Math 270B: Numerical Analysis (Part B)
 Winter quarter 2023
 Homework Assignment 4

Due: 10:00 am, Wednesday, February 8, 2023.

1. Let $f \in C([a, b])$ and define

$$
\mu_{n}(f)=\int_{a}^{b} x^{n} f(x) d x, \quad n=0,1, \ldots
$$

Show that $f(x)=0$ for all $x \in[a, b]$ if and only if $\mu_{n}(f)=0$ for all $n=0,1, \ldots$
2. Let $n \geq 0$ be an integer and T_{n} the n-th Chebyshev polynomial. Show that

$$
\int_{-1}^{1}\left[T_{n}(x)\right]^{2}=1-\frac{1}{4 n^{2}-1} .
$$

3. Let $n \geq 0$ be an integer and T_{n} the nth Chebyshev polynomial of first kind. Let $P \in \mathcal{P}_{n}$ satisfy that $|P(x)| \leq 1$ for all $x \in[-1,1]$. Show that

$$
|P(y)| \leq\left|T_{n}(y)\right| \quad \forall y \notin[-1,1] .
$$

4. Define $\chi(x)=-1$ if $-1 \leq x<0$ and $\chi(x)=1$ if $0 \leq x \leq 1$.
5. Show that $\inf _{f \in C([-1,1])} \sup _{-1 \leq x \leq 1}|f(x)-\chi(x)|=1$, and that there exist infinitely many $f \in C([-1,1])$ such that $\sup _{-1 \leq x \leq 1}|f(x)-\chi(x)|=1$.
6. Show that

$$
\inf _{f \in C([-1,1])} \int_{-1}^{1}|f(x)-\chi(x)|^{2} d x=0
$$

and that there exists no $f \in C([-1,1])$ such that

$$
\int_{-1}^{1}|f(x)-\chi(x)|^{2} d x=0 .
$$

5. Let $a, b \in \mathbb{R}$ with $a<b, f \in C([a, b])$, and $\varepsilon>0$. Show that there exists a polynomial p such that $\|f-p\|_{L^{2}(a, b)}<\varepsilon$.
6. Find the least-squares approximation of $f(x)=x^{4}$ in \mathcal{P}_{1} over $[0,1]$.
7. Let $p(x)=\sum_{k=0}^{n} a_{k} x^{k} \in \mathcal{P}_{n}$ be the least-squares approximation of a given $f \in C([0,1])$ over $[0,1]$. Find the coefficient matrix of the linear system that determines a_{0}, \ldots, a_{n}.
8. Let

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[\left(x^{2}-1\right)^{n}\right], \quad n=0,1, \ldots
$$

be the Legendre polynomials. Let $n \geq 1$. Prove directly by Rolle's Theorem that P_{n} has n simple roots in $(-1,1)$.

