Please simplify your answers to the extent reasonable without a calculator. Show your work. Explain your answers, concisely.

- 1. Let A and B be events in a probability space (Ω, \mathcal{F}, P) .
 - a. Suppose P(A) + P(B) > 1. Making no further assumptions on A and B, prove that $A \cap B \neq \emptyset$.
 - b. Suppose $A \cap B = \emptyset$. If A and B are independent, what can you say about P(A) and P(B)?
 - c. Suppose P(A) = 1/2 and P(B) = 4/5. What are the smallest and largest possible values for $P(A \cap B)$?
- 2. You are playing a game in which you roll 2 dice. If the sum of the two numbers showing is greater than or equal to 10, you win.
 - a. What is the probability that you win the first three times you play?
 - b. What is the probability that you win exactly three times out of the first five times you play?
 - c. What is the probability that the first game you win is before the tenth game, but after the fifth?
- 3. A box contains three coins, two of which are fair and third of which has P(heads) = 3/4. A coin is chosen randomly from the box and flipped three times.
 - a. What is the probability that all three flips are heads?
 - b. Given that the three flips are all heads, what is the probability that the biased coin was chosen?
- 4. Let P = (X, Y) be a point chosen uniformly at random in the unit square $[0, 1]^2 = \{(x, y) : 0 \le x, y \le 1\}$. Find the cumulative distribution function for the random variable $Z = \min\{X, Y\}$, and then find its probability density function.