Please simplify your answers to the extent reasonable without a calculator. Show your work. Explain your answers, concisely.

1. [25 points] Let A, B, and C be events in a probability space (Ω, \mathcal{F}, P). Suppose $P(A)=$ $P(B)=P(C)=1 / 2$. What is the smallest possible value for $P(A \cap B)+P(B \cap C)+$ $P(C \cap A)$?
Let $x=P(A \cap B)+P(B \cap C)+P(C \cap A)$. Using the Kolmogorov axioms and the inclusion-exclusion principle, we have:

$$
\begin{aligned}
& 1=P(\Omega) \geq P(A \cup B \cup C)=P(A)+P(B)+P(C)-x+P(A \cap B \cap C) \\
&=\frac{3}{2}-x+P(A \cap B \cap C) \\
& \Rightarrow x \geq 1 / 2+P(A \cap B \cap C) .
\end{aligned}
$$

Since $P(A \cap B \cap C) \geq 0$, and can be 0 , the smallest possible value for $x=P(A \cap B)+$ $P(B \cap C)+P(C \cap A)$ is $1 / 2$.
2. A special unfair die has probabilities of rolling m and n whose ratio is m / n, for all $m, n \in\{1,2,3,4,5,6\}$.
a. [10 points] Find $P(n)$ for each $n \in\{1,2,3,4,5,6\}$.
$P(n) / P(1)=n / 1$, so $P(n)=n P(1)$. Since $\Omega=\{1,2,3,4,5,6\}$, by definition
$1=P(\{1,2,3,4,5,6\})=P(1)+\cdots+P(6)=P(1)(1+2+3+4+5+6)=21 P(1)$. Thus $P(n)=n / 21$.
b. [10 points] If you roll the die twice, what is the probability that the sum of your two rolls is 7 ?

$$
\begin{aligned}
P(\text { sum } 7) & =2(P(1) P(6)+P(2) P(5)+P(3) P(4)) \\
& =\frac{2}{21^{2}}(1 \cdot 6+2 \cdot 5+3 \cdot 4) \\
& =\frac{2^{2}}{3^{2} \cdot 7^{2}} 14=\frac{2^{3}}{3^{2} \cdot 7}=\frac{8}{63} .
\end{aligned}
$$

c. [5 points] Is your answer to (b) larger or smaller than what the probability would be if you were rolling a fair die?
For a fair die, each probability $P(n)=1 / 6$, so

$$
P(\text { sum } 7)=2 \cdot 3 \cdot \frac{1}{6^{2}}=\frac{1}{6}>\frac{8}{63} .
$$

3. [25 points] You play the following game with a fair die: Roll the die. If it is n, you roll the die n more times. If you roll a second n, you win. What is the probability that you win?

$$
\begin{aligned}
P(\text { win }) & =1-P(\text { lose }) \\
& =1-\sum_{n=1}^{6} P(\text { lose } \mid n) P(n) \\
& =1-\frac{1}{6} \sum_{n=1}^{6}\left(\frac{5}{6}\right)^{n} \\
& =1-\frac{1}{6} \frac{5 / 6-(5 / 6)^{7}}{1-5 / 6} \\
& =\frac{1}{6}+\left(\frac{5}{6}\right)^{7} .
\end{aligned}
$$

4. [25 points] Let $Z=(X, Y)$ be a point chosen uniformly at random in the unit square $[0,1]^{2}=\{(x, y): 0 \leq x, y \leq 1\}$. Find the cumulative distribution function for the random variable $D=$ distance from Z to the closest point on the boundary of the square, and then find its probability density function.
For $0 \leq d \leq 1 / 2$,

$$
\begin{aligned}
P(D \leq d) & =P(Z \text { is within } d \text { of the boundary }) \\
& =P(Z \text { is not in the square of side } 1-2 d \text { around the center of the square }) \\
& =1-(1-2 d)^{2} .
\end{aligned}
$$

So

$$
F(d)= \begin{cases}0 & d \leq 0 \\ 1-(1-2 d)^{2} & 0 \leq d \leq 1 / 2 \\ 1 & 1 / 2 \leq d\end{cases}
$$

Taking the derivative with respect to d gives the pdf:

$$
f(d)= \begin{cases}4(1-2 d) & 0<d<1 / 2 \\ 0 & \text { otherwise }\end{cases}
$$

