Math 270B: Numerical Analysis (Part B) Winter quarter 2024 Homework Assignment 1 Due: 1:00 pm, Wednesday, January 17, 2024.

- 1. Let $a, b \in \mathbb{R}$ with a < b. Let $f \in C^2([a, b])$ be such that f(a) < 0 and f(b) > 0, $\min_{x \in [a,b]} f'(x) > 0$, and $\min_{x \in [a,b]} f''(x) > 0$. Denote by $x^* \in (a,b)$ the unique root of fon [a,b]. Suppose $x_0 \in (x^*,b)$. Let x_n (n = 1, 2, ...) be the sequence of Newton iterates for solving f(x) = 0. Prove that $x^* < x_{n+1} < x_n$ for all n = 0, 1, ... and that $x_n \to x^*$.
- 2. The function $f(x) = x/\sqrt{1+x^2}$ has the unique zero $x^* = 0$ in \mathbb{R} . Suppose we solve the equation f(x) = 0 using Newton's method: Set $x_0 \in \mathbb{R}$ and define $x_{n+1} = x_n f(x_n)/f'(x_n)$ (n = 0, 1, ...). Prove that $x_n \to x^* = 0$ if $|x_0| < 1$ and $|x_n| \to \infty$ if $|x_0| > 1$.
- 3. Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be given by

$$F(x,y) = \begin{bmatrix} e^{x^2 + y^2} - 1\\ x + y + 2\cos(x+y) \end{bmatrix}$$

Calculate the Jacobian matrix $\nabla F(x, y)$ and find all (x, y) such that $\nabla F(x, y)$ are singular.

- 4. Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable. Consider a vector norm $\|\cdot\|$ on \mathbb{R}^n and its induced matrix norm, also denoted by $\|\cdot\|$. Prove the following:
 - (1) If $x, y \in \mathbb{R}^n$ and $K := \sup_{0 \le t \le 1} \|DF(tx + (1-t)y)\|$, then $\|F(x) F(y)\| \le K \|x y\|$.
 - (2) If there exists L > 0 such that $\|DF(x) DF(y)\| \le L \|x y\|$ for all $x, y \in \mathbb{R}^n$, then

$$||F(x) - F(y) - DF(y)(x - y)|| \le \frac{L}{2} ||x - y||^2 \quad \forall x, y \in \mathbb{R}^n$$

- 5. Show that the function $f(x) = \cos x$ has a unique fixed point x^* and that the fixed-point iteration $x_{n+1} = \cos x_n$ (n = 0, 1, ...) converges (i.e., $\lim_{n\to\infty} x_n = x^*$) for any $x_0 \in \mathbb{R}$.
- 6. Let $f \in C^2(\mathbb{R})$. Assume f has a unique zero x^* such that $0 < f'(x^*) < 2$. Define $\phi(x) = x f(x)$ for all $x \in \mathbb{R}$ and

$$\psi(x) = \frac{x\phi(\phi(x)) - (\phi(x))^2}{\phi(\phi(x)) - 2\phi(x) + x} \quad \text{if } x \neq x^* \quad \text{and} \quad \psi(x^*) = \lim_{x \to x^*} \psi(x).$$

Prove the following:

- (1) The zero x^* of f is the unique fixed point for both ϕ and ψ .
- (2) If $x_0 \in \mathbb{R}$ is sufficiently close to x^* and $x_{n+1} = \phi(x_n)$ (n = 0, 1, ...), then $x_n \to x^*$ linearly, i.e., there exists $C_1 \in (0, 1)$ such that $|x_{n+1} x^*| \leq C_1 |x_n x^*|$ for all n.
- (3) If $x_0 \in \mathbb{R}$ is sufficiently close to x^* and $x_{n+1} = \psi(x_n)$ (n = 0, 1, ...), then $x_n \to x^*$ quadratically, i.e., there exists $C_2 > 0$ such that $|x_{n+1} x^*| \leq C_2 |x_n x^*|^2$ for all n.
- (4) The iteration $x_{n+1} = \psi(x_n)$ (n = 0, 1, ...) is exactly the quasi-Newton iteration

$$x_{n+1} = x_n - \frac{[f(x_n)]^2}{f(x_n) - f(x_n - f(x_n))}, \qquad n = 0, 1, \dots$$