Math 270B: Numerical Analysis (Part B) Winter quarter 2024

Homework Assignment 3

Due: 1:00 pm, Wednesday, January 31, 2024.

1. (1) Let f(x) = 1/x (0 < x < 1). Prove that there exists no polynomial p such that

$$\sup_{0 < x < 1} |f(x) - p(x)| < 1.$$

(2) Let $f(x) = \sin(1/x)$ (0 < x < 1). Prove that there exists no $g \in C([0, 1])$ such that

$$\sup_{0 < x < 1} |f(x) - g(x)| < 1.$$

2. Let $B_n f \in \mathcal{P}_n$ (n = 0, 1, ...) be the Bernstein polynomials of $f \in C([0, 1])$.

- (1) Let $p_2(x) = x^2$ and $n \ge 2$. Show that $B_n p_2(x) = ((n-1)/n)x^2 + (1/n)x$ for all $x \in [0, 1]$.
- (2) In general, is $B_n f \in \mathcal{P}_n$ the best uniform approximation of $f \in C([0, 1])$ in \mathcal{P}_n on [0, 1]?
- (3) If $f \in C^1([0,1])$, then $||(B_n f)' f'||_{C([a,b])} \to 0$ as $n \to \infty$.
- 3. Let $k \geq 1$ be an integer, $f \in C^k([a, b])$, and $\epsilon > 0$. Show that there exists $p \in \mathcal{P}$ such that

$$|f - p||_{C([a,b])} < \epsilon, \qquad ||f' - p'||_{C([a,b])} < \epsilon, \qquad \dots, \qquad ||f^{(k)} - p^{(k)}||_{C([a,b])} < \epsilon.$$

4. Let $f \in C([a, b])$ but $f \notin \mathcal{P}$. Show that there exits no polynomial $p \in \mathcal{P}$ such that

$$||f - p||_{C([a,b])} \le ||f - q||_{C([a,b])} \qquad \forall q \in \mathcal{P}.$$

- 5. Let $f \in C([a, b])$ and $q_n \in \mathcal{P}_n$ for some $n \ge 0$. Let $p_n \in \mathcal{P}_n$ be the best uniform approximation of f in \mathcal{P}_n . Prove that $p_n + q_n$ is the best uniform approximation of $f + q_n$ in \mathcal{P}_n .
- 6. Let c > 0. Let $f \in C([-c, c])$ be an even (odd) function. Show that the best uniform approximation of f in \mathcal{P}_n for an integer $n \ge 0$ is also an even (odd) function.
- 7. Show that $p_1(x) = x 1/8$ is the best uniform approximation of $f(x) = x^2$ in \mathcal{P}_1 on [0, 1].
- 8. Let $f(x) = x^4$ ($0 \le x \le 1$). Find the best uniform approximation of f in \mathcal{P}_1 on [0, 1].