Math 270B: Numerical Analysis (Part B)
 Winter quarter 2024
 Homework Assignment 4
 Due: 10:00 pm, Thursday 8, 2024.

1. Let $f \in C([a, b])$ and define

$$
\mu_{n}(f)=\int_{a}^{b} x^{n} f(x) d x, \quad n=0,1, \ldots
$$

Show that $f(x)=0$ for all $x \in[a, b]$ if and only if $\mu_{n}(f)=0$ for all $n=0,1, \ldots$
2. Let $n \geq 0$ be an integer and T_{n} the n-th Chebyshev polynomial. Show that

$$
\int_{-1}^{1}\left[T_{n}(x)\right]^{2}=1-\frac{1}{4 n^{2}-1} .
$$

3. Let $n \geq 0$ be an integer and T_{n} the nth Chebyshev polynomial of first kind. Let $P \in \mathcal{P}_{n}$ satisfy that $|P(x)| \leq 1$ for all $x \in[-1,1]$. Show that

$$
|P(y)| \leq\left|T_{n}(y)\right| \quad \forall y \notin[-1,1] .
$$

4. Let $f \in C_{2 \pi}$ and $n \geq 0$ be an integer. Prove that there exists $T_{n} \in \mathcal{T}_{n}$ such that

$$
\left\|f-T_{n}\right\|_{C_{2 \pi}} \leq\left\|f-S_{n}\right\|_{C_{2 \pi}} \quad \forall S_{n} \in \mathcal{T}_{n}
$$

5. Given any function g on $[a, b]$, define

$$
g^{*}(\theta)=g\left(\frac{(b-a) \cos \theta+(a+b)}{2}\right) \quad \forall \theta \in(-\infty, \infty)
$$

Let $f \in C([a, b])$ and $n \geq 0$ be an integer. Let $p \in \mathcal{P}_{n}$ and $T \in \mathcal{T}_{n}$ satisfy

$$
\begin{aligned}
& \|f-p\|_{C([a, b])}=E_{n}(f):=\min _{q \in \mathcal{P}_{n}}\|f-q\|_{C([a, b])}, \\
& \left\|f^{*}-T\right\|_{C_{2 \pi}}=E_{n}^{*}\left(f^{*}\right):=\min _{S \in \mathcal{T}_{n}}\left\|f^{*}-S\right\|_{C_{2 \pi}} .
\end{aligned}
$$

Show that $E_{n}(f)=E_{n}^{*}\left(f^{*}\right)$ and that $T=p^{*}$.
6. Define $\chi(x)=-1$ if $-1 \leq x<0$ and $\chi(x)=1$ if $0 \leq x \leq 1$.

1. Show that $\inf _{f \in C([-1,1])} \sup _{-1 \leq x \leq 1}|f(x)-\chi(x)|=1$, and that there exist infinitely many $f \in C([-1,1])$ such that $\sup _{-1 \leq x \leq 1}|f(x)-\chi(x)|=1$.
2. Show that

$$
\inf _{f \in C([-1,1])} \int_{-1}^{1}|f(x)-\chi(x)|^{2} d x=0
$$

and that there exists no $f \in C([-1,1])$ such that

$$
\int_{-1}^{1}|f(x)-\chi(x)|^{2} d x=0
$$

7. Let $a, b \in \mathbb{R}$ with $a<b, f \in C([a, b])$, and $\varepsilon>0$. Show that there exists a polynomial p such that $\|f-p\|_{L^{2}(a, b)}<\varepsilon$.
8. Find the least-squares approximation of $f(x)=x^{4}$ in \mathcal{P}_{1} over $[0,1]$.
