Conjectures for the delta operator expression $\Delta'_{e_{\nu}}\Delta_{h_{r}}e_{n}$

Dun Qiu UC San Diego duqiu@ucsd.edu Joint work with Brendon Rhoades and Andy Wilson

January 19, 2018

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 1/14

The Ring of Diagonal Harmonics

Let $\mathbf{X} = x_1, x_2, \dots, x_n$ and $\mathbf{Y} = y_1, y_2, \dots, y_n$ be two sets of *n* variables. The ring of Diagonal harmonics consists of those polynomials in $\mathbb{Q}[\mathbf{X}, \mathbf{Y}]$ which satisfy the following system of differential equations

$$\partial_{x_1}^{a}\partial_{y_1}^{b}f(\mathbf{x},\mathbf{y})+\partial_{x_2}^{a}\partial_{y_2}^{b}f(\mathbf{x},\mathbf{y})+\ldots+\partial_{x_n}^{a}\partial_{y_n}^{b}f(\mathbf{x},\mathbf{y})=0,$$

for each pair of integers a and b, such that a + b > 0.

Haiman proved that the ring of diagonal harmonics has dimension $(n+1)^{n-1}$.

<□ ▶ < @ ▶ < E ▶ < E ▶ E のQ 2/14

Partition and Tableau

- $\lambda = \lambda_1, \ldots, \lambda_k$ is a partition of n if $\lambda_1 \ge \ldots \ge \lambda_k$ and $\sum_{i=1}^k \lambda_i = n$, written $\lambda \vdash n$.
- Ex. $\lambda \vdash 3$: (3), (2, 1), (1, 1, 1).
- ► Each partition corresponds to a Ferrers diagram. For example, $\lambda = (4, 2, 1) \vdash 7$ corresponds to _____.

We can fill the cells of the Ferrers diagram with integers.

• Column strict tableau: $\sqrt{\frac{5}{23}}$ $\sqrt{\frac{1134}{23}}$

▶ Injective tableau:
$$\lambda \to \mathbb{Z}_+$$
, $\begin{array}{c} 4\\ \hline 15\\ 2624 \end{array}$

Symmetric Functions

- S_n = {σ : σ is a permutation of [n]} is the nth symmetric group.
- f(X) ∈ ℝ[[x]] is a symmetric function if f(X) = f(σ(X)) for any permutation σ.
- ► Ex. $f(x_1, x_2, x_3) =$ $3x_1x_2 + 3x_1x_3 + 3x_2x_3 + \dots + 5x_1^2x_2 + 5x_1x_2^2 + 5x_1^2x_3 + \dots$
- The ring of symmetric functions has several bases:
 {s_λ}, {e_λ},

•
$$e_n = \sum_{i_1 < \cdots < i_n} x_{i_1} x_{i_2} \cdots x_{i_n}$$
, and $e_{\lambda} = e_{\lambda_1} e_{\lambda_2} \cdots e_{\lambda_k}$.
• $s_{\lambda} = \sum_{\text{T a column strict tableau of shape } \lambda} X^{\text{T}}$.

Quasi-symmetric Functions

f(X) ∈ ℝ[[x]] is a quasi-symmetric function if for each composition o(α₁,..., α_k), the coefficient of the monomial x₁^{α1}x₂^{α2} ··· x_k^{αk} is equal to the coefficient of the monomial x_{i₁}^{α1}x_{i₂^{α2}} ··· x<sub>i_k^{αk} for any strictly increasing sequence of positive integers i₁ < i₂ < ··· < i_k.
</sub>

$$F_{\mathcal{S}} = \sum_{i_1 \leq i_2 \leq \ldots \leq i_n, i_j < i_{j+1} \text{ if } j \in \mathcal{S}} x_{i_1} x_{i_2} \ldots x_{i_n}$$

is the fundamental quasi-symmetric function associated with a set $S \subset [n-1]$.

Arm and Leg of a Cell

Given any partition $\mu \vdash n$, we can draw the Ferrers diagram (in French notation) of μ as shown in Figure 1.

Figure 1: The Young tableau of the partition (7, 7, 5, 3, 3)

Then for each cell $c \in \mu$, we have the arm $a_{\mu}(c)$, the coarm $a'_{\mu}(c)$, the leg $l_{\mu}(c)$, and the coleg $l'_{\mu}(c)$ of c.

Macdonald polynomials

► The Macdonald polynomial H
_µ(X; q, t) is a q, t-weighted symmetric function given by

$$\widetilde{H}_{\mu}(X;q,t) = \sum_{\sigma: \; \mu o \mathbb{Z}_+ \; ext{ injective tableau}} q^{\textit{inv}(\sigma)} t^{\textit{maj}(\sigma)} x^{\sigma}.$$

<□ ▶ < @ ▶ < E ▶ < E ▶ E のQ 7/14

$$abla \widetilde{H}_{\mu}(X;q,t)=T_{\mu}\widetilde{H}_{\mu}(X;q,t).$$

Here $T_{\mu}=\prod_{c\in\mu}q^{s'_{\mu}(c)}t''_{\mu}{}^{(c)}.$

Dyck Paths and Parking Functions

Definition (Dyck path)

An $n \times n$ Dyck path is a lattice path from (0,0) to (n, n) consisting of east and north steps which stays above the diagonal y = x.

We can get an $n \times n$ parking function by labeling the cells east of and adjacent to a north step of a Dyck path.

Figure 2: The construction of a parking function

Area of a Dyck Path Definition (area)

The number of full cells between an (n, n)-Dyck path Π and the main diagonal is denoted $area(\Pi)$.

The collection of cells above a Dyck path Π forms an the Ferrers diagram (English) of a partition $\lambda(\Pi)$.

Figure 3: A (7,7)-Dyck path B A (7,7)-Dyck path B A (7,7)-Dyck path

Dinv of a Dyck Path

Definition (dinv)

The dinv of an (n, n)-Dyck path Π is given by

$$\operatorname{dinv}(\Pi) = \sum_{c \in \lambda(\Pi)} \chi\left(\frac{\operatorname{arm}(c)}{\operatorname{leg}(c) + 1} \leq 1 < \frac{\operatorname{arm}(c) + 1}{\operatorname{leg}(c)}\right).$$

Figure 3: A (7,7)-Dyck path

Statistics of an (n, n)-PF

- $\operatorname{area}(\operatorname{PF}) = \operatorname{area}(\Pi(\operatorname{PF})) = 8$,
- rank of a cell is rank(x, y) = (n + 1)y nx,
- dinv(PF) = $\sum_{cars \ i < j} \chi(rank(i) < rank(j) \le rank(i) + n) = 0$,
- ▶ word σ : reading cars from highest → lowest rank. $\sigma(PF) = 52431.$
- ides(σ) = {i ∈ σ : i + 1 ← i}, pides(σ) is the composition corresponding to ides(σ). ides(PF) = {1,3,4} and pides(PF) = {1,2,1,1}.

Figure 4: A (5,5)-Parking Function

Classical Shuffle Conjecture

The bigraded Frobenius characteristic of the S_n -module (under the diagonal action) of the ring of diagonal harmonics is given by ∇e_n .

The classical shuffle conjecture of Haglund, Haiman, Loehr, Remmel, and Ulyanov(2005) gives a well-studied combinatorial expression for the bigraded Frobenius characteristic of the ring of diagonal harmonics:

Conjecture (Haglund-Haiman-Loehr-Remmel-Ulyanov)

For all $n \ge 0$,

$$abla e_n = \sum_{\mathrm{PF}\in\mathcal{PF}_n} t^{\mathrm{area}(\mathrm{PF})} q^{\mathrm{dinv}(\mathrm{PF})} F_{\mathrm{ides}(\mathrm{PF})}.$$

Symmetric Function Side Extension — ????

< □ > < @ > < E > < E > E の Q → 13/14

Thank You!