Please simplify your answers to the extent reasonable without a calculator. Show your work. Explain your answers, concisely.

1. [25 points] Let A, B, and C be events in a probability space (Ω, \mathcal{F}, P). Suppose $P(A)=$ $P(B)=P(C)=1 / 2$. What is the smallest possible value for $P(A \cap B)+P(B \cap C)+$ $P(C \cap A)$?
2. A special unfair die has probabilities of rolling m and n whose ratio is m / n, for all $m, n \in\{1,2,3,4,5,6\}$.
a. [10 points] Find $P(n)$ for each $n \in\{1,2,3,4,5,6\}$.
b. [10 points] If you roll the die twice, what is the probability that the sum of your two rolls is 7 ?
c. [5 points] Is your answer to (b) larger or smaller than what the probability would be if you were rolling a fair die?
3. [25 points] You play the following game with a fair die: Roll the die. If it is n, you roll the die n more times. If you roll a second n, you win. What is the probability that you win?
4. [25 points] Let $Z=(X, Y)$ be a point chosen uniformly at random in the unit square $[0,1]^{2}=\{(x, y): 0 \leq x, y \leq 1\}$. Find the cumulative distribution function for the random variable $D=$ distance from Z to the closest point on the boundary of the square, and then find its probability density function.
