Math 270B: Numerical Analysis (Part B)
 Winter quarter 2024
 Homework Assignment 9

Due: 5:00 pm, Wednesday, March 20, 2024.

1. Let $f:[a, b] \rightarrow \mathbb{R}$ be integrable over $[a, b]$. Let $n \geq 1$ be an integer, $h=(b-a) /(2 n)$, and $x_{i}=a+i h(i=0, \ldots, 2 n)$.
(1) Derive the composite Simpson's formula for the integration of a function of f over $[a, b]$ by applying the basic Simpson's formula to each of the subinterval $\left[x_{2 i-2}, x_{2 i}\right]$ $(i=0, \ldots, n)$.
(2) Assume $f \in C^{4}([a, b])$. Derive an error formula for the composite Simpson's formula that is derived in Part (1).
2. Let $\left\{Q_{n}\right\}_{n=0}^{\infty}$ be a system of orthogonal polynomials on $[a, b]$. Fix $n \geq 1$. Let x_{1}, \ldots, x_{n} be the n distinct roots of Q_{n} in (a, b). Let

$$
\int_{a}^{b} f(x) d x \approx \sum_{j=1}^{n} A_{j} f\left(x_{j}\right)
$$

be the corresponding Gaussian quadrature. Show that $\sum_{j=1}^{n} A_{j} Q_{k}\left(x_{j}\right)=0(k=1, \ldots, 2 n-$ 1).
3. Consider a Gaussian formula

$$
\int_{a}^{b} f(x) d x \approx \sum_{j=1}^{n} A_{j} f\left(x_{j}\right)
$$

Show that for any $f \in C([a, b])$ the error

$$
e_{n}(f)=\int_{a}^{b} f(x) d x-\sum_{j=1}^{n} A_{j} f\left(x_{j}\right)
$$

satisfies

$$
\left|e_{n}(f)\right| \leq 2(b-a) \min _{q \in \mathcal{P}_{2 n-1}}\|f-q\|_{C([a, b])}
$$

4. Let $n \geq 1$ be an integer. The Gauss-Chebyshev quadrature is the weighted Gaussian quadrature on $[-1,1]$ with the weight $1 / \sqrt{1-x^{2}}$ using $x_{j}=\cos ((2 j-1) \pi / 2 n)(j=$ $1, \ldots, n)$, the n roots of the nth Chebyshev polynomial $T_{n}(x)=\cos (n \arccos x)$. Show that the Gauss-Chebyshev formula is given by

$$
\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^{2}}} d x \approx \frac{\pi}{n} \sum_{j=1}^{n} f\left(x_{j}\right)
$$

5. Let $f \in C([a, b])$ and denote by $I(f)$ the integral of f over $[a, b]$. Let $N \geq 1$ be an integer, $h=(b-a) / 2 N$, and $x_{j}=a+j h, j=0, \ldots, 2 N$. Let $T_{N}, T_{2 N}$, and S_{N} denote, respectively, the approximate value of $I(f)$ by the composite trapezoidal rule with N subintervals $\left[x_{2 j-2}, x_{2 j}\right], j=1, \ldots, N$, by the composite trapezoidal rule with $2 N$ subintervals $\left[x_{j-1}, x_{j}\right], j=1, \ldots, 2 N$, and by the composite Simpson rule with N subintervals $\left[x_{2 j-2}, x_{2 j}\right], j=1, \ldots, N$. Prove that $S_{N}=\left(4 T_{2 N}-T_{N}\right) / 3$.
