Math 270B: Numerical Analysis (Part B)
 Winter quarter 2023

Homework Assignment 9

Due: 5:00 pm, Friday, March 17, 2023.

1. (1) Show for any $f \in C([0,1])$ and any integer $n \geq 1$ that

$$
\int_{0}^{1} B_{n} f(x) d x=\frac{1}{n+1} \sum_{k=0}^{n} f\left(\frac{k}{n}\right)
$$

where $B_{n} f$ is the nth Bernstein polynomial of f.
(2) Show that the degree of precision of the following numerical quadrature is $m=1$:

$$
\int_{0}^{1} f(x) d x \approx \frac{1}{n+1} \sum_{k=0}^{n} f\left(\frac{k}{n}\right)
$$

(3) Show that

$$
\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{k=0}^{n} f\left(\frac{k}{n}\right)=\int_{0}^{1} f(x) d x \quad \forall f \in C([0,1])
$$

2. Let $p_{3} \in \mathcal{P}_{3}$ be the Hermite interpolation polynomial of $f \in C^{1}([a, b])$ determined by

$$
p_{3}(a)=f(a), \quad p_{3}^{\prime}(a)=f^{\prime}(a), \quad p_{3}(b)=f(b), \quad p_{3}^{\prime}(b)=f^{\prime}(b) .
$$

(1) Show that

$$
\int_{a}^{b} p_{3}(x) d x=\frac{1}{2}(b-a)[f(a)+f(b)]-\frac{1}{12}(b-a)^{2}\left[f^{\prime}(b)-f^{\prime}(a)\right] .
$$

(2) Determine the degree of precision of the numerical quadrature

$$
\int_{a}^{b} f(x) d x \approx \frac{1}{2}(b-a)[f(a)+f(b)]-\frac{1}{12}(b-a)^{2}\left[f^{\prime}(b)-f^{\prime}(a)\right]
$$

3. Let $f:[a, b] \rightarrow \mathbb{R}$ be integrable over $[a, b]$. Let $n \geq 1$ be an integer, $h=(b-a) /(2 n)$, and $x_{i}=a+i h(i=0, \ldots, 2 n)$.
(1) Derive the composite Simpson's formula for the integration of a function of f over $[a, b]$ by applying the basic Simpson's formula to each of the subinterval $\left[x_{2 i-2}, x_{2 i}\right]$ $(i=0, \ldots, n)$.
(2) Assume $f \in C^{4}([a, b])$. Derive an error formula for the composite Simpson's formula that is derived in Part (1).
4. Let $\left\{Q_{n}\right\}_{n=0}^{\infty}$ be a system of orthogonal polynomials on $[a, b]$. Fix $n \geq 1$. Let x_{1}, \ldots, x_{n} be the n distinct roots of Q_{n} in (a, b). Let

$$
\int_{a}^{b} f(x) d x \approx \sum_{j=1}^{n} A_{j} f\left(x_{j}\right)
$$

be the corresponding Gaussian quadrature. Show that

$$
\sum_{j=1}^{n} A_{j} Q_{k}\left(x_{j}\right)=0, \quad k=1, \ldots, 2 n-1
$$

5. Consider a Gaussian formula

$$
\int_{a}^{b} f(x) d x \approx \sum_{j=1}^{n} A_{j} f\left(x_{j}\right)
$$

Show that for any $f \in C([a, b])$ the error

$$
e_{n}(f)=\int_{a}^{b} f(x) d x-\sum_{j=1}^{n} A_{j} f\left(x_{j}\right)
$$

satisfies

$$
\left|e_{n}(f)\right| \leq 2(b-a) \min _{q \in \mathcal{P}_{2 n-1}}\|f-q\|_{C([a, b])} .
$$

6. Let $n \geq 1$ be an integer. The Gauss-Chebyshev quadrature is the weighted Gaussian quadrature on $[-1,1]$ with the weight $1 / \sqrt{1-x^{2}}$ using

$$
x_{j}=\cos (2 j-1) \pi / 2 n \quad(j=1, \ldots, n),
$$

the n roots of the nth Chebyshev polynomial $T_{n}(x)=\cos (n \arccos x)$. Show that the Gauss-Chebyshev formula is given by

$$
\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^{2}}} d x \approx \frac{\pi}{n} \sum_{j=1}^{n} f\left(x_{j}\right)
$$

7. Let $f \in C([a, b])$ and denote by $I(f)$ the integral of f over $[a, b]$. Let $N \geq 1$ be an integer, $h=(b-a) / 2 N$, and $x_{j}=a+j h, j=0, \ldots, 2 N$. Let $T_{N}, T_{2 N}$, and S_{N} denote, respectively, the approximate value of $I(f)$ by the composite trapezoidal rule with N subintervals $\left[x_{2 j-1}, x_{2 j}\right], j=1, \ldots, N$, by the composite trapezoidal rule with $2 N$ subintervals $\left[x_{j-1}, x_{j}\right], j=1, \ldots, 2 N$, and by the composite Simpson rule with N subintervals $\left[x_{2 j-1}, x_{2 j}\right], j=1, \ldots, N$. Prove that the Richardson extrapolation using T_{N} and $T_{2 N}$ leads to exactly S_{N}, i.e.,

$$
S_{N}=\frac{4 T_{2 N}-T_{N}}{3}
$$

