1. Let (X, d) be a metric space and let $K \subseteq X$ be compact. Prove that K is closed.

Solution: We will show that K^c is open. So fix $p \in K^c$. We must check that p is an interior point of K^c.

For each $x \in K$ set $V_x = B_{\frac{1}{3}d(x,p)}(x)$. Notice that $d(x, p) > 0$ and thus $x \in V_x$. So $\{V_x : x \in K\}$ is an open cover of K. Since K is compact, there are $x_1, x_2, \ldots, x_n \in K$ with $K \subseteq \bigcup_{i=1}^n V_{x_i}$. Set $r = \frac{1}{3} \min\{d(x_i, p) : 1 \leq i \leq n\}$ and notice that $r > 0$. For each $1 \leq i \leq n$ we have

$$V_{x_i} \cap B_r(p) \subseteq B_{\frac{1}{3}d(x_i,p)}(x_i) \cap B_{\frac{1}{3}d(x_i,p)}(p) = \emptyset.$$

Therefore

$$K \cap B_r(p) \subseteq \bigcup_{i=1}^n (V_{x_i} \cap B_r(p)) = \emptyset.$$

So $B_r(p) \subseteq K^c$, showing that p is an interior point of K^c. We conclude that K^c is open and thus K is closed. \qed
2. Let \((s_n)\) be a sequence of non-zero real numbers, and assume that \((s_n)\) converges to a real number \(s \neq 0\). Prove that \((\frac{1}{s_n})\) converges to \(\frac{1}{s}\).

Scratchwork: To show that \(\frac{1}{s_n} \to \frac{1}{s}\), you must show that when \(n\) is large \(\left| \frac{1}{s_n} - \frac{1}{s} \right|\) is small. Since

\[
\left| \frac{1}{s_n} - \frac{1}{s} \right| = \frac{|s - s_n|}{|s_n s|}
\]

and we know we can make \(|s - s_n|\) small, the key is to make sure that \(|s_n s|\) is not too small.

Solution: Since \(s_n \to s\), there is \(M \in \mathbb{N}\) with \(\forall n \geq M \ |s_n - s| \leq \frac{1}{2}|s|\). For \(n \geq M\) the triangle inequality gives

\[
|s| \leq |s_n| + |s - s_n| < |s_n| + \frac{1}{2}|s|
\]

and thus \(|s_n| > \frac{1}{2}|s|\) (in the scratchwork this corresponds to making sure \(|s_n s|\) is not too small).

Let \(\epsilon > 0\). Since \(s_n \to s\) there is \(N \in \mathbb{N}\) with \(\forall n \geq N \ |s_n - s| < \frac{1}{2}|s|^2 \epsilon\). So for all \(n \geq \max(N, M)\) we have

\[
\left| \frac{1}{s_n} - \frac{1}{s} \right| = \left| \frac{s - s_n}{s_n s} \right| < \frac{|s - s_n|}{\frac{1}{2}|s|^2} < \epsilon.
\]

We conclude that \(\frac{1}{s_n} \to \frac{1}{s}\). \(\Box\)

Note: Another good tool for finding the values of limits is displayed in the solution to problem 3 on midterm 2.
3. Let \((a_n)\) be a bounded sequence of real numbers and set \(A = \{x \in \mathbb{R} : \exists N \forall n \geq N \ a_n \geq x\}\). Prove that \(\text{sup} \ A = \lim \inf a_n\).

Solution: Consider any convergent subsequence \((a_{n_k})\) and any \(x \in A\). Since \(x \in A\) there is \(N\) so that for all \(n \geq N\) we have \(a_n \geq x\). In particular, since \(n_k \geq k\) for all \(k\), we have \(a_{n_k} \geq x\) for all \(k \geq N\). Therefore \(\lim_{k \to \infty} a_{n_k} \geq x\). This shows that every subsequential limit of \((a_n)\) is an upperbound to \(A\). Since \(\lim \inf a_n\) is a subsequential limit of \((a_n)\), we find that \(\lim \inf a_n\) is an upperbound to \(A\).

Now we show that \(\lim \inf a_n\) is the least upperbound to \(A\). So consider any \(y < \lim \inf a_n\). We will show that \(y\) is not an upperbound to \(A\). Fix any \(x \in \mathbb{R}\) with \(y < x < \lim \inf a_n\). By a theorem we learned (Theorem 3.17 in the book), there is \(N\) so that for all \(n \geq N\) we have \(a_n \geq x\). This means \(x \in A\), and since \(x > y\) we find that \(y\) is not an upperbound to \(A\). We conclude that \(\lim \inf a_n\) is the least upperbound to \(A\), meaning \(\lim \inf a_n = \text{sup} \ A\). \(\square\)
4. Prove that $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if $p > 1$.

Solution: Let $p > 1$. Since $p > 0$, for every $n \in \mathbb{Z}_+$ we have $\frac{1}{n^p} \geq 0$ and $\frac{1}{n^p} \geq \frac{1}{(n+1)^p}$.

From these two properties it follows (see Theorem 3.27) that $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if and only if $\sum_{k=0}^{\infty} 2^k \cdot \frac{1}{(2^k)^p}$ converges. Since $2^k \cdot \frac{1}{(2^k)^p} = (2^{1-p})^k$, we see that $\sum_{k=0}^{\infty} 2^k \cdot \frac{1}{(2^k)^p}$ is the geometric series $\sum_{k=0}^{\infty} (2^{1-p})^k$. Since $p > 1$, we have $2^{1-p} < 1$ and therefore the geometric series $\sum_{k=0}^{\infty} (2^{1-p})^k$ converges. We conclude that $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges.
5. Let \(f : [0, \infty) \rightarrow \mathbb{R} \) be continuous and suppose that \(\lim_{x \to \infty} f(x) = 0 \). Prove that \(f \) is uniformly continuous.

Comment: We know that continuous functions are uniformly continuous on every compact set. So the restriction of \(f \) to any closed and bounded interval is uniformly continuous. The obstruction to \(f \) being uniformly continuous comes precisely from the fact that its domain is not bounded. However, the condition that \(\lim_{x \to \infty} f(x) = 0 \) will allow us to control the long-term behavior of \(f \). In our proof we will essentially break into two pieces – one piece will handle a neighborhood of \(+\infty \) while the other piece will handle a closed and bounded interval.

Solution: Let \(\epsilon > 0 \). Since \(\lim_{x \to \infty} f(x) = 0 \), there is \(M > 0 \) such that \(\forall x > M \ |f(x)| < \frac{\epsilon}{2} \) (this condition will handle uniform continuity for large values of \(x \)). Since \([0, M + 1]\) is compact, \(f \) is uniformly continuous on \([0, M + 1]\). So there is \(\delta_0 > 0 \) with

\[
\forall x_1, x_2 \in [0, M + 1] \ |x_1 - x_2| < \delta_0 \Rightarrow |f(x_1) - f(x_2)| < \epsilon.
\]

(We have now taken care of uniform continuity of \(f \) on the interval \([0, M + 1]\) and the interval \((M, \infty)\). The fact that these intervals overlap on a segment of length one is intentional and significant). Set \(\delta = \min(\delta_0, 1) \) (we use 1 here because 1 is the length of the overlap between \([0, M + 1]\) and \((M, \infty)\)). Now consider \(x_1, x_2 \in [0, \infty) \) with \(|x_1 - x_2| < \delta \). In particular, \(|x_1 - x_2| < 1 \) and thus either \(x_1, x_2 \in [0, M + 1] \) or \(x_1, x_2 \in (M, \infty) \) (the overlap and choice of \(\delta \) allows us to reduce to these two cases).

Case 1: \(x_1, x_2 \in [0, M + 1] \). Since \(|x_1 - x_2| < \delta \leq \delta_0 \), from the definition of \(\delta_0 \) we obtain

\[
|f(x_1) - f(x_2)| < \epsilon.
\]

Case 2: \(x_1, x_2 > M \). Then \(|f(x_1) - f(x_2)| \leq |f(x_1)| + |f(x_2)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \)

We conclude that \(f \) is uniformly continuous. \(\square \)