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A CAMERON-MARTIN TYPE QUASI-INVARIANCE THEOREM
FOR PINNED BROWNIAN MOTION ON A COMPACT
RIEMANNIAN MANIFOLD

BRUCE K. DRIVER

ABSTRACT. The results in Driver [13] for quasi-invariance of Wiener measure
on the path space of a compact Riemannian manifold ( M) are extended to the
case of pinned Wiener measure. To be more explicit, let h: [0, 1] — ToM
be a C! function where M is a compact Riemannian manifold, 0 € M is
a base point, and T, M is the tangent space to M at o € M. Let W(M)
be the space of continuous paths from [0,1] into M, v be Wiener measure
on W(M) concentrated on paths starting at 0 € M, and H;(w) denote the
stochastic-parallel translation operator along a path @ € W(M) up to “time”
s. (Note: Hs(w) is only well defined up to v-equivalence.) For w € W(M)
let X"(w) denote the vector field along « given by X?(w) = Hs(w)h(s) for
each s € [0, 1]. One should interpret X” as a vector field on W(M). The
vector field X* induces a flow S%(¢, -) : W (M) — W (M) which leaves Wiener
measure (v) quasi-invariant, see Driver [13]. It is shown in this paper that the
same result is valid if A(1) =0 and the Wiener measure () is replaced by a
pinned Wiener measure (v¢). (The measure v, is proportional to the measure
v conditioned on the set of paths which start at 0 € M and end at a fixed end
point e € M.) Also as in [13], one gets an integration by parts formula for the
vector-fields X# defined above.

1. INTRODUCTION

Let u denote standard Wiener measure on W (R?) = C([0, 1], R?), and
H denote the set of & € W(R?) such that & is C! and A(0) = 0. The
classical Cameron-Martin theorem states (see Cameron and Martin [7]) that
uh = u(- — h) is equivalent to x4 and the Radon-Nikodym derivative of ut
with respect to u is

h 1 1
(1.1) %(w):exp{/o h(s)~dw(s)—% A |h(s)|2ds}.

There has since been many extensions to this theorem, see for example Cameron
and Martin [8, 9], Girsanov [18], Gross [19], Kuo [27, 28], Kusuoka [30-33],
and Ramer [45]. There is also the group of extensions of the Cameron-Martin
theorem used in the study of loop groups; see Albeverio and Hoegh-Krohn
[2], Frenkel [16], Gross [22], and Malliavin and Malliavin [35]. In Driver
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376 B. K. DRIVER

[13] it is shown that the classical Cameron-Martin theorem extends to the case
of compact Riemannian manifolds (see Theorem 3.1), which includes Wiener
measure on the path space W (G) of a compact Lie group G. The purpose of
this paper is to extend the results in [13] to the case of “pinned Wiener measure”
on a compact Riemannian manifold A ; see Proposition 3.3 and Theorem 3.4.
We also derive an integration by parts formula for “/A-derivatives”; see Theorem
3.13.

2. NOTATION AND BASIC PROPERTIES OF PINNED BROWNIAN MOTION

In this section we setup some notation and review a number of prerequisites
for this article. The reader may also wish to consult Driver [13] for a more
detailed exposition of some of the material in this section.

2.1. Differential geometric preliminaries. In this paper the data (M?, g, V, 0,
e, u,) will be fixed, where M is a compact connected manifold (without bound-
ary) of dimension d, g is a Riemannian metricon M, V isa g-compatible
covariant derivative, o and e are fixed points in M, and u, is an orthonor-
mal frame at 0 € M. (We view u, as an isometry from RY to T,M, the
tangent space to M at o.) The symbol V will also be used to denote the the
gradient operator acting on functions on M. The orthogonal frame bundle over
M will be denoted by O(M) and n: O(M) — M will be the fiber projection
map. Throughout this paper the covariant derivative (V) is always assumed to
be g-compatible and “torsion skew symmetric” or TSS for short. The connec-
tion (V) is said to be torsion skew symmetric if the torsion tensor (7') satisfies
g(T(v,w),w)=0 forall v, we T,,M and m € M.

The Laplacian (A) with respect to (V) is the second order differential op-
erator acting on the smooth functions f € C*°(M) given by Af = spVdf =
Y {EiEif — df(VEE;)}, where {E;}", is a local orthonormal frame.
We recall from Driver [13] that this Laplacian is the same as the Levi-Civita
Laplacian due to TSS condition on (V).

The Riemannian distance on M will be denoted by d(-,.). That is for
X, y€eE M, d(x,y) = inf, fol |o’(s)| ds, where the infimum is taken over all
C!-paths o: [0, 1] » M such that ¢(0) = x and o(1) = y. I have also written
|o’(s)| for (g{a’(s), a’(s)))'2.

The standard horizontal vector fields on O(M) will be denoted by {B(a)},cge
—recall that B(a)(u) is by definition the horizontal lift of the tangent vec-
tor ua € TppyM to T,0(M). The fundamental 1-form on O(M) is the
Ré-valued 1-form (6) on O(M) given by 6(u') = u~'m.u’, where u(s) is
a smooth path in O(M). The connection 1-form is the so(n)-valued 1-form
on O(M) defined by w(u') = u='Vu/ds, where Vu/ds denotes the covari-
ant derivative of u along o = mou. (Here Vu(s)/ds : RY — Tyyus))M and
Vu(s)a/ds = V(u(s)a)/ds for all a € R?))

It will also be convenient to define the “equivariant” form of the curvature
and torsion tensors. These forms are given by Q,(a, b) = u~'R{ua, ub)u €
so(n), and ©,(a, b) = u~'T{ua, ub) € R?, where R is the curvature tensor
of (V), T is the torsion tensor, u € O(M), and a and b are in R?. For
more details on this notation see Driver [13] and Kobayashi and Nomizu [26].
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2.2. Heat kernel estimates. This section collects a number of estimates involv-
ing the heat kernel which will be needed in the sequel. Let ps(x, y) be the ker-
nel (with respect to the Riemannian volume form on M) of the heat operator
e*A/2 | Alternatively, ps(x, y) is the value at x € M of the fundamental solu-
tion to the heat equation 8 f/ds = $Af with initial condition f{0, +) = &,(-).
We summarize the estimates that will be used in this paper in the following
theorem. '

Theorem 2.1. There are constants € >0, K >0,and C;>0 fori=1,...,4
such that the following estimates hold for all x,y, andee M, and 0 <s < 1:
(2.1) es™42e=Crd(x.el'/s < |p (x, e)| < Ks~4/2e=Crdx.0)'/s

(2.2) |VxInps(x, e)| < Cs3[d(x, e)/s + 1/V5],

(2.3) 0 < ps(x, €)/ps(y, €) < eCdx2Is,

Furthermore, the kernel ps(x, e) has the asymptotic expansion valid for x near
e and s near zero:

(2.4) ps(x, €) = (2ns)~le~d(x:9°/2511  O(s)}.

Proof. The estimates in (2.1) are well known and can be found in a number of
references, see for example, Li and Yau [34], Cheeger and Yau [10], Davies [11],
Hamilton [23], Setti [49], and Varopoulos [54, 55]. Probabilistic expressions for
the left member of (2.2) may be found for example in Bismut [4], Jones and
Leandre [25], and Norris [43].

For the purposes of this paper the author has found the Hamilton paper most
useful. Equation (2.2) is an easy consequence of the results in [23] and equation
(2.1). Indeed, Corollary 1.3 in [23] asserts that there are constants 4 and B
depending only on (M, g) such that

5|V logps(x, €)? < Alog(B/s*?p(x, e)).

It is now trivial to conclude (2.2) from this estimate and the lower bound in
(2.1).

To prove (2.3) let o: [0, 1] - M be a smooth path such that ¢(0) =y and
o(1) = x. To simplify notation let /() = logps(a(t), ). Then it follows from
(2.2) (with C4 sufficiently large) that

1 1
(1) - 1(0)] < /0 [V logpi(o(t), €) - (0] dr < /0 6(0)|dt,

where we have used the fact that d(-, e) is bounded since M is compact. Now
take the infimum of the right-hand member of this last inequality to find that

[log(py(x, €)/py(y, )] = logpy(x, €) ~ logy(y, )] < 2d(x, ).

Equation (2.3) now easily follows.
Finally the asymptotic expansion in (2.4) is well known and can be found in
a number of references; see for example [18, 47]. O
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2.3. Brownian motions and pinned Brownian motions. We start this section with
some measure theoretic notation and conventions. Suppose that (Q, {#}, %)
is a filtered measurable space, P and Q are measures on (2, %), and f :
Q — R is a ¥ -measurable function. The measures P and Q are said to be
equivalent if P and Q are absolutely continuous with respect to one another.
If p=dQ/dP isthe Radon-Nikodym derivative of of Q with respect to P we
will write Q = p - P. The integral [, f(w)dP(w) will often be denoted simply
by P(f). More generally if Z C & is a sub-sigma field of ¥ then P(f|#)
will denote the conditional expectation of f relative to # and P.

Remark 2.2. We will find it convenient to work with filtered measure spaces
(Q, {%}, F, P) where P is a finite but not necessarily a probability measure.
In these cases we say that a process {X;} is an (Q, {#}, ¥ , P)-martingale
or Brownian motion if {X;} is an (Q, {%}, % , P(Q)~!P)-martingale or
Brownian motion respectively.

Suppose that Q is any manifold and that g, € Q is a fixed base point. Let
W(Q) = C([0, 1], Q) be the set of continuous paths from [0, 1] to Q. Let
Wg(Q) be the subset of paths in W(Q) which start at g,. Given a function
¢:Q— W(Q) and s € [0, 1], let ¢;: Q — Q be defined by ¢;(w) = d(w)(s).
Clearly to specify ¢ it suffices to specify ¢; for each s € [0, 1] in such a way
that s — ¢s(w) is continuous for each w € Q. Finally, we denote by ¢, P the
measure on W (Q) such that ¢.P(4) = P(¢~1(4)) for all 4 C W(Q) such
that ¢~1(4) € . That is to say ¢,P is the law of ¢ under the measure P.
For the rest of this section we restrict our attention to Q = M and ¢, = o.

For each s € [0, 1] let Z;: W(M) — M denote the coordinate functions
given by XZ(g) = a(s). (Note under the above convention, X can be identified
with the identity map from W(M) to W (M).) Let £° be the o-algebra on
W (M) generated by the coordinate maps {Z, : u < s}, and Z° be the o-
algebra Z7°. We will refer to £° as the raw o-algebra and {Z?]s € [0, 1]} as
the raw filtration on W (M). The next theorem supplies the definition and some
of the basic properties of Wiener and pinned Wiener measure on (W (M), £°).

Theorem 2.3. There exist two finite measures (v) and (v,) on (W(M), Z°)
which are uniquely determined by specifying their finite dimensional distributions
as follows. For all k € {1,2,3,...}, partitions 0 = 55 < 51 < 8§ < -+ <
Sk—1 < S =1 of [0, 1], and for all bounded measurable functions f: M* - R;

V(f(Zsys e Bg))

2.5 .
(2.5) =/Mkf(x1,...,xk>£[1pm,(xi_l,x,.)dxl,,.dxk,
and

Ve(f(zsl s eee s Zsk))
(2.6)

k
=[‘lk_lf(xl’ cee ’xk_l’e)HpAsi(xi—l’xi)dxl"‘ka_l,

i=1
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where xo = 0, As; =5, —Si_1, DPi(x,y) is the heat kernel, and x; = e in
(2.6). (Informally v.(-) = v(-|Z; = e) -pi(0, e).) Furthermore the two measures
(v) and (v.) enjoy the following properties:
(1) Both measures v and v, are concentrated on the set of Hélder contin-
uous paths for any Hélder coefficient o < 1/2.
(2) The two measures v and v, are equivalent on Z° for each s < 1. In
fact, vo(F) = v(p1-s(Zs, e)F) for all bounded Z?-measurable functions.
(3) The process {Zs}o<s<i is an M-valued Brownian motion with respect
to the filtered probability space (W (M), {£°}, Z°, v). Recall that this
means for all f € (C>®(M)), the process

2.7) M{ = (%)~ (%) - /0 CAf(Ee)ds'

is a martingale.

(4) The process {Zs}o<s<1 is an M-valued semimartingale with respect to
the filtered probability space (W (M), {Z?°}, &°, v,.). Furthermore for
all f e C>®(M), the process

N = S5 - 150 - 5 [ M) ds
(2.8) 0

—/0 df(Vlogpi_s(Zs , €))ds’

is a martingale.

Remark 2.4. Notice that the measure v is concentrated on W,(M) and the
measure v, is concentrated on the set of pinned paths in W,(M) which end at
ecM.

Proof. Most of the results in this theorem are standard. Item 4 goes under
the theory of Doob’s “ A-transformation”; see Doob [12]. To my knowledge the
proof that N/ is a martingale for s € [0, 1] including s = 1 was first given by
Bismut in [4]. For a more general treatment of this issue see Yor [56], and the
related articles in the same lecture notes. The reader may also wish to consult
Jones and Leandre [25].

For the sake of completeness I will sketch the proof of this theorem. There
are of course a number of different proofs for each part.

The first step is the proof of existence of v and v,. I will only prove
the existence of v, since the argument for v is similar. Using Kolmogorov’s
extension theorem (see for example [53]) it is easy to conclude there exists an
M-valued process X; on some probability space (Q2, ¥ , P) such that finite
dimensional distributions of {X;} agree with those proposed for v, in (2.6).
If we can show that the process {X;} has a continuous version (which will still
be called X;), then the law of the process {X;} will be the desired measure
v, . To this end we will apply Kolmogorov’s lemma, see for example [44, 46]
or [53]. In order to use this lemma it is necessary to estimate P(d(Xj, X)),
where 0 < s,t <1, and k is a positive integer. (The following argument
is analogous to the proof of Proposition 2.1 in Epperson and Lohrenz [15].)
We consider the case where § < s <t < 1, the other cases can be handled
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similarly. For s and ¢ in this range we have
(2.9)
PAXs, X)) = [ pilo, 5, YIp1-ily, €)d(x, )< dxdy

<C / (t = 5)~H2e=<dx2/=9p, _(y, e)d(x, y)kdxdy,
M2

where we have used the Gaussian upper bound in (2.1) twice. Now concentrate
on estimating the x-integral. By compactness of M, it is easy to see that there
isan € > 0 (independent of m € M) such that the (geodesic) exponential map
(exp) restricted to T,,M is a diffecomorphism on B,,(¢)—the ball in T,,M
centered at 0, € T,,M of radius €. For v € T,M, let p,(v) denote the
density of the pullback of the Riemannian volume form on M by exp,, with
respect to the volume form on 7,,M. Clearly p,,(v) is a continuous function
on the e-neighborhood of the O-section of TM. Therefore, by reducing € if
necessary we may assume there are constants 0 < a < b < o such that
a < pm(v) <b forall me M and v € By(€). Using these comments and
passing to polar coordinates one finds (for § > 0) the estimate

/ 6—d/2 . e—cd(x,y)z/dd(x’ y)k dx
M

< 6—d/2e—cd(x,y)2/6d(x , y)k dx + 6—d/20(e—ce2)
(2.10) By(e)

< K/e 6_d/2e—cr2/6 rk pd-1 dr + J_d/ZO(e‘CfZ/‘S)
0
< C(k)sk/?

where the constant C(k) only depends on k. Combining 2.9 and 2.10 with
0 =t — s yields upon integrating out the y-variable (using the symmetry of
ps(x, y) and the fact that [, ps(x, y)dy =1 for all x € M)

(2.11) P(d(X;, X,)¥) < C(k)|t — s|*/2.

By similar arguments this last estimate is easily seen to be valid for all s and
t in [0,1]. It is now an easy matter to apply Kolmogorov’s Lemma to conclude
there is a continuous version of {X;} and in fact this version is a-Holder
continuous for all a < 1/2. This proves the existence of v, and also item 1 in
the theorem. The same techniques also work for the measure v. The unicity
of the measures v and v, satisfying (2.5) and (2.6) respectively follows easily
from the fact that “smooth cylinder functions” of the form F = f(Z , ..., Z,)
generate the o-algebra £°.

It is clear that v, (F) = v(p—s(Zs-, €)F) when F is a smooth cylinder
function on W (M) of the form F = f(Z,, ..., Z;,) with 0 < sy, ..., 85 <
s < 1. Since such functions generate Z°, it follows that v, = p;_((Z, +) - v
on Z¢ forall s < 1. This proves item 2.

Item 3 in the theorem is well known from the theory of Markov processes, see
[53]. Indeed, using the the Markovian property of v one computes for s > ¢,
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F a bounded measurable Z°-measurable function, and f € (C®(M)) :

LV EIF) = Sv((e=2 1) (2 F)

= LU AL (E)F) = v (éAﬂzs)F) .

Integrating this last expression from ¢ to s shows that
|
vm! - 1) =v ({120 - 120 - [ Jar@nasF) <o,
s

which shows that M is a martingale.
More generally, the computation done above can be extended to the case that
f is a function of (s, x) € [0, 1) x M. One then finds for s > ¢ that

d o 1
(212) Eu(f(s,zs)-F)=u((&+§A)f(s,2s)-F).
Now let A(s, x) = pi_s(x, e). Then h satisfies 0h/ds+ SAh =0 on [0, 1) x
M . Hence using (2.12), for s > ¢ one computes

(2.13)
TV EIR) = Zvhis, T SEIF) = v (( 55+ 34) his. Z)AEIIF )

—y ([Vh(s, %) - V(E) + hs, Zs)%A f():s)] F)
- ([v logh(s, 2.) - V(%) + 34 f(Zs)] F) .

It now follows by integrating (2.13), as was done for M/, that N/ defined in
equation (2.8) is a martingale for s < 1. Because of the estimate (2.2) and item
1 of this theorem, it is clear that the integral in (2.8) is absolutely convergent
ve-a.e. even for s = 1. Therefore N/ is a local martingale for s € [0,1]. We
have already seen that v,(d(Z;_s, e)¥) < C(k)(1 — 5)*/2; see equation (2.11).
Using this estimate and the gradient estimate (2.2), one easily shows that |st |
is bounded by a fixed function (g) which is independent of s and satisfies
ve(|gl*) < C(k, f) fol(l —5)7k/2 < 5o provided that k < 2. Therefore, N/ is
in fact a uniformly integrable martingale on [0, 1]. O

2.4. Filtration technicalities. For technical reasons when doing stochastic calcu-
lus it is convenient to work with filtered probabilities spaces (Q, {%}, Z , P)
which satisfy the “usual hypothesis.” That is # should be complete with re-
spect to P, % should contain all P-null sets, and the filtration {%;} should be
right continuous. Since the two measures v and v, are not equivalent with re-
spect to one another on £, it is not possible to complete (W (M), {€°}, £°)
in such a way that the usual hypothesis will hold simultaneously for both mea-
sures v and v,. However for our purposes, it will suffice to have the usual
hypothesis hold with respect to the measure 7 = v + v, . We recall the follow-
ing standard augmentation process.
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Definition 2.5. Let (Q, {%}, ¥ , P) be a filtered measure space. The comple-
tion of & with respect to P is denoted by #F. The measure P extended to
FP will still be denoted by P. Let .#F denote the P-null sets in F* and
FFP =0(F UNTP), the augmented filtration.

In order to simplify notation we write .#* for /7, & for (£°)”, and %
for (£°)”. Since v and v, are absolutely continuous with respect to 7, it
follows that both » and v, have natural extensions to Z. These extensions

will still be denoted by v and v, respectively.

Proposition 2.6. Using the above notation:

(1) The o-algebra &; may alternatively be described as &, = {A C W(M) :
3B € Z° > AAB € ¥V}, where AAB = (A\ B)U(B\ A).

(2) The measures v, v,, and 0 are equivalent on Z; forall s < 1.

(3) The o-algebras Z; for s < 1 are complete with respect to both v and
V.

(4) The filtration {Z;}o<s<1 is right continuous.

Proof. The first three items in the theorem are routine and left to the reader.
The last item is well known in Markov theory and I will only briefly sketch the

argument.
Let s <t be in [0, 1], and assume that Z is a bounded smooth cylinder
function of the form Z = f(Z,,..., %, %, ..., Zs,,), Where 0 = s5; <

53 <0 <8 =8 < Sgy1 <0 < Sy = 1. Iclaim that v(Z|Z7) = v(Z|5°) v-
a.s. To see this choose ¢ € (s, Sxy1), and compute v(Z|%?°) using the Markov
property to get

V(Zl‘?to) = g(le ERCE ) Zsks Zl; t),

where
n
g(xl,...,xk,yo;t)E/M SO s Xk Vs oo ) [[0as Wit s vi) dyi)
" i=1

As; = Siyx — Sipk—y for i > 1, and As; = s¢,; — t. Because the heat ker-

nel is smoothing the function g(x;, ..., X, ¥o; t) is still smooth in all of its
variables. Therefore
V(Zlgis‘-)i—) =l}f?V(Z|%o) = g(zsl 5 s zska ZS: S) =V(Z|?;O),

for all smooth cylinder functions Z. By a monotone class argument one
concludes that v(Z|Z%) = v(Z|%?) v-as., where Z is any bounded Z°-
measurable function. From this observation and item 1 of this proposition, it
follows that v(Z|%;,) = v(Z|%;) v-as. for all bounded Z-measurable func-
tions Z and s < 1. Soif s <1 and Z is a bounded %, -measurable function,
then Z =v(Z|%;,) =v(Z|%). Hence Z is equal to a Z;-measurable function
up to a v-null set in &, . By item 2 one concludes that Z is equal to a Z;-
measurable function up to a 7-null set. Therefore, Z is in fact Z;-measurable,
because (W(M), {&}, Z, v) satisfies the usual hypothesis. O

2.5. The stochastic development map. The reader who finds this section too ab-
breviated should consult §8 of Driver [13]. In this section I will only remark
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here on the minor modifications needed to generalize the discussion in [13] to
cover the applications needed in this article.

We will need some more notations. For s € [0, 1] let By: W(RY) — R4
denote the coordinate map B,(w) = w(s), and #° be the g-algebraon W (R?)
generated by B, for ¢t < 5. (Again #° will be called the raw filtration and
F°=%° will be called the raw c-algebra on W (R%).)

Definition 2.7. Relative to the filtered probability space (W(M), {&},Z, 7),
let ¥: W(M) — W(R?) be a fixed version of [60(dHy), where H; is the
stochastic horizontal lift of {Z;} starting at ¥, and dH denotes the Stratono-
vich differential of H.

Remarks 2.8. (1) Because the coordinate process {X} is a semimartingale rela-
tive to both of the measures v, and v it follows that {Z;} is a semimartingale
relative to the measure o also. This follows easily from Theorem 3, p. 45 of
Protter [44] and the definition of an M-valued semimartingale.

(2) Because v and v, are absolutely continuous relative to 7, it follows
that ¥ is a version of J 6(6H) where all stochastic integrals and differential
equations are taken with respect to either v or v,.

Definition 2.9. The measures [, Me, and A& on (W(R?), F°) are defined to
be u = ¥, vV, U = ¥, Ve, and 1 = 9,0 = = U+ p. To simplify notation we
write & for (F°)*, % for (#°)*, and N for WP

It is well known that u = P, is nothing other than the standard Wiener
measure on W (R?); see for example Emery [14, Proposition 8.26].

Proposition 2.10. Let ¥ : W (M) — W(R?) be as above, then:

(1) The measures u, p., and p are all equivalent on % for each s < 1.

(2) For each s < 1 the o-algebra % is complete with respect to 1, ue,
and Q.

(3) The filtration {%} is right continuous.

(4) The map ¥: W(M) - W(RY) is &, | F-measurable for all s € [0, 1].

(5) The coordinate process {B;} on W(RY) (Bs(w) = w(s)) is a semi-
martingale relative to the filtered measure space (W(M), {F}o<s<i»
F , u*), where u* is either u, u,, or fi.

Proof. Ttems 1, 2, and 4 are easy and will be left to the reader. The proof of
item 3 is the same as the proof of item 4 in Proposition 2.6. The proof of item
5 follows from the “good integrator” definition of a semimartingale (see [44, p.
44]). See Lemma 8.5. of Driver [13] for more details. O

Remark 2.11. We will use Girsanov’s theorem in Theorem 2.13 to show that
martingale part of By relative to (W (M), {F}o<s<1>F , le) is again a Brown-
ian motion.

Theorem 2.12. Relative to the filtered measure space (W (R?), {%}, F , i), let
¥ : W(R?) — W(M) be a fixed version of oI, where I is the solution to
the Stratonovich stochastic differential equation dI; = B(J0B;)(I;) with initial
condition I, = u,. The function ¥ is %|Z;-measurable for all s € [0, 1] and
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the function ¥ : W(RY) — W(M) is a measure theoretic isomorphism with
inverse ¥ in the following sense:

{¥oP£id} =0 and p{¥Po¥+#id}=0.

Proof. The proof is only a minor modification of the proof of Theorem 8.3 in
[13]. O

Theorem 2.13. Let ¥ and ¥ be as in Theorem 2.12 and set
by = ':I}s =B;o \’I\’,

S
as E/ H;'Vlogpi_g(Zy , e)ds’,
0

and S
A = / ISTIVIngl_SI("PSI s e) ds'.
0

Then Bs = b; —a; and Bs = B; — As (for s € [0, 1) are R?-valued Brown-
ian motions relative to the filtered probability spaces (W (M), {Z;}o<s<1, Z , Ve)
and (W(R?), {F}o<s<1» F » Ue) respectively.

Proof. In order to simplify notation set z; = p;_((Zs, ). As has already been
pointed out, it is well known that b, = ‘f’s is a Brownian motion relative the
filtered probability space (W (M), {&}o<s<1, &, V). Since v, = p1_4(Zs, €) +
v=2z-v on g forall s <1, we know by Girsanov’s theorem (see [44])
that B, = b; — fos z;ld[z,, bs] is a v.-martingale for s < 1. We now need
to compute dz;. First recall that ¥ = Wo b and that H = T o b v-as., so
that dH = B(db)(H). See §8 of [13] for more details. To simplify notation let
h: [0, 1) x O(M) — R be given by h(s, u) = p,_s(n(u), e). Notice because
Ds(x, e) is a solution to the heat equation on M that (8/ds + %Z;i:l B)h =
0, where B; = B(e;) with {e;}%, the standard basis on R¢. Because z; =
h(s, Hy) and the above remarks we find

dz; = B(db)(Hy)h(s, -) = H'Vp,_(Z, €) - dby,

where we have used B(a)(u)h(s, ) = u~'Vp,_s(n(u), e) - a. (We are writing
a-b for the standard dot product on R¢.) Thus

z;7'dzsdbs = H7'Vlogp,_s(Zs, e)ds

and hence, with a; = [; H;'Vp,_¢(Zy , e)ds’, it follows that B, = b; — a; is
a v.-martingale at least for s < 1. Because v and v, are equivalent on %,
for s < 1, it follows that B; and b, have the same quadratic variations, i.e.
[Bi, B{]1 = d;;s. Therefore by Levi’s theorem (see for example [44]) B, is an
R¢-valued Brownian motion relative v,. We already know a priori that b, is
a v,-semimartingale, so that the decomposition of » into B + a must be valid
for s =1 also.

Alternatively, by the same techniques as in the proof of (2.8) it is clear that
the integrand in the definition of a; is v,-a.s. integrable for 0 < s < 1. In
particular a; is a continuous process of bounded variation (relative to v,) and
since f; is a Brownian motion for s < 1 it follows that 8, = lim; B, exists
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ve-a.s.. Therefore, by continuity, the set {b; = B + a,Vs € [0, 1]} has full
Ve-measure.

The proof of the decomposition of B; is similar. The key observations is
that on % for any s < 1 the measure y, is given by u, = p;_s(¥;, e) - u.
Using this fact, the desired decomposition is again a straightforward application
of Girsanov’s theorem. O

3. THE FLOW AND QUASI-INVARIANCE

Let H denote the set of absolutely continuous functions 4 : [0,1] — R? such
that A(0) = 0 and A’ € L%(ds). As in [13] one can consider the following
“vector field” (X*) on W,(M) given by X"(c)(s) = Hy(o)h(s), where o €
Wo(M) and Hy(o) denotes the stochastic horizontal lift of o, to O(M)
starting at u,. One should note that this vector field is really an equivalence class
of vector fields with any particular representative depending on the particular
representative chosen for H(-). We now recall the Theorem 8.5 from Driver
[13].

Theorem 3.1. Foreach h € HNC! there exists a function S" : W (M) — W (M)
having the following properties
(1) S* is &Y |Z?-measurable for all s € [0, 1].
(2) There are versions of S™ and its horizontal lifts H(S'™) such that for v
almost every w € W (M), the functions f(t, s) = S*(w), df(t, s)/0t,
and (t, s) — Hy(S™(w)) are jointly continuous. Furthermore for v-a.e.
w, S*(w) satisfies
d .
(3.1) ES;"(Q)) = Hy(S"(w))h(s) with S™(w) = w(s).
(3) The functions {S"}peunct Satisfy the group property St o Sth = St+0)k
up to v-indistinguishability, for all t, Tt € R.
(4) The measures v" = S'v and v are equivalent. Furthermore for s €
[0, 1], the Radon-Nikodym Z! = dv*/dv e of vh|g;., with respect to

S S
(3.2) Z" = exp [- / ah. o db—% / |a"’(s)|2ds] ,
0 0

In(3.2) (a*, O*) isa R? x O(d)-valued continuous Z"-adapted process

and b is the v-Brownian motion b = V. The process (a”, O") can be
defined by the equation

(3.3) ¥osh =/ 0! db; +/ ol ds'.
0 0

(5) There is a constant C independent of h e HN C! such that v-a.s.

(3.4) lad| < C{IF (5)] + h(s)]}-

Remark 3.2. The estimate (3.4) is not explicitly stated in Theorem 8.5. of [13].
However, this estimate follows easily from Lemma 6.1. of [13] using a, =0,
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the assumption that V is TSS, and the fact that o solves equation (6.6) of
[13].

Now let H, denote the set of 2~ € H such that A(1) = 0. In the next
proposition we choose a nice version of the flow $* for h € H,N C!.

Proposition 3.3. Keep the same notation as in Theorem 3.1. For h restricted to
liein H, N C! it is possible to choose a versions of S* in Theorem 3.1 such that

(1) S* is &,/Z°-measurable for all s € [0, 1] (we will see later that S" is
in fact %;/Z;-measurable),

(2) ve-a.s. d(St, %) < |h(s)| and in particular limg; St = e,

(3) the process (O", o) may be chosen to be Z;-adapted for s € [0, 1).

Proof. By Proposition 2.6, for each s, € [0, 1) the filtered probability space
(W(M), {%}s<s, » &, » ) satisfies the usual hypothesis. Therefore one can con-
struct a function %S which is %,/Z-measurable for all s < s, and satisfies
items 2-5 in Theorem 3.1 for s < s,. (This is Theorem 3.1 with [0,1] replaced
by [0, s,].) Now choose a sequence {s,} C [0, 1) such that s, increasesto 1 as
n — oo. Let "S" = »Sh  with S" described above. For any pair of positive
integers (m, n) set

Qu.n={weWM): "Shw) = "S*(w)Vs €0, sp A sm]}-

Because of the uniqueness of the functions S” in Theorem 3.1 (see [13, Corol-
lary 6.3]) it follows that v(Q,, ,) = 1. Clearly Q,, , is %, vs,-measurable,
and hence it also follows that v,(Q,, ») = v.(1) for all (m,n). Let Q, =
Nos.n=1 @m.n. Then v(Qy) = 1,(Q,)/ve(1) = 1 and in particular Q, € %.

For s < 1 define

heo_ flimy_o "SH(w) for w € Q,,
(3.3) S (@) = {wo ’ for w ¢ Q,,

where  , is a fixed path in W(M) for which w,(0) =0 and w,(1l) =e. It
is easy to see that " in (3.5) is &;/%°—measurable for all s < 1.

Because of equation (3.1), the fact that H,(S") € O(M), and the definition
of the Riemannian distance d on M it easily follows for each s € [0, 1] that

(3.6) |d(S*, Z)| < |h(s)| holds v-a .s.

Now for s < 1 the set {|d(S?, Z,)| < |h(s)|} is %,-measurable. Since v and
v, are equivalent on %, it follows that (3.6) holds v.-a.e. also. Because both
sides of the inequality in (3.6) are continuous it follows that the set

(3.7) {1d(S?, Z5)] < [h(s)|Vs < 1}

has full measure with respect to both v, and v. Because of the assumption
that A € H,N C! (A(1) = 0) and the above comments it follows that the set

(3.8) Q = {w : md(sgl(w), w(s)) = 0}

has full measure with respect to both v and v,. So on ; we may extend the
definition of S* (to s = 1) by setting S¥ =%, on Q,. For w ¢ Q, redefine
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SH(w) = w,(s) where w, is a fixed path in W (M) such that w,(0) = 0 and
w,(1) = e. It is easily seen that this function S” has all of the properties
asserted in the theorem. (Notice that X; = e v,-a.s.)

By similar reasoning, one may show that the process (0", o) can be chosen
to be Z;-adapted for all s < 1. The key point is that (0", o*) are unique up
to v-indistinguishability (see Theorem 6.1 in [13]) and so the same arguments
as above still apply. O

We now come to the main theorem of this paper.

Theorem 3.4. Let h € H,N C' and S* be as above. For notational simplicity
let v} = S"v, on £°. Then v, and v! are equivalent on £°. More precisely
vb=Z".v,, where

1 1
(3.9) Zh = exp [— / a~h. 0t db - -;- / |a‘h(s)|2ds]
0 0

which is the same expression as in (3.2) with s = 1. However, one should
now interpret the stochastic integrals relative to the filtered probability space
(W(M), {&},Z, ve) or even better (W (M), {%}, %, v). Furthermore, the
process S" is &,/%,-measurable for all s € [0, 1] and S" o S™ = Stk pge,
forall t,teR.

Proof. Recall relative to v, , the process b is no longer a Brownian motion but
has the decomposition b = B + a given in Theorem 2.13. Now by using item
2 in Theorem 2.3 one easily shows v = z;-v, on £° for s < 1, where

_s(S7h,

(3.10) Zg EEII’—IS((-—}ES—ei))Z;’ =ws - ZF = wy - (X0 Ys) s
- 2

(3.11) w, = 2=t 0)

pl—S(zS D) e) ’

S S
(3.12) X, = exp [-/0 a~h.0Mdp - %/O |a‘h(s)|2ds] ,
and

)
Vs = €exp [—/ ah.0" da]
(3.13) 0

)
= exp [—/ a~k(s") - 0" (s"\H;'V1ogpi_y (Zs , e)a’s’] )
0

In order to show v = Z" . v, , it suffices to show that z; converges to Z"* =
Z! in L'(v,) as s — 1. For then it would follow that v/(F) = v.(Z}F) where
F is any Z°-bounded measurable function and s € [0, 1). By a monotone class
argument one can then easily conclude that v/(F) = ue(Zl”F ) for all bounded
Z? = (U, &°)-measurable functions. The assertion that Z} = L!-limy;, z,
is an easy consequence Holder’s inequality and Lemmas 3.5-3.7 below.

We now know on Z° that S*v = Z".v and S'v, = Z".v,, so it im-
mediately follows that S = Z" . 5 on Z° also. It is a trivial exercise to
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show that (S*)~! (#7) C /7 which, along with the fact that S* is &,/Z°-
measurable for all s, implies that S* is £,/%,-measurable for all s. There-
fore, given s € [0, 1), the set 4, = {S™ o ST # S*9"} is &,-measurable.
Because of Theorem 3.1, item 3 and Proposition 2.6, item 2, it follows that
7(As) =0 forall s € [0, 1). Finally because of the continuity of S* it follows
that 7({S™ o S # S+9h}) = (0,11 4s) = 0. This proves the remaining
assertions of the theorem. O

Lemma 3.5. v,-a.s. the process ws in equation (3.11) is bounded and limg; ws =
1.

Lemma 3.6. The process x; in equation (3.12) converges to x; in LP(v,) for
all p < oc.

Lemma 3.7. The process y; in equation (3.13) converges to y, in L?(v,) for all
D < oo.

Proof of Lemma 3.5. By the estimate (2.3) and Proposition 3.3 there exists a
constant C such that v,.-a.s.

pl—S(SS_h B e)
pl—S(ES B e)
Since by assumption A(1) = 0 and 4 is C!, it follows that |A(s)|/(1 —s)

remains bounded for all s € [0, 1), and hence so does |w;]|.
From the asymptotic expansion (2.4) one learns that

Cd(S;", %)

(3.14)  |uwl= e

< exp —':g—.

< exp Clk(s)

(3.15)  wys =exp (ﬁ[d(Ss‘h ,e)t —d(Z, e)2]> {1+0(1 -s)}

for s sufficiently close to 1. Now by repeated use of the triangle inequality and
Proposition 3.3 one has
(3.16)

(S5, e)* —d(Zs, )| < |d(S;", e) - d(Zs, e)| - |d(S*, ) +d(Zs, e)]

<d(S7*, Zo) - |d(STh, e) +d(Zs, o)
<A - {IA(9)] + 2d(Zs, €)}.

Since |h(s)|/(1 —s) remains bounded and because v.-a.s. £, —e as sT1, it
follows from (3.15) and (3.16) that v.-a.s. limg; ws=1. O

Proof of Lemma 3.6. Let f = b — a be the v.-Brownian motion defined in
Theorem 2.13 and define the v,-martingale M; by M; = — [ja™"-07"dp.
Then one easily shows that x; = exp{M; — %[M , M5} . Because of equation
(3.4), there is a constant C = C(h) such that [M, M]; < C v.-as. Itis
now an easy application of Novikov’s criterion to show that x; is a martingale
and v,(x) < eC”-D/2 for all r € R; see Remark 8.1. of [13] for more
details. By Doob’s inequality, for p > 1, x* = sup;¢o, 1;|Xs| satisfies v,(x*?) <
(p/(p — 1) e€’=N/2_ The lemma is now easily proved using the dominated
convergence theorem. 0O
In order to prove Lemma 3.7 we will need the following:
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Lemma 3.8. There is an ¢ > 0 such that

(3.17) (e[ =2 as]’

) < oo.

Proof. Since M is compact it follows that [, 12 4 d(Zs,e)/(1-s5)ds < Klog2
< oo where K = sup,,c;rd(m, e). Therefore it suffices to show that there is an
€ > 0 such that

1 ,€ 2
(3.18) vo(ef i B sy o o

Now let x: W(M) — W (M) denote the map defined by x(w)(s) = w(l —s)
where s € [0, 1]. Then if v, , is defined in the same way as v, except with o
and e interchanged it follows trivially from (2.6) that v, = k,v, ,. Therefore
(3.18) may be rewritten as

e[ 42t 4]’

o 512
(3.19) ;c*ye’o(eE [fll/z d‘%"—’Tzds] ) =V, ofe ).

We may now write the right member of (3.19) as

e 2
(3.20) v(p12(Z1y25 0 €[1o" 25t as] )

where ¥ is the Wiener measure on (W (M), £°) which is concentrated on the
paths (W,(M)) starting at e € M. Since M is compact p;/»(-, 0) is bounded,
and so it now suffices to show that

1 B 2
(3.21) e > 05 p(ef B H ]y < o

With the aid of the Whitney embedding theorem, one may choose C*-func-
tions {D;}¥ such that D;(e) =0 and d(x,e) < Efil |D;(x)| for all x in M.
(Indeed, let M be embedded in R¥and set D;(x) = C[yi(x) — y:(0)] where C
is a suitably large constant and y; is the ith standard coordinate function on
RM.) Using these remarks, in order to prove (3.21) it suffices to show for each
Ce°-function D : M — R satisfying D(e) = 0 that

e[/ 1ozl

| .
(3.22) 3e > 05 0(e 1) <

Now fix such a function D, then using the stochastic development in §2.5 one
finds that

(3.23) D(Z,) = / H-'VD(Z,) - dby + /s; () ds,
0

where b; is an R?-Brownian motion and Hy is a continuous O(M) valued
process. Therefore |D(Z,)| < Ks + | J; Hy 'VD(Z) - dbs|, where K is now a
bound on lAD Set N; = fo H;'VD(Z) - dbs, so that N; is a continuous
martingale. Notlce that the quadratic variation satisfies [N, N]; < Cs, where
C is a bound for |VD|. Putting these comments together we now see it suffices
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to show that

[fo72 21 g5)?

(3.24) 3¢ > 053 E(e ) < o0,

where N is a continuous martingale such that Ny = 0 and [N, N]; < Cs for
some constant C.

To verify (3.24) we use the same technique employed to prove Lemma 9.3.
in [13]. By the Dambis-Dubins-Schwarz Theorem (see [46, Theorem 1.7, p.
171] or [48, Chapter IV, §34]) there is a continuous martmgale N and a
Brownian motion B on some probablhty space ((Q,.%, P)) such that N
and N have the same law, and N = B[N ~,- Given an a € (0, 1/2) set
|fla = sups geqo,cylF(s) = F(s")I/Is = 5|, where f is any real valued contin-
uous function on [0, C] such that f(0) =0. Then

|Ny| = |B(IM, M);)| < |Blo - [M, M) < |B, - Cs®

It now follows by elementary calculus that [, 1/2 |N;|/sds < a~'C?|B|,. Since
the expectation in (3.24) satisfies

2 . 2 A 2 B et
E(ef[fol/zwsdds] )= E(ef[fol Jigdds] )S E(eea 2¢c2 |B|§)’

it suffices to show that there is an € > 0 such that Ee¢l8la < oo. But this
follows from Fernique’s theorem (see [29, pp. 159-160] or [24, p. 402]), since
the Holder seminorms | -|, for a < 1/2 are measurable seminorms for the
standard Wiener measure. 0O

Proof of Lemma 3.7. First notice that the integrand in the right-hand member
of (3.13) can be estimated (using the estimates (3.4), (2.2), and the assumption
that A € H, N C!) by

(3.25) [a~"(5)] - [V 1ogp1_(Zs , €)] < KIId(Es, )l/(1 =) + (1 —5)~"7,

where K is a suitably large constant. Because of item 1 in Theorem 2.3 we know
v.-a.s. that |d(Zs, e)| < C(1 —s)'/4 for some random constant C. Therefore
the right member of (3.25) is in L!([0, 1], ds) v.-a.s. This shows v,.-a.s. that
y1 exists and limgy; ys = yi.

From the definition of y; in (3.13) and the bounds in (3.25) it follows that

! u’e)

(3:26) vl < expK ( I

du+2>.

By Lemma 3.8, one easily shows that all powers of the dominating function on
the right side of (3.26) are integrable. Therefore, the lemma is now proved with
the aid of the dominated convergence theorem. 0O

3.1. Integration by parts. We conclude this paper with an integration by parts
formula which is completely analogous to Theorem 9.1 in Driver [13]. In fact,
it is possible to give essentially the same proof but we will instead prove the
result using Theorem 9.1 in [13]. Before stating the integration by parts formula
we will need some more notation.
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Definition 3.9. For H € O(M) and a € R?, define the Ricci tensor by

d
Ricy(a) =) Qua, e)e; € RY.
i=1

Definition 3.10. For H € O(M) and a € R?, set

d
EZOIH<ei3 a, ei)’

i=1
where {e;}4_, is an orthonormal basis for R¢, and
Ok(a, b, c) = Bla)(H)(u — 84(b, ).

Let Z,° be the raw filtration on W(O(M)), i.e., the filtration on W (O(M))
generated by the coordinate functions {U;}s¢[0,5) Where U (u) = u(t) forall u €
W(O(M)). As above, let H: W(M) — W(O(M)) be a fixed version (relative
to the filtered measure space (W (M), {%;}, &, 7)) of the horizontal lift of the
process {Z;} such that Hy = u,. It follows automatically that H is Z;/%.°-
measurable for all s € [0, 1] and that H is a version of the horizontal lift of
{Zs} relative to both measures v, and v.

Definition 3.11 (h-derivative). Let f: W (M) — R be a C2-cylinder function,
that is f(Z) = F(Z;,,...,%;) forsome 0 < 5y <5 < --- <5 <1 and
some C2-function F: M¥ — R. (Note: Because v,-a.s. £ = e, we can and
always do assume that s; < 1.) Then the h-derivative of f is the function
Onf : W(M)— R given by

k
(3.27) Wf(E) =Y HEONH, (Dh(s)),

i=1
where for v € TM, fi(Z)(v) S v(F(Zg,, ... 5 Zs_y s *> Zsppys o0 5 B ) -

Remark 3.12. As noted in [13], 8, f is only defined up to v-equivalence and
hence v.-equivalence. It is also shown in [13] that 8,f can be defined by
Onf = (d/dt)|of o S™, where the derivative is taken in v-probability.

Theorem 3.13. Let h € H,NC', b = Yo X, and H be the horizontal lift
as above. Then with respect to the L*(v,)-inner product the adjoint (8;) of &

contains the set of C*-cylinder functions (hence is densely defined). Furthermore
if f isa C?-cylinder function, then

(3.28) hf=-0nf+zhf,
where z(h) = [}[4 Ricy(h) + 10y (h) + '] - db.

Proof. For each C2-cylinder function (f), let 0y f be given by equation (3.28).
It suffices to show that for all C2-cylinder functions that

Ve(Onf - &) = ve(f 04 8).
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According to Theorem 9.1 of Driver [13] the above displayed equation is valid
if v, is replaced by v. Therefore if f and g are two C2-cylinder functions
and s is sufficiently close to 1 we have

Ve(Onf - 8) =v(Opf- (gp1-5(Zs, €)))
(3.29) =v(f1-0h + z(h))(gP1-5(Zs, €)))
=v(f0y 8 P1-s(Zs, €)) + ve(fg - Oy In(p1—s(Zs, €))).

)

So in order to finish the proof it suffices to show that J = limsy, v(fO; g
Di1-5(Zs, €)) = ve(f0;8), and L = limgyy v.(fg - Oy In(p1—(Zs, €))) = 0
start with J.

First notice that d,g is still £°-measurable for s sufficiently close to 1,
and hence v(fO,g - p1-s(Zs, €)) = v.(fO,g) for s close to 1. So to show
J = v.(f0;g) it suffices to show limg; v(fgz(h)p1_s(Zs, €)) = ve(fgz(h)).
To this end set

s —~
2= / [%RicH(h)+%6H(h)+h' .db,
0

where b = ¥ as in Theorem 2.13. Now b is a v-Brownian motion so that z;
is a v-martingale. Since fgp,_,(Z;, e) is Z°-measurable for s close to 1, it
follows for s near 1 that

v(fgz(h)p1-s(Zs, ) = v(fgzep1—5(Zs, €)) = ve(f g 25).

From this last equation and the fact that f and g are bounded, it now suffices
to show that z; — z; = z(h) in L'(v,) as s 1 1.

To verify that z; — z,, let b; = B; + a; be the decomposition in Theorem
2.13 and decompose z; = x; + y; where

s —~
X = / [% Ricy (h) + —;-GH(h) + h’] .dp
0
and S
Vs = / [—- Ricy (h) + —l-éH(h) + hl] -da.
) 12 3

Since B isa v.-Brownian motion, it is clear that x; is an L2-martingale and in
particular x; — x; in L! as s 1 1. We now must show that Ys_converges to y,
in L' as s 1 1. To simplify notation, set R = [% Ricy (h) + %OH(h) + A'] and
notice that R is uniformly bounded since # € H,N C', and M is compact.
With this notation and the definition of a, y, can be written as

S
Vs = / Ry H;'Viogp_y(Zy , €)ds'.
0

Using this last equation and the estimate (2.2) one easily shows (with K =
K(h') > 0 sufficiently large) that:

(3.30) 1 — vl <K/ [d(zS 2 ) +\/_] ds'.

By (2.11) it follows that v,(d(Zy, €)) < C(1)y/T—s", which combined with
(3.30) easily shows that v.(|y; — ys|) < 2K(C(1) + 1)v/T —s. Hence, y; con-
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verges in L!(v,) to y, as desired. Therefore, z; = x; + y; converges to z; in
L'(v,) as claimed and we have shown that J = ve(forg).

Now the “ L” term is easily shown to be zero as follows. First notice that
Ok In(p1-5(Zs, €))| < |VIn(pi_s(Zs, €))||h(s)]. Hence using (2.2) and (2.11) as
above one shows for sufficiently large constants K and C that

L< Klimslupve(lVln(pl_s(Zx, e)llh(s)]) < Climsup[|a(s)|/V1 - s].
sT sT1

Since by assumption 4(1) =0 and A is C!, the last limit is clearly 0 and
hence L=0. O
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