Math 270B: Numerical Analysis (Part B)
 Winter quarter 2024
 Homework Assignment 5

Due: 1:00 pm, Friday, February 16, 2024.

1. Let $p(x)=\sum_{k=0}^{n} a_{k} x^{k} \in \mathcal{P}_{n}$ be the least-squares approximation of a given $f \in C([0,1])$ over $[0,1]$. Find the coefficient matrix of the linear system that determines a_{0}, \ldots, a_{n}.
2. Given $q_{1}, \ldots, q_{m} \in \mathcal{P}$. Prove that they are linearly independent in \mathcal{P} if and only if the Gram matrix $G\left(q_{1}, \ldots, q_{m}\right)=\left[G_{i j}\right]_{i, j=1}^{m}$ is symmetric positive definite, where

$$
G_{i j}=\int_{a}^{b} p_{i}(x) p_{j}(x) d x, \quad i, j=1, \ldots, m .
$$

3. Use the Gram-Schmidt orthogonalization to construct the orthogonal polynomials Q_{0}, Q_{1}, and Q_{2} on $[0,1]$ from $q_{0}(x)=1, q_{1}(x)=x$, and $q_{2}(x)=x^{2}$.
4. Let $\left\{Q_{n}\right\}_{n=0}^{\infty}$ be orthonormal polynomials on $[a, b]$. Define $K_{n}(x, t)=\sum_{k=0}^{n} Q_{k}(x) Q_{k}(t)$ for all $n \geq 0$ and all $x, t \in \mathbb{R}$. Show that

$$
p_{n}(x)=\int_{a}^{b} p_{n}(t) K_{n}(x, t) d t \quad \forall p_{n} \in \mathcal{P}_{n} \text { and } x \in \mathbb{R}
$$

5. Let $u, v \in C^{2}([0,1])$ be two nonzero functions such that $u(0)=u(1)=v(0)=v(1)=0$. Let $\lambda, \mu \in \mathbb{R}$ be such that $\lambda \neq \mu$. Assume that $-u^{\prime \prime}+u=\lambda u$ and $-v^{\prime \prime}+v=\mu v$ on $[0,1]$. Prove that u and v are orthogonal in $L^{2}(0,1)$.
6. Let

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[\left(x^{2}-1\right)^{n}\right], \quad n=0,1, \ldots
$$

be the Legendre polynomials. Let $n \geq 1$. Prove directly by Rolle's Theorem that P_{n} has n simple roots in $(-1,1)$.
7. Let

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[\left(x^{2}-1\right)^{n}\right], \quad n=0,1, \ldots
$$

be the Legendre polynomials. Let $r \geq 1$ be an integer. Show that

$$
\int_{-1}^{1} P_{m}^{(r)}(x) P_{n}^{(r)}(x)\left(1-x^{2}\right)^{r} d x=0 \quad \text { if } m, n \geq r \text { and } m \neq n
$$

