Math 270B: Numerical Analysis (Part B) Winter quarter 2023 Homework Assignment 6

Due: 10:00 am, Friday, February 24, 2023.

- 1. Find the polynomial $p \in \mathcal{P}_3$ of the form $p(x) = c_0 + c_1 x + c_3 x^3$ that interpolates a given function $f \in C([0,3])$ at x = 0, 2, 3.
- 2. Let $x_0 = 2$, $x_1 = 3$, $x_2 = 5$, $x_3 = 6$ and $y_0 = 5$, $y_1 = 2$, $y_2 = 3$, $y_3 = 4$. Let $p \in \mathcal{P}_3$ be the unique polynomial that interpolates y_j at x_j (j = 0, 1, 2, 3). Calculate p by using: (1) Lagrange's formula; and (2) Newton's formula.
- 3. Let $f(x) = x^4 x^2 + 17x + 1$. Let $p \in \mathcal{P}_{20}$ interpolates f at $x_j = 2^j$ (j = 0, ..., 20). Compute p(0).
- 4. Let $f(x) = x^4 x^2 + 17x + 1$ and $x_k = k$ (k = 0, 1, ..., 20). Calculate $f[x_0, ..., x_4]$ and $f[x_0, ..., x_{20}]$.
- 5. Let x_0, \ldots, x_n be n + 1 distinct real numbers. Let $l_j(x)$ be the associated Lagrange basis polynomials. Show that $\sum_{j=0}^n (x x_j)^k l_j(x) = 0$ for all $k = 1, \ldots, n$.
- 6. Recall for $n \ge 1$ that the Chebyshev polynomial $T_n(x)$ has n distinct roots $x_j = \cos \theta_j$ with $\theta_j = (2j-1)\pi/2n$ (j = 1, ..., n). Denote by $L_{n-1} : C([-1, 1]) \to \mathcal{P}_{n-1}$ the associated Lagrange interpolation operator. Show that

$$(L_{n-1}f)(x) = \frac{1}{n} \sum_{j=1}^{n} f(x_j) \frac{(-1)^{j-1} \sin \theta_j T_n(x)}{x - x_j} \qquad \forall f \in C([-1, 1]).$$

7. Let $f \in C([a, b])$. Show that, for each integer $n \ge 1$, there exist n distinct points $x_1^{(n)}, \ldots, x_n^{(n)}$ such that

$$||f - L_{n-1}f||_{C([a,b])} \to 0 \qquad \text{as } n \to \infty,$$

where $L_{n-1}f \in \mathcal{P}_{n-1}$ is the Lagrange interpolation polynomial of f at $x_1^{(n)}, \ldots, x_n^{(n)}$.

8. Let $Q_n \in \mathcal{P}_n$ (n = 0, 1, ...) be orthonormal polynomials on [0, 1]. Fix $n \ge 2$. Let x_1, \ldots, x_n be the *n* distinct roots of $Q_n(x)$ in (0, 1), and l_1, \ldots, l_n be the associated Lagrange basis polynomials. Prove that l_1, \ldots, l_n are orthogonal on [0, 1] and that

$$\sum_{j=1}^{n} \int_{0}^{1} \left[l_{j}(x) \right]^{2} dx = 1.$$

9. The ReLU (Rectified Linear Unit) activation function used in neural networks is defined by $\operatorname{ReLU}(x) = \max(x, 0)$ (also denoted by x^+ or x_+) for any $x \in \mathbb{R}$. Prove for any integer $k \ge 0$ and any $x \in \mathbb{R}$ with at least one of them nonzero that

$$[\operatorname{ReLU}(x)]^k + (-1)^k [\operatorname{ReLU}(-x)]^k = x^k.$$