$140 C$ Office Hours

Why is $\left\|A^{-1}\right\|$ used in The 9.8?
\|A\| only bounds how much A can lengthen vectors. $\frac{1}{1 A^{-1}}$ bounds how much A shrinks vectors land the concern for invertibility is that a nonzero vector gets shrunk to the O vector)

Suppose $A \in L\left(\mathbb{R}^{n}\right)$ is invertible
for all $y \in \mathbb{R}^{n} \quad\left|A^{-1} y\right| \leq\left\|A^{-1}\right\| \cdot|y|$
setting $x=A^{-1} y$ we obtain

$$
|x| \leqslant\left\|A^{-1}\right\| \cdot|A x|
$$

meaning $|A x| \geq \frac{1}{\left\|A^{-}\right\|}|x|$
This holds for all $x \in \mathbb{R}^{n}$
In general, (still assuming A invertible)
$\circledast \forall x \in \mathbb{R}^{n} \quad \frac{1}{\left\|A^{-}\right\|} \cdot|x| \leq|A x| \leqslant\|A\| \cdot|x|$
and $\|A\|$ and $\left\|A^{-1}\right\|$ are the smallest real numbers for which the above statement ${ }^{*}$ is true

In $\operatorname{Thm}_{m} 9.8$ require $\|B-A\|<\frac{1}{\left\|A^{-1}\right\|}$

Why are the two formulas for \|All equal?
By definition $\|A\|=\sup _{\substack{x \in \mathbb{R}^{n} \\|x| 1 \mid}}\left|A_{x}\right|$
Clearly $\|A\| \geq \sup _{x \in \mathbb{R}^{p}|x| x=1}|A x|$ since $\left\{x \in \mathbb{R}^{n}:|x|=\mid\right\} \leq\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$.
On the other hand, consider any $x \in \mathbb{R}^{n}$ with $|x| \leq 1$.
Case 1: $x=0$. Then $A_{x}=0$ so $|A x|=0 \leqslant y \in R_{1} p_{y}|y| A_{y} \mid$.
Case 2: $x \neq 0$. Set $t=\frac{1}{|x|}$. Then $|t x|=1$ and since $t \geqslant 1$
we have

$$
|A x| \leq t|A x|=\left|A t_{x}\right| \leq y \in \mathbb{R}^{\prime},|y|=\left|\left|A_{y}\right|\right.
$$

So $\operatorname{sun}_{y \in \mathbb{R}^{2}, y \mid y=1}^{\operatorname{lan}}\left|A_{y}\right|$ is an upperband to $\left\{\left|A_{x}\right|: x \in \mathbb{R}^{n},|x| \leqslant 1\right\}_{3}$,
Therefore $\|A\| \leq \sup _{y \in R} \boldsymbol{R}_{1} y=1|A y|$. We conclude

$$
\|A\|=\sup _{y \in \mathbb{R}^{\prime},|y|=1}\left|A_{y}\right|
$$

Why is $G L\left(\mathbb{R}^{n}\right)$ open?
Recall if (x, θ) metric space and $u \leq x$, then U is open if $\forall x \in U \operatorname{Ir}>0 \quad B_{r}(x) \leq U$.
$G L\left(\mathbb{R}^{n}\right)$ is open by Theorem $9.8(A)$ since for every $A \in G L\left(\mathbb{R}^{n}\right) \quad B_{\frac{1}{}}^{\left\|A^{n}\right\|}(A) \subseteq G L\left(\mathbb{R}^{n}\right)$

$$
\begin{aligned}
& \forall B \in L\left(\mathbb{R}^{n}\right) \\
& B \in B_{\frac{1}{\|N-\|}}(A) \Rightarrow\|B-A\|<\frac{1}{\left\|A^{-1}\right\|} \stackrel{\pi m m 9 \otimes}{\Rightarrow} B \in G L\left(\mathbb{R}^{n}\right)
\end{aligned}
$$

Ch. $9^{\text {世 }} 8$
$f: E \rightarrow \mathbb{R} \quad E \subseteq \mathbb{R}^{n}$
f differentiable, local max at x. Show $f^{\prime}(x)=0$,
Write $f(x+h)-f(x)=f^{\prime}(x) h+r(h)$ where $\left\lvert\, \frac{|h| h \mid}{|h|} \rightarrow 0\right.$ as $h \rightarrow 0$
Towards a contradiction, suppose $f^{\prime}(x) \neq 0$.
Then there is $h \in \mathbb{R}^{n}$ with $f^{\prime}(x) h \neq 0$
By replacing h with - h if necessary, con ass una $f^{\prime}(x) h>0$.

Then for all
Set $\varepsilon=\frac{1}{2 n} f^{\prime}(x) h$
to 0 so that $\frac{\text { ir } 1(t h) \mid}{}<\varepsilon$ we close enough

$$
\begin{aligned}
f(x+t h)-f(x) & =t f^{\prime}(x) h+r(t h) \\
& \geq t f^{\prime}(x) h-|r(t h)| \\
& \geqslant t f^{\prime}(x) h-\varepsilon t|h| \\
& =t\left(f^{\prime}(x) h-\varepsilon|h|\right) \\
& \geqslant \frac{1}{2} t f^{\prime}(x) h>0 .
\end{aligned}
$$

Thus x is not a local max, contradiction.

If $g(x)=A f(x)$ why is $g^{\prime}(x)=A f^{\prime}(x)$?
Claim: If $A \in L\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right), f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $g(x)=A f(x)$ then $g^{\prime}(x)=A f^{\prime}(x)$ (assuring $f^{\prime}(x)$ exists)
Pf: We have

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\left|g(x+h)-g(x)-A f^{\prime}(x) h\right|}{\ln \mid} \\
& =\lim _{h \rightarrow 0} \frac{\left|A\left(f(x+h)-f(x)-f^{\prime}(x) h\right)\right|}{|h|} \\
& \leqslant \lim _{h \rightarrow 0}\|A\| \cdot \frac{\left|f(x+h)-f(x)-f^{\prime}(x) h\right|}{|h|}=0
\end{aligned}
$$

Why do Lebesgue-meassurdble non-Borel measurable sets exist?
Fact: Let m be lebesgue measure on \mathbb{R}^{P}. If $A \in M(n)$ and $m(A)=0$ then $B \in M(m)$ for all $B \subseteq A$.

Pf: Since $O=m(A)=m^{*}(A)$ and m^{*} is monotone, so $\forall B \subseteq A m^{*}(B)=0$. This means $B \in m_{F}(m) \subseteq m(n)$ because $B_{n} \rightarrow B$ where $B_{n}=\varnothing \in \xi$ $\left(B_{n} \rightarrow B\right.$ since $\left.\lim _{n \rightarrow \infty} m^{*}\left(B \Delta B_{n}\right)=m^{*}(B)=0\right)$

Fact: If C is the Cantor set then $m(c)=0$.
Pf: Giver in class.
So C is an uncantable compact set and every subset of C is lebesgue measurable.

However, the collection of Borel sots contained in C coincides with the Borel σ-algebra of C (For any Metric space (x, d) the Bore σ-algebra is by definition the smallest v-algebra containing all goer sets)
(has a chide dense abet)
Fact: If (X, d) is an uncountable separable complete Metric space, then there exist subsets of X that are not Bore

Continued from previous page
Fact: (X, d) uncntbl, separable, complete.
Then $|B(x)|=|\mathbb{R}|$.
Pf: Claim: $\mid\left\{U \leq x: U_{\text {open }}^{3}|=|\mathbb{R}|\right.$
Pf: Let $X_{0} \subseteq X$ be cantal dense.
Set $\tau=\left\{B_{q}(x): q \geq 0, q \in \mathbb{Q}, x \in X_{0}\right\}$
\int For any open $U \subseteq X$ and any $x \in U$
there is $B_{q}\left(x^{\prime}\right) \in \tau$ with $x \in B_{q}\left(x^{\prime}\right) \subseteq U$.
Enumerate τ as V_{0}, V_{1}, \cdots
\rightarrow This shows \forall open $U \subseteq X \quad \exists I \subseteq \mathbb{N} \quad U=\bigcup_{i \in I} V_{i}$
Therefore $|\{U \subseteq X: \operatorname{loppes}\}| \leq|\{I: I \subseteq \mathbb{N}\}|=|\mathbb{R}|$
Reverse inequality $\geq \ldots$?

Clearly true for cantor set by considering the open sets $(-\infty, x) \cap C$ for $x \in C$

Claim implies $|B(x)| \geqslant|\mathbb{R}|$,
Let $N=$ Bare space $=\{x: \mathbb{N} \rightarrow \mathbb{N}\}$
Fact: Every Borel set $A \subseteq X$ is the projection of a closed set $B \leq X \times N$

$$
(A=\{x \in X: \exists y \in N \quad(x, y) \in B\})
$$

By first claim, $x \times N$ has at most $|\mathbb{R}|$-many
closed sets. So by above fart $|B(x)| \leqslant|\mathbb{R}|$ closed sets, So by above fut $|B(x)| \leq|\mathbb{R}|$.

Continued from previous page
Fact: $|\{y: Y \subseteq x\}|>|X|=|\mathbb{R}|$
Pf. " " $>$ " by Math lo 9
N is a metric space: if $x, y: \mathbb{N} \rightarrow \mathbb{N}$

$$
d(x, y)=\inf \left\{2^{-n}: n \in \mathbb{N} \quad \forall k<n \quad x(k)=y(k)\right\} \leq 1
$$

Fact: Every Borel set $A \subseteq X$ is the projection of a closed set $B \leq X \times N$

$$
(A=\{x \in X: \exists y \in N \quad(x, y) \in B\})
$$

Pf Sketch: Set $A=\left\{A \subseteq X: I\right.$ closal $B \subseteq X \times N$ with $\left.\pi_{x}(B)=A\right\}$.
Check that A is a σ-algebra and contains every closed subset of x. Since $B(x)$ is the smallest σ-algebra containing all closul sets, $B(x) \subseteq A$

Measurable Functions
Fact: $f: x \rightarrow[-\infty,+\infty]$ is measurable of

$$
\forall A \in B(R) \quad f^{-1}(A) \in M
$$

In general, if (x, m, m) and (y, n, v) are measure spaces then a function $f: x \rightarrow y$ is measurable if

$$
\forall A \in N \quad f^{-1}(A) \in M
$$

So for the definition of measurable we use in class, we take the codomain \mathbb{R} to be equipped with $B(R)$ by default.

$$
x \in X \longmapsto f(x) \in \mathbb{R} \longmapsto g(f(x)) \in \mathbb{R}
$$

Chapter 11 Problem 12
The answer is yes. To see this, it suffices to show that whenever a sequence $\left(x_{n}\right)$ in $[0,1]$ converges to $x, \quad g\left(x_{n}\right) \rightarrow g(x)$ as $n \rightarrow \infty$.

Consider such a seq. $\left(x_{n}\right)$. Define $f_{n}(y)=f\left(x_{n}, y\right)$.
$B_{y}(b) \quad \forall y f_{n}(y) \rightarrow f(x, y)$. Also $\quad \forall n \quad \forall y\left|f_{n}(y)\right| \leq 1$ and $\int_{0}^{1} 1 d y<\infty$, so by lebesgue Dominated Convergence Theaven

$$
\begin{aligned}
g(x)=\int_{0}^{1} f(x, y) d y & =\int_{0}^{1} \lim _{n \rightarrow \infty} f_{n}(y) d y \\
& =\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(y) d y=\lim _{n \rightarrow \infty} g\left(x_{n}\right) .
\end{aligned}
$$

Fatou's Theorem - Different Perspective
Fix $\varepsilon>0$.
Define $E_{n}=\left\{x \in E: \inf _{m \geq n} f_{m}(x)>(1-\varepsilon) f(x)\right\}$
Then $E_{1} \subseteq E_{2} \subseteq \cdots$ and since $f(x)=\liminf _{n \rightarrow \infty} f_{n}(x)$
We have $\forall x \in E \exists_{n} x \in E_{n}$, or equivalently
${ }_{n=1} E_{n}=E$.
Since the f_{n} 's are non-negative, we have
$\forall_{m} \geqslant n \quad \int_{E_{n}}(1-\varepsilon) f d \mu \leqslant \int_{E_{n}} f_{m} d_{\mu} \leqslant \int_{E_{n}} f_{m} d \mu+\int_{E \backslash E_{n}} f_{m} d \mu$

$$
=\int_{E} f_{m} d u
$$

Taking liming as $n \rightarrow \infty$ we dotain

$$
S_{E_{n}}(1-\varepsilon) f d u \leqslant \liminf _{n \rightarrow \infty} S_{E} f_{n} d u
$$

Next by Theorem 11,24 and Theorem 11,3 we cen take limit as $n \rightarrow \infty$ to dotain

$$
(1-\varepsilon) \int_{E} f d \mu=\int_{E}(1-\varepsilon) f d \mu=\lim _{n \rightarrow \infty} \int_{E_{n}}(1-\varepsilon) f d u \leqslant \liminf _{m \rightarrow \infty} \int_{E} f_{n} d \mu
$$

Now take limit as $\varepsilon \rightarrow 0$.
(*) $f(x)=\liminf _{m \rightarrow \infty} f_{m}(x)=\lim _{n \rightarrow \infty} \inf _{n \geq n} f_{n}(x)$
Summons: If n is large enough, for "most" points $x \in E$ we have $(1-\varepsilon) f(x)<f_{n}(x)$ and thus

$$
\int_{E}(1-\varepsilon) f d u \approx \int_{E} f_{n} d u
$$

Chapter II Problem 7
Modified Theorem $11.33:$
Let $a \leqslant b$ be real number, let $\alpha: \mathbb{R} \rightarrow \mathbb{R}$ be monotone increasing. Define

$$
\alpha_{1}(x)= \begin{cases}\alpha(a) & \text { if } x<a \\ \alpha(x) & \text { if } a \leq x \leq b \\ \alpha(b) & \text { if } x>b .\end{cases}
$$

Let μ be the measure dotaned from using α_{1} in Ex.6.(b).
(A) If $f \in R_{a}^{b}(\alpha)$ then $f \in L([a, b], \mu)$ and

$$
S_{a}^{b} f d u=R \int_{a}^{b} f d \alpha
$$

(B) Suppose f is bounded. Then $f \in R_{a}^{b}(\alpha)$
iff f is left-cont. at every point α, is not left-cont, f is right-cont. at every point α, is not right - cont, ard the set of points where α_{1} is continuous and f is discontinuous has μ-measwe 0 ,

