Math 270B: Numerical Analysis (Part B)
 Winter quarter 2024

Homework Assignment 3
Due: 1:00 pm, Wednesday, January 31, 2024.

1. (1) Let $f(x)=1 / x(0<x<1)$. Prove that there exists no polynomial p such that

$$
\sup _{0<x<1}|f(x)-p(x)|<1
$$

(2) Let $f(x)=\sin (1 / x)(0<x<1)$. Prove that there exists no $g \in C([0,1])$ such that

$$
\sup _{0<x<1}|f(x)-g(x)|<1
$$

2. Let $B_{n} f \in \mathcal{P}_{n}(n=0,1, \ldots)$ be the Bernstein polynomials of $f \in C([0,1])$.
(1) Let $p_{2}(x)=x^{2}$ and $n \geq 2$. Show that $B_{n} p_{2}(x)=((n-1) / n) x^{2}+(1 / n) x$ for all $x \in[0,1]$.
(2) In general, is $B_{n} f \in \mathcal{P}_{n}$ the best uniform approximation of $f \in C([0,1])$ in \mathcal{P}_{n} on $[0,1]$?
(3) If $f \in C^{1}([0,1])$, then $\left\|\left(B_{n} f\right)^{\prime}-f^{\prime}\right\|_{C([a, b])} \rightarrow 0$ as $n \rightarrow \infty$.
3. Let $k \geq 1$ be an integer, $f \in C^{k}([a, b])$, and $\epsilon>0$. Show that there exists $p \in \mathcal{P}$ such that

$$
\|f-p\|_{C([a, b])}<\epsilon, \quad\left\|f^{\prime}-p^{\prime}\right\|_{C([a, b])}<\epsilon, \quad \ldots, \quad\left\|f^{(k)}-p^{(k)}\right\|_{C([a, b])}<\epsilon
$$

4. Let $f \in C([a, b])$ but $f \notin \mathcal{P}$. Show that there exits no polynomial $p \in \mathcal{P}$ such that

$$
\|f-p\|_{C([a, b])} \leq\|f-q\|_{C([a, b])} \quad \forall q \in \mathcal{P}
$$

5. Let $f \in C([a, b])$ and $q_{n} \in \mathcal{P}_{n}$ for some $n \geq 0$. Let $p_{n} \in \mathcal{P}_{n}$ be the best uniform approximation of f in \mathcal{P}_{n}. Prove that $p_{n}+q_{n}$ is the best uniform approximation of $f+q_{n}$ in \mathcal{P}_{n}.
6. Let $c>0$. Let $f \in C([-c, c])$ be an even (odd) function. Show that the best uniform approximation of f in \mathcal{P}_{n} for an integer $n \geq 0$ is also an even (odd) function.
7. Show that $p_{1}(x)=x-1 / 8$ is the best uniform approximation of $f(x)=x^{2}$ in \mathcal{P}_{1} on $[0,1]$.
8. Let $f(x)=x^{4}(0 \leq x \leq 1)$. Find the best uniform approximation of f in \mathcal{P}_{1} on $[0,1]$.
