
Appl Math Optim 39:179–210 (1999)

© 1999 Springer-Verlag New York Inc.

The Lie Bracket of Adapted Vector Fields on
Wiener Spaces∗

B. K. Driver

Department of Mathematics, 0112, University of California, San Diego,
La Jolla, CA 92093-0112, USA
driver@euclid.ucsd.edu

Communicated by M. R¨ockner

Abstract. LetW(M)be the based (ato ∈ M)path space of a compact Riemannian
manifoldM equipped with Wiener measureν. This paper is devoted to considering
vector fields onW(M) of the form Xh

s (σ ) = Ps(σ )hs(σ ) where Ps(σ ) denotes
stochastic parallel translation up to times along a Wiener pathσ ∈ W(M) and
{hs}s∈[0,1] is an adaptedToM-valued process onW(M). It is shown that there is a
large class of processesh (called adapted vector fields) for which we may viewXh

as first-order differential operators acting on functions onW(M). Moreover, ifh
andk are two such processes, then the commutator ofXh with Xk is again a vector
field onW(M) of the same form.
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1. Introduction

Let (Md, 〈·, ·〉,∇,o) be given, whereM is a compact connected manifold (without
boundary) of dimensiond, 〈·, ·〉 is a Riemannian metric onM, ∇ is a〈·, ·〉-compatible
covariant derivative, ando is a fixed base point inM. Let T = T∇ andR= R∇ denote
the torsion and curvature of∇, respectively.

∗ This research was partially supported by NSF Grant No. DMS 92-23177.
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Standing Assumption. The covariant derivative(∇) is assumed to beTorsion Skew
Symmetricor TSSfor short. That is to say〈T(X,Y),Y〉 ≡ 0 for all vector fieldsX
andY on M. (With the TSS condition, the Laplacian on functions (1 f = tr(∇gradf )
associated to∇ is the same as the usual Levi–Civita Laplacian.)

Let ν denote Wiener measure on the path space

W(M) ≡ {σ ∈ C0([0,1],M)|σ(0) = o}.
To be more explicit, let6s(σ ) ≡ σ(s) for σ ∈ W(M) and letFs be theσ -field onW(M)
generated by{6s′ : s′ ≤ s}. Thenν is the unique probability measure on(W(M), {Fs})
such that{6s}s∈[0,1] is a diffusion process with121 as the generator.

Let Ps denote stochastic parallel translation along6 up to times relative to the
covariant derivative∇. Givenh in the Cameron–Martin spaceH ,

H ≡
{

h : [0,1]→ ToM |h is absolutely continuous and
∫ 1

0
|h′(s)|2 ds<∞

}
,

let Xh denote theCameron–Martin vector fieldon W(M) given by Xh
s ≡ Psh(s). It

was shown in [15] thatXh may indeed be considered as a vector field onW(M) in
the sense thatXh generates a quasi-invariant flow, at least whenh is C1. This theorem
was extended by Hsu [34], [35] to include allh ∈ H. See also [44] and [24] for other
approaches.

It was also shown in Theorem 9.1, p. 363, of [15] (whereXh was written as∂h),
that Xh may be viewed as a densely defined closed operator onL2(W(M), ν). This last
result relies on an integration by parts formula which in the special case ofXh acting on
functions of the formf (σ ) = F(σ (s)) is due to Bismut [9]. There have been numerous
proofs and extensions of integration by parts formulas onW(M), see, for example, [4],
[7], [22], [28], [29], [31], [40]–[44], and the references therein for some of the more
recent articles. See also Proposition 4.10 below.

The purpose of this paper is to consider the commutator [Xh, Xk] of two vector
fields Xh and Xk. It has been known for some time that, in general, the commutator
between two Cameron–Martin vector fields onW(M) is no longer a Cameron–Martin
vector field. This is explicitly pointed out in Section 6.5 of [14] and in the case thatM is
a homogeneous manifold by Aida in [4]. Since so much of differential geometry relies
on the use of the commutator of vector fields, it is highly desirable to have a class of
vector fields which is stable under the Lie bracket operation.

In this paper we study the “adapted vector fields” onW(M) introduced in [18], see
also [14]. (Cruzeiro and Malliavin call the adapted vector fields by the suggestive name
of tangent processes.) Intuitively,X is an adapted vector field (or tangent process) on
W(M) iff X = (d/dt)|0ϕt , whereϕt : W(M) → W(M) is a one-parameter family of
quasi-invariant adapted maps onW(M) such thatϕ0 = id, see Definitions 3.2 and 4.1
for the precise definition. We call{ϕt }t∈R as above an approximate flow forX.

The main result of this paper is Theorem 7.4 and Corollary 8.4 both of which state:

Theorem 1.1 (Informal Version). The Lie bracket of sufficiently regular “adapted vec-
tor fields” on W(M) is an “adapted vector field.”
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We may give an informal proof of this theorem as follows. LetX andY be two
adapted vector fields onW(M) and letϕt andψt be approximate flows forX andY,
respectively. Then (formally) [X,Y] = (d/dt)|0+ηt whereηt is the approximate flow on
W(M) defined by

ηt ≡ ψ−√t ◦ ϕ−√t ◦9√t ◦ ϕ√t . (1.1)

Thus [X,Y] is also an adapted vector field.
The remainder of this paper is devoted to a precise formulation and proof of the above

stability result. Along the way we develop explicit formulas for the bracket [X,Y]. Our
approach here is at the infinitesimal level, viewing vector fields as first-order differential
operators. Making the argument given in the above paragraph rigorous would involve a
more delicate global analysis. See [10] for the beginnings of such an analysis. In [10]
the differential of the flowet X is computed for certain adapted vector fieldsX.

As stated above, the reason for wanting vector fields to be stable under the Lie bracket
operation is related to the desire to develop calculus and geometry onW(M). Recall
that the Lie bracket typically enters into the coordinate-free definition of differential and
geometric objects. At this time, the coordinate-free approach seems to be essential when
working on path and loop spaces. Forsomeof the recent developments on the calculus
and geometry of path and loop spaces, see [1]–[6], [8], [11]–[18], [20]–[22], [24]–[36],
[38], and [44].

2. Background and Notation

2.1. Geometric Notation

Let O(M) denote the orthogonal frame bundle ofM. We chooseToM (o ∈ M is the
fixed base point) as the model fiber ofTM so that the fiber ofO(M) abovem ∈ M is

Om(M) ≡ {u : ToM → TmM |u is an isometry}.
The structure group of this bundle is the groupO(d) of isometries ofToM. Let so(d)
be the Lie algebra ofO(d) consisting of skew-symmetric linear transformations on
ToM . Given smooth pathsu in O(M) and σ in M such thatu(s) ∈ Oσ(s)(M), let
∇u(s)/ds : ToM → Tσ(s)M denote the linear operator defined by(∇u(s)/ds)a =
∇(u(s)a)/ds for all a ∈ ToM.Notice thatV(s) ≡ u(s)a is a vector field alongσ so that
∇V(s)/ds= ∇(u(s)a)/ds makes sense.

Definition 2.1 (Connection 1-Form). Letω be theso(d)-valued connection 1-form on
O(M) given byω〈u′(0)〉 ≡ u(0)−1∇u(s)/ds|s=0, wheres→ u(s) is any smooth curve
in O(M). Notice that a pathu is parallel or horizontal inO(M) iff ω〈u′〉 ≡ 0.

Definition 2.2 (Horizontal Vector Fields). Fora ∈ ToM andu ∈ O(M) let B〈a〉(u)
∈ TuO(M) be defined byω〈B〈a〉(u)〉 = 0 (i.e.,B〈a〉(u) is horizontal) andπ∗B〈a〉(u) =
ua,whereπ : O(M)→ M is the canonical projection map. We often writeBa(u) instead
of B〈a〉(u).



182 B. K. Driver

Let T = T∇ andR = R∇ denote the torsion and curvature of∇, respectively, and
let {ei }di=1 be an orthonormal basis forToM.

Notation 2.3. For a,b ∈ ToM and an isometryu: ToM → TmM (i.e., u ∈ Om(M)),
define

Äu〈a,b〉 ≡ u−1R∇〈ua,ub〉u ∈ End(ToM),

Ricu〈a〉 ≡
d∑

i=1

Äu〈a,ei 〉ei ,

2u〈a,b〉 ≡ u−1T∇〈ua,ub〉 ∈ ToM,

and

2̄u〈a〉 ≡
d∑

i=1

Bei (u)(2·〈a,ei 〉).

SoÄ, Ric, and2 are the equi-invariant forms of the curvature tensor, the Ricci
tensor, and the torsion tensor, respectively. Similarly,2̄u is the equi-invariant form of a
contraction of∇T∇ .

2.2. Path Spaces and Development Maps

In this subsection we introduce a number of path spaces and connecting maps between
these path spaces. The reader is referred to [15] and [19] for a more leisurely discussion
of this material.

Definition 2.4 (Path Spaces). Let

W ≡ W(ToM) ≡ {ω ∈ C0([0,1], T0M)|ω(0) = 0},

W(so(d)) ≡ {A ∈ C0([0,1], so(d))|A(0) = 0},

W(M) ≡ {σ ∈ C0([0,1],M)|σ(0) = o},

and

W(O(M)) ≡ {u ∈ C0([0,1],O(M))|u(0) = id}.

Letµ denote the Wiener measure onW and letν denote the Wiener measure onW(M).

A map b: W(M) → W may be viewed as a continuous process onW(M) with
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values inToM. This is done by writingbs for the function fromW(M) to ToM given by
bs(σ ) = b(σ )(s). Conversely, given a continuous processbs on W(M) with values in
ToM,we may define a mapb: W(M)→ W by b(σ )(s) ≡ bs(σ ). Similar identifications
may be made for maps between any of the two path spaces defined above. In what
follows we use both points of view interchangeably. Finally recall from the Introduction
that6: W(M)→ W(M) is the process defined by6s(σ ) = σ(s) for all σ ∈ W(M).

Definition 2.5 (Connecting Maps). Thereare the followingmapsconnecting theabove
path spaces:

1. (Canonical Brownian Motion) Let β: W → W be the canonical Brownian
motion onW given byβs(ω) = ω(s) for all ω ∈ W ands ∈ [0,1].

2. (It ô Map) I : W→ W(O(M)) is defined by the Stratonovich differential equa-
tion:

δ Is = B〈δβs〉(Is) with I0 = id ∈ Oo(M),

where the stochastic integrals are computed relative to the Wiener measureµ on
W. Notice thatI is horizontal, in the sense thatω〈δ I 〉 = 0.

3. (Projection) π : W(O(M))→ W(M) is an abuse of notation by which we mean
π(u) ≡ π ◦ u.

4. (Horizontal Lift/Parallel Translation) P: W(M)→ W(O(M)) is the process
defined byπ(P) = 6, P0 = id|T0M , andω〈δP〉 = 0, where the stochastic
integrals are computed relative to the Wiener measureν on W(M).

5. (Development Map)Letϕ: W→ W(M) denote the composite mapϕ = π ◦ I .
6. (Inverse Brownian Motion) Let b: W(O(M))→ W be defined as a version of∫

θ〈δP〉 (relative toν), whereθ〈ξu〉 ≡ u−1π∗ξ for ξ ∈ TuO(M).

The next theorem is well known. It recalls how the maps above are all related. The
proof may be found in many places, see, for example, Theorem 3.3, p. 297, in [15] and
also [19] and [23].

Theorem 2.6. The following identities hold:

1. π ◦ P = idW(M) ν-a.s.,
2. ϕ ◦ b = idW(M) ν-a.s.,
3. b ◦ ϕ = idW µ-a.s.,
4. I ◦ b = P ν-a.s., and
5. I = P ◦ ϕ µ-a.s.

Moreoverϕ∗µ = Law(ϕ) = ν and b∗ν = Law(b) = µ.

2.3. A Collection of Norms

In this section(Ä,F, P) is a probability space, 1≤ p ≤ ∞, and(V, | · |) is a finite-
dimensional normed vector space.
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Definition 2.7. Given a jointly measurable functionf :Ä× [0,1]→ V we define:

1. The root mean square norm inL p:

‖ f ‖Rp(V) ≡
∥∥∥∥∥
(∫ 1

0
| f (·, s)|2 ds

)1/2
∥∥∥∥∥

L p

.

2. The supremum norm inL p:

‖ f ‖Sp(V) ≡ ‖ f ∗‖L p,

where f ∗(ω) is the essential supremum ofs → f (ω, s) relative to Lebesgue
measure on [0,1]. (Notice thatf ∗(ω) = limn→∞‖ f (ω, ·)‖Ln(ds) so that f ∗(ω) is
measurable.)

Let Rp(V) denote thosef :Ä× [0,1]→ V such that‖ f ‖Rp(V) <∞. Let Sp(V) denote
those f :Ä× [0,1]→ V such thats→ f (s, ω) is continuous for almost everyω ∈ Ä
and‖ f ‖Sp(V) <∞.

In what follows, we writeRp for Rp(V) and Sp for Sp(V) since the appropriate
vector spaceV may be determined by looking at the range of the functionf. We write
fs(ω), f (ω, s), f (ω)(s), and f (s)(ω) interchangeably.

Now suppose that(Ä, {Fs}, {Xs},F, P) is a filtered probability space equipped
with a ToM-valued Brownian motionX. A function f :Ä× [0,1]→ V is aBrownian
semimartingaleif f may be represented in the form

f (s, ·) =
∫ s

0
Qs′ d X(s′)+

∫ s

0
rs′ ds′, (2.1)

where (Qs, rs) is a predictable process with values inHom(ToM,V) × V .
(Hom(ToM,V) denotes the set of linear transformations fromToM to V.) We call
the processesQs andrs thekernelsof f and writeQ f

s for Qs andr f
s for rs if we are

considering more than one Brownian semimartingale at a time. The Brownian semi-
martingalef is said to have continuous kernels ifs→ (Qs(ω), rs(ω)) is continuous for
almost everyω ∈ Ä.

Definition 2.8. LetHp(X) denote the set of Brownian semimartingalesf such that

‖ f ‖Hp(X) ≡ ‖Q‖Rp + ‖r ‖Rp <∞,

and letBp denote the set of Brownian semimartingalesf such thatf has continuous
kernels(Qs, rs) and

‖ f ‖Bp(X) ≡ ‖Q‖Sp + ‖r ‖Sp <∞.

Remark 2.9. TheBp-norms are the same as those used in [15]. However, theHp-norm
differs slightly from theHp-norm used in [15]. In [15] theHp-norm was theweaker
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norm given by∥∥∥∥∥
(∫ 1

0
|Qs|2 ds

)1/2

+
∫ 1

0
|rs|ds

∥∥∥∥∥
L p

.

To avoid notational clutter, if(Ä, X, P) = (W, β, µ) and f : W× [0,1]→ V , then
we let‖ f ‖Hp and‖ f ‖Bp denote‖ f ‖Hp(β) and‖ f ‖Bp(β), respectively, whereβ is the
canonical Brownian motion onW given byβs(ω) = ω(s). Similarly, if (Ä, X, P) =
(W(M),b, ν) and f : W(M) × [0,1] → V , then we let‖ f ‖Hp and ‖ f ‖Bp denote
‖ f ‖Hp(b) and‖ f ‖Bp(b), respectively, whereb is the Brownian motion onW(M) defined
in Definition 2.5.

The next lemma is proved by unwinding the definitions and applying Theorem 2.6.

Lemma 2.10. Suppose that fs: W→ V is a process and̃fs: W(M)→ V is the process
defined byf̃s = fs ◦ b, then‖ f ‖Rp = ‖ f̃ ‖Rp, ‖ f ‖Sp = ‖ f̃ ‖Sp, ‖ f ‖Hp = ‖ f̃ ‖Hp, and
‖ f ‖Bp = ‖ f̃ ‖Bp .

Note, for allp ∈ [1,∞], that‖ f ‖Rp ≤ ‖ f ‖Sp and‖ f ‖Hp ≤ ‖ f ‖Bp .Also it follows
from Burkholder’s inequality that for eachp ∈ [1,∞) there is a constantcp <∞ such
that‖ f ‖Sp ≤ cp‖ f ‖Hp .

Notation 2.11. Given p ∈ [1,∞), let L p+ ≡⋃q>p Lq andL p− ≡⋂q<p Lq.We say
that limt→0 f (t) = f in L p+ (resp.L p−) if lim t→0 f (t) = f in Lq for someq > p
(resp. for allq < p). Analogous definitions forRp±, Sp±,Hp±, andBp± are also used.

3. Vector Fields onW

For motivational purposes, recall Theorem 2.1 on p. 408 of [18].

Theorem 3.1 (Structure Theorem). Let9: W→ W be an adapted map(i.e., s→ 9s

is an adapted process) such that9∗µ is equivalent toµ.Also assume there is an adapted
map9−1: W→ W such that9 ◦9−1 and9−1 ◦9 are both equal to the identity map
µ-a.s. Then there exist(O(d)× ToM)-valued predictable processes(O, γ ) on W such
that

9(ω) =
∫

O(ω)dω +
∫
γ (ω)ds, (3.1)

and
∫ 1

0 |γs′ |2 ds′ <∞ µ–a.s.

With this in mind, if9t : W→ W is an adapted flow onW, then

9t (ω)(s) =
∫ s

0
Ot (ω)(s

′)dω(s′)+
∫ s

0
γt (ω)(s

′)ds′, (3.2)
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where, for eacht ∈ R, (Ot , γt ) are (O(d) × ToM)-valued predictable processes on
W. Differentiating this equation att = 0 gives the form of the vector fields which can
generate adapted flows onW. This motivates the following definition.

Definition 3.2 (Adapted Vector Fields onW). An adapted vector fieldh is a ToM-
valued Brownian semimartingale onW with predictable kernelsQh

s ∈ so(d) andr h
s ∈

ToM such that
∫ 1

0 |r h
s |2 ds<∞ a.s. LetV denote the collection of adapted vector fields

on W andV p = V ∩Hp.

Such processes were called adapted tangent vector fields onW in Definition 2.2,
p. 410, of [18] and tangent processes in [12]–[14]. Given an adapted vector fieldh as
above, following Fang and Malliavin [31], let

E0(th)(s) ≡
∫ s

0
et Qh

s′ dβ(s′)+ t
∫ s

0
r h

s′ ds′. (3.3)

Notice that formally,(d/dt)|0E0(th) = h, hence if f ∈ L p(W,dµ) is a function,
it is reasonable to try to define the directional derivative∂h f of f by h by ∂h f ≡
(d/dt)|0 f ◦ E0(th). A minimal requirement for this to make sense is that the law of
E0(th)must be equivalent toµ, since otherwise the compositionf ◦ E0(th) is not well
defined.

Proposition 3.3. Suppose that h∈ V p (an adapted vector field on W inHp) and rh
s (ω)

is bounded by a nonrandom constant k. Then E0(th) has its law equivalent toµ and if
f ∈ L p+(µ), then f(E0(th)) ∈ L p(µ) for all t ∈ R. Moreover,

(d/dt)|0E0(th) = h in Hp. (3.4)

Proof. Girsanov’s theorem shows that, for allf ∈ L1(W, µ),

Eµ( f (E0(th))e
F(t)) = Eµ f, (3.5)

where

F(t) ≡ −t
∫ 1

0
r h · et Qh

dβ − (t2/2)
∫ 1

0
|r h|2 ds. (3.6)

Fromthis it follows thatE0(th)has its lawequivalent toBrownianmotion, seeLemma8.2,
p. 347, of [15] for details.

Let q > 1 andq′ be the conjugate exponent toq. Then, by Hölder’s inequality,

Eµ| f (E0(th))|p = Eµ(| f (E0(th))|peF(t)/q · e−F(t)/q)

≤ (Eµ{| f (E0(th))|pqeF(t)})1/q · ‖e−F(t)/q‖q′
= ‖ f ‖p

pq · ‖e−F(t)/q‖q′ ,
where in the last line we have used (3.5). Sincef ∈ L p+, q may be chosen sufficiently
close to 1 such that‖ f ‖p

pq < ∞. By Remark 8.1 of [15],e±F(t) ∈ L∞− and hence
‖e−F(t)/q‖q′ <∞. Thus f (E0(th)) ∈ L p for all t ∈ R.
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By the fundamental theorem of calculus

et Qh − I = t Qh
∫ 1

0
eut Qh

du. (3.7)

Therefore

‖(et Qh − I )/t − Qh‖Rp =
∥∥∥∥Qh

∫ 1

0
(eut Qh − I )du

∥∥∥∥
Rp

=
∥∥∥∥∥
(∫ 1

0
|Qh

s Rs(t)|2 ds

)1/2
∥∥∥∥∥

L p

,

where

Rs(t) =
∫ 1

0
(eut Qh

s − I )du. (3.8)

SinceRs(t)→ 0 ast → 0 andRs(t) is uniformly bounded(eut Qh
s is orthogonal sinceQh

s

is inso(d)), the dominated convergence theorem shows that‖(et Qh− I )/t−Qh‖Rp → 0
ast → 0, that is,

(d/dt)|0et Qh = Qh in Rp. (3.9)

This proves the proposition since

‖(E0(th)− E0(0h))/t − h‖Hp = ‖[(1/t)(et Qh − I )− Qh]‖Rp.

For h ∈ V2 set

z(h) ≡
∫ 1

0
r h

s · dβ(s). (3.10)

With this notation we have the following integration by parts formula. The idea of the
proof already appears in [9], see also [40] and [31].

Theorem 3.4 (Integration by Parts). Suppose that h∈ V8 with rh
s (ω) bounded by

a nonrandom constant k, f, g ∈ L4+(dµ), and the directional derivatives∂h f ≡
(d/dt)|0 f ◦ E0(th) and∂hg ≡ (d/dt)|0g ◦ E0(th) exist inL4(dµ). Then

Eµ(∂h f · g) = Eµ( f · ∂†
hg),

where

∂
†
hg ≡ [−∂hg+ z(h)g].

Proof. The idea of the proof is simply to compute the derivative of the identity

Eµ( f (E0(th))g(E0(th))e
F(t)) = Eµ( f g),

with respect tot at t = 0, whereF(t) is given in (3.6).
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Set j = f g, then by standard arguments involving H¨older’s inequality, j ∈
L2+ and the derivative∂h j ≡ (d/dt)|0 j (E0(th)) exists inL2(µ) and is given by

∂h j = ∂h f · g+ f · ∂hg.

Using Lemma 3.5 below and standard H¨older’s inequality arguments it follows that

0= (d/dt)|0Eµ( j (E0(th))e
F(t)) = Eµ(∂h j + j (−z(h)))

= Eµ(∂h f · g+ f · ∂hg− f gz(h)).

Lemma 3.5. Suppose that p≥ 1, h ∈ V4p, and assume that rh is bounded by a
nonrandom constant k, then with F(t) as(3.6),

(d/dt)|0eF(t) = −z(h) = −
∫ 1

0
r h

s · dβ(s) in L p.

Proof. To simplify notation, let‖ f ‖p denote theL p(µ) norm of f. By Burkholder’s
inequality,∥∥∥∥F(t)/t +

∫ 1

0
r h · dβ

∥∥∥∥
4p

=
∥∥∥∥∫ 1

0
r h · (I − et Qh

)dβ − (t/2)
∫ 1

0
|r h|2 ds

∥∥∥∥
4p

≤ k2|t |/2+ c4pk

∥∥∥∥∥
(∫ 1

0
|et Qh

s − 1|2ds

)1/2
∥∥∥∥∥

4p

,

where|A|2 ≡ tr A∗A if A is a matrix. By the fundamental theorem of calculus we have

|et Qh − 1|2 =
∣∣∣∣t Qh

∫ 1

0
eut Qh

du

∣∣∣∣2 ≤ t2|Qh|2,

where we have used the fact thateut Qh
is orthogonal in this last inequality. Combining

the two above displayed inequalities shows that∥∥∥∥F(t)/t +
∫ 1

0
r h · dβ

∥∥∥∥
4p

≤ |t |(k2/2+ c4pk‖h‖H4p
)→ 0 as t → 0. (3.11)

By the fundamental theorem of calculus and H¨older’s inequality the quantity

εp(t) ≡
∥∥∥∥(eF(t) − eF(0))/t +

∫ 1

0
r h · dβ

∥∥∥∥
p

is bounded by

εp(t) =
∥∥∥∥(F(t)/t)

∫ 1

0
euF(t)du+

∫ 1

0
r h · dβ

∥∥∥∥
p

≤
∥∥∥∥F(t)/t +

∫ 1

0
r h · dβ

∥∥∥∥
p

+
∥∥∥∥(F(t)/t) · [

∫ 1

0
euF(t) du− 1]

∥∥∥∥
p
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≤
∥∥∥∥F(t)/t +

∫ 1

0
r h · dβ

∥∥∥∥
p

+ ‖F(t)/t‖2p

∥∥∥∥∫ 1

0
euF(t) du− 1

∥∥∥∥
2p

≤
∥∥∥∥F(t)/t +

∫ 1

0
r h · dβ

∥∥∥∥
p

+ ‖F(t)/t‖2p

∫ 1

0
‖euF(t) − 1‖2p du.

Because of (3.11) it follows that

lim sup
t→0

εp(t) ≤ K · lim sup
t→0

∥∥∥∥∫ 1

0
euF(t)du− 1

∥∥∥∥
2p

≤ K · lim sup
t→0

∫ 1

0
‖euF(t) − 1‖2p du, (3.12)

whereK is a bound on‖F(t)/t‖2p for t near 0. Now

‖euF(t) − 1‖2p =
∥∥∥∥∫ u

0
F(t)evF(t) dv

∥∥∥∥
2p

≤ ‖F(t)‖4p ·
∫ u

0
‖evF(t)‖4p dv

and by (3.11)‖F(t)‖4p ≤ C|t | for some constantC. These observations coupled with
Remark 8.1, p. 348, of [15], which shows that‖evF(t)‖4p is bounded (by sayK1) for
0 ≤ v ≤ 1 andt near zero, shows that‖euF(t) − 1‖2p ≤ K1C|t |. Hence the limit in
(3.12) is zero.

3.1. Pull-Back Vector Fields

In the next section certain vector fields onW(M) are studied. These vector fields may
be pulled back toW by the mapϕ: W → W(M) in Definition 2.5. In this section we
study these pulled-back vector fields. As aboveδβ is used to denote the Stratonovich
differential ofβ anddβ the Itô differential.

Definition 3.6 (Pull-Back Fields). For an adapted vector fieldh ∈ V, let Yh denote
the adapted vector field onW given by

Yh
s ≡

∫ s

0
Ch

s′δβ(s
′)+ hs, (3.13)

where

Ch
s ≡ As〈h〉 +2Is〈hs, ·〉 (3.14)

and

As〈h〉 ≡
∫ s

0
ÄIs′ 〈hs′ , δβ(s

′)〉. (3.15)

In what follows, we abbreviate (3.13)–(3.15) by

Yh ≡
∫

Chδβ + h,

Ch ≡ A〈h〉 +2I 〈h, ·〉,
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and

A〈h〉 ≡
∫
ÄI 〈h, δβ〉,

respectively. For future reference, the Itˆo form ofYh is

Yh ≡
∫
(Ch + Qh)dβ

+
∫ [

r h + 1
2

(
RicI 〈h〉 + 2̄I 〈h〉 +

∑
i

2I 〈Qhei ,ei 〉
)]

ds, (3.16)

where{ei }di=1 is an orthonormal basis forToM andRic, 2, and2̄ are defined in Nota-
tion 2.3. The proof of (3.16) is straightforward, for details see the proof of Proposition
6.1, p. 323 in [15].

Equation (3.16) is equivalent to

Yh ≡
∫

QYh
dβ +

∫
r Yh

ds, (3.17)

where

QYh = Ch + Qh = A〈h〉 +2I 〈h, ·〉 + Qh (3.18)

and

r Yh = r h + 1
2

(
RicI 〈h〉 + 2̄I 〈h〉 +

∑
i

2I 〈Qhei ,ei 〉
)
. (3.19)

Lemma 3.7. For all p ∈ [2,∞) there is a constant K depending only on p and the
geometry of M such that

1. ‖A〈h〉‖Sp ≤ K‖h‖Hp for all h ∈ Hp,
2. ‖Yh‖Hp ≤ K‖h‖Hp for all h ∈ Hp, and
3. ‖Yh‖Bp ≤ K‖h‖Bp for all h ∈ Bp.

Proof. In the following argumentK denotes a generic finite constant which only depends
on p and the geometry ofM.

ExpressA〈h〉 in Itô form as

A〈h〉 =
∫
ÄI 〈h,dβ〉 + 1

2

∑
i

∫
{ÄI 〈Qhei ,ei 〉 + (BiÄ)I 〈h,ei 〉}ds, (3.20)

where(BiÄ)u ≡ (d/dt)|0Äet Bi (u), Bi ≡ B〈ei 〉, and{ei }di=1 is an orthonormal basis for
ToM. Using the compactness ofM and Burkholder’s inequality, we show that

‖A〈h〉‖Sp = K {‖h‖Sp + ‖Qh‖Rp} ≤ K‖h‖Hp . (3.21)

Similarly,

‖r Yh‖Rp ≤ ‖r h‖Rp + K (‖h‖Sp + ‖Qh‖Rp) ≤ K‖h‖Hp, (3.22)
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‖r Yh‖Sp ≤ ‖r h‖Sp + K (‖h‖Sp + ‖Qh‖Sp)

≤ ‖r h‖Sp + K (cp‖h‖Hp + ‖Qh‖Sp)

≤ K‖h‖Bp, (3.23)

and, by (3.14) and (3.18),

‖QYh‖Rp = ‖A〈h〉 +2I 〈h, ·〉 + Qh‖Rp

≤ ‖A〈h〉‖Sp + ‖h‖Sp + ‖Qh‖Rp

≤ K‖h‖Hp (3.24)

and

‖QYh‖Sp = ‖A〈h〉 +2I 〈h, ·〉 + Qh‖Sp

≤ ‖A〈h〉‖Sp + ‖h‖Sp + ‖Qh‖Sp

≤ K‖h‖Hp + ‖h‖Bp ≤ K‖h‖Bp . (3.25)

Item 2 of the lemma follows from (3.22) and (3.24) while item 3 follows from (3.23)
and (3.25).

4. Geometric Vector Fields

Definition 4.1 (Geometric Vector Fields). Given an adapted vector field(h) onW, let
Xh denote theadapted vector field onW(M) given by

Xh(σ ) ≡ P(σ )h(b(σ )),

i.e.,Xh(σ ) is the vector field alongσ such thatXh
s (σ ) = Ps(σ )hs(b(σ )) for all s ∈ [0,1].

We wish to have the vector fieldsXh act as first-order differential operators on a
large class of functions onW(M). Our starting point will be to differentiate functions
along an “approximate” flow toXh for niceh ∈ CV ≡ V ∩ S∞ ∩ B∞. The next lemma
guarantees thatCV is sufficiently large.

Lemma 4.2. For each p∈ [2,∞), CV ≡ V ∩ S∞ ∩ B∞ is dense inV p.

Proof. First suppose thath ∈ V∩B∞, i.e.,(Qh, r h) is an (so(d)×ToM)-valued continu-
ous and bounded adapted process. For each integern chooseϕn ∈ C∞(ToM, ToM) such
thatϕn(x) = x if |x| ≤ n, ϕ′n(x) = 0 if |x| ≥ 2n, |ϕn(x)| ≤ 2n, and supx,n{|ϕ′n(x)| +
|ϕ′′n(x)|} < ∞. To construct such functions, let9 ∈ C∞c (R) such that 0≤ 9(x) ≤ 1
for all x and

9(x) ≡
{

1 if |x| ≤ 1,
0 if |x| ≥ 2.

Then define

ϕn(x) ≡ 9(|x|2/n2)x.
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It is now a simple matter to verify that the functionsϕn satisfy all of the requirements.
Sethn ≡ ϕn(h), then, by Itô’s lemma,

dhn = ϕ′n(h){Qh dβ + r h ds} + 1
2

∑
i

ϕ′′n(h)〈Qhei , Qhei 〉ds.

Sohn is bounded with bounded kernels:

Qhn = ϕ′n(h)Qh and r hn = ϕ′n(h)r h + 1
2

∑
i

ϕ′′n(h)〈Qhei , Qhei 〉,

i.e.,hn ∈ CV. It easily follows from the construction of theϕn’s that(Qhn
, r hn

) converges
boundedly to(Qh, r h) asn→ ∞. Therefore, by the dominated convergence theorem,
hn→ h inHp asn→∞.

Because of the above paragraph, it suffices to show thatbCP (the bounded con-
tinuous adapted processes) are dense inPRp (the predictable processes inRp). Using
the fact that continuous adapted processes generate the predictableσ -algebra (see Re-
mark 2.3, p. 16, of [37]) one may mimic the proof of Theorem 2 on p. 126 of [45] to
show thatbCP is dense inbPRp—the bounded predictable processes endowed with the
Rp-norm. This proves the theorem, since it is easily shown thatbPRp is dense inPRp

using a standard truncation argument and the dominated convergence theorem.

4.1. Differentials of I and P

Notation 4.3. Suppose thatI ∈ W(O(M))andA ∈ W(so(d)), let I ·A ∈ W(T O(M))
be defined by

(I · A)(s) ≡ (d/dt)|0I (s)et A(s). (4.1)

Also if I ∈ W(O(M)) andh ∈ W, let B〈h〉(I ) ∈ W(T O(M)) be defined by

(B〈h〉(I ))(s) ≡ B〈h(s)〉(I (s)). (4.2)

Theorem 4.4. Suppose that h∈ CV ≡ V ∩ S∞ ∩ B∞. For t ∈ R let

u(t) ≡ I ◦ E0(tY
h): W→ W(O(M)). (4.3)

Then the process u(t) is Bp-differentiable for all1≤ p <∞ and

u̇(0) = −I · A〈h〉 + B〈h〉(I ). (4.4)

We summarize this formula by writing

I∗Yh = −I · A〈h〉 + B〈h〉(I ).

(The Bp norms for manifold-valued processes are defined with the aid of an embedding
of the manifold, see Definition4.1,Proposition4.1 (p. 301),and Notation5.1 (p. 319)
of [15] for more details.)

The following lemma is needed in the proof of Theorem 4.4.
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Lemma 4.5. Suppose that h∈ B∞− ∩ V, then

(d/dt)et Qh = Qhet Qh
in S∞− (4.5)

and

(d/dt)E0(th) =
∫

Qhet Qh
dβ +

∫
r h ds in B∞−. (4.6)

Moreover, E0(th) and d E0(th)/dt are Bp-Lipschitz in t for all p∈ [1,∞).

Proof. Using (3.7) and H¨older’s inequality, for anyq <∞ we have

‖[(1/t)(et Qh − I )− Qh]‖Sq = ‖Qh R·(t)‖Sq ≤ ‖Qh‖Sr · ‖R·(t)‖Sp, (4.7)

where 1/q = 1/r + 1/p andRs(t) is given in (3.8). Sinceet Qh
is an orthogonal matrix,

it easily follows from (3.7) and (3.8) that

‖R·(t)‖Sp ≤
∥∥∥∥∫ 1

0
|ut Qh|du

∥∥∥∥
Sp

≤ 1
2|t |‖Qh‖Sp → 0 as t → 0. (4.8)

Therefore(d/dt)|0et Qh = Qh in S∞−. For generalt0 ∈ R,
(d/dt)|t0et Qh = (d/dt)|0e(t0+t)Qh = (d/dt)|0et Qh

et0Qh
. (4.9)

Sinceet0Qh
is an orthogonal matrix-valued process, it follows from the caset0 = 0 above

that the derivative in (4.9) exists inSp and is given byQhet0Qh
. This proves (4.5) and

because(d/dt)(tr h) = r h in Sp for all p ∈ [0,∞) holds trivially we have also proved
(4.6).

Againsinceet Qh
is anorthogonalmatrix, it follows from(4.6) that‖(d/dt)E0(th)‖Bp

= ‖h‖Bp < ∞ for all 1 ≤ p < ∞. Hencet → E0(th) is Bp-Lipschitz. By similar
calculations to above, we show thatd2E0(th)/dt2 = ∫ (Qh)2et Qh

dβ in B∞− and hence
by Hölder’s inequality,

‖d2E0(th)/dt2‖Bp = ‖(Qh)2‖Sp ≤ ‖Qh‖2S2p ≤ ‖h‖2B2p <∞.
This shows thatt → (d/dt)E0(th) is alsoBp-Lipschitz.

Proof of Theorem4.4. Becauseh ∈ CV, it follows by Lemma 3.7 and (3.19) that
Yh ∈ B∞− andr Yh

is bounded. By Proposition 3.3,w(t) ≡ E0(tYh) ∈ B∞ has a law
equivalent toµ so thatu(t) in (4.3) is well defined. By Lemma 4.5̇w(t) ≡ dw(t)/dt =
Yh in B∞− andw(t) andẇ(t) areBp-Lipschitz.

Using these observations, the proof of (4.4) may now be given using exactly the
same argument as the proof of Theorem 5.2, p. 321, of [15]. It is only necessary for
the reader to replacew(t) used in [15] byw(t) ≡ E0(tYh) and then to evaluate allt ’s
appearing in the proof att = 0.

Corollary 4.6 (Approximate Flow forXh). Assume that h∈ CV. For each t∈ R, let

E(t Xh) ≡ ϕ ◦ E0(tY
h) ◦ b. (4.10)
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Then

1. (d/dt)|0P ◦ E(t Xh) = −A〈h ◦ b〉 · P + B〈h ◦ b〉(P) in B∞−(b), and
2. (d/dt)|0E(t Xh) = Xh in B∞−(b).

Proof. By Theorem 2.6,

P ◦ E(t Xh) = P ◦ ϕ ◦ E0(tY
h) ◦ b = I ◦ E0(tY

h) ◦ b = u(t) ◦ b.

This equation shows that the first assertion is a direct consequence of Theorem 4.4 and
Lemma 2.10. The second assertion follows from the first assertion, sinceπ◦P = idW(M),

π∗(A · P) = 0, andπ∗Ba(u) = ua so that

(d/dt)|0E(t Xh) = (d/dt)|0π ◦ P ◦ E(t Xh) = P(h ◦ b) = Xh.

4.2. First-Order Differential Operators

We now wish to haveXh act as a first-order differential operator on functions onW(M).
We begin with the action ofXh on smooth cylinder functions (see Definition 4.9 below)
based onW(O(M)). We first need some more notation.

Notation 4.7. Suppose thatV is a finite-dimensional vector space,F : O(M)n→ V is
a smooth function, andQ ≡ {0< s1 < s2 < · · · < sn ≤ 1} is a partition of [0, 1].

1. For each pathu: [0,1]→ O(M) set

FQ(u) ≡ F(u(s1),u(s2), . . . ,u(sn)).

2. Suppose also thatA: [0,1]→ so(d) andh: [0,1]→ ToM. Let

F ′Q(u)〈A+ h〉 ≡ (d/dt)|0FQ(uet A)+ (d/dt)|0FQ(e
t B〈h〉(u)),

where(uet A)(s) ≡ u(s)et A(s), and (et B〈h〉(u))(s) ≡ et B〈h(s)〉(u(s)). (We view
A+ k as a path from [0,1]→ so(d)⊕ ToM.)

3. Similarly, if C: [0,1]→ so(d) andk: [0,1]→ ToM, set

F ′′Q(u)〈A+ h,C + k〉 ≡ (d/dt)|0F ′Q(uet A)〈C + k〉
+ (d/dt)|0F ′Q(e

t B〈h〉(u))〈C + k〉.

Remark 4.8. The notion ofBp-differentiability used in Theorem 4.4 is very strong. In
particular, withF as in the above notation andu(t) as in Theorem 4.4,(d/dt)|0FQ(u(t))
exists inL p(dµ) and

(d/dt)|0FQ(u(t)) = F ′Q(I )〈−A〈h〉 + h〉. (4.11)

Definition 4.9 (Cylinder Functions). A functionf : W(M)→ R is a smooth cylinder
function if there is an integern, a C∞-function F : O(M)n → R, and a partitionQ =
{0< s1 < s2 < · · · < sn ≤ 1} of [0,1] such that

f = FQ(Ps1, . . . , Psn) = FQ ◦ P a.s. (4.12)

We denote the collection of smooth cylinder functions byFC∞.
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Suppose that̃f : Mn→ R is a smooth function, then

f (σ ) ≡ f̃ (σs1, . . . , σsn) (4.13)

is inFC∞. Indeed, f = FQ(Ps1, . . . , Psn) a.s. whereF ≡ f̃ ◦ π, i.e., F(u1, . . . ,un) =
f̃ (π(u1), . . . , π(un)). We call a cylinder functionf as in (4.13) arestricted cylinder
functionand denote the collection of restricted cylinder functions byRFC∞.

The integration by parts formula in the next proposition is a slight generalization of
Theorem 3.6.1 in [31]. For the special case thath is in the Cameron–Martin space see
Theorem 9.1 in [15]. Also see [22], [24], [34], [40], [41] and [44].

Proposition 4.10. Given f ∈ FC∞ as in(4.12)and h∈ V2, then

Xh f ≡ F ′Q(P)〈−(A〈h〉) ◦ b+ h ◦ b〉 (4.14)

is well defined. Moreover, if g ∈ FC∞, then

Eν(Xh f · g) = Eν( f · (Xh)†g), (4.15)

where

(Xh)†g ≡ −Xhg+ (z(Yh) ◦ b)g (4.16)

and z(Yh) is defined in(3.10). We view Xh and (Xh)† as unbounded operators on
L2(W(M), ν) each withFC∞ as its domain.

Proof. First suppose thath ∈ CV. Because of Corollary 4.6,(d/dt)|0 f ◦ E(t Xh) exists
and is given by the right-hand side of (4.14). Therefore, for suchh, Xh f is well defined.
Moreover, since

f ◦ E(t Xh) = FQ ◦ P ◦ ϕ ◦ E0(tY
h) ◦ b = FQ ◦ I ◦ E0(tY

h) ◦ b,

we see by Theorem 4.4 that

Xh f = (∂Yh(FQ ◦ I )) ◦ b = ((d/dt)|0FQ ◦ I ◦ E0(tY
h)) ◦ b, (4.17)

where the derivative exists inL∞−. Let G ∈ C∞c (O(M)
n) andg = GQ ◦ P ∈ FC∞.

Now apply Theorem 3.4 withh replaced byYh, f by FQ ◦ I , andg by GQ ◦ I to find

Eµ[(∂Yh(FQ ◦ I )) · (GQ ◦ I )]

= Eµ((FQ ◦ I ) · {−∂Yh(GQ ◦ I )+ z(Yh) · (GQ ◦ I )}),

which owing to (4.17) and the fact thatLaw(b) = µ shows that (4.15) holds.
For generalh ∈ V2, choosehn ∈ CV such thathn → h in H2 asn→∞. Then it

is easy to check that

L2− lim
n→∞ Xhn

f = F ′Q(P)〈−(A〈h〉) ◦ b+ h ◦ b〉, (4.18)



196 B. K. Driver

which shows thatXh f defined in (4.14) is well defined. By (3.19)z(Yh) = ∫ 1
0 r Yh · dβ

is linear inh and by (3.22)

Eµ|z(Yh)|2 = Eµ
∫ 1

0
|r Yh

s |2 ds= ‖r Yh‖2R2 ≤ K‖h‖2H2.

Hencez(Yhn) → z(Yh) in L2 asn → ∞ whenhn → h in H2 asn → ∞. From this
fact and (4.18), it is easy to conclude that (4.15) holds for generalh ∈ V2.

We now define a closed extensionX̄h of Xh using the weak derivative formulation
in the next definition.

Definition 4.11. Given h ∈ V2 let X̄h ≡ ((Xh)†)∗. Explicitly, f ∈ L2(ν) is in the
domainD(X̄h) of X̄h and X̄h f = k ∈ L2(ν) iff Eν(k · g) = Eν( f · (Xh)†g) for all
g ∈ FC∞.

It is reasonable to conjecture thatX̄h is the closure ofXh onRFC∞. We do not
pursue this here. However, the following elementary lemma gives a sufficient condition
for a function f on W(M) to be in the domain of̄Xh. The proof is similar to that of
Proposition 4.10.

Lemma 4.12. Suppose that f∈ L4+(ν), and, for h ∈ CV, (d/dt)|0 f ◦ E(t Xh) exists
in L4(ν) and there is a constant K<∞ such that

‖(d/dt)|0 f ◦ E(t Xh)‖2 ≤ K‖h‖H4, ∀h ∈ CV.

Then f ∈ ⋂h∈V4 D(X̄h), X̄h f = L2 − (d/dt)|0 f ◦ E(t Xh) for all h ∈ CV, and for
h ∈ V4 we haveX̄h f = limn→∞ X̄hn

f, where hn ∈ CV is any sequence such that
hn→ h inH4 as n→∞.

Proof. Let h ∈ CV, g ∈ FC∞, and put f̃ ≡ f ◦ ϕ and g̃ ≡ g ◦ ϕ. Since
ϕ∗µ ≡ µ ◦ ϕ−1 = ν, the map f ∈ L p(ν)→ f̃ ∈ L p(µ) is an isometric isomorphism
with inverse f̃ → f = f̃ ◦ b. Since f̃ ◦ E0(tYh) = f ◦ E(t Xh) ◦ ϕ, it follows that

Yh f̃ ≡ (d/dt)|0 f̃ ◦ E0(tY
h) = S◦ ϕ,

whereS≡ (d/dt)|0 f ◦ E(t Xh). Hence, by Theorem 3.4,

Eµ((S◦ ϕ)g̃) = Eµ( f̃ (Yh)†g̃) = Eµ( f̃ (−Yhg̃+ z(Yh)g̃)). (4.19)

From the proof of Proposition 4.10,(Yh)†g̃ = ((Xh)†g) ◦ ϕ. Hence (4.19) shows that
Eν [Sg] = Eν( f ((Xh)†g)). Sinceg ∈ FC∞ was arbitrary, it follows thatf ∈D(X̄h)

andS= X̄h f.
For generalh ∈ V4, choosehn ∈ CV such thathn → h in H4 asn→ ∞. Using

the above paragraph, we have for anyg ∈ FC∞ that

Eν [ X̄hn
f · g] = Eν [ f · (Xhn

)†g]. (4.20)
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With S≡ L2− limn→∞ X̄hn
f, it follows by lettingn→∞ in (4.20) that

Eν [S · g] = Eν [ f · (Xh)†g]. (4.21)

Therefore,f ∈ D(X̄h) and X̄h f = L2− limn→∞ X̄hn
f.

5. Product of Two Vector Fields on Restricted Cylinder Functions

Definition 5.1. An adapted vector fieldk on W is said to bep-smoothif (i) k ∈ Hp+,
(ii) for all h ∈ V ∩B∞− with r h bounded the derivative(d/dt)|0k◦E0(th) =: ∂hk exists
inHp, and (iii) there is a constantC <∞ such that‖∂hk‖Hp/2 ≤ C‖h‖Hp holds for all
h ∈ V ∩ B∞−.

If k is p-smooth we may and do extend the definition of∂hk to all h ∈ V p by
continuity. In what follows, to simplify notation we writeYhk for ∂Yhk.

Theorem 5.2. Suppose that k is4-smooth, h ∈ V4, f ∈ RFC∞ is given as in(4.13),
and F(u1, . . . ,un) = f̃ (π(u1), . . . , π(un)). Then Xk f ∈ D(X̄h) and (using Nota-
tion 4.7)

X̄h Xk f = F ′Q(P)〈(Yhk)) ◦ b〉 + F ′′Q(P)〈(−A〈h〉 + h) ◦ b, k ◦ b〉. (5.1)

Proof. Lemma 3.7 implies thatYh ∈ V4. By (4.14) and the assumptionf ∈ RFC∞,

Xk f = F ′Q(P)〈k ◦ b〉.

For the moment assume thath ∈ CV and consider

(Xk f ) ◦ E(t Xh) = F ′Q(P ◦ E(t Xh))〈k ◦ b ◦ E(t Xh)〉
= F ′Q(P ◦ E(t Xh))〈k ◦ E0(tY

h) ◦ b〉.
BecauseF is a smooth function on the compact manifoldO(M)n, the assumption that
k is 4-smooth, and Corollary 4.6 one may show by standard arguments that

(d/dt)|0(Xk f )◦E(t Xh)=F ′Q(P)〈(Yhk)◦b〉+F ′′Q(P)〈(−A〈h〉+h)◦b, k◦b〉, (5.2)

where the derivative exists inL4. It follows from this equation and the use of H¨older’s
and Burkholder’s inequalities that there are constantsK andK̃ depending on the bounds
on F ′Q andF ′′Q such that

‖(d/dt)|0(Xk f ) ◦ E(t Xh)‖2 ≤ K (‖Yhk‖S2 + ‖k‖S4{‖h‖S4 + ‖A〈h〉‖S4})
≤ K̃ (‖Yhk‖H2 + ‖k‖H4‖h‖H4),

where in the second inequality we have used Lemma 3.7 to bound‖A〈h〉‖S4. Hence,
using the assumption thatk is 4-smooth, it follows that there is a constantC = C(k, f )
such that

‖(d/dt)|0(Xk f ) ◦ E(t Xh)‖2 ≤ C‖h‖H4 for all h ∈ CV.
The theorem now follows by an application of Lemma 4.12.
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6. Lie Bracket on Restricted Cylinder Functions

Our goal in this section is to compute the commutator of two geometric vector fields,
see Theorem 6.2 below. The following lemma is in preparation for this result.

Lemma 6.1. Let A,C ∈ W(so(d)), u ∈ W(O(M)), and h, k ∈ W ≡ W(ToM)).
Then in the notation of Notation4.7,

F ′′Q(u)〈A+ h,C + k〉 − F ′′Q(u)〈C + k, A+ h〉
= F ′Q(u)〈([ A,C] −Äu〈h, k〉)+ (Ah− Ck−2u〈h, k〉)〉, (6.1)

where

([ A,C] −Äu〈h, k〉)(s) ≡ [ A(s),C(s)] −Äu(s)〈h(s), k(s)〉

is in W(so(d)) and

(Ah− Ck−2u〈h, k〉)(s) ≡ A(s)h(s)− C(s)k(s)−2u(s)〈h(s), k(s)〉

is in W.

Proof. For α ∈ so(d), let α̂ be the vertical vector field onO(M) defined byα̂(u) =
(d/dt)|0uetα. For A ∈ W(so(d)) andh ∈ W(ToM) let Â(si ) andBh(si ) denote the vector
fields onO(M)n given by

(Â(si )F)(u1,u2, . . . ,un) ≡ (d/dt)|0F(u1, . . . ,ui−1,ui e
t A(si ),ui+1, . . . ,un)

and

(Bh(si )F)(u1,u2, . . . ,un) ≡ (d/dt)|0F(u1, . . . ,ui−1,e
t Bh(si ) (ui ),ui+1, . . . ,un),

respectively. Also foru ∈ W(O(M)), let uQ ≡ (u(s1),u(s2), . . . ,u(sn)). Then with
this notation:

F ′′Q(u)〈A+ h,C + k〉 − F ′′Q(u)〈C + k, A+ h〉

=
n∑

i, j=1

([ Â(si )+ Bh(si ), Ĉ(sj )+ Bk(sj )]F)(uQ)

=
n∑

i=1

([ Â(si )+ Bh(si ), Ĉ(si )+ Bk(si )]F)(uQ).

Using the commutator formulas in Lemma A.2 in the Appendix gives

n∑
i=1

[ Â(si )+ Bh(si ), Ĉ(si )+ Bk(si )]
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=
n∑

i=1

{[ Â(si ), Ĉ(si )] + [Bh(si ), Ĉ(si )] + [ Â(si ), Bk(si )] + [Bh(si ), Bk(si )]}

=
n∑

i=1

{[ A,C]̂(si )+ B(Ah−Ck)(si )Ĉ(si )− Ä̂〈h(si ), k(si )〉 − B2〈h(si ),k(si )〉}.

Combining the two above displayed equations proves (6.1).

We are now ready to compute the commutator of two geometric vector fields.

Theorem 6.2. Let h and k be4-smooth adapted vector fields on W, let f ∈ RFC∞

be as in(4.13),and let F(u1, . . . ,un) = f̃ (π(u1), . . . , π(un)). Then

[ X̄h, X̄k] f = F ′(P)〈{Yhk− Ykh+ c〈h, k〉} ◦ b〉, (6.2)

where c〈h, k〉 is the process on W given by

c〈h, k〉 ≡ −A〈h〉k+ A〈k〉h−2I 〈h, k〉. (6.3)

Proof. By Theorem 5.2,

[ X̄h, X̄k] f = F ′(P)〈(Yhk− Ykh) ◦ b〉 + F ′′(P)〈(−A〈h〉 + h) ◦ b, k ◦ b〉
−F ′′(P)〈(−A〈k〉 + k) ◦ b, h ◦ b〉.

Because of Lemma 6.1, this equation shows

[ X̄h, X̄k] f = F ′(P)〈(Yhk− Ykh− A〈h〉k+ A〈k〉h−ÄI 〈h, k〉 −2I 〈h, k〉) ◦ b〉
= F ′(P)〈(Yhk− Ykh− A〈h〉k+ A〈k〉h−2I 〈h, k〉) ◦ b〉,

where in the second equality we have used the assumption thatf ∈ RFC∞, so that
F ′(P)〈(ÄI 〈h, k〉) ◦ b〉 = 0.

7. The Lie Bracket Preserves Adapted Vector Fields

Lemma 7.1. Suppose that k is a2p-smooth adapted vector field on W, then, for
all h ∈ V ∩ B∞− with rh bounded, ∂hQk := (d/dt)|0Qk(E0(th)) and ∂hr k :=
(d/dt)|0r k(E0(th)) exist in R(2p)− and there exists a constant C= C(k) (depending
only on k and p) such that∥∥∥∥∫ 1

0
|(∂hQk)s| ds

∥∥∥∥
L p(µ)

≤ C‖h‖H2p, (7.1)

and∥∥∥∥∫ 1

0
|(∂hr k)s| ds

∥∥∥∥
L p(µ)

≤ C‖h‖H2p . (7.2)
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Because of the estimates in(7.1)and(7.2),we may extend by continuity the definitions
of ∂hQk and ∂hr k to all h ∈ V2p. Then with this notation the kernels of∂hk (for all
h ∈ V2p) are given by

Q∂hk = ∂hQk + Qk Qh (7.3)

and

r ∂hk = ∂hr k + Qkr h. (7.4)

Proof. Let h ∈ V ∩ B∞− with r h bounded. To simplify notation, letdβ = dβ(s),

w(t) ≡ E0(th) =
∫

et Qh
dβ + t

∫
r h ds,

anddw(t) = dsws(t) so that

dw(t) ≡ et Qh
dβ + r h ds.

(Please note well thatdw(t) is the differential ofw(t) in the suppresseds variable—not
thet variable.) The assumption that

k(w(t)) =
∫

Qk(w(t))dw(t)+
∫

r k(w(t))ds

=
∫

Qk(w(t))et Qh
dβ +

∫
{t Qk(w(t))r h + r k(w(t))}ds

isH2p differentiable is equivalent to

Q(t) := Qk(w(t))et Qh

and

r (t) := {t Qk(w(t))r h + r k(w(t))}

beingR2p differentiable. Using Lemma 4.5 and H¨older’s inequality on the identity

[Qk(w(t))− Qk]/t = Q(t)(e−t Qh − I )/t + [Q(t)− Q(0)]/t

we find

∂hQk = (d/dt)|0Qk(w(t)) = −Qk Qh + Q̇(0)

= −Qk Qh + Q∂hk in R(2p)−. (7.5)

Similarly,

(r k(w(t))− r k)/t = (r (t)− t Qk(w(t))r h − r (0))/t

= (r (t)− r (0))/t − Qk(w(t))r h

→ ṙ (0)− Qkr h in R(2p)− as t → 0,
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where in taking the limit ast → 0 we have used the continuity oft → Qk(w(t))
in R(2p)− at t = 0 implied by (7.5) and the boundedness ofr h. The above displayed
equation is equivalent to

∂hr k = (d/dt)|0r k(w(t)) = r ∂hk − Qkr h in R(2p)− as t → 0. (7.6)

So forh ∈ V∩B∞− with r h bounded we have proved the differentiability assertions
of the lemma and identities in (7.3) and (7.4). To finish the proof it suffices to prove the
estimates in (7.1) and (7.2). Using the definition ofk being 2p-smooth and H¨older’s
inequality, it follows from (7.3) that∥∥∥∥∫ 1

0
|(∂hQk)s|ds

∥∥∥∥
L p

≤
∥∥∥∥∫ 1

0
|(Q∂hk)s|ds

∥∥∥∥
L p

+
∥∥∥∥∫ 1

0
|Qk

s||Qh
s |ds

∥∥∥∥
L p

≤ ‖Q∂hk‖Rp + ‖Qk‖R2p‖Qh‖R2p

≤ (C̃(k)+ ‖Qk‖R2p)‖h‖H2p

= C(k)‖h‖H2p,

wherein we have used

‖Q∂hk‖Rp ≤ ‖∂hk‖Hp ≤ C̃(k)‖h‖H2p .

HereC̃(k) is a finite constant guaranteed to exist becausek is 2p-smooth, see Defini-
tion 5.1. The estimate in (7.2) is proved similarly.

Lemma 7.2. For h, k ∈ H4, A〈h〉k ∈ H2,

QA〈h〉k = ÄI 〈h, ·〉k+ A〈h〉Qk (7.7)

and

r A〈h〉k =
(
R〈h〉k+ A〈h〉r k +

∑
i

ÄI 〈h,ei 〉Qkei

)
, (7.8)

where

R〈h〉 ≡ 1
2

∑
i

{ÄI 〈Qhei ,ei 〉 + (BiÄ)I 〈h,ei 〉}. (7.9)

Proof. By Itô’s lemma and (3.20),

d(A〈h〉k) = ÄI 〈h,dβ〉k+R〈h〉k ds

+ A〈h〉(Qk dβ + r k ds)+
∑

i

ÄI 〈h,ei 〉Qkei ds

= ÄI 〈h,dβ〉k+ A〈h〉Qk dβ

+
(
R〈h〉k+ A〈h〉r k +

∑
i

ÄI 〈h,ei 〉Qkei

)
ds

which proves (7.7) and (7.8).
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To proveA〈h〉k ∈ H2 notice:

‖QA〈h〉k‖R2 ≤ ‖ÄI 〈h, ·〉k‖R2 + ‖A〈h〉Qk‖R2

≤ C{‖h‖S4‖k‖S4 + ‖A〈h〉‖S4‖Qk‖R4}
≤ C‖h‖H4‖k‖H4 <∞,

where we have used Lemma 3.7 in the last inequality. One similarly shows that‖r A〈h〉k‖R2

<∞.

Lemma 7.3. For h, k ∈ H4 such that either Qh or Qk in S4, then2I 〈h, k〉 ∈ H2 and

Q2I 〈h,k〉 = 2I 〈Qh·, k〉 +2I 〈h, Qk·〉 +2′I 〈·, h, k〉 (7.10)

and

r2I 〈h,k〉 =
∑

i

{2I 〈Qhei , Qkei 〉 + (Bi2)I 〈Qhei , k〉 + (Bi2)I 〈h, Qkei 〉}

+ 2I 〈r h, k〉 +2I 〈h, r k〉 + 1
2

∑
i

(B2
i 2)I 〈h, k〉, (7.11)

where{ei }di=1 is an orthonormal basis for T0M.

Proof. By Itô’s lemma we have

d(2I 〈h, k〉) = 2I 〈δh, k〉 +2I 〈h, δk〉 + (B〈δβ〉2)I 〈h, k〉
=: α + γ + κ.

We now work on the three terms separately:

α = 2I 〈δh, k〉 = 2I 〈dh, k〉 + 1
2{2I 〈dh,dk〉 + (B〈dβ〉2)I 〈dh, k〉}

= 2I 〈dh, k〉 + 1
2

d∑
i=1

{2I 〈Qhei , Qkei 〉 + (Bi2)I 〈Qhei , k〉}ds

so that

α + β = 2I 〈dh, k〉 +2I 〈h, δk〉

+ 1
2

d∑
i=1

{22I 〈Qhei , Qkei 〉 + (Bi2)I 〈Qhei , k〉 + (Bi2)I 〈h, Qkei 〉}ds.

Similarly,

κ = (B〈dβ〉2)I 〈h, k〉
+ 1

2{(B〈dβ〉2)I 〈dh, k〉 + (B〈dβ〉2)I 〈h,dk〉 + (B2
dβ2)I 〈h, k〉}

= (B〈dβ〉2)I 〈h, k〉

+ 1
2

d∑
i=1

{(Bi2)I 〈Qhei , k〉 + (Bi2)I 〈h, Qkei 〉 + (B2
i 2)I 〈h, k〉}ds
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and hence

d(2I 〈h, k〉) = (2I 〈Qh dβ, k〉 +2I 〈h, Qk dβ〉 + (B〈dβ〉2)I 〈h, k〉)
+ (2I 〈r h, k〉 +2I 〈h, r k〉)ds+ 1

2

∑
i

(B2
i 2)I 〈h, k〉ds

+
∑

i

{2I 〈Qhei , Qkei 〉 + (Bi2)I 〈Qhei , k〉

+ (Bi2)I 〈h, Qkei 〉}ds.

This formula implies (7.10) and (7.11). The assertion that2I 〈h, k〉 ∈ H2 is easily
verified using (7.10) and (7.11). The term2I 〈Qhei , Qkei 〉 in (7.11) is the one which
requires the assumption that eitherQh or Qk is in S4.

Theorem 7.4. Suppose that h and k are4-smooth adapted vector fields on W and that
either Qh or Qk is in S4. Then{Yhk− Ykh+ c〈h, k〉} ∈ V2 and

[ X̄h, X̄k] = X̄{Y
hk−Ykh+c〈h,k〉} on RFC∞, (7.12)

where

c〈h, k〉 ≡ −A〈h〉k+ A〈k〉h−2I 〈h, k〉

as in(6.3).

Proof. Once we know thatJ ≡ {Yhk−Ykh+ c〈h, k〉} ∈ V2, (7.12) follows from (4.14)
and (6.2). Using Lemma 3.7 and the assumption thath andk are 4-smooth, it follows
thatYhk andYkh are inH2. By Lemmas 7.2 and 7.3 and the definition ofc〈h, k〉, we
see thatc〈h, k〉 ∈ H2. ThereforeJ = Yhk−Ykh+ c〈h, k〉 ∈ H2 and it suffices to show
that J ∈ V, i.e., QJ is anso(d)-valued process.

From (7.3) and (3.18),

QYhk = Yh Qk + Qk QYh

= Yh Qk + Qk(A〈h〉 +2I 〈h, ·〉 + Qh)

and hence

Q(Yhk−Ykh) = (YhQk − Yk Qh)+ [Qk, Qh] + Qk A〈h〉
− Qh A〈k〉 + Qk2I 〈h, ·〉 − Qh2I 〈k, ·〉. (7.13)

By Lemmas 7.2 and 7.3,

−Qc〈h,k〉 = (ÄI 〈h, ·〉k−ÄI 〈k, ·〉h)+ (A〈h〉Qk − A〈k〉Qh)

+2I 〈Qh·, k〉 +2I 〈h, Qk·〉 +2′I 〈·, h, k〉. (7.14)

We write2h
I for 2I 〈h, ·〉 and note that2h

I is anso(d)-valued process because of the
standing TSS assumption on the covariant derivative∇. Combining (7.13) and (7.14)
gives

QJ = (YhQk − Yk Qh)+ [Qk, Qh]

+ [Qk, A〈h〉] − [Qh, A〈k〉] + [Qk,2h
I ] − [Qh,2k

I ]

− (ÄI 〈h, ·〉k−ÄI 〈k, ·〉h+2′I 〈·, h, k〉).
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The first two lines in the above formula forQJ are clearly inso(d), so to finish the proof
it suffices to show that

Q̃ ≡ −ÄI 〈h, ·〉k+ÄI 〈k, ·〉h−2′I 〈·, h, k〉
= ÄI 〈·, h〉k−ÄI 〈·, k〉h−2′I 〈·, h, k〉

is anso(d)-valued process, i.e.,〈Q̃b,b〉 = 0 for all b ∈ ToM. However, this follows
directly from Theorem A.4 in the Appendix witha = h andc = k.

8. Lie Bracket on General Cylinder Functions

By taking limits one expects (7.12) to hold on a much larger class of functions than
RFC∞. In this section, we outline how to show that (7.12) is valid onFC∞. For the
sake of brevity only the algebraic aspects of the proofs are given; leaving the analytic
details and even the precise statements of the theorems to the reader. The next theorem
is the analogue of Theorem 5.2 which is stated without proof.

Theorem 8.1. Suppose h, k ∈ V4 are “sufficiently smooth,” and f ∈ FC∞ is given
as in(4.12).Then Xk f ∈ D(X̄h) and

X̄h Xk f = F ′(P)〈Yh(−A〈k〉 + k) ◦ b〉
+ F ′′(P)〈(−A〈h〉 + h) ◦ b, (−A〈k〉 + k) ◦ b〉,

where Yh(−A〈k〉 + k) denotes the “directional derivative” of(−A〈k〉 + k) by Yh.

Combining this theorem with lemma 6.1 gives the following commutator formula
onFC∞.

Theorem 8.2. Let f ∈ FC∞ be represented as in(4.12),and let h, k ∈ V4 be “suffi-
ciently smooth,” then

[ X̄h, X̄k] f = F ′(P)〈(Yh(−A〈k〉 + k)− Yk(−A〈h〉 + h)+ [ A〈h〉, A〈k〉]
− A〈h〉k+ A〈k〉h−ÄI 〈h, k〉 −2I 〈h, k〉) ◦ b〉

= F ′(P)〈(Yhk− Ykh− A〈h〉k+ A〈k〉h−2I 〈h, k〉) ◦ b〉
+ F ′(P)〈(−Yh(A〈k〉)+ Yk(A〈h〉)+ [ A〈h〉, A〈k〉] −ÄI 〈h, k〉) ◦ b〉.

The next lemma is the key identity which enables us to recognize the far right
member in the above equation asX̄{Y

hk−Ykh+c〈h,k〉} f, see Corollary 8.4 below.

Lemma 8.3. Again assuming that h, k ∈ V4 are “sufficiently smooth,”

−Yh(A〈k〉)+ Yk(A〈h〉)+ [ A〈h〉, A〈k〉] −ÄI 〈h, k〉
= −A〈Yhk− Ykh− A〈h〉k+ A〈k〉h−2I 〈h, k〉〉, (8.1)
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where

c〈h, k〉 ≡ −A〈h〉k+ A〈k〉h−2I 〈h, k〉

as in(6.3).

The desired commutator formula is now a direct consequence of Theorem 8.2,
Lemma 8.3, and (4.14).

Corollary 8.4. Let h, k ∈ V4 be “sufficiently smooth,” then

[ X̄h, X̄k] = X̄{Y
hk−Ykh+c〈h,k〉} on FC∞,

where as before c〈h, k〉 ≡ −A〈h〉k+ A〈k〉h−2I 〈h, k〉.

Proof of Lemma8.3. (Sketch! Again only the algebraic aspects of the proof are given
here.) We start with the identity:

Yh(A〈k〉) = Yh

(∫
ÄI 〈k, δβ〉

)
=
∫
{(YhÄI )〈k, δβ〉 +ÄI 〈Yhk, δβ〉 +ÄI 〈k, δYh〉}

=
∫
Ä′I 〈−A〈h〉 + h, k, δβ〉 + A〈Yhk〉

+
∫
ÄI 〈k, A〈h〉δβ +2I 〈h, δβ〉 + δh〉,

where, forA ∈ so(d) anda,b, c ∈ ToM,

Ä′u〈A+ a,b, c〉 ≡ Â(u)Ä·〈b, c〉 + Ba(u)Ä·〈b, c〉

and

Â(u)Ä·〈b, c〉 ≡ (d/dt)|0Äuet A〈b, c〉 = (d/dt)|0Ade−t AÄu〈et Ab,et Ac〉
= −[ A, Äu〈b, c〉] +Äu〈Ab, c〉 +Äu〈b, Ac〉.

Therefore,∫
Ä′I 〈−A〈h〉, k, δβ〉 =

∫
[ A〈h〉, δ(A〈k〉)] − A〈A〈h〉k〉 −

∫
ÄI 〈k, A〈h〉δβ〉

which combined with the first displayed equation in the proof gives

Yh(A〈k〉 =
∫

[ A〈h〉, δ(A〈k〉)] + A〈Yhk− A〈h〉k〉 +
∫
Ä′I 〈h, k, δβ〉

+
∫
ÄI 〈k,2I 〈h, δβ〉 + δh〉.
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Hence using

δ(ÄI 〈h, k〉) = ÄI 〈δh, k〉 +ÄI 〈h, δk〉 +Ä′I 〈δβ, h, k〉

we find

Yh(A〈k〉)− Yk(A〈h〉) =
∫
{[ A〈h〉, δ(A〈k〉)] + [δ(A〈h〉), A〈k〉]}
+ A〈Yhk− Ykh− A〈h〉k+ A〈k〉h〉
+
∫
{Ä′I 〈h, k, δβ〉 +ÄI 〈k,2I 〈h, δβ〉〉
−Ä′I 〈k, h, δβ〉 −ÄI 〈h,2I 〈k, δβ〉〉}

+
∫
{ÄI 〈k, δh〉 +ÄI 〈δk, h〉}

= [ A〈h〉, A〈k〉] + A〈Yhk− Ykh− A〈h〉k+ A〈k〉h〉
+
∫
{Ä′I 〈h, k, δβ〉 +Ä′I 〈k, δβ, h〉}

+
∫
{ÄI 〈k,2I 〈h, δβ〉〉 +ÄI 〈h,2I 〈δβ, k〉〉}

−ÄI 〈h, k〉 +
∫
Ä′I 〈δβ, h, k〉

= [ A〈h〉, A〈k〉] + A〈Yhk− Ykh− A〈h〉k+ A〈k〉h〉
−ÄI 〈h, k〉
+
∫
{(Ä′I 〈h, k, δβ〉 +ÄI 〈k,2I 〈h, δβ〉〉)+ (cyclic)}

−ÄI 〈h, k〉 +
∫
ÄI 〈δβ,2I 〈h, k〉〉,

where in the last equality the term “(cyclic)” indicates there are two more terms obtained
from the preceding term by performing cyclic permutation inh, k, andδβ. Combining
this equation with the geometric identity in Lemma A.3 shows that

Yh(A〈k〉)− Yk(A〈h〉) = [ A〈h〉, A〈k〉] + A〈Yhk− Ykh− A〈h〉k+ A〈k〉h〉
−ÄI 〈h, k〉 +

∫
ÄI 〈δβ,2I 〈h, k〉〉,

which is the same as (8.1) upon noting that∫
ÄI 〈δβ,2I 〈h, k〉〉 = −A〈2I 〈h, k〉〉.
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A.ppendix. Geometric Identities

Remark A.1. Let θ denote theToM-valued 1-form onO(M) defined byθ〈ξu〉 =
u−1π∗ξu, whereξu ∈ TuO(M). Set

Ä ≡ dω + ω ∧ ω (A.1)

and

2 ≡ dθ + ω ∧ θ, (A.2)

then

Äu〈a,b〉 = Ä〈Ba(u), Bb(u)〉 and 2u〈a,b〉 = 2〈Ba(u), Bb(u)〉.

For A ∈ so(d), let Â be the vertical vector field onO(M) defined byÂ(u) =
(d/dt)|0uet A ∈ TuO(M) for all u ∈ O(M). The tangent vector̂A(u) is also denoted by
u·Awhen convenient. We also writeÄ〈a,b〉and2〈a,b〉 for the functionsu→ Äu〈a,b〉
andu→ 2u〈a,b〉.

Lemma A.2 (Commutator Formulas).Let a,b ∈ ToM and A,C ∈ so(d), then

1. [Â, Ba] = BAa,

2. [Â, Ĉ] = [ A,C]̂, and
3. [B〈a〉, B〈b〉](u) = −Ä̂u〈a,b〉 − B〈2u〈a,b〉〉(u), whereÄ̂u〈a,b〉 ≡ (d/dt)|0

uetÄu〈a,b〉 ∈ TuO(M). We abbreviate this last equation as

[Ba, Bb] = −Ä̂〈a,b〉 − B2〈a,b〉. (A.3)

Proof. The proof may be found in [39]. The short proof is given here for the readers
convenience.

The proof of the first two assertions relies on the fact thatet Â = Ret A, where
Rg(u) ≡ ug for u ∈ O(M) andg ∈ O(d). It is easy to verify that

Re−t A∗Ba ◦ Ret A = Bet Aa,

and hence [̂A, Ba] = (d/dt)|0Bet Aa = BAa. Similarly,

[ Â, Ĉ] = (d/dt)|0Re−t A∗Ĉ ◦ Ret A = (d/dt)|0(d/ds)|0Re−t A ◦ ResC ◦ Ret A

= (d/dt)|0(d/ds)|0Ret AesCe−t A = (d/dt)|0(d/ds)|0Res Ad
et A C

= (d/dt)|0(Adet AC)̂ = ([ A,C])̂.

For the proof of the third item recall that all tangent vectorsηu ∈ TuO(M)) can
be written asu · ω〈ηu〉 + B〈θ〈ηu〉〉. Using the structure equationÄ = dω + ω ∧ ω
it is easy to conclude thatω〈ηu〉 = −Äu〈a,b〉. Similarly, using the structure equation
2 = dθ + ω ∧ θ, we show thatθ〈ηu〉 = −2u〈a,b〉.
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Lemma A.3. For all a,b, c ∈ ToM and u∈ O(M),

(Ä′u〈a,b, c〉 +Äu〈2u〈a,b〉, c〉)+ (cyclic permutations in a,b, c) = 0, (A.4)

where

Ä′u〈a,b, c〉 ≡ (BaÄ)u〈b, c〉 = (d/dt)|0Äet Ba (u)〈b, c〉.

Proof. The Bianchi identity states that(dÄ)H = 0. That is,

0= dÄ〈Ba, Bb, Bc〉 = BaÄ〈Bb, Bc〉 −Ä〈[Ba, Bb], Bc〉 + (cyclic).

Because of (A.3) and the fact thatÄ annihilates vertical vectors, the above equation may
be written as

0= BaÄ〈Bb, Bc〉 +Ä〈2〈Ba, Bb〉, Bc〉,

which, in view of Remark A.1, is equivalent to (A.4).

Theorem A.4. Let a,b, c ∈ ToM, then

Ä〈b,a〉c · b−Ä〈b, c〉a · b− Bb2〈a, c〉 · b = 0, (A.5)

where Bb ≡ B〈b〉 and a· b ≡ 〈a,b〉.

Proof. The identity (see [39])

d2+ ω ∧2 = Ä ∧ θ

applied toBa, Bb, andBc gives

0 = {Ba2〈b, c〉 −2〈[Ba, Bb], Bc〉 −Ä〈a,b〉c} + cyclic{a,b, c}
= {Ba2〈b, c〉 +2〈2〈a,b〉, c〉 −Ä〈a,b〉c} + cyclic{a,b, c}, (A.6)

where (A.3) and the fact that2 annihilates vertical vectors was used in the second
equality. Take the inner product of (A.6) withb and use the TSS assumption on2 to
conclude that

0 = {Ba2〈b, c〉 +2〈2〈a,b〉, c〉 −Ä〈a,b〉c} · b
+ {Bb2〈c,a〉 +2〈2〈b, c〉,a〉 −Ä〈b, c〉a} · b
+ {Bc2〈a,b〉 +2〈2〈c,a〉,b〉 −Ä〈c,a〉b} · b

= −2〈b, c〉 ·2〈a,b〉 −Ä〈a,b〉c · b
+ Bb2〈c,a〉 · b−2〈b,a〉 ·2〈b, c〉 −Ä〈b, c〉a · b
+ 0

= Ä〈a,b〉b · c− Bb2〈c,b〉 · a−Ä〈c,b〉b · a
= Ä〈b,a〉c · b− Bb2〈a, c〉 · b−Ä〈b, c〉a · b.
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