Please simplify your answers to the extent reasonable without a calculator. Show your work. Explain your answers, concisely. In case you need them, here are the probability distributions we have learned $(0 \leq p \leq 1,0<n \in \mathbb{Z}, 0<\lambda, \sigma \in \mathbb{R}, a<b \in \mathbb{R}, \mu \in \mathbb{R}$, $1 \leq r \in \mathbb{R}$, and any values not listed for the random variables have probability 0 or probability density 0):

$$
\begin{array}{cl}
B \sim \operatorname{Ber}(p) & P(B=b)= \begin{cases}1-p & \text { if } b=0 ; \\
p & \text { if } b=1 .\end{cases} \\
K \sim \operatorname{Bin}(n, p) & P(K=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k \in\{0,1, \ldots, n\} . \\
K \sim \operatorname{Geom}(p) & P(K=k)=(1-p)^{k-1} p, \quad 0<k \in \mathbb{Z} . \\
K \sim \operatorname{Poisson}(\lambda) & P(K=k)=\frac{\lambda^{k}}{k!} e^{-\lambda}, \quad 0 \leq k \in \mathbb{Z} . \\
X \sim \operatorname{Unif}[a, b] & f(x)=\frac{1}{b-a}, \quad x \in[a, b] . \\
X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) & f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}, \quad x \in \mathbb{R} . \\
T \sim \operatorname{Exp}(\lambda) & f(t)=\lambda e^{-\lambda t}, \quad 0 \leq t \in \mathbb{R} . \\
T \sim \operatorname{Gamma}(r, \lambda) & f(t)=\frac{\lambda^{r} t^{r-1}}{\Gamma(r)} e^{-\lambda t}, \quad 0 \leq t \in \mathbb{R} .
\end{array}
$$

1. [25 points] For $1<\alpha \in \mathbb{R}$, let X_{α} be a continuous random variable with probability density function:

$$
f_{\alpha}(x)= \begin{cases}(\alpha-1) x^{-\alpha} & \text { if } 1 \leq x \in \mathbb{R} ; \\ 0 & \text { otherwise }\end{cases}
$$

a. [5 points] Show that f_{α} is a probability density function for $\alpha>1$.

$$
f_{\alpha}(x) \geq 0 \text { and } \int_{-\infty}^{\infty} f_{\alpha}(x) \mathrm{d} x=\int_{0}^{\infty}(\alpha-1) x^{-\alpha} \mathrm{d} x=-\left.x^{-\alpha+1}\right|_{0} ^{\infty}=1
$$

b. [10 points] For which values of α is $\mathrm{E}\left[X_{\alpha}\right] \in \mathbb{R}$? For these values of α, what is $\mathrm{E}\left[X_{\alpha}\right]$? $\mathrm{E}\left[X_{\alpha}\right]=\int_{0}^{\infty} x(\alpha-1) x^{-\alpha} \mathrm{d} x=\left.\frac{\alpha-1}{-\alpha+2} x^{-\alpha+2}\right|_{0} ^{\infty}=\frac{\alpha-1}{\alpha-2}$, provided $\alpha>2$.
c. [10 points] For which values of α is $\operatorname{Var}\left[X_{\alpha}\right] \in \mathbb{R}$? For these values of α, what is $\operatorname{Var}\left[X_{\alpha}\right]$?
$\operatorname{Var}\left[X_{\alpha}\right]=\mathrm{E}\left[X_{\alpha}^{2}\right]-\mathrm{E}\left[X_{\alpha}\right]^{2}=\int_{0}^{\infty} x^{2}(\alpha-1) x^{-\alpha} \mathrm{d} x-\mathrm{E}\left[X_{\alpha}\right]^{2}=\frac{\alpha-1}{\alpha-3}-\left(\frac{\alpha-1}{\alpha-2}\right)^{2}=$ $\frac{\alpha-1}{(\alpha-2)^{2}(\alpha-3)}$, provided $\alpha>3$.
2. Human heights have approximately normal distributions: American women with a mean of about 64 inches and a standard deviation of 2.5 inches; American men with a mean of about 69.5 inches and a standard deviation of 3 inches.*
a. [8 points] Explain why a normal distribution can't be exactly right for human heights, but could still be a good approximation.

Human heights can't be exactly distributed according to a normal distribution because any normal distribution gives positive probabilities to negative heights, and no human has a negative height. But a normal distribution can be a good approximation if it gives a very small probability to negative heights; notice that for American women this probability is $\Phi(-64 / 2.5)<\Phi(-25)$, which is tiny.
b. [7 points] Mary is one standard deviation taller than the average American woman. Approximately what fraction of American women is she taller than?
Recall that $\Phi(1) \approx 5 / 6$.
c. [10 points] Approximately what fraction of American men is Mary taller than?

Mary's height is $64+2.5=66.5$ inches. That is one standard deviation less than the average man's height, so she is taller than $\Phi(-1) \approx 1 / 6$ of American men.
3. [25 points] Recall that a Poisson process with intensity λ is defined to be a set of random points on $[0, \infty)$, satisfying three properties: the points are distinct; for a bounded interval $I \subset[0, \infty)$ the number of points $N(I) \sim \operatorname{Poisson}(\lambda|I|)$; and for non-overlapping intervals I_{1}, \ldots, I_{n}, the random variables $N\left(I_{1}\right), \ldots, N\left(I_{n}\right)$ are mutually independent.
a. [9 points] Argue that for any $a>0$, the points of a Poisson process with intensity λ on $[0, \infty)$, that lie in the interval $[a, \infty)$, satisfy the same three properties.
(1) If the points are distinct on $[0, \infty)$, the subset of points in $[a, \infty)$ also contains no duplicates. (2) Any bounded interval $I \subset[a, \infty)$ is also a bounded interval in $[0, \infty)$ so $N(I) \sim$ Poisson $(\lambda|I|)$. (3) Non-overlapping intervals in $[a, \infty)$ are also nonoverlapping intervals in $[0, \infty)$ so the corresponding random variables are mutually independent.
b. [16 points] Let T_{1} be the location of the first (smallest coordinate) point in a Poisson process with intensity $\lambda>0$ on $[0, \infty)$. Let T_{2} be the location of the second point. Use the result of part (a) to find the probability density function for $T_{2}-T_{1}$.
From part (a), the Poisson process restricted to the interval $\left[T_{1}, \infty\right)$ is still a Poisson process with intensity λ. Thus

$$
P\left(T_{2}-T_{1}>t\right)=P\left(\text { no points in }\left(T_{1}, t\right)\right)=e^{-\lambda t}
$$

so $P\left(T_{2}-T_{1} \leq t\right)=1-e^{-\lambda t}$. Taking the derivative with respect to t, we find that the pdf for $T_{2}-T_{1}$ is $\lambda e^{-\lambda t}$, so $T_{2}-T_{1} \sim \operatorname{Exp}(\lambda)$.

[^0]4. [25 points] Let $Z \sim \mathcal{N}(0,1)$ be a standard normal random variable. Find the moment generating function $M(t)$ of Z.
\[

$$
\begin{aligned}
M(t) & =\mathrm{E}\left[e^{t Z}\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{t x} e^{-x^{2} / 2} \mathrm{~d} x=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\left(x^{2}-2 t x\right) / 2} \mathrm{~d} x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\left(x^{2}-2 t x+t^{2}\right) / 2} e^{t^{2} / 2} \mathrm{~d} x=e^{t^{2} / 2} \cdot \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-(x-t)^{2} / 2} \mathrm{~d} x \\
& =e^{t^{2} / 2}
\end{aligned}
$$
\]

where we completed the square in the exponent to get to the second line, and then recognized the last integrand as the pdf of an $\mathcal{N}(t, 1)$ random variable, so it integrates to 1 .

[^0]: * See M. F. Schilling, A. E. Watkins and W. Watkins, "Is human height bimodal?", The American Statistician 56 (2012) 223-229.

