JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 178, 143-155 (1993)

On the Growth of Waves on Manifolds
BrRUCE DRIVER AND THEODORE FRANKEL

Department of Mathematics, University of California at San Diego,
La Jolla, California 92093

Submitted by C. S. Morawetz
Received September 18, 1990

0. INTRODUCTION

If a steady current is initiated in a wire loop in R* at t=0, then after
a short time, depending on the distance from the wire, there results an
electromagnetic field that is subsequently independent of time.

The result can be very different if R® is replaced by a 3-manifold »*
having non-trivial homology in dimension 2, i.e., if there are closed surfaces
in ¥ that do not bound 3-dimensional regions. An inward flux of current
through a bounding cycle will, of course, lead to a build-up of charge inside
and thus a growth of the electric field. As shown in [ F, 1], a time-constant
current flux through a non-bounding cycle must also lead to an electric field
growth, even though there is no region “inside” in which charge can
accumulate! One would not be surprised with unbounded fields if the
source were oscillating at a “resonant frequency,” but this source is essen-
tiaily constant in time. The electromagnetic field has a vector potential A4
which is always assumed here to be in the “Lorentz gauge”, ie., “d*4 =0".
This 1-form satisfies a wave equation with the current serving as a source.
In the present paper we show, using generalized Maxwell equations, that
this growth behavior is typical of a whole class of wave equations on
manifolds of any dimension and driven by “closed” sources that need not be
time independent (Theorem 2). Conversely, when the manifold V" is compact,
a closed source with a Heaviside (step function) time dependence and vanish-
ing flux through each cycle will lead to fields that must remain bounded for
all time (see Theorem 1 for a more general result).

While the growth of the waves in the case of non-zero flux can be
deduced directly from Stokes’ theorem, the generalized Maxwell equations
give added information.

Some applications to electromagnetism and linearized shallow water,
sound, and elastic waves are considered, and we would like to make some
comments about them at this time. We consider the main results of this
paper, Theorems 1 and 2, to be an investigation in global analysis dealing
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with the long-time behavior of solutions of linear wave equations on
manifolds, when the sources are not oscillatory. The applications presented
give illustrations of these results, but their settings are sometimes exotic.
Our hope is that their inclusion here might stimulate some readers to
develop variants of our result and more realistic applications. For exampile,
since the growth of electric flux through a wormhole depends only on
Maxwell’s equations, this makes sense in general relativity (see [F, 1]), but
Theorem 1 does not apply to a spatial ¥? in relativity since the metric of
V" in Theorem | does not vary with time. We feel that extensions of our
theorems to manifolds with boundary, e.g., bounded domains in R?, might
lead to more compelling applications, especially with regard to electro-
magnetic and water waves. None of our remarks about gauge fields, after
the proof of Theorem 1, apply to Yang-Mills fields since these fields do not
have external sources and satisfy non-linear equations. Our discussion of
shallow water waves is restricted in that we have assumed that rotational
effects are negligible. We hope to return to some of these questions in the
future.

1. WAVES oN A CoMPACT MANIFOLD V"

Let V" be an n-dimensional Riemannian manifold without boundary.
In this section, if ®” is a p-tensor, and xeV, we let |w(x)|’=
S, (x)w *(x). This is essentially the sum of the squares of the
components in an orthonormal coordinate system.

THEOREM 1. Let V" be a compact Riemannian manifold without
boundary. Let J*(x) be a smooth p-form on V" and let A?(x, t) be a solution
to the driven wave equation (with (3 = 0%/01* —V?)

AP (x, 1) =J7(x) H(t)
AP(x, t)=0 for <0,

where H is the Heaviside step function. Then the norms |A(x,t)|| and
V0A(x, t)/0t)] are bounded in time iff the harmonic part of 3* vanishes, ie.,

(JP,hP):j J7 A xh? =0
Vv

for all harmonic forms h?. More generally, this same result holds when V? is
replaced by any linear, non-positive, self-adjoint elliptic differential operator
L (of any order) and where harmonic forms are replaced by the kernel of L.
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For the proof of this theorem it is necessary to introduce a number of
Sobolev norms. If w is a p-tensor, we define the L? norm of w by

12
ool = Uy loo(x)12 dx]

where dx is the volume measure on V. More generally, if s is a non-
negative integer, we define the s-Sobolev norm of w by

1., the norm of the sth covariant derivative of w. The Sobolev space con-
sisting of the set of p-tensors with s-derivatives in L? will be denoted by H,.
Althohgh we have defined H, only for integer s, one may, in fact, define
these spaces for any real s. For more on the facts needed about Sobolev
spaces, the reader may consult, e.g., Gilkey [Gi].

Proof of Theorem 1. We shall give the proof in the case of the
Laplacian, but the proof carries over to the general L.

The wave operator can be written as [0 =¢&%8t2— V2, where V2:=
— (dd* + d*d) is the usual Laplace operator for forms on V". It is known in
this case of compact V" (see [W], p.256) that V? has an orthonormal
family of eigenforms, {27}, k=0, 1, ..

Vzak=—ikak, 0<(}.0)<ﬂ.1< e

(where the eigenvalue A,=0 occurs only if there are nontrivial harmonic
p-forms on V) and, furthermore, the system of eigenforms is uniformly
complete. The eigenvalues may be degenerate. Expand A” =3 a,(t)x, and
J7 =3 jeo,, where a,(¢) and j, are r-tuples and «, is an r-tuple of eigen-
forms if 4, has multiplicity . Substituting into JA(r, x) = J(x) A(t) we get
the system of differential equations

(1) + Aga (1) =, H(t) (1)

with a,(1)=0 for t<0. For k>0 (ie.,, 4,>0) we get (since a(t)=0 for
t < Q) either a trivial solution (if the Fourier coefficient j, =0) or an
oscillatory solution

a ()= [ H(1)/ A, (1 —cos(t4;%) ]. (2)

A problem can arise if 25 =0, ie., if there 1s a non-trivial harmonic form a,.
The constants j, arise as Hilbert space scalar products (a,, J”) and if J”
has no harmonic part, j,=0. We then get the trivial solution ay(¢)=0. If,
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however, J” has a non-trivial harmonic part, then some j, #0. We then get
a solution

ao(t)=jo H(t) ©°/2 (3)
that grows quadratically in time. Note also that the “electric field”
E=(~1)"dA/ot

would grow linearly in time. We conclude that if J has no harmonic part,
then

A(x, )= ) ar(t)ay, (4)

k>0

where the a’s are the oscillatory functions given in (2) and

A/t ="Y (ju/Al?) sin(1}?)o. (5)

k>0

On the other hand, if J does have a non-trivial harmonic part, A(x, t) is
as above together with a new contribution

Jooo H(t) £7/2.

We shall be finished if we can show that (4) and (5) remain bounded for
all time. We prove that (5) remains bounded; the proof for (4) is similar.
Let >0 be fixed and set

E:=Y (A) " sin(tA*)J, xp) o, (6)

k>0

where again the «’s are orthonormal eigenforms of the Laplacian
Ao, = (dd*+d*¥d)a, =2,a,

on a compact Riemannian V. Let a(4) be the set of eigenvalues and let
A; >0 be the smallest non-zero eigenvalue. Set

S(4; 1) = (4)?sin(14"?) if Az4,
=0 if A<4i,. (7)

Equation (6) can then be written as an operator equation

E=S8(4;1)J. (8)
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It is well known, and easy to check, that if fia(4)— R is a bounded
function, then the operator defined by

flA)u:= Z (1, 0ti) f (A )y

k=0

maps L? into itself with the operator norm of f(4) being given by
SUP,c o IS (). We then have

1A2Ell = | 472S(4; 1)d || = {|S(45 1) 42T |
=||S(4; 1) 41247 V23| <sup [S(4; 1) 472 442
<Jlat= 2],
Also,
IEI=1S(4; Il < sup |2~ Y2sin A% IF) < (A)7 12 I
re[o(d4)—-0]
and thus
I4*2E| + | El < (A4) "2 I1F] + 4¢~ =g, 9)
Recall now the elliptic estimates
1Al <e {fllo+ 14 llo} (ey)
Iflo+ 147 Mo < e I £ 1, (e2)

We also have the Sobolev embedding theorem:
If fe H, and if s> (n/2)+k, where n is the dimension of the compact
manifold ¥, then fe C* and

”.f“oo,k< C3 “f”s’

where || f1l.. . is the sup norm of derivatives of f of order <k.
By the elliptic estimates and (9) we have

IEN, < c{IEI+142EN } < e{(A) 72 I3l + 114© 2| }
S (AN + 14 DRI,

where ¢(4;) now depends on the lowest eigenvalue of 4. From (e,) we now
have

IEY, <cls, 4, V) | JIis -y (10)
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From the Sobolev embedding we then get that if JeH,_ , with
s> (n/2)+k, then Ee C* and

[EN o x <c I,y (11)
In particular, if Je C* ' with s> (n/2) + k, then Ee C* and
HEwa‘.kgc ”JH"A@,S—I' l

We wish to make two remarks about Theorem 1.

First, it is not surprising that A grows when J has a harmonic part. If,
e.g., J itself is harmonic, then J is a solution to the homogeneous wave
equation and we expect a “resonance.”

Second, our conclusion on the time derivative ¢A/é¢t is of special
importance for the following reason. It may be that A is merely the
spatial part of a gauge field 47 =¢” ' A di + A7 on a classical space-time
M"*!'= V" x R. In this case A itself is of no physical significance, but A /¢t
is an ingredient (as we shall see) of the “field strength” F=dA that is of
significance. For example, in the electromagnetic case in which the charge
density vanishes, one may put ¢ =0 and then —CA/dt is the electric field.

2. THE WAVE EQUATION FOR GAUGE FIELDS ON A GENERAL V"

We now turn our attention to the case when the space V" is not
compact. The use of harmonic forms and projections is perhaps then
problematical. In the compact case, the statement that J” has a trivial
harmonic part is equivalent (at least when J is co-closed) to the statement
that the “flux of «J” through each (n—p)-cycle W vanishes. This
restatement allows us to give a version of Theorem 1 in the non-compact
case. We state our results for a gauge-type field, but or course we recover
the usual non-gauge situation by putting ¢ =0.

In a space-time, the exterior differentials d and d, in M =V xR and V,
respectively, are related by d=dr A 0/0t +d. We also let * and » be the
Hodge duality operators in M and V. Then [ =dd* + d*d.

OBSERVATION. Let M"*'= V" xR, with product metric ds?=ds3. — dr*.
Let

Alx, )=¢? " Yx, ) A dt + AP(x, 1)
vanish for t <0 and let

STl =gt P(x, 1) =" P(x, 1) A dt
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be closed, dS =0. Assume that A satisfies the wave equation
(04 = xS. (12)

Then d*A =0 and the field strength F:=dA satisfies the “generalized
Maxwell equations”

dF =0, and d*F=«S. (13)

Proof. From (12) we have Od*4A=d*0A=d**S= ++dS=0. Thus
d* A satisfies the homogeneous wave equation. Since 4 =0 for 1 <0, we
conclude that d*4 =0 for all r. Then d*F=d*d4 = T A =«S.

We remark that Giinther [G7], has vsed the wave equation to study
solutions of the generalized Maxwell equations. We are more concerned
with studying the wave equation via Maxwell’s equations.

THEOREM 2. Let TDA7 =xS"* 177 where dS=0. Assume that d*A =0
(e.g., it is enough, from Observation 1, to assume that A =0 for 1 <0). Then
if W"=2 is a transversally oriented cycle on V" (i.e, a cycle of “even kind”
in the sense of de Rham)

djdt | «F=+ j ivaS. (14)
4 W
In particular, if a “current flux is maintained through W, ie.. if

{
j dt ( ipor S — as [ — o,
0 YW

then
J *F— 4+ ¢ as t— .
W

Proof. As we shall see, the proof (as in [F,1]) is an immediate
application of the generalized law of Ampere-Maxwell.

As in electromagnetism, we may write out the genealized Maxwell
equations in their usual spatial form (see e.g., [F, 2]). We start out by
expressing F”*'=E” A dt+ B’ in terms of the “electric” and “magnetic”
form fields. From 47 =¢" ' A di+A” and F=(dt A /6t +d) A one gets

B’*'=dA” and E’=dg¢’ '+ (—1)" 2A7/0t.

There will be a number of sign differences from the usual expressions in
electromagnetism, where n =3 and p=1;e.g., ( —1)” replaces the usual (—1)
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in the above expression for E. These sign differences play no role in our
problem. From dF =0 we get

dB = 0 (absence of magnetic monopoles)
and
dE = (—1)”? ¢B/dt (Faraday’s law).
If we define the spatial duals
D' 7=+E7 and H" 7 '=uB7*
then one gets
*FPH = (—1yH" 27 adi+(—1)7*' D" 7.

For calculations such as these it is helpful to note the relation between the
spatial and space-time duals

«BY=(—1)" (+BY) A dt
«(E? A dt)=(—1)"*'E.

The second set of Maxwell equations d*FP ! =+8"*! "7 =x(c—j" 7 A dt)
yields

dD=(—-1)y*"'¢ (Gauss’ law)
and
dH=(—1)n+Yr+byy aD/or (Ampere-Maxwell).

From Ampere-Maxwell we get, since ¢ W =0,

0=f~wH=deH= + jwj+jwal)/az

a

or
d/derD:i jwj. (15)

The proof is then completed on noting that {, *F= 4 {, D (since W is
space-like, ie, =0 on W) and j=(—=1)""**"i,,,S.

Theorem 2 gives a geometric form of “resonance” condition that is
applicable even in non-compact manifolds ¥”. In Theorem I, when this
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resonance condition was not satisfied, we were assured that the fields would
remain bounded when the source J” (which corresponds to «j” ~”) has step
function time dependence. We suspect that this behavior holds also in the
non-compact case:

Conjecture. 1f the current has a Heaviside time dependence, compact
support in V", and zero flux through each cycle W” 7, then A and 0A/0t
remain bounded for all r.

3. ENERGY AND THE ELECTROMAGNETIC ANALOGY

We remark that the growth of the waves, as described in Theorem 2, can
be deduced from Stokes’ theorem without introducing the electromagnetic
analogy. We hope, however, that this analogy, together with over a century
and a half of electromagnetic investigations by physicists, engineers, and
mathematicians, might lead to increased insight into the behavior of waves
of all sorts. For a first example, note that from the wave equation (12),

CI(@” ' Adi+AP)=+8"*1-7
=(=1) [e6" = P(x, )] A dt+(—1)"7 [%"2(x, )]
We conclude
O¢” ' =(=1)"sg"*'*
OA”=(=1)""7[+j"""(x, 1)]

(16)

and
OB ' =dOA”=d(—1)""7 [+" ?(x, D].

Thus the “magnetic” field B” ! itself satisfies a wave equation, just as in
electromagnatism and the source on the right hand side is harmonically
trivial. Thus

THEOREM 3. If M" is compact and if j has Heaviside time dependence,
then B**' and dB?*'/0t are bounded fields for t>0, independent of the
growth of EX.

As with Poynting in electromagnetism, we may compute, for any
compact region U on the spatial manifold ¥,

d/dt[%j.vEA‘E+BA:B]=(—1)”J. 'E/\H-i-(—l)"j‘.j/\E. (17)

oL
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We may then interpret the non-negative integrand on the left-hand
side, 1/2[E A +E+ B A «B] as the energy form. If (—1)""'E A H is the
Poynting energy flux or momentum form, then

dg/dz=(-1)"j inE
.

represents the rate at which energy is supplied to the field by the current.
Consider the general wave equation (JA4”=#$""'"% envisioned in
Theorem 2, but on a compact V. Each of the fields ¢ and A satisfies wave
equations (16). We may apply Theorem 1 to both fields, each with its
Heaviside time dependence. We have seen in Theorem 1 that a Heaviside
current " ~” with no harmonic part, in a compact V", will lead to a poten-
tial A” which, together with its time derivative, is bounded for all 7. From
Gauss’ law, ¢ is essentially dD, and so 6 has no harmonic part;
consequently ¢ and d¢/ét are also bounded. Thus, since E” =d¢ + ¢A”/ét,
we have, for 1>0, d&/di= + [, jn (d¢ +3A”/0t) which is of the form
+{pdjAdxdidif,jA A, since j is independent of 7>0. Furthermore,
“conservation of charge,” i.e,, dS=0, has the familiar form de/ér + dj =0,
which, since ¢ is independent of time, gives dj=0. We conclude that
dé/dt = id/dtj,j A A for all 1>0. Since j A A is bounded for 1 >0, we
may conclude the following.

THEOREM 4. Let A’ satisfy the wave equation (1A =S on the compact
VroIf St P =gt r(x, 1)~ P, t) A dt is closed with Heaviside time
dependence and if j has zero flux through each cycle W" =7, then only a finite
amount of work [, j A A is needed to maintain the constant current for all
time t> 0!

Consider a wire loop in a V* carrying a current. If the loop bounds as
a real 1-cycle, e.g., if V' is simply connected, there will be no current flux
through any 2-cycle. Thus

COROLLARY. Let a perfectly conducting wire loop C bound as a real
1-cycle in a closed V3. Then only a finite amount of energy expenditure is
required to maintain a constant current in C for all 1> 0.

We get a result similar to Theorem 4 for the solutions of the generalized
wave equation considered in Theorem 1, 8*A/0t*= LA +j, where L is
elliptic, self-adjoint, and non-positive. One defines the energy of a spatial
p-form solution A by

& := 1/2[(2A/d1, 8A/61) — (LA, A)] (18)
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since & >0 and
dé&/dt = (j, 6A/0t)

vanishes when there is no source.

The electromagnetic analogy may be used also in the following way.
Theorem 2 tells us that a non-trivial current flux (with Heaviside time
dependence) through a cycle will lead to an electric flux through this cycle
that grows linearly with time. Suppose we consider now a current
i" P(x, t)=j"""(x) 6(r) that has a Dirac §(¢) time dependence instead of a
Heaviside dependence. From Ampere-Maxwell (15) we see

THEOREM 5. If " P(x,t)=}""P(x) (1), then for any transversally
oriented (n—p) cycle W,

J prrn=x] i)

is constant for t > 0.

Thus a &(t) current through W yields an “electric” field that is trapped
by the topology, ie., the cycle W. For example, in electromagnetism, if W?2
is the throat of a wormhole, i.e., a closed surface that does not bound, then
by passing a charged particle through W we change the flux of D through
W and this flux remains constant until some other charge passes through.
We have “charged” the wormhole!

4. LINFARIZED SHALLOW WATER, SOUND, AND ELASTIC WAVES

Consider a “planet” whose entire surface (which may be a surface of
arbitrary genus) is covered with a thin ocean of water. Measure the height
{ of the ocean surface, the (variable) depth /& of the ocean floor, and
the height z of a typical water particle all from the surface M? of the
undisturbed ocean, assumed undisturbed for ¢t <0. We shall assume that the
effects of rotation are negligible. The linearized version of the shallow water
equations yields a “wave equation” for {

/61> — div[ (hg) V{1 = divIAV(po) — hf 1. (19)

Here div and V are the surface divergence and gradient operators
associated with the surface M? g is the acceleration due to gravity at
points of M? (assumed to be a slowly varying function of the local coor-
dinates (x, y) on M?), p, is the atmospheric pressure at the ocean surface
(a function of x and y), and f is an external horizontal force (assumed
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independent of z). This equation can be derived in a manner similar to
Lamb’s derivation in [L, section 189 and 198] for a spherical Earth. This
equation is used in discussing the tides; we shall not discuss this because
time dependence of the tidal forces f plays a key role. We envision, rather,
waves caused by a sudden localized change in atmospheric pressure p, and
by other external forces f. It is believed that such atmospheric disturbances
have in the past been the cause of catastrophic waves in lakes (see [S,
p.4237). As mentioned above, we are concerned, as in Noah’s era, with a
sea that completely covers the planet’s surface. In such a situation of total
immersion, we have gh>0, the operator {+» L({):=div[ghV{] is self-
adjoint, elliptic and non-positive, with kernel consisting of constant
functions, and thus the generalized version of Theorem 1 applies. Since
div[AV(py)—hf] is Hilbert space orthogonal to the kernel of L, we
conclude

THEOREM 6. If f and the atmospheric pressure p, have smooth spatial
distributions with Heaviside time dependence, then the resulting water waves
will be of bounded height for all time.

Note that the linearized equation for the propagation of sound waves in
a 3-manifold is of the form

9%s/6t — *V2is = —divf

(see [L], p.502). This again has a harmonically trivial source. We
conclude that the “condensation” s in a compact }* with Heaviside source
is bounded for > 0.

The linearized equations of elasticity for a 3-dimensional body of
constant density p are (see [M, H] p. 238)

pi=Div(c-Vu)+b (20)

pi = (" u )+ b

Here u is the displacement vector, ¢ is the elasticity tensor, b is the external
force field, and | denotes covariant differentiation. These equations make
sense in any Riemannian manifold. As they stand, these equations are not
in the form of a standard vector wave equation, and our previous results
do not apply directly.

Assume that 73 is a compact Riemannian manifold of constant sectional
curvature K= 11 or 0; thus V is locally isotropic. It makes sense then to
consider V' as made of an isotropic elastic substance. This means that the
elastic constants ¢ are of the form

= p(g7g* +g"g) + Ag"g,
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where u >0 and 4 are the “Lamé constants.” If then one assumes, as usual,
that the “modulus of compression” (34 + 2u} is positive, then the operator
u — Ku := Div(c - Vu) is a self-adjoint, non-positive, elliptic operator whose
kernel consists of Killing vector fields, i.e., infinitesimal isometries ([ M, H,
pp- 240, 321). (This is to be compared with the Laplace operator on
1-forms, whose kernel consists of the harmonic forms.)

The generalized version of Theorem 1 will apply to this situation, with
globally defined Killing fields taking the place of harmonic ones. We
conclude

THEOREM 7. If V? is compact with constant curvature, and if the external
force 1-form b has Heaviside time dependence and is Hilbert space
orthogonal to the space of Killing fields, then the displacement u remains
bounded for all time. In particular, this is always so if V* has negative
curvature, since there are then no global Killing fields (Bochner's theorem).
On the other hand, if' b has a non-trivial component along the Killing fields,
then u will be of the form of a bounded function plus a function growing
quadratically with time.

In local coordinates Eq. (20) becomes
pii, = u(Vu), + (A+ p) ufy, + 2uu’R, + b, (21)

where R,, =2Kg,, is the Ricci tensor of the locally isotropic space V.
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