Final Exam, Mathematics 109
Dr. Cristian D. Popescu
June 9, 2004

Name:
Student ID:
Section Number:

Note: There are 5 problems on this exam, worth 40 points each. You will not receive credit unless you show all your work. No books, calculators, notes or tables are permitted. Good luck!
I. (40 pts.) Let $X=[0,1]$ and let $R \subseteq X \times X$ be the relation on $X$ (i.e. from $X$ to $X$ ) defined as follows

$$
R=\left\{(x, y) \mid x, y \in[0,1], \quad x^{2}+y^{2}=1\right\}
$$

(1) Is $R$ an equivalence relation on $X$ ? Justify.
(2) Show that $R$ is a functional relation on $X$.
(3) Write the explicit expression of $f(x), x \in X$, for the function

$$
f: X \longrightarrow X
$$

determined by the functional relation $R$ above.
(4) Show that the function $f$ is bijective.
(5) Determine the inverse $f^{-1}: X \longrightarrow X$ of the bijective function $f$.
II. (40 pts.)
(1) Solve (i.e. determine the full solution set of) the following system of linear congruences.

$$
\begin{array}{ll}
x \equiv 2 & \bmod 3 \\
x \equiv 6 & \bmod 7 \\
x \equiv 10 & \bmod 11
\end{array}
$$

(2) Show that if $x \in \mathbb{Z}$ is a solution to the system above, then

$$
x^{2} \equiv 1 \quad \bmod 231
$$

(Hint: $231=3 \cdot 7 \cdot 11$. $)$
III. (40 pts.) Let $\left\{f_{n}\right\}_{n \geq 1}$ be the Fibonacci sequence given recursively by $f_{1}=$ $f_{2}=1$, and $f_{n+2}=f_{n+1}+f_{n}$, for all $n \in \mathbb{N}$.
(1) Prove that for each natural number $n$ we have an equality

$$
\sum_{i=1}^{n} f_{i}^{2}=f_{n} \cdot f_{n+1}
$$

(2) Prove that for each natural number $n$, we have

$$
f_{n}=\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \cdot \sqrt{5}} .
$$

(3) Prove that every natural number greater than 2 can be written as a sum of distinct terms of the Fibonacci sequence.
IV. (40 pts.) The universe $\mathcal{U}$ for all the variables in the statements below is the set of integers $\mathbb{Z}$.
(1) Write the negation of the following statement

$$
(\forall x)(\exists y)(\exists z) \quad\left(x^{3}+y^{3}=z^{3}\right) \wedge(x+z=0) .
$$

(2) Prove or disprove the statement in (1) above.
V. (40 pts.)
(1) Prove that if $A$ and $B$ are two subsets of a given universal set $\mathcal{U}$, then

$$
\overline{(A \backslash B)} \backslash \overline{(B \backslash A)}=B \backslash A
$$

Here, as usual, $\bar{C}$ denotes the universal complement of the set $C$ inside $\mathcal{U}$.
(2) For each real number $x \in \mathbb{R}$, let

$$
A_{x}:=\{3,-2\} \cup\{y \in \mathbb{R} \mid y>x\} .
$$

Determine $\cup_{x \in \mathbb{R}} A_{x}$ and $\cap_{x \in \mathbb{R}} A_{x}$.

