1400 Office Hours

Why is IA-Ill used in Thm 9.8 ?

IAI only bounds how much A can lengthen vectors. ITATIL bounds how much A shrinks vectors (and the concern for invertibility is that a nonzero vector gets shrunk to the O vector)

Suppose AEL(R^{*}) is invertible for all yeR $|A'y| \leq |A'|| |y|$ setting x = A-1 y we obtain $|\mathbf{x}| \leq |\mathbf{A}^{-1}| \cdot |\mathbf{A}\mathbf{x}|$ Meaning $|Ax| \ge \frac{1}{||A^*||} |x|$ This holds for all XER In general, (still assuming A invertible) and ||A|| and ||A'|| are the smallest real numbers for which the above statement is true In Thm 9.8 require $||B-A|| < \frac{1}{||A^-||}$

Why are the two formulas for IIAII equal?

By definition
$$||A|| = \sup_{x \in \mathbb{R}^{n}} |Ax|$$

 $||X|| = \sup_{x \in \mathbb{R}^{n}, |x|=1} |Ax|$ since $\frac{1}{2} \times e\mathbb{R}^{n} : |x|=13 \le \frac{1}{2} \times e\mathbb{R}^{n} : |x|=13$.
On the other hand, consider any $x \in \mathbb{R}^{n}$ with $|x| \le 1$.
Case 1: $x = 0$. Then $Ax = 0$ so $|Ax| = 0 \le \sup_{y \in \mathbb{R}^{n}, |y|=1} |Ay|$.
Case 2: $x \neq 0$. Set $t = \frac{1}{|x|}$. Then $|tx| = 1$ and since $t \ge 1$
we have
 $|Ax| \le t |Ax| = |Atx| \le \sup_{y \in \mathbb{R}^{n}, |y|=1} |Ay|$.
So $y \in \mathbb{R}^{n}, |y|=1 |Ay|$ is an upper band to $\frac{1}{2} |Ax| : x \in \mathbb{R}^{n}, |x| \le 13$.
Therefore $||A|| \le \sup_{y \in \mathbb{R}^{n}, |y|=1} |Ay|$. We conclude
 $||A|| = \sup_{y \in \mathbb{R}^{n}, |y|=1} |Ay|$

Why is GL(R") open? Recall if (X, d) metric space and USX, then U is open if UxeU Irro Br(x) = U. GL(R") is open by Theorem 9.8D since for every $AeGL(\mathbb{R}^n) = B_{\frac{1}{\|A^{-1}\|}}(A) \subseteq GL(\mathbb{R}^n)$ (+ BEL(R') $B \in B_{\underline{I}}(A) \Longrightarrow ||B-A|| < \frac{1}{||A^{-1}||} \xrightarrow{\text{Thm 9.84}} B \in GL(\mathbb{R}^{n})$

Ch. 9 #8

 $f: E \rightarrow IR$ $E \subseteq R^{n}$ f differentiable, local max at x. Show f(x) = 0. Write f(x+h) - f(x) = f(x)h + r(h) where $\lim_{h \to 0} h = 0$ as $h \to 0$ Towards a contradiction, suppose fast =0. Then there is hold with f (wh to. By replacing h with -h if necessary, can assume f(wh > 0. Then for all Set $\varepsilon = zh_1 f'(x)h$ to close enough to 0 so that $\frac{ir(th)_1}{|th|} < \varepsilon$ we have f(x+th) - f(x) = t f'(x)h + r(th) $\geq \pm P(x)h - |r(th)|$ \geq tf(x)h-eth $= t(f(x)h - \varepsilon h)$ $\geq \pm f(x)h > 0.$ Thus x is not a local max contradiction.

If g(x)=Af(x) why is g'(x)=Af'(x)?

Claim: $If A \in L(\mathbb{R}^{m}, \mathbb{R}^{k}), f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and g(x) = Af(x) then g'(x) = Af(x)(assuming $f'(x) \in xists$)

PF: We have $\begin{array}{rcl} & & & & & \\ \lim & & & & \\ \lim & & & \\ -\lim & & & \\ -\lim & & & \\ -\lim & & & \\ \lim & & & \\ -\lim & & & \\ \lim & & & \\ \lim & & & \\ -\lim & & & \\ \lim & & \\ \lim & & \\ \lim & & & \\ \lim &$

Why do Lebesgue-measurable non-Borel measurable sets exist?

Fact: let m be lebesgue necesure on \mathbb{R}^p . If $A \in \mathcal{M}(m)$ and m(A) = 0 then $B \in \mathcal{M}(m)$ for all $B \subseteq A$.

Pf: Since $O = m(A) = m^{*}(A)$ and m^{*} is monotone, so $HB \subseteq A \quad m^{*}(B) = O$. This means $B \in M_{E}(m) \subseteq M(h)$ because $B_{A} \rightarrow B$ where $B_{A} = \emptyset \in E$ $(B_{A} \rightarrow B \quad since \int_{A \rightarrow \infty}^{1/m} M^{*}(BAB_{A}) = M^{*}(B) = O)$

Fect IF C is the Cantor set then m(c)=0.

PL: Given in class.

So C is an uncountable compact set and every subset of C is laberque measurable.

However, the collection of Borel sols contained in C coincides with the Borel o-algebra of C (For any metric space (X,d) the Borel or-algebra is by definition the smallest or-algebra containing all goes sets) Eact: If (X, d) is an uncountable separable complete Metric space, then there exist subsets of X that are not Borel

Continued from previous page Fact: (X,d) uncritibly separable, complete. Then (B(X) = |R|.

Pf: Claim: 124=x: Uppen31=1R

Pf: Let Xo SX be cottal dense. Set $\gamma = \frac{2}{6} B_q(x) : q^2 O, q \in \mathbb{Q}, x \in X, \frac{3}{6}$ For any open USX and any XEU (Here is Bq(x') ET with XEBq(x') EU. Enumerate T as Vo, VI, ----This shows Hopen USX FISIN U= UV; Clearly true for Cantor'sat by considering (the Oper sets Therefore [2U=X: Upper3] = [2]: I=N3 = IRI (-~,x)nC Keverse meguality = ...? 4 for XEC

Claim implies |B(X) = IR, Let N = Baire space = 2x: N→IN3

Fact: Every Borel set ASX is the projection of a closed set B = X × // $(A = \{x \in X : \exists y \in \mathcal{N} (x, y) \in B\})$

By first claim, X×N has at most IRI-many closed sets, So by above fact (B(X) < IRI,

Continued from previous page Fact: [ZY: Y = X] > [X] = [R] Pf: ">" by Math 109 N is a metric space: if $x, y: |N \rightarrow |N|$ $d(x, y) = \inf \{2^n : n \in |N| \forall k < n : x(k) = y(k) \} \le 1$ Fact: Every Borel set ASX is the projection of a closed set BSXX/ $(A = \{x \in X : \exists y \in \mathcal{N} (x, y) \in B\})$ Pf Skatch: Set A = EASX: I closed BSXX/ with Tx(B)=A3. Check that A is a o-algebra and contains overy closed abset of X. Since B(X) is the smallest o-algebra containing all closed sets, B(x) = A

Measurable Functions

Fact: f:X > [-00, +00] is mecaurable iff $\forall A \in \mathcal{B}(\mathbb{R}) = f^{-1}(A) \in \mathcal{M}$ In general, if (X, M, u) and (Y, N, v) are measure spaces then a function $f: X \rightarrow Y$ is measurable if VAER f'(A)EM So for the definition of measurable we use in class, we take the colomain R to be equipped with BCR) by default. $x \in X \longrightarrow f w \in \mathbb{R} \longrightarrow q(f w) \in \mathbb{R}$

Chapter II Problem 12

The answer is yes. To see this, it suffices to show that whenever a sequence (x_n) in [0, 1](onverges to x, $g(x_n) \rightarrow g(x)$ as $n \rightarrow \infty$. Consider such a seq. (x_n) . Define $f_n(y) = f(x_n, y)$. By (b) by $f_n(y) \rightarrow f(x_n, y)$. Also by $H_n(y) \leq 1$ and $S_0 \mid Q_y \leq \infty$, so by lebesgue Dominated Convergence Theorem $g(x) = \int_{0}^{1} \dot{f}(x,y) dy = \int_{0}^{1} \lim_{n \to \infty} f_{n}(y) dy$ $= \lim_{n \to \infty} \int_{0}^{1} f_{n}(y) dy = \lim_{n \to \infty} g(x_{n}),$

Fatou's Theorem - Different Perspective

Fix 2>0.
Define
$$E_n = \xi \times \epsilon E$$
: $\inf_{m \ge n} f_m(x) > (1-\epsilon)f(x) \xrightarrow{3}$
Then $E_1 \subseteq E_2 \subseteq \cdots$ and since $f(x) = \liminf_{n \ge \infty} f_n(x)$ (*)
we have $\forall x \in E \exists n \ x \in E_n$, or equivalently
 $A_i = E_n = E$.
Since the f_n 's are non-negative, we have
 $\forall m \ge n$ $S_E(1-\epsilon)f \ du \le S_E f_m \ du \le S_E f_m \ du + S_{E \setminus E_n} f_m \ du$
 $= S_E f_m \ du$
Taking $\liminf_{n \le n} f_n \le m \rightarrow \infty$ we dotain
 $S_E(1-\epsilon)f \ du \le \liminf_{m \rightarrow \infty} S_E f_m \ du$
Next by Theorem II. 24 and Theorem II. 3 we can take
 $\liminf_{n \ge \infty} f_n = \lim_{m \ge \infty} S_E(1-\epsilon)f \ du \le \lim_{m \rightarrow \infty} S_E f_m \ du$
 $(1-\epsilon)S_E f \ du = S_E (1-\epsilon)f \ du = \lim_{n \to \infty} S_E (1-\epsilon)f \ du \le \lim_{m \rightarrow \infty} S_E f_m \ du$

(*)
$$f(x) = \liminf_{m \to \infty} f_m(x) = \lim_{n \to \infty} \inf_{m \ge n} f_m(x)$$

Summary: If n is large enough,
for "most" points
$$x \in E$$
 we have $(1-e)f(x) < f_n(x)$
and thus $S_E(1-e)f d_M \approx S_E f_n d_M$

Chapter II Problem 7

Modified Theorem 11.33: Let a < b be real numbers, let a: R>R be monotone increasing. Define $\begin{array}{c} (x) = \begin{cases} \alpha(a) & \text{if } x < \alpha \\ \alpha(x) = \begin{cases} \alpha(x) & \text{if } \alpha \leq x \leq b \\ \alpha(b) & \text{if } x > b \end{cases}$ Let 11 be the measure obtained from using ~, in Ex.G.(b). (A) If f & Ra(a) then f & L ([a,b], u) and Sof du = RSof da B Suppose fis bounded. Then f E Ra (a) iff f is left-cont. at every point or, is not left-cont, f is right-cont. at every point or, is not right-cont, and the set of points where or, is continuous and f is discontinuous has u-measure O,