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Preface

This volume communicates proceedings of the Conference on Probability
Models in Mathematical Physics which met in Colorado Springs, Colorado,
May 24-26, 1990.

The aim of the conference is to present some rigorous results of
mathematical physics, especially probabilistic results motivated by modern
physics. On the one hand, ideas and models born out of the study of statistical
mechanics and quantum field theory stimulate the further development of
probability theory. On the other hand, rigorous results in the areas of
p;obability represented in this volume create a deeper understanding for
physics.

We wish to thank the Department of Mathematics and the College of
Engineering and Applied Science of the University of Colorado at Colorado
Springs, and the National Science Foundation for both their human and
financial supports. We also thank the conference staff of the Colorado College
who accomodated the participants on their campus. We express our thanks to
the participants for an especially lively conference.

Gregory J. Morrow and Wei~Shih Yang
Colorado Springs, June, 1990
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gauge invariant expectations will be summarized. To
motivate the main Theorem (Theorem 3.2.), proofs of the
theorems will be indicated under the further
simplification that the "structure group" (G) is U(1l).

The problem of mathematical existence of quantized
Yang-Mills' fields is (on an informal level) equivalent
to defining a certain probability measure on a space of
connection forms. The informal description of this
(Yang-Mills') measure is

A A,
au(p) = g le (F -F)/29%,, (YM)

where A runs over a space of connection forms (4) on the
trivial vector bundle €Y x R9, FP= aa+Aah is the

i curvature of A, (F,F) s jd E t:r(l“1 (x)wl“i (x)) dx,
i m- 143
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d
DA =n &K d(A (x)) is "infinite dimensional Lebesgue
1=1 xemd 1

measure”" on (A4), 92 is a positive "coupling" constant
(henceforth set equal to 1), and 2 is a normalization
constant which makes u a probability measure. The
connection forms are restricted to take their values in
the Lie Algebra (C) of the structure (or gauge) group
(G), which is taken to be a closed subgroup of U(N). A
rigorous definition and construction of the measure u for
d 2 3 and general gauge group G is still a hard open
problem. However, considerable success in understanding
this problem has been made by Balaban (B] and Federbush
(F) using renormalization group techniques on lattice or
lattice 1like modelsl

Before attacking the hard analytical problems in
defining the measure (g4) one must first understand the
problem of gauge invariance. It is well known that the
heuristic expression of g is invariant under the infinite
dimensional group of gauge transformations GT = {g:md —
G: g is c” and g(0) = id). The gauge transformations act
on 4 by g:A = gl\g_1 + gdg-l, and under this action FI'® =
gFAg-l. Therefore the exponent is invariant because of
the properties of the trace function. Also, informally,
the "infinite dimensional Lebesgue measure” is GT -
invariant which may be seen as follows. Lebesgue measure
should be invariant under translations, so we need only
consider the transformation A — gAg-l. This
transformation does not mix the "components* Ai(x) of A,

so it suffices to show that the adjoint action of G on G
leaves Lebesgue measure on { invariant. But det(Adg) =

* 1 which is a consequence of the fact that any real
finite dimensional representation of a compact Lie group
admits an inner product with respect to which the
representation is orthogonal.

23

The gauge invariance makes it impossible to interpret
#4 as a probability measure on A. As is well known, the
correct interpretation is to consider g as a measure on
A/GT.

2. Gauge Pixing,

In order to see how to interpret the informal expression
for g4 as a measure on the quotient space A//GT it is
instructive to consider an analogous finite dimensional
setting and then crib the results to the infinite
dimensional setting. For a more detailed discussion of
the material in this section the reader is referred to 2.
Jaskolskl [J) and the references therein. The notation
for most of this section is as follows:

GT = a Lie group called the gauge transformations,

« = a left invariant non-zero volume form on GT,

(A,u) = a finite dimensional smooth manifold with a
volume form g, and

S = a submanifold of 4.

We will assume:

i) GT acts smoothly to left on A4,

ii) the map P:GTXS — A given by P(g,s) = gs is a
diffeomorphism, and

1i1) # is invariant under the action of GT, L;y = u for

g€GT, where Lg is the left action of g on M.

Note that condition ii) implies that S is a slice for the
natural projection map n:A — A/GT, that is nls is a

bijection.
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Proposition 2.1. Let ‘1' v, tp be a basis for the Lie

algebra of GT (thought of as left invariant vector fields
on GT) such that u(:l,---,tp) = 1 and define a form (v)

on S by o(vl, ---,vr) = y({ls,---,tps,vl,---vr), where
(vi) is a basis for TsS = the tangent space to S at s,
tis 2 Rs"i’ and Rs:GT —~— & is given by Rs(g) = gs for

each s in A. Then the pullback P*y satisfies T*y = @AV

*
or more precisely ¥ u = prl*UAprz*u, where pr1 and pr,

are the projections of GTXS onto the first and second
factor respectively.

Proof: First note, if P, denotes the differential of .,

then ¥, ) 81(9) = §rloget1(®)s - Ly«(f ()8), and that
,*(g,s)vi = Lg,v1 for v, € T;S. Therefore:
) (g, ay Byeterloivyeee,v))

= L;p(zl(e)s,---,tp(e)s,vl,---,vr)

ﬂ(tl(e)S."-.tp(e)s,vl.---,vr) (GT invariance)
= u(tl.---.tp)o(vl.---.vr) (definition of v and &)
= uAu(tl,---,tp,vl,---,vr).

]
Since ¥ y and waAv are volume forms on GTXS, we conclude
]
that ¢ ¢ = wav, Q.E.D.
Definition 2.1. A function (f) on A is said to be gauge

invariant if f(gA) = £(A) for all gauge transformations g
in GT.

Corollary 2.1. If f is a gauge invariant function on A4
then

I fy = j oAf| v = J o - J flov = Vol(GT)-I £lqv.
a GTxS ° GT s S s ls

Furthermore if g is a probability measure and x = np is
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the push-forward measure to &/GT then
- fu = —%—I £]gv.
A/GT S

where 2 = I v,
S

Definition 2.2. If the measure v is a finite measure on
S then define s to be the probability measure on A/GT
satisfying for all bounded gauge invariant functions (f):

- 1
fu = ——| £]v,
A/GT ¢lg s

where 2 = I v is a normalization constant. (Note: u is
S

not assumed to be a finite measure now.)

Corollary 2.2. Assume that h:A — R is a function such

that f h(gA)v(dg) = K, where K is a constant independent
GT

of A€A. If £ is a gauge invariant function on A, then
— 1
fu = .-—.J f£-hu,

2 A

where 2 = Iﬁy is the normalization constant.

Proof:
fhu = I f(gs)h(gs)w(dg)v(ds) = J f(s)h(gs)w(dg)v(ds)
R GTXS GTXS
= Kjf(s)v(ds)
S
from which the result easily follows. Q.E.D.

Example 2.1. Let GT = (R+,-) be the multiplicative group
of positive real numbers acting on A = RZ\(O) by scalar
multiplication, S - S1 be the unit circle, ¢ = dxAdy/r2
(r2 = x2 + yz), and @ = dt/t. Using Proposition 2.1. one

finds that "p = pldx - p2dy = "de"p for all p€S and u =

wnd8 = Arad8/r which is equivalent to the well known fact
that dxady = rdradéd.

Example 2.2a. Let & = R"

, M = exp :%—(Bx,x) dx where B

is a positive semi-definite matrix, GT = Nul(B) acting on
A by translation. Suppose that C is a positive
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semi-definite matrix such that 4 is the direct sum of the
Nul(B) and the Nul(C). Then it is easy to check that
h(x) = exp :%—(Cx,x) satisfies the hypothesis of

Corollary 2.2. so that for any function f on R" invariant
under translations by Nul(B),

£ = | f(x)exp -—%—((B + C)x,x)dx,
A/Nul (B) A

where Z is again a normalization constant.
Example 2.2b. (Free Euclidean Electro-Magnetic Field.)
In this example we use the results of Example 2.2a. to
interpret the expression (YM) as a Gaussian measure when
the structure group G = U(1) and the Lie algebra ¢ = iR.
The expression (YM) reduces to

du(A) = 2 lexpt-(an,an)/s210a. (EM1)

Now every smooth gauge transformation g:md—4 U(l) is of
the form g = e 1*

. where x:md—a R is a smooth function
such that A(0) = 0. This follows from Poincare's lemma
and the fact that U(1l) is abelian, so that d(gdg_l) =0,
The function A is unique since R" is simply connected.
We will identify the function A with its corresponding
gauge transformation g = e_lx, and let AA = gA = A + AXx.

Using Example 2.2a. as our guide we are led to
replace (EM1) by

au(R) = 2z lexp(—((a"d + aa*)a,A)/21DA,  (EM2)

where d‘ is the adjoint of 4. One should think of B as
d'd and C as da”. (If one ignores domain questions it is
easy to see that A is the direct sum of Nul(d*) =
Nul(dd‘) and Nul(d) = Nul (d.d).) The expression in
(EM2) should capture the meaning of (YM) provided only
gauge invariant functions are integrated. The exponent
in (EM2) is now a non-degenerate bi-linear form.
Therefore, by Minlo's Theorem, see Simon {S), the
expression (EM2) may be interpreted as a mean zero
Gaussian measure on the space A of generalized

imaginary-valued l-forms with characteristic functional
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1,1
I er I yan) = 7214 7349,
A

i

where 4 = dd + d°d, § = Ij,ax' is a smooth compactly

supported iR - valued 1l-form on Rd, and A(3j) =

P A,(3,) when A = %  A.ax! with the A, 's being iR -

i=1 i=1 "1 i

valued distributions.

Remark 2.1. A necessary and sufficient condition for the
function A — A(J) to be gauge invariant is that 4 j = 0,
since (A + AA)(3) = A(F) + h(d*j) must be equal to A(j).
For example; A — FA(P) s dA(?P) = A(d‘T) is‘giuge
invariant for all test 2-forms (¥), since d d ¥ =0. 1If
¥ is closed (d¥ = 0) then

A
IeF ) an) = expl(P.9)/2),

-— *® -— .
because (4 1a'®,a"?) = (s laa"r.e) = (a7lar,P) = (P.¥).

In particular, if d = 2, then ¥ is always closed and we
see that A — iF®
section 3.)

is a real valued white noise. (See

Example 2.3a. Suppose that 4 = Rn, GT is a Lie group,
is Lebesgue measure on A, and S is a linear subspace of
A. Further assume that the action of GT on A has the
form g-A = p(g)A + C(g), where C:GT — A, and p:GT —
Aut(4) is a representation of GT for which the {det(p)] =
1 and S is an invariant subspace. Clearly Lebesgue
measure is invariant under this action. We will now show

- that the measure v on S given by Proposition 2.1. is a

Lebesgue measure. Let (til be a basis for the Lie

algebra of GT (thought of as the tangent space to the
identity) and let (vj) be a basis for S which we identify

with a basis of the tangent space to s at S. Since £:s =
P.(E)8 + C (F) and p,(£)s In S for all &, it follows that
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Ds(vl,---,vr) = p(tls,---,tps,vl,---vr)

= Gy GGy
vhich is independent of s€S. This shows that v is a
Lebesgue measure on S.- Q.E.D.
Example 3.3b. (Complete Axial Gauge Fixing of (YM))
Let A be the space of §-valued connection l-forms on Rd,
S be the linear subspace of A containing the elements A =

d i
£1=1 Aidx with Al(xl,---,xl,o,--,O) = 0 for all

i
(xl,---,xi) in R”, ux be the informal expression given by

(YM), GT be the space of gauge transformations acting on
A as described in the introduction. An element A of S is
said to be in the complete axial gauge.,

Proposition 2.2. The natural map P:GTXS — 4 is a
bijection.

Proof: Given A€A and xemd, let g(x) = P?(ax)

p(l)
where p(t) = Pt(ax) is the G - valued solution to the

ordinary differential equation for parallel translation:
P(t) + A(6_(t))p(t) =0

vith initial condition p(0) = Id in G. (We write A(v) =

i d
EiAi(p)v is VGTPR .) Here o, is the path in Rd going

from 0 to x by traversing the polygonal path: 0 =
(0,:+-,0) — (xl,o,---,O) — (xl,xz,o,---,O) — ey

(xl.-°°.!n_1.0) — (xl,---,xn) = x. Now given h€GT, a

connection l-form A, and a curve o in md, it is easy to

check that t — h(a(t))P’é(a)h(a(ﬁ))"1 satisfies the same
differential equation as P:A(a) so that

Pyt (a) = h(a(t)) Pl @ncacor) L,
Using this last equation (with h = g"1 and o = ax) and

the fact that parallel translation is parametrization

-1
independent one finds that P "R(a ) = ia.
Differentiating this last equality with respect to t and
use the defining equation for parallel translation we
conclude that (g-lh)(éx) = 0 for all x in RY from which

15 1s in the complete axial

it easily follows that g
gauge. This shows that ¢ is surjective. To see that the
map is injective suppose gA = hB where A and B are in §

and that g, and h are in GT. Now for A in S, A(&x) s 0,

d

and thus P:(ax) = 1a for all x in R%. Therefore. pgA(ax)

= g(x)g(0)~} = g(x), since g(0) = id by definition of GT.
Similarly, P}P(s ) = h(x), which implies that g(x) =

P9 ) = PIB(o.) = n(x) and in turn this implies that A

=g lga = h"lhB = B. Hence ¥ is injective. Q.E.D.
So informally Example 2.3b. is the infinite
dimensional analogue Example 2.3a. This motivates
replacing the informal expression (YM) for u by
avin) =zl (FNFNI2g, (YMG)
the same expression as before but A is now restricted to
be in the complete axial gauge. Of course this
expression is still informal, however when G = U(l) or 4
= 2 the curvature FA is equal to dA and the factor in the
exponent is quadratic in A. " The expression for v is then
easily given meaning as an infinite dimensional Gaussian
measure. The case d = 2 will be the topic of the next

section.
3. 4 = 2 YM-Measure and Expectations.

In this section, for d = 2, I will explain how to

interpret the expression (YMG) as a Gaussian measure and
then how to compute gauge invariant expectations. For a
more detailed analysis of this measure see [D] and [(GKS].
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For a construction of the Yang-Mills measure on the two
sphere see Sengupta {[Sel.

For the rest of this paper the space~time dimension
(d) will be fixed at two. Because d = 2, for AES (S =
the space of connections in the complete axial gauge as

in Example 2.3b) we see that F = dA = - g;. dxady, where

A = a dx and (;,y) are the usual cartesian coordinate
functions on R, To simplify notation identify F with

da

dy After making the linear change of variables F =
da

2y in (YMG) we £find an informal Gaussian expression for

the distribution of the F-variables :

av(F) = 27 exp {:;—-(F,F)}DF.

(Formally the Jacobian of the transformation is a
constant which is canceled by the normalization
constant.) This last expression suggests the
interpretation of F as a mean-zero generaliled Gaussian
random process indexed by Lz(mz) with covariance
E(F3 b - 2 a _

(FT(£)F (g)) (f.g)LZ(mz)Bab. where f,g €L®, F° =

a a dim(g)

trace(T°F), and (T )a=1 is a basis for § such that
trace(TaTb) = - sab' In other words, the Frs are

independent R-valued white noises on Rz. Now given F we
may recover the process (a) by the formula: a(x,y) =

Y
J;F(x,y)dy which is to be interpreted in the sense of

generalized functions.

It should be noted for non-abelian G that the
curvature F is not a gauge invariant function on A, In
order to construct measurable gauge invariant functions
it is necessary to construct parallel translation with
respect to the random connection form A = a dx. For this

we first consider "horizontal” curves o(x) = (x,0(x))

3

where ag: (a,b} — R is a continuous function. Given A

in the complete axial gauge and horizontal curve o, we
. d t o(7) d o a
have A(o(t)) = at ade: dy F(x,y) = EFF(ft)’ where ft is
2

the function on R™ which is 1 (-1) on the region above
(below) the x-axis and bounded by the vertical lines x =

a and x = t. Unfortunately the process t — F(f:) is not

differentiable so the above computation is only formal.
However, t — F(f:) is a martingale with a continuous

version and so we may interpret the differential equation
for parallel translation as the stochastic differential

equation:
o _
dPt(a) + dF(ft)OPt(a) =0

with initial condltlon'Pa(o) = id, where "o" denotes the

Stratonovich multiplication of differentials which is

necessary to insure that Pt remains in the structure

group G. We now set P(o) = Pb(o), which defines parallel

translation along left to right moving horizontal curves
as a G-valued random process. If o is a horizontal curve
which is oriented from right to left, set P(o) = P(a—)—1
vhere o denotes the curve ¢ with the opposite
orientation. For paths (o) which are vertical line

segments (ie. whose x-components remain constant) we set

P(g) = id -- recall that we are in the complete axial
gauge so A2 = 0. Now call a path (o) admissible if o can
be broken into pieces Gy, .0p in such a way that each

piece is either a vertical line segment or a horizontal

path, Write o = o, -0, if 0 is the path constructed by

, ***,and then o,. (We assﬁme
n-1 1

that the final point of %41 matches the initial point of

traversing o then o
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°1') For an admissible path o decomposed as above, we

define P(o) = P(al)---P(on). This defines parallel

translation as a G-valued random process index by the
class admissible curves.

For simplicity, I will specialize G to be U(1). 1In
this case there is only one T which is taken to be T1= i
and the process iF is a real valued white noise on Rz.

If o is a horizontal curve lying above the x-axis, it is
easy to check that the explicit solution to the
Stratonovich stochastic differential equation for

(+4 (+4
parallel translation is P (o) = e FlE) | JLUF(E)) As

an easy consequence, for an admissible simple closed
curve (o) one finds P(o) = eEF(R), where R is the bounded
component of R \(Image of o), £ is8 (+1) if o is traversed
counter-clockwise and (-1) otherwise, and F(R) = F(IR).

Theorem 3.1. Suppose that G = U(l), a =2, £ = (0 k

is a collectlon of simple closed curves in the plane, and
£: U(l) t — R is a bounded measurable functlon. Let t be
the collection of bounded components (R) of R \(images of
the o, 's), 01 = (REEIR is contained inside o 4}, and

18 1/2
Qpte™™y = £ (2n/|R|) 2exp ~(@ - 20n) 2,2|r|.

where |[R| denotes the area of R. Then
Ef(P(al),---,P(ok))

= I » Epeg Zpe "'+ Mpes Zp)lpep Oplzp)dzy,
z 1 k
U(l)
vhere dz = "d#/2n" is normalized Haar measure on U(1l).
Proof: - The proof of this theorem is quite straight
forward so it will be omitted ~- but see Example 3.1.

below. Let me just say that the appearance of the
function QR is a direct result of the following easily

verified equality:

2
-x2/2|R
If(e yo(zm|RD M2 /2R, o qu;?)QR(z) az,

where £ is any bounded function on U(1l). Q.E.D.
Remark 3.1. The significance of the function QR lies in

the fact that it is the convolution heat kernel for the
Laplacian on the Lie group U(l).

By considering a few simple examples for I =
(01,---,0k) the reader should be able to convince

him/herself that Theorem 3.1. can be expressed in the
following form (again see Example 3.1.):
Corollary 3.1. Let G = U(1), d = 2, L = loy,-++,0,}) as

above, and ® = 3Z denote the directed planer graph with
vertices V = VI given by the intersection points of the
cuarves in X and bonds consisting of portions of the
curves in Z which join any two vertices. We will

identify each curve o, with the directed path of bonds in

i
3
AL in to which o decomposes. Also let U(l)" = (z:8 —
u(l)| z(b) = z(6)”! for all be€M) where 1f b is a bond in

% then b denotes the same bond with the opposite
orientation. Then
Ef(P(ul),---,P(uk)) =

3 (o )., ---,2(0 A . Q,(z(3R)) X dz(b),
= R€Z R beRB'*
U(l)
where , z(o) = z(bl)---z(bm) if o = bl---bm is a directed

path of bonds in 3, dR denotes any path of bonds around
the boundary of the region R€EZ, dAz(b) is normalized Haar
measure on U(l), and 8' is a subset of 8 such that for
each b€B either (but not both) b or b is in 8'.

Example 3.1. Let I = (01,02) be two concentric counter

clockwise oriented curves with ol inside of 02. Let R be



the region inside o, and S be the region between o, and

2
1° Then P(al) = eF(R), and P(az) = eF(RUS) = eF(R)+F(S)

- eF(R) F(S)

[+

Now the variables F(R) and F(S) are
independent mean - zero Gaussian random variables with
covariances |R| and |S] respectively. For RCRZ with

—x2
IR| ¢, set Ppix) = (2n|R])e x*/2|R| to be the Gaussian

density with variance |R|, then

8
E£(P(,),P(0,)) Jftet .eiaeia)pR(O)ps(a)dOda

®
J;(1)2 f(zR'szS)QR(zR)QS(zS)dszzS

-1
2 f(zl'zz)QR(zl)QS(zl zz)dzldzz,

u(l)

where the third equality is the result of renaming Zp =

Zy, Zg = Z,, and using the invariance of Haar measure to
' -1

2 1 %2
the second line is expressed in the form given by
Theorem 3.1. and the third line is expressed in the form
given by Corollary 3.1. after identifying z, with z(ai).

make the change of variables z

— Z Observe that

i

(Note: z(3S) = 2;122, and z(dR) = z(0)) = z,.)

It turns out that the expression for the expectation
given in Corollary 3.1. correctly generalizes to the case
of non-abelian structure groups (G). Before stating the
theorem we need some notation. Let B be a directed
planar graph with vertices V, for example B3 = B as
above. Set G® = (z:3 — G| z(b) = z()>™'), ana ¢¥ = (g:V
— G} which acts on G» by (g-z)(b) = g(bf)z(b)g(bl)~?
wherevbf and b1 are the initial and final points
respectively of the bond b in 3.

’

Definition 3.1. A function f:G” -— R is gauge invariant
if £(gz) = £(z) for all (g.,z)€ G'xg™.
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Remark 3.2. If A is a smooth connection l-form on Rz,
then z = PA|3 is an element of G3 and Definition 3.2. is

precisely what is required on the function f to guarantee
that £(A)

f(PA|3) is a gauge invariant function on A&.
Finally, if f(z) = f(z(al),---,z(ak)) (abuse of notation)

as in Theorem 3.1. and Corollary 3.1., and if G = U(1),
then the function £(z) is automatically gauge invariant.
We now come to the main result which is the

non-abelian version of Corollary 3.1.
Theorem 3.2. Let B be a directed planer graph on ®2 with
vertices V and suppose that f:G8 -— R is a gauge
invariant function, then

Ef(PIz) = I £(z)My Qp(z(3R)) -1 dz(b),
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where the product ”R is over all bounded connected

regions in Rz\(the union of the bonds in 38}, dz(b) |is

Haar measure on G, and QR is the convolution semi-group

heat kernel on G at time t &£ |R}.

The proof of this theorem is considerably more
involved than the abelian version. For the details of
the proof and the proof of convergence of the
corresponding lattice gauge models the reader is referred
to (D} and (GKS}.
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The work we present below has been done in collaboration
with C. de Calan, J. Magnen and R. Sénéor from the Ecole
Polytechnique (Palaiseau/France) and will appear soonl1].

Let us begin by making a series of heuristic arguments
before stating our result. We consider the massive Gross-Neveu
model, which is formally defined by the Lagrangian

L = y(x) (i3 + m) w(x) + A (W(x) y(x)))}2N M

where, for x being a point in R* and NeN, yx) and y(x) are N-flavor
component fermionic fields (a set of Grassman random variables), and m,
Cand A e R are the fermion mass, the field strength (re-)normalization
and the coupling constant respectively. Finally, : : denotes a Wick ordering
with respect to the free-fermion gaussian measure to be referred to below,
and 9 =duYa (@=0,1,2 and the y, are chosen among the 4x4 Dirac
matrices).

The fact that, for dimension d>2, A has a positive dimension in mass
implies that the usual perturbation expansion in A for the model is non-
renormalizable and the divergences appearing in the high-momentum or

1 Talk presented at the Conference on Probability Models in Mathematical Physics,
Colorado Springs (CO), 24-26 May 1990.
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