Math 270B: Numerical Analysis (Part B)
 Winter quarter 2024
 Homework Assignment 6

Due: 1:00 pm, Wednesday, February 28, 2024.

1. Find the polynomial $p \in \mathcal{P}_{3}$ of the form $p(x)=c_{0}+c_{1} x+c_{3} x^{3}$ that interpolates a given function $f \in C([0,3])$ at $x=0,2,3$.
2. Let $x_{0}=2, x_{1}=3, x_{2}=5, x_{3}=6$ and $y_{0}=5, y_{1}=2, y_{2}=3, y_{3}=4$. Let $p \in \mathcal{P}_{3}$ be the unique polynomial that interpolates y_{j} at $x_{j}(j=0,1,2,3)$. Calculate p by using: (1) Lagrange's formula; and (2) Newton's formula.
3. Let $f(x)=x^{4}-x^{2}+17 x+1$. Let $p \in \mathcal{P}_{20}$ interpolates f at $x_{j}=2^{j}(j=0, \ldots, 20)$. Compute $p(0)$.
4. Let $f(x)=x^{4}-x^{2}+17 x+1$ and $x_{k}=k(k=0,1, \ldots, 20)$. Calculate $f\left[x_{0}, \ldots, x_{4}\right]$ and $f\left[x_{0}, \ldots, x_{20}\right]$.
5. Let x_{0}, \ldots, x_{n} be $n+1$ distinct real numbers. Let $l_{j}(x)$ be the associated Lagrange basis polynomials. Show that $\sum_{j=0}^{n}\left(x-x_{j}\right)^{k} l_{j}(x)=0$ for all $k=1, \ldots, n$.
6. Recall for $n \geq 1$ that the Chebyshev polynomial $T_{n}(x)$ has n distinct roots $x_{j}=\cos \theta_{j}$ with $\theta_{j}=(2 j-1) \pi / 2 n(j=1, \ldots, n)$. Denote by $L_{n-1}: C([-1,1]) \rightarrow \mathcal{P}_{n-1}$ the associated Lagrange interpolation operator. Show that

$$
\left(L_{n-1} f\right)(x)=\frac{1}{n} \sum_{j=1}^{n} f\left(x_{j}\right) \frac{(-1)^{j-1} \sin \theta_{j} T_{n}(x)}{x-x_{j}} \quad \forall f \in C([-1,1])
$$

7. Let $f \in C([a, b])$. Show that, for each integer $n \geq 1$, there exist n distinct points $x_{1}^{(n)}, \ldots, x_{n}^{(n)}$ such that

$$
\left\|f-L_{n-1} f\right\|_{C([a, b])} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

where $L_{n-1} f \in \mathcal{P}_{n-1}$ is the Lagrange interpolation polynomial of f at $x_{1}^{(n)}, \ldots, x_{n}^{(n)}$.
8. Let $Q_{n} \in \mathcal{P}_{n}(n=0,1, \ldots)$ be orthonormal polynomials on $[0,1]$. Fix $n \geq 2$. Let x_{1}, \ldots, x_{n} be the n distinct roots of $Q_{n}(x)$ in $(0,1)$, and l_{1}, \ldots, l_{n} be the associated Lagrange basis polynomials. Prove that l_{1}, \ldots, l_{n} are orthogonal on $[0,1]$ and that

$$
\sum_{j=1}^{n} \int_{0}^{1}\left[l_{j}(x)\right]^{2} d x=1
$$

9. The ReLU (Rectified Linear Unit) activation function used in neural networks is defined by $\operatorname{ReLU}(x)=\max (x, 0)$ (also denoted by x^{+}or x_{+}) for any $x \in \mathbb{R}$. Prove for any integer $k \geq 0$ and any $x \in \mathbb{R}$ with at least one of them nonzero that

$$
[\operatorname{ReLU}(x)]^{k}+(-1)^{k}[\operatorname{ReLU}(-x)]^{k}=x^{k}
$$

