Conjectures for the delta operator expression $\Delta_{e_{k}}^{\prime} \Delta_{h_{r}} e_{n}$

Dun Qiu
UC San Diego
duqiu@ucsd.edu
Joint work with Brendon Rhoades and Andy Wilson

January 19, 2018

The Ring of Diagonal Harmonics

Let $\mathbf{X}=x_{1}, x_{2}, \ldots, x_{n}$ and $\mathbf{Y}=y_{1}, y_{2}, \ldots, y_{n}$ be two sets of n variables. The ring of Diagonal harmonics consists of those polynomials in $\mathbb{Q}[\mathbf{X}, \mathbf{Y}]$ which satisfy the following system of differential equations

$$
\partial_{x_{1}}^{a} \partial_{y_{1}}^{b} f(\mathbf{x}, \mathbf{y})+\partial_{x_{2}}^{a} \partial_{y_{2}}^{b} f(\mathbf{x}, \mathbf{y})+\ldots+\partial_{x_{n}}^{a} \partial_{y_{n}}^{b} f(\mathbf{x}, \mathbf{y})=0
$$

for each pair of integers a and b, such that $a+b>0$.
Haiman proved that the ring of diagonal harmonics has dimension $(n+1)^{n-1}$.

Partition and Tableau

- $\lambda=\lambda_{1}, \ldots, \lambda_{k}$ is a partition of n if $\lambda_{1} \geq \ldots \geq \lambda_{k}$ and $\sum_{i=1}^{k} \lambda_{i}=n$, written $\lambda \vdash n$.
- Ex. $\lambda \vdash 3$: $(3),(2,1),(1,1,1)$.
- Each partition corresponds to a Ferrers diagram. For example, $\lambda=(4,2,1) \vdash 7$ corresponds to \square
We can fill the cells of the Ferrers diagram with integers.
- Column strict tableau: \begin{tabular}{cc}

5		
2	3	
1	3	
1	1	3

\hline
\end{tabular}

- Injective tableau: $\lambda \rightarrow \mathbb{Z}_{+},$\begin{tabular}{|l|l}
\hline 4 \&

\hline 1 \& 5

2 \& 6

$|$

\&

\hline 2 \&

\hline
\end{tabular}

Symmetric Functions

- $\mathcal{S}_{n}=\{\sigma: \sigma$ is a permutation of $[n]\}$ is the $n^{\text {th }}$ symmetric group.
- $f(X) \in \mathbb{R}[[x]]$ is a symmetric function if $f(X)=f(\sigma(X))$ for any permutation σ.
- Ex. $f\left(x_{1}, x_{2}, x_{3}\right)=$ $3 x_{1} x_{2}+3 x_{1} x_{3}+3 x_{2} x_{3}+\cdots+5 x_{1}^{2} x_{2}+5 x_{1} x_{2}^{2}+5 x_{1}^{2} x_{3}+\cdots$
- The ring of symmetric functions has several bases: $\left\{s_{\lambda}\right\},\left\{e_{\lambda}\right\}, \ldots$.
$-e_{n}=\sum_{i_{1}<\cdots<i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}$, and $e_{\lambda}=e_{\lambda_{1}} e_{\lambda_{2}} \cdots e_{\lambda_{k}}$.

$$
s_{\lambda}=\sum_{\mathrm{T} \text { a column strict tableau of shape } \lambda} X^{\mathrm{T}} .
$$

Quasi-symmetric Functions

- $f(X) \in \mathbb{R}[[x]]$ is a quasi-symmetric function if for each composition o $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, the coefficient of the monomial $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{k}^{\alpha_{k}}$ is equal to the coefficient of the monomial $x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}$ for any strictly increasing sequence of positive integers $i_{1}<i_{2}<\cdots<i_{k}$.

$$
F_{S}=\sum_{i_{1} \leq i_{2} \leq \ldots \leq i_{n}, i_{j}<i_{j+1} \text { if } j \in S} x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}
$$

is the fundamental quasi-symmetric function associated with a set $S \subset[n-1]$.

Arm and Leg of a Cell

Given any partition $\mu \vdash n$, we can draw the Ferrers diagram (in French notation) of μ as shown in Figure 1.

$$
\begin{aligned}
& a_{\mu}(c)=\operatorname{arm} \text { of } c, \\
& a_{\mu}^{\prime}(c)=\text { coarm of } c, \\
& I_{\mu}(c)=\text { leg of } c, \\
& I_{\mu}^{\prime}(c)=\text { coleg of } c .
\end{aligned}
$$

Figure 1: The Young tableau of the partition (7, 7, 5, 3, 3)

Then for each cell $c \in \mu$, we have the arm $a_{\mu}(c)$, the coarm $a_{\mu}^{\prime}(c)$, the leg $I_{\mu}(c)$, and the coleg $I_{\mu}^{\prime}(c)$ of c.

Macdonald polynomials

- The Macdonald polynomial $\widetilde{H}_{\mu}(X ; q, t)$ is a q, t-weighted symmetric function given by

$$
\widetilde{H}_{\mu}(X ; q, t)=\sum_{\sigma: \mu \rightarrow \mathbb{Z}_{+} \text {injective tableau }} q^{i n v(\sigma)} t^{\operatorname{maj}(\sigma)} x^{\sigma}
$$

- The symmetric function operator nabla ∇ is the eigenoperator on Macdonald polynomials defined by Bergeron and Garsia where

$$
\nabla \widetilde{H}_{\mu}(X ; q, t)=T_{\mu} \widetilde{H}_{\mu}(X ; q, t)
$$

Here $T_{\mu}=\prod_{c \in \mu} q^{a_{\mu}^{\prime}(c)} t^{\prime \prime}(c)$.

Dyck Paths and Parking Functions

Definition (Dyck path)

An $n \times n$ Dyck path is a lattice path from $(0,0)$ to (n, n) consisting of east and north steps which stays above the diagonal $y=x$.

We can get an $n \times n$ parking function by labeling the cells east of and adjacent to a north step of a Dyck path.

Figure 2: The construction of a parking function

Area of a Dyck Path

Definition (area)
The number of full cells between an (n, n)-Dyck path Π and the main diagonal is denoted area(Π).

The collection of cells above a Dyck path Π forms an the Ferrers diagram (English) of a partition $\lambda(\Pi)$.

Ex. $\lambda(\Pi)=(3,3,1,1)$,

Figure 3: A (7,7)-Dyck path

Dinv of a Dyck Path

Definition (dinv)
The dinv of an (n, n)-Dyck path Π is given by

$$
\operatorname{dinv}(\Pi)=\sum_{c \in \lambda(\Pi)} \chi\left(\frac{\operatorname{arm}(c)}{\operatorname{leg}(c)+1} \leq 1<\frac{\operatorname{arm}(c)+1}{\operatorname{leg}(c)}\right)
$$

Figure 3: A (7, 7)-Dyck path

Statistics of an (n, n)-PF

- $\operatorname{area}(\mathrm{PF})=\operatorname{area}(\Pi(\mathrm{PF}))=8$,
- rank of a cell is $\operatorname{rank}(x, y)=(n+1) y-n x$,
- $\operatorname{dinv}(\mathrm{PF})=\sum_{\text {cars } i<j} \chi(\operatorname{rank}(i)<\operatorname{rank}(j) \leq \operatorname{rank}(i)+n)=0$,
- word σ : reading cars from highest \rightarrow lowest rank. $\sigma(\mathrm{PF})=52431$.
- $\operatorname{ides}(\sigma)=\{i \in \sigma: i+1 \leftarrow i\}$, $\operatorname{pides}(\sigma)$ is the composition corresponding to ides (σ). ides $(\mathrm{PF})=\{1,3,4\}$ and pides $(\mathrm{PF})=\{1,2,1,1\}$.

Figure 4: A (5,5)-Parking Function

Classical Shuffle Conjecture

The bigraded Frobenius characteristic of the \mathcal{S}_{n}-module (under the diagonal action) of the ring of diagonal harmonics is given by ∇e_{n}.

The classical shuffle conjecture of Haglund, Haiman, Loehr, Remmel, and Ulyanov(2005) gives a well-studied combinatorial expression for the bigraded Frobenius characteristic of the ring of diagonal harmonics:

Conjecture (Haglund-Haiman-Loehr-Remmel-Ulyanov)

For all $n \geq 0$,

$$
\nabla e_{n}=\sum_{\mathrm{PF} \in \mathcal{P} \mathcal{F}_{n}} t^{\operatorname{area}(\mathrm{PF})} q^{\operatorname{dinv}(\mathrm{PF})} F_{\mathrm{ides}(\mathrm{PF})}
$$

Symmetric Function Side Extension — ????

Thank You!

