Math 270B: Numerical Analysis (Part B)
Winter quarter 2023

Homework Assignment 9
Due: 5:00 pm, Friday, March 17, 2023.

1. (1) Show for any f € C([0,1]) and any integer n > 1 that
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where B, f is the nth Bernstein polynomial of f.
(2) Show that the degree of precision of the following numerical quadrature is m = 1:
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(3) Show that
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2. Let p3 € P3 be the Hermite interpolation polynomial of f € C'([a,b]) determined by

ps(a) = f(a), psla) = f'(a), ps(b) = f(b), ps(b) = f'(b).
(1) Show that
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(2) Determine the degree of precision of the numerical quadrature
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3. Let f: [a,b] — R be integrable over [a,b]. Let n > 1 be an integer, h = (b —a)/(2n), and
xi=a+1ih (i=0,...,2n).
(1) Derive the composite Simpson’s formula for the integration of a function of f over
[a, b] by applying the basic Simpson’s formula to each of the subinterval [x9; o, To;]
(i=0,...,n).
(2) Assume f € C*([a,b]). Derive an error formula for the composite Simpson’s formula
that is derived in Part (1).



4. Let {Q,}>°, be a system of orthogonal polynomials on [a,b]. Fix n > 1. Let z4,...,x,
be the n distinct roots of @, in (a,b). Let

b n
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be the corresponding Gaussian quadrature. Show that
> AiQu(z;) =0, k=1,...2n—1
j=1

5. Consider a Gaussian formula

b n
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Show that for any f € C([a,b]) the error
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6. Let n > 1 be an integer. The Gauss—Chebyshev quadrature is the weighted Gaussian
quadrature on [—1, 1] with the weight 1/4/1 — 22 using

x; = cos(2j — 1)m/2n (j=1,...,n),

the n roots of the nth Chebyshev polynomial T,,(z) = cos(narccosx). Show that the
Gauss—Chebyshev formula is given by
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7. Let f € C([a,b]) and denote by I(f) the integral of f over [a,b]. Let N > 1 be an
integer, h = (b — a)/2N, and z; = a + jh, j = 0,...,2N. Let Tn, Ton, and Sy
denote, respectively, the approximate value of I(f) by the composite trapezoidal rule

with N subintervals [zg;_1,%9;], 7 = 1,..., N, by the composite trapezoidal rule with
2N subintervals [z;_1,2;], 7 = 1,...,2N, and by the composite Simpson rule with N
subintervals [x9;_1,z2;], j = 1,..., N. Prove that the Richardson extrapolation using Ty

and Ty leads to exactly Sy, i.e.,

ATy =Ty
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