Math 270B: Numerical Analysis (Part B) Winter quarter 2023

Homework Assignment 9

Due: 5:00 pm, Friday, March 17, 2023.

1. (1) Show for any $f \in C([0,1])$ and any integer $n \ge 1$ that

$$\int_0^1 B_n f(x) dx = \frac{1}{n+1} \sum_{k=0}^n f\left(\frac{k}{n}\right),$$

where $B_n f$ is the *n*th Bernstein polynomial of f.

(2) Show that the degree of precision of the following numerical quadrature is m=1:

$$\int_0^1 f(x) dx \approx \frac{1}{n+1} \sum_{k=0}^n f\left(\frac{k}{n}\right)$$

(3) Show that

$$\lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} f\left(\frac{k}{n}\right) = \int_{0}^{1} f(x) dx \qquad \forall f \in C([0,1]).$$

2. Let $p_3 \in \mathcal{P}_3$ be the Hermite interpolation polynomial of $f \in C^1([a,b])$ determined by

$$p_3(a) = f(a), \quad p_3'(a) = f'(a), \quad p_3(b) = f(b), \quad p_3'(b) = f'(b).$$

(1) Show that

$$\int_{a}^{b} p_{3}(x) dx = \frac{1}{2}(b-a)[f(a)+f(b)] - \frac{1}{12}(b-a)^{2}[f'(b)-f'(a)].$$

(2) Determine the degree of precision of the numerical quadrature

$$\int_{a}^{b} f(x) dx \approx \frac{1}{2} (b - a) [f(a) + f(b)] - \frac{1}{12} (b - a)^{2} [f'(b) - f'(a)].$$

- 3. Let $f:[a,b]\to\mathbb{R}$ be integrable over [a,b]. Let $n\geq 1$ be an integer, h=(b-a)/(2n), and $x_i=a+ih$ $(i=0,\ldots,2n)$.
 - (1) Derive the composite Simpson's formula for the integration of a function of f over [a, b] by applying the basic Simpson's formula to each of the subinterval $[x_{2i-2}, x_{2i}]$ (i = 0, ..., n).
 - (2) Assume $f \in C^4([a, b])$. Derive an error formula for the composite Simpson's formula that is derived in Part (1).

4. Let $\{Q_n\}_{n=0}^{\infty}$ be a system of orthogonal polynomials on [a,b]. Fix $n \geq 1$. Let x_1, \ldots, x_n be the n distinct roots of Q_n in (a,b). Let

$$\int_{a}^{b} f(x) dx \approx \sum_{j=1}^{n} A_{j} f(x_{j})$$

be the corresponding Gaussian quadrature. Show that

$$\sum_{j=1}^{n} A_j Q_k(x_j) = 0, \qquad k = 1, \dots, 2n - 1.$$

5. Consider a Gaussian formula

$$\int_{a}^{b} f(x) dx \approx \sum_{j=1}^{n} A_{j} f(x_{j}).$$

Show that for any $f \in C([a, b])$ the error

$$e_n(f) = \int_a^b f(x) dx - \sum_{j=1}^n A_j f(x_j)$$

satisfies

$$|e_n(f)| \le 2(b-a) \min_{q \in \mathcal{P}_{2n-1}} ||f-q||_{C([a,b])}.$$

6. Let $n \ge 1$ be an integer. The Gauss-Chebyshev quadrature is the weighted Gaussian quadrature on [-1,1] with the weight $1/\sqrt{1-x^2}$ using

$$x_j = \cos(2j - 1)\pi/2n$$
 $(j = 1, ..., n),$

the *n* roots of the *n*th Chebyshev polynomial $T_n(x) = \cos(n \arccos x)$. Show that the Gauss-Chebyshev formula is given by

$$\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^2}} dx \approx \frac{\pi}{n} \sum_{j=1}^{n} f(x_j).$$

7. Let $f \in C([a,b])$ and denote by I(f) the integral of f over [a,b]. Let $N \geq 1$ be an integer, h = (b-a)/2N, and $x_j = a+jh$, $j = 0,\ldots,2N$. Let T_N , T_{2N} , and S_N denote, respectively, the approximate value of I(f) by the composite trapezoidal rule with N subintervals $[x_{2j-1}, x_{2j}]$, $j = 1, \ldots, N$, by the composite trapezoidal rule with 2N subintervals $[x_{j-1}, x_j]$, $j = 1, \ldots, 2N$, and by the composite Simpson rule with N subintervals $[x_{2j-1}, x_{2j}]$, $j = 1, \ldots, N$. Prove that the Richardson extrapolation using T_N and T_{2N} leads to exactly S_N , i.e.,

$$S_N = \frac{4T_{2N} - T_N}{3}.$$