Math 270B: Numerical Analysis (Part B) Winter quarter 2024 Homework Assignment 4 Due: 10:00 pm, Thursday 8, 2024.

1. Let $f \in C([a, b])$ and define

$$\mu_n(f) = \int_a^b x^n f(x) \, dx, \qquad n = 0, 1, \dots.$$

Show that f(x) = 0 for all $x \in [a, b]$ if and only if $\mu_n(f) = 0$ for all n = 0, 1, ...

2. Let $n \ge 0$ be an integer and T_n the *n*-th Chebyshev polynomial. Show that

$$\int_{-1}^{1} [T_n(x)]^2 = 1 - \frac{1}{4n^2 - 1}.$$

3. Let $n \ge 0$ be an integer and T_n the *n*th Chebyshev polynomial of first kind. Let $P \in \mathcal{P}_n$ satisfy that $|P(x)| \le 1$ for all $x \in [-1, 1]$. Show that

$$|P(y)| \le |T_n(y)| \qquad \forall y \notin [-1,1].$$

4. Let $f \in C_{2\pi}$ and $n \ge 0$ be an integer. Prove that there exists $T_n \in \mathfrak{T}_n$ such that

 $||f - T_n||_{C_{2\pi}} \le ||f - S_n||_{C_{2\pi}} \qquad \forall S_n \in \mathfrak{T}_n.$

5. Given any function g on [a, b], define

$$g^*(\theta) = g\left(\frac{(b-a)\cos\theta + (a+b)}{2}\right) \qquad \forall \theta \in (-\infty, \infty)$$

Let $f \in C([a, b])$ and $n \ge 0$ be an integer. Let $p \in \mathcal{P}_n$ and $T \in \mathcal{T}_n$ satisfy

$$||f - p||_{C([a,b])} = E_n(f) := \min_{q \in \mathcal{P}_n} ||f - q||_{C([a,b])},$$

$$||f^* - T||_{C_{2\pi}} = E_n^*(f^*) := \min_{S \in \mathcal{T}_n} ||f^* - S||_{C_{2\pi}}.$$

Show that $E_n(f) = E_n^*(f^*)$ and that $T = p^*$.

- 6. Define $\chi(x) = -1$ if $-1 \le x < 0$ and $\chi(x) = 1$ if $0 \le x \le 1$.
 - 1. Show that $\inf_{f \in C([-1,1])} \sup_{-1 \le x \le 1} |f(x) \chi(x)| = 1$, and that there exist infinitely many $f \in C([-1,1])$ such that $\sup_{-1 \le x \le 1} |f(x) \chi(x)| = 1$.
 - 2. Show that

$$\inf_{f \in C([-1,1])} \int_{-1}^{1} |f(x) - \chi(x)|^2 dx = 0,$$

and that there exists no $f \in C([-1, 1])$ such that

$$\int_{-1}^{1} |f(x) - \chi(x)|^2 dx = 0.$$

- 7. Let $a, b \in \mathbb{R}$ with $a < b, f \in C([a, b])$, and $\varepsilon > 0$. Show that there exists a polynomial p such that $||f p||_{L^2(a,b)} < \varepsilon$.
- 8. Find the least-squares approximation of $f(x) = x^4$ in \mathcal{P}_1 over [0, 1].