt)[oE(tX") = X" in B®~(b).

Proof. By Theorem 2.6,
PoEtX™ =PogoEytYMob=1o0EytY")ob=u()ob.

This equation shows that the first assertion is a direct consequence of Theorem 4.4 and
Lemma 2.10. The second assertion follows from the first assertion ;siree= idw ),
m.(A- P) =0, andr,.B,(u) = uaso that

(d/db]eEX") = (d/dbt)|or o P o EtX") = P(hob) = X". O

4.2. First-Order Differential Operators

We now wish to havéX" act as a first-order differential operator on functiondd¢M).
We begin with the action oX" on smooth cylinder functions (see Definition 4.9 below)
based o'W (O(M)). We first need some more notation.

Notation 4.7. Suppose tha¥ is a finite-dimensional vector spade, O(M)" — V is
a smooth function,an@ = {0 < s < < --- < §, < 1} is a partition of [0, 1].

1. For each path: [0, 1] - O(M) set
Fo() = F(U(s), U(sp), - . ., U(Sh))-

2. Suppose also tha: [0, 1] — so(d) andh: [0, 1] — ToM. Let
FoUW(A+h) = (d/dboFo(ue?) + (d/db|oFo(e®™ (),

where (UEA)(s) = u(s)eA®, and ("B (u))(s) = eBh®) (u(s)). (We view
A+ k as a path from [01] — so(d) & ToM.)
3. Similarly, if C: [0, 1] — so(d) andk: [0, 1] — T,M, set

FOW(A+h, C+Kk) = (d/db|oF5ue?)(C + k)
+ (d/d)|oF5 ("B (u))(C + k).

Remark 4.8. The notion ofBP-differentiability used in Theorem 4.4 is very strong. In
particular, withF as in the above notation andt) as in Theorem 4.4d/dt)|oFo (u(t))
exists inLP(du) and

(d/dbfoFo(u(t)) = Fo(I)(—A(h) + h). (4.11)

Definition 4.9 (Cylinder Functions). A functiorf: W(M) — R is a smooth cylinder
function if there is an integan, a C*-function F: O(M)" — R, and a partitionQ =
{0<sg <5 < -+ <& < 1}of[0, 1] such that

f=Fg(Ps,....,Ps)=FgoP as. (4.12)
We denote the collection of smooth cylinder functions g .
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Suppose thaf: M" — R is a smooth function, then

f(o)= f(og,....08) (4.13)
i§in FC>.Indeed,f = Fg(Ps,,..., Ps) a.s. wheréd= = form ie,F(uy,...,uy =
f(r(uy), ..., 7(uy)). We call a cylinder functionf as in (4.13) aestricted cylinder
functionand denote the collection of restricted cylinder functiongJ#%C°.

The integration by parts formula in the next proposition is a slight generalization of
Theorem 3.6.1 in [31]. For the special case tha in the Cameron—Martin space see
Theorem 9.1 in [15]. Also see [22], [24], [34], [40], [41] and [44].

Proposition 4.10. Given f e FC* asin(4.12)and he V2, then
X"f = F5(P){(—(A(h)) ob+hob) (4.14)

is well definedMoreoverif g € FC*, then

E,(X"f.g) =E,(f - (X"'g), (4.15)
where
(XMTg= —X"g + (z(Y") o b)g (4.16)

and 2Y") is defined in(3.10). We view X and (X' as unbounded operators on
L2(W(M), v) each withFC® as its domain

Proof. First suppose that € CV. Because of Corollary 4.6d/dt)|o f o E(tX") exists
and is given by the right-hand side of (4.14). Therefore, for $yckl’ f is well defined.
Moreover, since

f o E(tX") = FgoPogoEgtYMob=FgoloEytY"ohb,
we see by Theorem 4.4 that
X" f = (3yn(Fg o 1)) ob=((d/dt)|gFg o | o Eo(tY")) o b, (4.17)

where the derivative exists in*°~. Let G € C*(O(M)") andg = Gg o P € FC*.
Now apply Theorem 3.4 with replaced byy", f by Fg o I, andg by Gg o | to find

]E/L[(aYh(FQ ol))- (GQ o I)]
=Eu((Fgo 1) - {=wn(Ggol)+2(Y") - (Ggo )},

which owing to (4.17) and the fact thaaw(b) = u shows that (4.15) holds.
For generah € V?, chooseh” € CV such thah” — hin H, asn — co. Then it
is easy to check that

L2 — lim X"t = Fo(P)(—(A(h)) o b+ hob), (4.18)
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which shows thak" f defined in (4.14) is well defined. By (3.18)Y") = /7 rY" . dB
is linear inh and by (3.22)

1
E,|2(Y")? =EM/O Iry"2ds=[Ir¥" 1% < K|[h|2.

Hencez(Y™) — z(Y") in L2 asn — oo whenh, — hin H2 asn — oco. From this
fact and (4.18), it is easy to conclude that (4.15) holds for getegal’. O

We now define a closed extensidt of X" using the weak derivative formulation
in the next definition.

Definition 4.11. Givenh € V? let X" = ((XM")*. Explicitly, f € L?(v) is in the
domainD(XM) of X" and X" f = k e L2(v) iff E,(k-g) = E,(f - (X")Tg) for all
g e FC*.

It is reasonable to conjecture th4f is the closure ofX" on R FC>. We do not
pursue this here. However, the following elementary lemma gives a sufficient condition
for a function f on W(M) to be in the domain oKX". The proof is similar to that of
Proposition 4.10.

Lemma4.12. Supposethat € L*"(v),and forh € CV, (d/dt)|o f o E(tX") exists
in L*(v) and there is a constant k oo such that

I@d/dt)lof o EEXM 2 < K[hll3¢,  VYhe CV.

Then fe Mo DX, XMf = L2 — (d/dt)|of o E(tX") forallh € CV, and for
h € V* we haveX"f = lim,_. X" f, where B e CV is any sequence such that
h" - hinH*asn— oo.

Proof. Leth € CV, g € FC*®, and putf = fog and§ = go ¢. Since
Qeb = L O (p:1 = v, the mapf € LP(v) — f € LP(n) is an isometric isomorphism
with inversef — f = f ob. Sincef o EgtY") = f o E(tXM) o ¢, it follows that

YN f = (d/dt)|of o Eg(tY") = So g,
whereS = (d/dt)|of o E(tX"). Hence, by Theorem 3.4,
E.((So ¢)) = B, (f(YN'§) = E,(f(=Y"g+ 2(YM)). (4.19)

From the proof of Proposition 4.10Y™ g = (X" 'g) o ¢. Hence (4.19) shows that
E,[Sd = E,(f((X"'g)). Sinceg € FC>™ was arbitrary, it follows thatf € D(X")
andS= X"f.

For generah € V4, chooseh" € CV such thah" — hin H* asn — oo. Using
the above paragraph, we have for ang FC> that

EJ[X" f-gl =E,[f-(X")g]. (4.20)
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With S= L2 — limy_,, X" f, it follows by lettingn — oo in (4.20) that
E,[S- gl =E,[f - (X" 'q]. (4.21)
Therefore,f € D(X") andX" f = L2 — lim_ o X" f. -

5. Product of Two Vector Fields on Restricted Cylinder Functions

Definition 5.1. An adapted vector field on W is said to bep-smoothif (i) k € HPT,
(i) for all h e VN B®~ with r" bounded the derivativ@ /dt) ok o Eg(th) =: 9k exists
in HP, and (iii) there is a consta < oo such that|dnk||r2 < C|lh| e holds for all
heynB>.

If k is p-smooth we may and do extend the definitiondgk to all h € VP by
continuity. In what follows, to simplify notation we writé"k for dynk.

Theorem 5.2. Suppose that k B-smoothh € V4 f e RFC=> is given as in(4.13),
and F(uy,...,uy) = f@r(uy),...,7(uy)). Then Xf e D(X") and (using Nota-
tion 4.7)

XPXKF = FL(P){((Y'K) o b) + FS(P){(—A(h) + h) o b, ko b). (5.1)
Proof. Lemma 3.7 implies that" € V. By (4.14) and the assumptiohe RFC>,
XKf = F5(P)(kob).

For the moment assume that CV and consider
(XKF) o EAX") = F45(P o E(tX")(kobo E(X")
= FL(P o E(tX")(k o EotY" o b).

BecauseF is a smooth function on the compact manif@dM)", the assumption that
k is 4-smooth, and Corollary 4.6 one may show by standard arguments that

(d/dt)[o(XK F)oEX™) =F,(P){(Y"K)ob)+F4 (P)((—A(h)+h)ob, kob), (5.2)
where the derivative exists in®. It follows from this equation and the use obtder’s
and Burkholder’s inequalities that there are const&ngdK depending on the bounds
on F, andF such that

ld/dt)lo(X*f) o EAXM2 < K(IY"Klls + [IKllst{lIhllst + [[A(h) | +})

< KUY K34, + Kl 10ll3¢).
where in the second inequality we have used Lemma 3.7 to bpauid) ||s:. Hence,

using the assumption thitis 4-smooth, it follows that there is a const&ht= C(k, f)
such that

d/dt)o(X¥f) o EtXM) |2 < Cllhllye  forall heCV.

The theorem now follows by an application of Lemma 4.12. O
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6. Lie Bracket on Restricted Cylinder Functions

Our goal in this section is to compute the commutator of two geometric vector fields,
see Theorem 6.2 below. The following lemma is in preparation for this result.

Lemma6.l. Let AC € W(sad)), u e W(O(M)), and hk € W = W(T,M)).
Then in the notation of Notatiof.7,

FOW(A+h,C+k) — F5u)(C +k, A+h)
= F5W){([A, C] — Qu(h, k) + (Ah— Ck — ©y(h, k))), (6.1)

where
([A, C] = Qu(h, k))(s) = [A(s), C(9)] — Qus)(N(s), k(S))
is in W(so(d)) and
(Ah—Ck— 0Oy(h, k))(s) = A(s)h(s) — C(S)K(S) — By (h(s), k(s))
isin W.
Proof. Fora € so(d), let @ be the vertical vector figld o (M) defined bya(u) =
(d/dt)|oue®. For A € W(sa(d)) andh € W(T,M) let A(s) andBy s, denote the vector
fields onO(M)" given by
(A(8)F)(U1, Uz, ..., Up) = (d/d)|oF (Uz, ..., Ui_1, Ui€AS ui g, ... up)
and
(Bn)F)(ug, up, ..., Un) = (d/dt)|oF (uq, ..., Ui_1, €8s (up), Uiga, ..., Un),

respectively. Also fou € W(O(M)), letug = (U(S), U(S), - .., U(Sy)). Then with
this notation:

FOW(A+h,C+k) — FSU)(C+k, A+h)

= Y ([A) + Bns). C(5) + Bis)]F) (o)
ij=1

=Y ([AS) + Bnes). C(8) + Bis)]F)(Ug).
i=1

Using the commutator formulas in Lemma A.2 in the Appendix gives
n

Z[A(S) + Brs). C(8) + Byes)]
i=1
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{[A5), C(8)] + [Bns) C(8)] + [A(S), Bis)] + [Bhes)» Brs)l}

n
i=1
n

{[A, CI(s) + Bian-cis)C(s) — 2(h(s), k(S)) — Bones) ks -
i=1

Combining the two above displayed equations proves (6.1). O

We are now ready to compute the commutator of two geometric vector fields.

Theorem 6.2. Let h and k bel-smooth adapted vector fields on Wt f € RFC>
be as in(4.13),and let K(uy, ..., un) = f(x(Uy),...,w(uy)). Then

[X", X< f = F'(P)({Y"k — Y*h + c(h, k)} o b), (6.2)
where ¢h, k) is the process on W given by

c(h, k) = —A(h)k + A(k)h — ©, (h, k). (6.3)
Proof. By Theorem 5.2,

[X", X1 f = F/(P)((Y"k — Y*h) o b) + F"(P)((—A(h) + h) o b, k o b)
—F"(P){(—A(k) + k) ob, hob).

Because of Lemma 6.1, this equation shows

[XM, XX f = F'(P)((Y'k — Ykh — A(h)k + Ak)h — €, (h, k) — ©, (h, k)) o b)
= F'(P){((Y"k — Ykh — A(h)k + A(k)h — ©, (h, k)) o b),

where in the second equality we have used the assumptiorf tkaR FC*, so that
F'(P){(2i(h,k)) o b) = 0. O
7. The Lie Bracket Preserves Adapted Vector Fields

Lemma 7.1. Suppose that k is @p-smooth adapted vector field on,\when for
all h € Vn B*® with r" bounded 8,Q* := (d/dt)|oQ*(Eo(th)) and dnr* =

(d/db)|or K(Eo(th)) exist in R2P~ and there exists a constant € C(k) (depending
only on k and psuch that

1
H/O 1(3nQ¥)s| ds

< C|Ihl 2o, (7.1)
LP(w)

and

1
/ 1(3nr¥)s| ds
0

< C|Ih| 2. (7.2)
LP(w)
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Because of the estimates(ihl) and(7.2),we may extend by continuity the definitions

of 3,QK and d,r¥ to all h € V2P. Then with this notation the kernels &fk (for all
h € V?P) are given by

QM = 9,Q* 4+ Q*Q" (7.3)
and
rh = gprk 4+ Q. (7.4)

Proof. Leth € V N B*~ with r" bounded. To simplify notation, le8 = ds(s),
w(t) = Eg(th) =/etQh d,3+t/rhda
anddw(t) = dsws(t) so that

dw(t) =< dg +r"ds.

(Please note well thatw (t) is the differential ofw(t) in the suppressesivariable—not
thet variable.) The assumption that

k(w(®) = / Q“(w(t) dw(t) + / rfw(t) ds
= / Q“(w(t)e'?" dB + / (tQ w®)r" +r* ()} ds
is H?P differentiable is equivalent to
QM) = Q1)
and
r) = {tQ“wr" +r*w))
being R?P differentiable. Using Lemma 4.5 andkdiér’s inequality on the identity

[Qw (1) — QN/t = Qt)(e ' — 1)/t +[Q(t) — Q(O)]/t

we find
Q¥ = (d/d1)|oQ (w (1)) = —Q*Q" + Q(0)
= —QQ"+ Q™ inR®P~, (7.5)
Similarly,

r*w®) —r/t = r @) —tQ wNr" —r )/t
= (r@®) —r(0)/t — Q“w(t)r"
— F(0) — Q¥ in R~ as t— 0,
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where in taking the limit a8 — 0 we have used the continuity 6f > QK(w(t))
in R@P~ att = 0 implied by (7.5) and the boundedness bf The above displayed
equation is equivalent to

anrk = (d/db)|or K (w(t)) = rok — Qkrh inR®~as t— 0. (7.6)

Soforh € YN B*®~ with r" bounded we have proved the differentiability assertions
of the lemma and identities in (7.3) and (7.4). To finish the proof it suffices to prove the
estimates in (7.1) and (7.2). Using the definitionkdbeing 2p-smooth and lalder’'s
inequality, it follows from (7.3) that

1 1 1
/|<ath>s|ds < /|(Q‘C‘hk)s|ds + / 1Q¥I1QM ds
0 LP 0 Lp 0

< 1Q™[Ire + | Q%I ren Il Q"I Rz
< (C(K) + 1Q I ree) 1Nl 7¢20
= C(K) I[Nl 320,

LP

wherein we have used
1Q" Ire < l13nKlI+e < CK) I[Nl 2¢20.

HereC(k) is a finite constant guaranteed to exist becduEe2p-smooth, see Defini-
tion 5.1. The estimate in (7.2) is proved similarly. O

Lemma7.2. Forh, k e H*, A(h)k € H?,

QMK = @ (h, )k + A(h) Q¥ (7.7)
and
r Ak — (R( )k + Ahyrk + ZQ. h,e)Q ) (7.8)
where
Z{m + (B (h, &)} (7.9)

Proof. By Itd’'s lemma and (3.20),

d(Ah)k) = @, (h, dB)k + R(h)k ds
+ Ah)(Q¥dB +r¥ds) + > @ (h.e)Q e ds

= Q(h,dg)k + A(h)Q* dB
+ <R(h)k+ Ak +> " (h, a)Qka) ds

which proves (7.7) and (7.8).
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To prove A(h)k € H? notice:

1QAMK| g < 192y (h, KlIre + I A(h) Q¥R
< C{lIhlislIKllst + 1A o]l Q¥ |l re}
< CllhllgslKli 2+ < 00,

where we have used Lemma 3.7 in the last inequality. One similarly shows tHAK|| r.
< Q. O

Lemma 7.3. For h, k € H* such that either ®or Q¥ in S*, then®, (h, k) € H? and
QY™ = @ (Q", k) + ®(h, Q“) + & (-, h, k) (7.10)
and

o Z{o. Q"e. Qa) + (Bi©) (Q"a. k) + (B ®); (h, Q“e)}

+ 0" k) + O (h,r%) + > " (B?O) (h. k), (7.11)

where(e }_, is an orthonormal basis forgM.

Proof. By Itd’s lemma we have
d(®(h,k)) = ©(h,k) + ®(h, §k) + (B(58)®), (h, k)
=la+y+kK.
We now work on the three terms separately:

a = 0 (8h, k) = ) (dh, k) + 3{O; (dh, dk) + (B(dB)©); (dh, k)}
d
(dh k) + 2> 7(01(QMe, Q¥e) + (B©) (Q"e., k)} ds

i=1

so that

a+p = 0({dh k) +0,(h,sk)

d
+3 ) {20:(Q", Q“a) + (Bi©)(Q"a, k) + (Bi©®), (h, Q“a)} ds.
i=1

Similarly,

x = (B(dB)®) (h, k)
+ 3((B(dB)®); (dh, k) + (B(dB)©): (h, dK) + (BF;©): (h, k)}
= (B(dB)©), (h, k)

d
+3 > _{(Bi©)(Q". k) + (Bi©®), (h, Q“a) + (B?®), (h, k)} ds

i=1



Wiener Space Lie Brackets 203

and hence

d(®@ (h, k) = (©,(Q"dB. k) + © (h, Q“dB) + (B(dB)O), (. k)
+ (@1 (1" k) + 0 (h,r¥) ds+ 1Y (B2e),(h. k) ds

+)_101(Q":. Q“a) + (Bi©) (Q"e. k)

+ (Bi®) (h, Qa)} ds.

This formula implies (7.10) and (7.11). The assertion #ath, k) € H?2 is easily
verified using (7.10) and (7.11). The tei@ (Q"e, QXe) in (7.11) is the one which
requires the assumption that eitf@? or Q¥ is in S*. O

Theorem 7.4. Suppose that h and k afesmooth adapted vector fields on W and that
either @ or Q¥isin S*. Then{Y"k — Y*h + ¢(h, k)} € V? and
[X", XK = X(VkYiheehiol - on RFC, (7.12)

where
c(h, k) = —A(h)k + A(k)h — ©, (h, k)
asin(6.3).

Proof. Once we know thal = {Y"k — Y¥h 4 c(h, k)} € V?, (7.12) follows from (4.14)
and (6.2). Using Lemma 3.7 and the assumption thanhdk are 4-smooth, it follows
thatY"k andYkh are in#2. By Lemmas 7.2 and 7.3 and the definitionagh, k), we
see that(h, k) € H2. ThereforeJ = Y"k — Y*h + c(h, k) € H?2 and it suffices to show
thatd € V, i.e., Q” is anso(d)-valued process.

From (7.3) and (3.18),

Qth —yh Qk + QkQYh
= Y"Q“+ Q“(A(h) + ®(h,-) + Q"
and hence
QYY) — (YN QK — Y*QM + [Q", Q"] + Q“A(h)
— Q"A(K) + Q@ (h, -) — Q"® (k, -). (7.13)
By Lemmas 7.2 and 7.3,
—Q™ = (@ (h, Yk — Qi (k, -)h) + (A(h)Q* — A(k)Q")
+0,(Q", k) + O (h, Q) + O] (-, h, k). (7.14)
We write © for ®, (h, -) and note tha®" is anso(d)-valued process because of the
standing TSS assumption on the covariant derivalivécombining (7.13) and (7.14)
gives
Q7 = (Y"Q¥ - Y*Q" +[Q", Q"]
+1Q% A —[Q", AK)] +[Q¥, &1 - [Q", ©f]
— (1 (h, Yk — Q,(k, Yh + @’, (-, h, k)).
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The first two lines in the above formula f@” are clearly inso(d), so to finish the proof
it suffices to show that

Q

=Q (-, hk — (-, k}h — @1 {-,h, k)

is anso(d)-valued process, i.e(Qb, b) = 0 for allb € T,M. However, this follows
directly from Theorem A.4 in the Appendix with= h andc = k. O

8. Lie Bracket on General Cylinder Functions

By taking limits one expects (7.12) to hold on a much larger class of functions than
RFC*. In this section, we outline how to show that (7.12) is valid/6€8>. For the

sake of brevity only the algebraic aspects of the proofs are given; leaving the analytic
details and even the precise statements of the theorems to the reader. The next theorem
is the analogue of Theorem 5.2 which is stated without proof.

Theorem 8.1. Suppose fk € V4 are “sufficiently smoothand f € FC*> is given
asin(4.12).Then Xf € D(X") and

XMXKf = F/(P)(Y"(=A() + k) o b)
+ F"(P)((—A(h) + h) o b, (—A(k) + k) o b),

where Y'(—A(k) + k) denotes the “directional derivative” af— A(k) + k) by Y.

Combining this theorem with lemma 6.1 gives the following commutator formula
on FC*.

Theorem 8.2. Let f € FC> be represented as if#.12),and let h k € V* be “suffi-
ciently smoothithen

[XM, X4 f = F'(P)((YN=AK) + k) — Y(=A(h) + h) + [A(h), A(K)]
— A(h)k + A(k)h — @, (h, k) — ®, (h, k)) o b)
F'(P)((Y"k — Ykh — A(h)k + A(k)h — ©, (h, k)) o b)
+ F'(P)((=Y"(AK)) + YX(A(h) + [Ath), AK)] — € (h, k) o b).

The next lemma is the key identity which enables us to recognize the far right
member in the above equation ¥&'"k-Y"+ch.k) f see Corollary 8.4 below.

Lemma 8.3. Again assuming that.tk € V* are “sufficiently smooth

—Y"(AK)) + YX(A()) + [Ath), AK)] — € (h. k)
= —A(Y "k — Ykh — A(h)k + A(k)h — ©, (h, k)), (8.1)
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where

c(h, k) = —A(h)k + A(k)h — ®, (h, k)
asin(6.3).

The desired commutator formula is now a direct consequence of Theorem 8.2,
Lemma 8.3, and (4.14).

Corollary 8.4. Leth k € V* be “sufficiently smoothithen
[)‘(h’ )‘(k] _ )‘({Y“k—Ykh+c(h,k)} on FC®,
where as before(t, k) = —A(h)k + A(k)h — ®, (h, k).

Proof of Lemma.3. (Sketch! Again only the algebraic aspects of the proof are given
here.) We start with the identity:

YP(AKk)) = Y" (/ Qi (k, 8,3))
= [1Crm @) 58) + (k. 58) + 5 . oY)
_ /sz’, (—A(h) + h. K. 88) + ACY"K)
+ / Qi (k, A(h)5B + @, (h, 88) + 8hy,
where, forA € so(d) anda, b, c € ToM,
Q (A+a,b,c)= AU)K.(b, c) + Ba(u)S.(b, c)

and

AW).(b, ¢) = (d/dt)|oQuex(b, €) = (d/dt)|oAde-nQy (€D, e'Ac)
= —[A, Qu(b, 6)] + Qu(Ab, c) + Qu(b, Ac).

Therefore,

/ Qi (—=A(h), Kk, 88) = /[A<h>, S(AN] — A{A(h)k) — / Qi (k, A(h)sp)
which combined with the first displayed equation in the proof gives
Y"(A(K) = f[A<h>,8(A(k))] + A(Y Kk — A(h)k) +/91 (h, k, 58)

+/Q| (k, ®, (h, 88) + sh).
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Hence using
8(R (h, k) = € (sh, k) + €, (h, 8k) + €] (38, h. k)
we find
Y"(A(K) — YK(A(h)) = /{[A<h>,5(A(k>)] + [8(Ath), AK)]}
+ A(Y"k — Y¥h — A(h)k + A(k)h)
+ [ (@i ko8 + k.01 (h. 58
— Q) (k. h,88) — 2 (h, ©, (k, 88))}
+/{Q| (k, 8h) + 2 (sk, h)}
= [A(h), AK)] + AY"k — Y*h — A(hk + A(k)h)
+ [tk 58 + 2. 56 )

+/{Q.<k,®|<h,aﬂ>> 2 (h, ©) (3. K)))

—Qi(h K +/sz’. (56, K)

= [A(h), AK)] + AY"k — Y*h — A(hyk + A(k)h)
-, (h, k)

+ / (€ (h, k. 86) + 1 (k. ©; (h, 86))) + (cyclio))

—Qh, k>+/9.<aﬁ,®|<h, K)),

where in the last equality the term “(cyclic)” indicates there are two more terms obtained
from the preceding term by performing cyclic permutatiomjrk, andég. Combining
this equation with the geometric identity in Lemma A.3 shows that

YN(Ak)) — Y*(A(h)) = [A(h), A(k)] + A(Y"k — Y&h — A(h)k + A(k)h)
—o(h, k>+/sz|<aﬂ,®.<h, ),

which is the same as (8.1) upon noting that

/Q| (8B, ©1(h, k) = —A(© (h, k)). 0
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Appendix. Geometric Identities

Remark A.1. Let 6 denote theT,M-valued 1-form onO(M) defined byo(&,) =
u~lw,.&, whereg, € T,O(M). Set

Q=dot+orow (A1)
and

O=df+wAb, (A.2)
then

Qu(a, b) = Q(Ba(w), Bp(w)) and  ©y(a, b) = ©(B,(u), By(u)).

For A € sa(d), let A be the vertical vector field o®(M) defined byA(u) =
(d/dt)|oue”? € T,O(M) for all u € O(M). The tangent vectoA(u) is also denoted by
u- Awhen convenient. We also wrif&(a, b) and®(a, b) for the functionss — Q,(a, b)
andu — ©y(a, b).

Lemma A.2 (Commutator Formulas).Leta, b € T,M and A C € so(d), then
1 [és @a] = BAa,A
2. [AC]=[AC],and_ .
3. [B{a), B(b)](u) = —Quy(a, b) — B(By(a, b))(u), whereQy(a, b) = (d/dt)|o
ud@b ¢ T,0(M). We abbreviate this last equation as

[Ba, Bo] = —2(@, b) — Beap)- (A.3)

Proof. The proof may be found in [39]. The short proof is given here for the readers
convenience. R

The proof of the first two assertions relies on the fact #&t = Rga, where
Ry(u) = ugforu e O(M) andg € O(d). Itis easy to verify that

Ret4, Ba 0 Ren = Bana,
and henceA, Ba] = (d/dt)|oBasa = Baa Similarly,
[A, C] = (d/d1)|oRe4,C 0 Rea = (d/d1)[o(d/dS)|oRe-ta © Resc o Rea

= (d/dD)o(d/d9)|oRenesceta = (d/dD)|o(d/d9)|oR saqac
= (d/dt)[o(AdsaC) = ([A, C)).

For the proof of the third item recall that all tangent vectggse T,0O(M)) can
be written asu - w{ny) + B{A{ny)). Using the structure equaticl = dw + v A @
it is easy to conclude that(n,) = —Qy(a, b). Similarly, using the structure equation
® =df + w A 0, we show that (n,) = —Oy(a, b).
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LemmaA.3. Foralla,b,ce T,M andue O(M),

(€2,(a, b, c) + Q2,(By(a, by, c)) + (cyclic permutations in gb, c) = 0, (A.4)
where

,(a, b, c) = (BaQ)u(b, ¢) = (d/dt)|oQeeaw) (b, C).
Proof. The Bianchi identity states thed)" = 0. That s,

0=dQ(B,, By, Bc) = BaQ2(By, Be) — Q([Ba, Bp], Be) + (cyclic).

Because of (A.3) and the fact th@tannihilates vertical vectors, the above equation may
be written as

0= BaQ<Bb, Bc) + Q(®<Ba, Bb), Bc),
which, in view of Remark A.1, is equivalent to (A.4). O

Theorem A.4. Leta b, ce TyM, then

Q(b,a)c-b—Q(b,cla-b—- B,B®(a,c)-b=0, (A.5)
where B = B(b) and a- b = (a, b).
Proof. The identity (see [39])

dO+wA®=QA0

applied toB,, By, andB; gives

0= {Ba®(b, c) — O([ By, By], B} — 2(a, b)c} + cyclic{a, b, c}
= {Ba®(b, ¢c) + ®(B(a, b), c) — Q(a, b)c} + cyclic{a, b, c}, (A.6)

where (A.3) and the fact thab annihilates vertical vectors was used in the second
equality. Take the inner product of (A.6) withand use the TSS assumption @nto
conclude that

0= {B,O(b,c) + O(O(a, b, c) — Q(a, byc}-b

+ {By®{c, a) + ®(O(b, c),a) — Q(b,c)a} - b
+ {B:®{a, b) + ©(B(c, a), b) — Q(c,a)b}-b

=—-0(b,c)-B(a,b) — Q(a,b)c-b
+ By®{(c,a)-b—0O(b,a)-®(b,c) — Q(b,c)a-b
+0

= Q(a,b)b-c— B,®{c,b)-a—Q(c,b)b-a

= Q(b,a)c-b—- By®(a,c)-b—Q(b,c)a-b. O
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