Math 270B: Numerical Analysis (Part B)
 Winter quarter 2024
 Homework Assignment 1

Due: 1:00 pm, Wednesday, January 17, 2024.

1. Let $a, b \in \mathbb{R}$ with $a<b$. Let $f \in C^{2}([a, b])$ be such that $f(a)<0$ and $f(b)>0$, $\min _{x \in[a, b]} f^{\prime}(x)>0$, and $\min _{x \in[a, b]} f^{\prime \prime}(x)>0$. Denote by $x^{*} \in(a, b)$ the unique root of f on $[a, b]$. Suppose $x_{0} \in\left(x^{*}, b\right)$. Let $x_{n}(n=1,2, \ldots)$ be the sequence of Newton iterates for solving $f(x)=0$. Prove that $x^{*}<x_{n+1}<x_{n}$ for all $n=0,1, \ldots$ and that $x_{n} \rightarrow x^{*}$.
2. The function $f(x)=x / \sqrt{1+x^{2}}$ has the unique zero $x^{*}=0$ in \mathbb{R}. Suppose we solve the equation $f(x)=0$ using Newton's method: Set $x_{0} \in \mathbb{R}$ and define $x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)$ $(n=0,1, \ldots)$. Prove that $x_{n} \rightarrow x^{*}=0$ if $\left|x_{0}\right|<1$ and $\left|x_{n}\right| \rightarrow \infty$ if $\left|x_{0}\right|>1$.
3. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by

$$
F(x, y)=\left[\begin{array}{c}
e^{x^{2}+y^{2}}-1 \\
x+y+2 \cos (x+y)
\end{array}\right] .
$$

Calculate the Jacobian matrix $\nabla F(x, y)$ and find all (x, y) such that $\nabla F(x, y)$ are singular.
4. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuously differentiable. Consider a vector norm $\|\cdot\|$ on \mathbb{R}^{n} and its induced matrix norm, also denoted by $\|\cdot\|$. Prove the following:
(1) If $x, y \in \mathbb{R}^{n}$ and $K:=\sup _{0 \leq t \leq 1}\|D F(t x+(1-t) y)\|$, then $\|F(x)-F(y)\| \leq K\|x-y\|$.
(2) If there exists $L>0$ such that $\|D F(x)-D F(y)\| \leq L\|x-y\|$ for all $x, y \in \mathbb{R}^{n}$, then

$$
\|F(x)-F(y)-D F(y)(x-y)\| \leq \frac{L}{2}\|x-y\|^{2} \quad \forall x, y \in \mathbb{R}^{n} .
$$

5. Show that the the function $f(x)=\cos x$ has a unique fixed point x^{*} and that the fixed-point iteration $x_{n+1}=\cos x_{n}(n=0,1, \ldots)$ converges (i.e., $\left.\lim _{n \rightarrow \infty} x_{n}=x^{*}\right)$ for any $x_{0} \in \mathbb{R}$.
6. Let $f \in C^{2}(\mathbb{R})$. Assume f has a unique zero x^{*} such that $0<f^{\prime}\left(x^{*}\right)<2$. Define $\phi(x)=$ $x-f(x)$ for all $x \in \mathbb{R}$ and

$$
\psi(x)=\frac{x \phi(\phi(x))-(\phi(x))^{2}}{\phi(\phi(x))-2 \phi(x)+x} \quad \text { if } x \neq x^{*} \quad \text { and } \quad \psi\left(x^{*}\right)=\lim _{x \rightarrow x^{*}} \psi(x) .
$$

Prove the following:
(1) The zero x^{*} of f is the unique fixed point for both ϕ and ψ.
(2) If $x_{0} \in \mathbb{R}$ is sufficiently close to x^{*} and $x_{n+1}=\phi\left(x_{n}\right)(n=0,1, \ldots)$, then $x_{n} \rightarrow x^{*}$ linearly, i.e., there exists $C_{1} \in(0,1)$ such that $\left|x_{n+1}-x^{*}\right| \leq C_{1}\left|x_{n}-x^{*}\right|$ for all n.
(3) If $x_{0} \in \mathbb{R}$ is sufficiently close to x^{*} and $x_{n+1}=\psi\left(x_{n}\right)(n=0,1, \ldots)$, then $x_{n} \rightarrow x^{*}$ quadratically, i.e., there exists $C_{2}>0$ such that $\left|x_{n+1}-x^{*}\right| \leq C_{2}\left|x_{n}-x^{*}\right|^{2}$ for all n.
(4) The iteration $x_{n+1}=\psi\left(x_{n}\right)(n=0,1, \ldots)$ is exactly the quasi-Newton iteration

$$
x_{n+1}=x_{n}-\frac{\left[f\left(x_{n}\right)\right]^{2}}{f\left(x_{n}\right)-f\left(x_{n}-f\left(x_{n}\right)\right)}, \quad n=0,1, \ldots
$$

