Math 270B: Numerical Analysis (Part B)
 Winter quarter 2024

Homework Assignment 2

Due: 1:00 pm, Wednesday, January 24, 2024.

1. Let $f \in C^{2}\left(\mathbb{R}^{n}\right)$ and assume it has a unique critical point.
(1) Write down Newton's iteration scheme for finding the critical point of f.
(2) State pricisely a local convergence thereom for this scheme. You may add some more assumptions on f.
2. Let $f \in C^{1}\left(\mathbb{R}^{n}\right), x^{(0)} \in \mathbb{R}^{n}$, and $x^{(k+1)}=x^{(k)}-\alpha_{k} \nabla f\left(x^{(k)}\right)$, where

$$
\alpha_{k}=\arg \min \left\{f\left(x^{(k)}-\alpha \nabla f\left(x^{(k)}\right)\right): \alpha \geq 0\right\}>0 \quad(k=0,1, \ldots)
$$

Show for each k that $\nabla f\left(x^{(k)}\right) \cdot \nabla f\left(x^{(k+1)}\right)=0$.
3. Let A be an $n \times n$ symmetric positive definite matrix, $b \in \mathbb{R}^{n}$, and $f(x)=(1 / 2) x^{T} A x-b^{T} x$ for any $x \in \mathbb{R}^{n}$. Let x^{*} be the unique minimum point of the convex quadratic function f. The gradient descent method applied to minimize $f(x)$ produces $x^{(k+1)}=x^{(k)}-\alpha_{k} \nabla f\left(x^{(k)}\right)$ $(k=0,1, \ldots)$, where $x^{(0)} \in \mathbb{R}^{n}$ and $\alpha_{k}=\arg \min \left\{f\left(x^{(k)}-\alpha \nabla f\left(x^{(k)}\right)\right): \alpha \geq 0\right\}$.
(1) Prove that $\alpha_{k}=\nabla f\left(x^{(k)}\right)^{T} \nabla f\left(x^{(k)}\right) /\left(\nabla f\left(x^{(k)}\right)^{T} A \nabla f\left(x^{(k)}\right)\right.$ for any k with $x^{(k)} \neq x^{*}$.
(2) Denote by $\lambda_{\text {min }}$ and $\lambda_{\text {max }}$ the smallest and largest eigenvalues of A, respectively, and denote $\beta=\left(\lambda_{\max }-\lambda_{\min }\right) /\left(\lambda_{\max }+\lambda_{\min }\right) \in[0,1)$. Use the Kantorovich inequality

$$
\frac{\left(y^{T} A y\right)\left(y^{T} A^{-1} y\right)}{\left(y^{T} y\right)^{2}} \leq \frac{\left(\lambda_{\min }+\lambda_{\max }\right)^{2}}{4 \lambda_{\min } \lambda_{\max }} \quad \forall y \in \mathbb{R}^{n} \text { with } y \neq 0
$$

to prove $f\left(x^{(k+1)}\right)-f\left(x^{*}\right) \leq \beta^{2}\left(f\left(x^{(k)}\right)-f\left(x^{*}\right)\right)(k=0,1, \ldots)$.
(3) Prove that $x_{k} \rightarrow x^{*}$ (at least) linearly.
4. Let $\alpha_{i}>0, c_{i} \in \mathbb{R}, a_{i} \in \mathbb{R}(i=1, \ldots, n)$, and $b \in \mathbb{R}$. Assume at least one of a_{1}, \ldots, a_{n} is nonzero. Minimize $Q\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n}\left(x_{i}-c_{i}\right)^{2} / \alpha_{i}$ subject to $\sum_{i=1}^{n} a_{i} x_{i}=b$.
5. (1) Maximize $H\left(p_{1}, \ldots, p_{n}\right)=-\sum_{k=1}^{n} p_{k} \ln p_{k}$ for all $p_{k}>0$ subject to $\sum_{k=1}^{n} p_{k}=1$.
(2) Let $\mu>0$. Maximize $H\left(p_{1}, p_{2}, \ldots\right)=-\sum_{k=1}^{\infty} p_{k} \ln p_{k}$ for $p_{k}>0(k=1,2, \ldots)$ subject to $\sum_{k=1}^{\infty} p_{k}=1$ and $\sum_{k=1}^{\infty} k p_{k}=\mu$.
6. Let $X_{1}, \ldots, X_{n} \in \mathbb{R}$ be independent random variables with the expection $E\left(X_{i}\right)=\mu$ and variance $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}(i=1, \ldots, n)$ for some $\mu \in \mathbb{R}$ and $\sigma>0$. Find the coefficients a_{1}, \ldots, a_{n} that minimize $\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)$ subject to $E\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\mu$.
7. Let $E \subset \mathbb{R}^{n}$ be open and bounded, $f \in C(\bar{E})$, and $h \in C\left(\bar{E}, \mathbb{R}^{m}\right)$ for some positive integers n and m. (An overline denotes the closure.) Assume $\{x \in \bar{E}: h(x)=0\} \neq \emptyset$. Let M_{k} be an increasing sequence of positive numbers such that $M_{k} \rightarrow \infty$. Assume for each $k \geq 1$ that $x_{k} \in \bar{E}$ is a global minimizer of the penalty function $f(x)+\left(M_{k} / 2\right)\|h(x)\|_{2}^{2}$ over \bar{E}. Prove that any cluster point x^{*} of $\left\{x^{(k)}\right\}$ is a global minimizer of f on \bar{E} with the constraint $h(x)=0$.

