Special Cases in the Combinatorics of Rational Shuffle Conjecture

Dun Qiu
UC San Diego
duqiu@ucsd.edu
Joint work with Jeffery Remmel

August 22, 2017

The Ring of Diagonal Harmonics

Let $\mathbf{X}=x_{1}, x_{2}, \ldots, x_{n}$ and $\mathbf{Y}=y_{1}, y_{2}, \ldots, y_{n}$ be two sets of n variables. The ring of Diagonal harmonics consists of those polynomials in $\mathbb{Q}[\mathbf{X}, \mathbf{Y}]$ which satisfy the following system of differential equations

$$
\partial_{x_{1}}^{a} \partial_{y_{1}}^{b} f(\mathbf{x}, \mathbf{y})+\partial_{x_{2}}^{a} \partial_{y_{2}}^{b} f(\mathbf{x}, \mathbf{y})+\ldots+\partial_{x_{n}}^{a} \partial_{y_{n}}^{b} f(\mathbf{x}, \mathbf{y})=0
$$

for each pair of integers a and b, such that $a+b>0$.
Haiman proved that the ring of diagonal harmonics has dimension $(n+1)^{n-1}$.

Partition and Tableau

- $\lambda=\lambda_{1}, \ldots, \lambda_{k}$ is a partition of n if $\lambda_{1} \geq \ldots \geq \lambda_{k}$ and $\sum_{i=1}^{k} \lambda_{i}=n$, written $\lambda \vdash n$.
- Ex. $\lambda \vdash 3$: $(3),(2,1),(1,1,1)$.

Partition and Tableau

- $\lambda=\lambda_{1}, \ldots, \lambda_{k}$ is a partition of n if $\lambda_{1} \geq \ldots \geq \lambda_{k}$ and $\sum_{i=1}^{k} \lambda_{i}=n$, written $\lambda \vdash n$.
- Ex. $\lambda \vdash 3$: $(3),(2,1),(1,1,1)$.
- Each partition corresponds to a Ferrers diagram. For example, $\lambda=(4,2,1) \vdash 7$ corresponds to \square
We can fill the cells of the Ferrers diagram with integers.

Partition and Tableau

- $\lambda=\lambda_{1}, \ldots, \lambda_{k}$ is a partition of n if $\lambda_{1} \geq \ldots \geq \lambda_{k}$ and $\sum_{i=1}^{k} \lambda_{i}=n$, written $\lambda \vdash n$.
- Ex. $\lambda \vdash 3$: $(3),(2,1),(1,1,1)$.
- Each partition corresponds to a Ferrers diagram. For example, $\lambda=(4,2,1) \vdash 7$ corresponds to \square
We can fill the cells of the Ferrers diagram with integers.
- Column strict tableau: $\begin{array}{cc}$| 5 | | |
| :--- | :--- | :--- |
| 2 | 3 | |
| 1 | 3 | |
| 1 | 1 | 3 | \& 4

$\leq & \end{array}$

Partition and Tableau

- $\lambda=\lambda_{1}, \ldots, \lambda_{k}$ is a partition of n if $\lambda_{1} \geq \ldots \geq \lambda_{k}$ and $\sum_{i=1}^{k} \lambda_{i}=n$, written $\lambda \vdash n$.
- Ex. $\lambda \vdash 3$: $(3),(2,1),(1,1,1)$.
- Each partition corresponds to a Ferrers diagram. For example, $\lambda=(4,2,1) \vdash 7$ corresponds to \square
We can fill the cells of the Ferrers diagram with integers.

- Injective tableau: $\lambda \rightarrow \mathbb{Z}_{+},$\begin{tabular}{|l|l}
\hline 4 \&

\hline 1 \& 5

2 \& 6

$|$

\&

\hline 2 \&

\hline
\end{tabular}

Symmetric Functions

- $\mathcal{S}_{n}=\{\sigma: \sigma$ is a permutation of $[n]\}$ is the $n^{\text {th }}$ symmetric group.

Symmetric Functions

- $\mathcal{S}_{n}=\{\sigma: \sigma$ is a permutation of $[n]\}$ is the $n^{\text {th }}$ symmetric group.
- $f(X) \in \mathbb{R}[[x]]$ is a symmetric function if $f(X)=f(\sigma(X))$ for any permutation σ.
- Ex. $f\left(x_{1}, x_{2}, x_{3}\right)=$ $3 x_{1} x_{2}+3 x_{1} x_{3}+3 x_{2} x_{3}+\cdots+5 x_{1}^{2} x_{2}+5 x_{1} x_{2}^{2}+5 x_{1}^{2} x_{3}+\cdots$

Symmetric Functions

- $\mathcal{S}_{n}=\{\sigma: \sigma$ is a permutation of $[n]\}$ is the $n^{\text {th }}$ symmetric group.
- $f(X) \in \mathbb{R}[[x]]$ is a symmetric function if $f(X)=f(\sigma(X))$ for any permutation σ.
- Ex. $f\left(x_{1}, x_{2}, x_{3}\right)=$ $3 x_{1} x_{2}+3 x_{1} x_{3}+3 x_{2} x_{3}+\cdots+5 x_{1}^{2} x_{2}+5 x_{1} x_{2}^{2}+5 x_{1}^{2} x_{3}+\cdots$
- The ring of symmetric functions has several bases: $\left\{s_{\lambda}\right\},\left\{e_{\lambda}\right\}, \ldots$.

Symmetric Functions

- $\mathcal{S}_{n}=\{\sigma: \sigma$ is a permutation of $[n]\}$ is the $n^{\text {th }}$ symmetric group.
- $f(X) \in \mathbb{R}[[x]]$ is a symmetric function if $f(X)=f(\sigma(X))$ for any permutation σ.
- Ex. $f\left(x_{1}, x_{2}, x_{3}\right)=$ $3 x_{1} x_{2}+3 x_{1} x_{3}+3 x_{2} x_{3}+\cdots+5 x_{1}^{2} x_{2}+5 x_{1} x_{2}^{2}+5 x_{1}^{2} x_{3}+\cdots$
- The ring of symmetric functions has several bases: $\left\{s_{\lambda}\right\},\left\{e_{\lambda}\right\}, \ldots$.
$-e_{n}=\sum_{i_{1}<\cdots<i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}$, and $e_{\lambda}=e_{\lambda_{1}} e_{\lambda_{2}} \cdots e_{\lambda_{k}}$.

Symmetric Functions

- $\mathcal{S}_{n}=\{\sigma: \sigma$ is a permutation of $[n]\}$ is the $n^{\text {th }}$ symmetric group.
- $f(X) \in \mathbb{R}[[x]]$ is a symmetric function if $f(X)=f(\sigma(X))$ for any permutation σ.
- Ex. $f\left(x_{1}, x_{2}, x_{3}\right)=$ $3 x_{1} x_{2}+3 x_{1} x_{3}+3 x_{2} x_{3}+\cdots+5 x_{1}^{2} x_{2}+5 x_{1} x_{2}^{2}+5 x_{1}^{2} x_{3}+\cdots$
- The ring of symmetric functions has several bases: $\left\{s_{\lambda}\right\},\left\{e_{\lambda}\right\}, \ldots$.
$-e_{n}=\sum_{i_{1}<\cdots<i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}$, and $e_{\lambda}=e_{\lambda_{1}} e_{\lambda_{2}} \cdots e_{\lambda_{k}}$.

$$
s_{\lambda}=\sum_{\mathrm{T} \text { a column strict tableau of shape } \lambda} X^{\mathrm{T}} .
$$

Quasi-symmetric Functions

- $f(X) \in \mathbb{R}[[x]]$ is a quasi-symmetric function if for each composition o $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, the coefficient of the monomial $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{k}^{\alpha_{k}}$ is equal to the coefficient of the monomial $x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}$ for any strictly increasing sequence of positive integers $i_{1}<i_{2}<\cdots<i_{k}$.

Quasi-symmetric Functions

- $f(X) \in \mathbb{R}[[x]]$ is a quasi-symmetric function if for each composition o $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, the coefficient of the monomial $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{k}^{\alpha_{k}}$ is equal to the coefficient of the monomial $x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}$ for any strictly increasing sequence of positive integers $i_{1}<i_{2}<\cdots<i_{k}$.

$$
F_{S}=\sum_{i_{1} \leq i_{2} \leq \ldots \leq i_{n}, i_{j}<i_{j+1} \text { if } j \in S} x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}
$$

is the fundamental quasi-symmetric function associated with a set $S \subset[n-1]$.

Arm and Leg of a Cell

Given any partition $\mu \vdash n$, we can draw the Ferrers diagram (in French notation) of μ as shown in Figure 1.

$$
\begin{aligned}
& a_{\mu}(c)=\operatorname{arm} \text { of } c, \\
& a_{\mu}^{\prime}(c)=\text { coarm of } c, \\
& I_{\mu}(c)=\text { leg of } c, \\
& I_{\mu}^{\prime}(c)=\text { coleg of } c .
\end{aligned}
$$

Figure 1: The Young tableau of the partition (7, 7, 5, 3, 3)

Then for each cell $c \in \mu$, we have the arm $a_{\mu}(c)$, the coarm $a_{\mu}^{\prime}(c)$, the leg $I_{\mu}(c)$, and the coleg $I_{\mu}^{\prime}(c)$ of c.

Macdonald polynomials

- The Macdonald polynomial $\widetilde{H}_{\mu}(X ; q, t)$ is a q, t-weighted symmetric function given by

$$
\tilde{H}_{\mu}(X ; q, t)=\sum_{\sigma: \mu \rightarrow \mathbb{Z}_{+} \text {injective tableau }} q^{i n v(\sigma)} t^{\operatorname{maj}(\sigma)} x^{\sigma}
$$

Macdonald polynomials

- The Macdonald polynomial $\widetilde{H}_{\mu}(X ; q, t)$ is a q, t-weighted symmetric function given by

$$
\tilde{H}_{\mu}(X ; q, t)=\sum_{\sigma: \mu \rightarrow \mathbb{Z}_{+}} \sum_{\text {injective tableau }} q^{i n v(\sigma)} t^{\operatorname{maj}(\sigma)} x^{\sigma}
$$

- The symmetric function operator nabla ∇ is the eigenoperator on Macdonald polynomials defined by Bergeron and Garsia where

$$
\nabla \widetilde{H}_{\mu}(X ; q, t)=T_{\mu} \widetilde{H}_{\mu}(X ; q, t)
$$

Here $T_{\mu}=\prod_{c \in \mu} q^{a_{\mu}^{\prime}(c)} t^{\prime \prime}(c)$.

Dyck Paths and Parking Functions

Definition (Dyck path)
An $n \times n$ Dyck path is a lattice path from $(0,0)$ to (n, n) consisting of east and north steps which stays above the diagonal $y=x$.

We can get an $n \times n$ parking function by labeling the cells east of and adjacent to a north step of a Dyck path.

Dyck Paths and Parking Functions

Definition (Dyck path)

An $n \times n$ Dyck path is a lattice path from $(0,0)$ to (n, n) consisting of east and north steps which stays above the diagonal $y=x$.

We can get an $n \times n$ parking function by labeling the cells east of and adjacent to a north step of a Dyck path.

Figure 2: The construction of a parking function

Area of a Dyck Path

Definition (area)

The number of full cells between an (n, n)-Dyck path Π and the main diagonal is denoted area(Π).

The collection of cells above a Dyck path Π forms an the Ferrers diagram (English) of a partition $\lambda(\Pi)$.

Ex. $\lambda(\Pi)=(3,3,1,1)$,

Figure 3: A (7,7)-Dyck path

Dinv of a Dyck Path

Definition (dinv)

The dinv of an (n, n)-Dyck path Π is given by

$$
\operatorname{dinv}(\Pi)=\sum_{c \in \lambda(\Pi)} \chi\left(\frac{\operatorname{arm}(c)}{\operatorname{leg}(c)+1} \leq 1<\frac{\operatorname{arm}(c)+1}{\operatorname{leg}(c)}\right)
$$

Figure 3: A (7, 7)-Dyck path

Statistics of an (n, n)-PF

- $\operatorname{area}(\mathrm{PF})=\operatorname{area}(\Pi(\mathrm{PF}))=8$,
- rank of a cell is $\operatorname{rank}(x, y)=(n+1) y-n x$,
- $\operatorname{dinv}(\mathrm{PF})=\sum_{\text {cars } i<j} \chi(\operatorname{rank}(i)<\operatorname{rank}(j) \leq \operatorname{rank}(i)+n)=0$,
- word σ : reading cars from highest \rightarrow lowest rank. $\sigma(\mathrm{PF})=52431$.
- $\operatorname{ides}(\sigma)=\{i \in \sigma: i+1 \leftarrow i\}$, $\operatorname{pides}(\sigma)$ is the composition corresponding to ides (σ). ides $(\mathrm{PF})=\{1,3,4\}$ and pides $(\mathrm{PF})=\{1,2,1,1\}$.

Statistics of an (n, n)-PF

- $\operatorname{area}(\mathrm{PF})=\operatorname{area}(\Pi(\mathrm{PF}))=8$,
- rank of a cell is $\operatorname{rank}(x, y)=(n+1) y-n x$,
- $\operatorname{dinv}(\mathrm{PF})=\sum_{\text {cars } i<j} \chi(\operatorname{rank}(i)<\operatorname{rank}(j) \leq \operatorname{rank}(i)+n)=0$,
- word σ : reading cars from highest \rightarrow lowest rank. $\sigma(\mathrm{PF})=52431$.
- $\operatorname{ides}(\sigma)=\{i \in \sigma: i+1 \leftarrow i\}$, $\operatorname{pides}(\sigma)$ is the composition corresponding to ides (σ). ides $(\mathrm{PF})=\{1,3,4\}$ and pides $(\mathrm{PF})=\{1,2,1,1\}$.

24	19	14	9	4
18	13	8	3	
12	7	2		
6	1			
0				

Figure 4: A (5,5)-Parking Function

Statistics of an (n, n)-PF

- $\operatorname{area}(\mathrm{PF})=\operatorname{area}(\Pi(\mathrm{PF}))=8$,
- rank of a cell is $\operatorname{rank}(x, y)=(n+1) y-n x$,
- $\operatorname{dinv}(\mathrm{PF})=\sum_{\text {cars } i<j} \chi(\operatorname{rank}(i)<\operatorname{rank}(j) \leq \operatorname{rank}(i)+n)=0$,
- word σ : reading cars from highest \rightarrow lowest rank. $\sigma(\mathrm{PF})=52431$.
- $\operatorname{ides}(\sigma)=\{i \in \sigma: i+1 \leftarrow i\}$, $\operatorname{pides}(\sigma)$ is the composition corresponding to ides (σ). ides $(\mathrm{PF})=\{1,3,4\}$ and pides $(\mathrm{PF})=\{1,2,1,1\}$.

Figure 4: A (5, 5)-Parking Function

Statistics of an (n, n)-PF

- $\operatorname{area}(\mathrm{PF})=\operatorname{area}(\Pi(\mathrm{PF}))=8$,
- rank of a cell is $\operatorname{rank}(x, y)=(n+1) y-n x$,
- $\operatorname{dinv}(\mathrm{PF})=\sum_{\text {cars } i<j} \chi(\operatorname{rank}(i)<\operatorname{rank}(j) \leq \operatorname{rank}(i)+n)=0$,
- word σ : reading cars from highest \rightarrow lowest rank. $\sigma(\mathrm{PF})=52431$.
- $\operatorname{ides}(\sigma)=\{i \in \sigma: i+1 \leftarrow i\}$, $\operatorname{pides}(\sigma)$ is the composition corresponding to ides (σ). ides $(\mathrm{PF})=\{1,3,4\}$ and pides $(\mathrm{PF})=\{1,2,1,1\}$.

Figure 4: A (5, 5)-Parking Function

Classical Shuffle Conjecture

The bigraded Frobenius characteristic of the \mathcal{S}_{n}-module (under the diagonal action) of the ring of diagonal harmonics is given by ∇e_{n}.

The classical shuffle conjecture of Haglund, Haiman, Loehr, Remmel, and Ulyanov(2005) gives a well-studied combinatorial expression for the bigraded Frobenius characteristic of the ring of diagonal harmonics:

Conjecture (Haglund-Haiman-Loehr-Remmel-Ulyanov) For all $n \geq 0$,

$$
\nabla e_{n}=\sum_{\mathrm{PF} \in \mathcal{P} \mathcal{F}_{n}} t^{\operatorname{area}(\mathrm{PF})} q^{\operatorname{dinv}(\mathrm{PF})} F_{\mathrm{ides}(\mathrm{PF})}
$$

Symmetric Function Side Extension - $\mathrm{Q}_{m, n}$ Operators

Gorsky and Negut introduced operator $\mathrm{Q}_{m, n}$ and extended the shuffle conjecture from ∇e_{n} to $\mathrm{Q}_{m, n}(-1)^{n}$.

The main actors on the symmetric function side of the Gorsky-Negut conjecture are the operators D_{k} for each integer k, which were introduced in Garsia et al.(1999). The action of D_{k} on a symmetric function $F[X]$ is defined as

$$
D_{k} F[X]=\left.F\left[X+\frac{M}{z}\right] \sum_{i \geq 0}(-z)^{i} e_{i}[X]\right|_{z^{k}}
$$

where $M=(1-t)(1-q)$.

Symmetric Function Side Extension - $\mathrm{Q}_{m, n}$ Operators

We will construct a family of symmetric function operators $Q_{a, b}$ for any pair of positive integers (a, b). It will be convenient to use the notation $\mathrm{Q}_{k m, k n}$ with (m, n) coprime.

- For any $n \geq 0$, set $\mathrm{Q}_{1, n}=D_{n}$.

Symmetric Function Side Extension - $\mathrm{Q}_{m, n}$ Operators

We will construct a family of symmetric function operators $Q_{a, b}$ for any pair of positive integers (a, b). It will be convenient to use the notation $\mathrm{Q}_{k m, k n}$ with (m, n) coprime.

- For any $n \geq 0$, set $\mathrm{Q}_{1, n}=D_{n}$.
- Then we will recursively define $\mathrm{Q}_{m, n}$ as follows for $m>1$. Consider the $m \times n$ lattice with diagonal $y=\frac{n}{m} x$. Let (a, b) be the lattice point which is closest to and below the diagonal. Set $(c, d)=(m-a, n-b)$. We will write

$$
\operatorname{Split}(m, n)=(a, b)+(c, d)
$$

Then let

$$
\mathrm{Q}_{m, n}=\frac{1}{M}\left[\mathrm{Q}_{c, d}, \mathrm{Q}_{a, b}\right]=\frac{1}{M}\left(\mathrm{Q}_{c, d} \mathrm{Q}_{a, b}-\mathrm{Q}_{a, b} \mathrm{Q}_{c, d}\right)
$$

Symmetric Function Side Extension - $\mathrm{Q}_{m, n}$ Operators

Figure 5 gives an example of $\operatorname{Split}(3,5)$.

Figure 5: The geometry of $\operatorname{Split}(3,5)$
$\operatorname{Split}(3,5)=(2,3)+(1,2)$ so that $\mathrm{Q}_{3,5}=\frac{1}{M}\left[\mathrm{Q}_{1,2}, \mathrm{Q}_{2,3}\right]$.
The same procedure gives $\mathrm{Q}_{2,3}=\frac{1}{M}\left[\mathrm{Q}_{1,2}, \mathrm{Q}_{1,1}\right]$. Therefore

$$
\mathrm{Q}_{3,5}=\frac{1}{M^{2}}\left[D_{2},\left[D_{2}, D_{1}\right]\right]=\frac{1}{M^{2}}\left(D_{2} D_{2} D_{1}-2 D_{2} D_{1} D_{2}+D_{1} D_{2} D_{2}\right)
$$

Combinatorial Side Extension - Rational Dyck Paths

Definition (Rational Dyck path)
An (m, n)-Dyck path is a lattice paths from $(0,0)$ to (m, n) which always remains weakly above the main diagonal $y=\frac{n}{m} x$.

The cells that are passed through by the main diagonal are marked as diagonal cells.

Figure 6: A rational Dyck path

Rational Dyck Paths

Definition (area)
The number of full cells between an (m, n)-Dyck path Π and the main diagonal is denoted area(Π).

The collection of cells above a Dyck path Π forms the Ferrers diagram (in English notation) of a partition $\lambda(\Pi)$. Ex.
$\lambda(П)=(3,3,1,1)$,

Figure 5: A rational Dyck path

Rational Dyck Paths

Definition (pdinv)
The path dinv of an (m, n)-Dyck path Π is given by

$$
\operatorname{pdinv}(\Pi)=\sum_{c \in \lambda(\Pi)} \chi\left(\frac{\operatorname{arm}(c)}{\operatorname{leg}(c)+1} \leq \frac{m}{n}<\frac{\operatorname{arm}(c)+1}{\operatorname{leg}(c)}\right)
$$

Figure 5: A rational Dyck path

Rational Parking Functions

- $\operatorname{area}(\mathrm{PF})=\operatorname{area}(\Pi(\mathrm{PF}))=4$,
- rank of a cell is $\operatorname{rank}(x, y)=m y-n x$,
- word σ : reading cars from highest \rightarrow lowest rank. $\sigma(\mathrm{PF})=7563412$.
- $\operatorname{ides}(\sigma)=\{i \in \sigma: i+1 \leftarrow i\}$, $\operatorname{pides}(\sigma)$ is the composition set of $\operatorname{ides}(\sigma) . \operatorname{ides}(\mathrm{PF})=\{2,4,6\}$ and $\operatorname{pides}(\mathrm{PF})=\{2,2,2,1\}$.

Rational Parking Functions

- $\operatorname{area}(\mathrm{PF})=\operatorname{area}(\Pi(\mathrm{PF}))=4$,
- rank of a cell is $\operatorname{rank}(x, y)=m y-n x$,
- word σ : reading cars from highest \rightarrow lowest rank. $\sigma(\mathrm{PF})=7563412$.
- $\operatorname{ides}(\sigma)=\{i \in \sigma: i+1 \leftarrow i\}$, $\operatorname{pides}(\sigma)$ is the composition set of ides (σ). ides $(\mathrm{PF})=\{2,4,6\}$ and pides $(\mathrm{PF})=\{2,2,2,1\}$.

Figure 7: $\mathrm{A}(5,7)$-parking function and the ranks of its cars

Rational Parking Functions

Definition (tdinv)

$$
\operatorname{tdinv}(\mathrm{PF})=\sum_{\text {cars } i<j} \chi(\operatorname{rank}(i)<\operatorname{rank}(j)<\operatorname{rank}(i)+m)
$$

In Figure 7, the pairs of cars contributing to tdinv are (1, 3), (1, 4), $(3,5),(3,6),(4,6),(5,7)$ and $(6,7)$.

Figure 7: $\mathrm{A}(5,7)$-parking function and the ranks of its cars

Rational Parking Functions

Leven and Hicks gave a simplified formula for the dinv of a PF. Set $\frac{0}{0}=0$ and $\frac{x}{0}=\infty$ for all $x \neq 0$, then
Definition (dinvcorr)

$$
\begin{aligned}
\operatorname{dinvcorr}(\Pi)= & \sum_{c \in \lambda(\Pi)} \chi\left(\frac{\operatorname{arm}(c)+1}{\operatorname{leg}(c)+1} \leq \frac{m}{n}<\frac{\operatorname{arm}(c)}{\operatorname{leg}(c)}\right) \\
& -\sum_{c \in \lambda(\Pi)} \chi\left(\frac{\operatorname{arm}(c)}{\operatorname{leg}(c)} \leq \frac{m}{n}<\frac{\operatorname{arm}(c)+1}{\operatorname{leg}(c)+1}\right) .
\end{aligned}
$$

Definition $(\operatorname{dinv}(P F))$
Let PF be any (m, n)-parking function with underlying Dyck path $П$, then

$$
\operatorname{dinv}(P F)=\operatorname{tdinv}(P F)+\operatorname{dinvcorr}(\Pi)
$$

Rational Parking Functions

- If $n>m$ then

$$
\begin{aligned}
& \text { It } n>m \text { then } \\
& \operatorname{dinv}(\mathrm{PF})=\operatorname{tdinv}(\mathrm{PF})-\sum_{c \in \lambda(\Pi)} \chi\left(\frac{\operatorname{arm}(c)}{\operatorname{leg}(c)} \leq \frac{m}{n}<\frac{\operatorname{arm}(c)+1}{\operatorname{leg}(c)+1}\right) .
\end{aligned}
$$

- If $n=m$ then $\operatorname{dinv}(\mathrm{PF})=\operatorname{tdinv}(\mathrm{PF})$.
- Finally, if $n<m$ then
$\operatorname{dinv}(\mathrm{PF})=\operatorname{tdinv}(\mathrm{PF})+\sum_{c \in \lambda(\Pi)} \chi\left(\frac{\operatorname{arm}(c)+1}{\operatorname{leg}(c)+1} \leq \frac{m}{n}<\frac{\operatorname{arm}(c)}{\operatorname{leg}(c)}\right)$.

(a)

(b)

(c)

Rational Parking Functions

Definition (ret)
The ret of a $(k m, k n)$-parking function PF is the smallest positive i such that the supporting path of PF goes through the point (im, in).

Figure 9: The ret of a (9, 6)-parking function

Extension of Shuffle Conjecture

In 2012, Hikita defined the Hikita polynomial to extend the combinatorial side of the shuffle conjecture to rational parking functions:

$$
\mathrm{H}_{m, n}[X ; q, t]=\sum_{\mathrm{PF} \in \mathcal{P} \mathcal{F}_{m, n}} t^{\operatorname{area}(\mathrm{PF})} q^{\operatorname{dinv}(\mathrm{PF})} F_{\mathrm{ides}(\mathrm{PF})}[X] .
$$

Then the classical shuffle conjecture of HHLRU can be restated as follows.

Conjecture (Haglund-Haiman-Loehr-Remmel-Ulyanov)
For all $n \geq 0$,

$$
\nabla e_{n}=\mathrm{H}_{n+1, n}[X ; q, t]
$$

Rational Shuffle Conjecture

In 2013, Gorsky and Negut introduced the operator $\mathrm{Q}_{m, n}$ and give a symmetric function expression for each coprime pair (m, n) which conjecturally coincides with $\mathrm{H}_{m, n}[X ; q, t]$.
Conjecture (Gorsky-Negut)
For all pairs of coprime positive integers (m, n), we have

$$
\mathrm{Q}_{m, n}(-1)^{n}=\mathrm{H}_{m, n}[X ; q, t] .
$$

Rational Shuffle Conjecture

In 2015, Garsia, Leven, Wallach and Xin extended the conjecture of Gorsky and Negut to any pair of integers ($k m, k n$):
Conjecture (Garsia, Leven, Wallach and Xin)
For all pairs of coprime positive integers (m, n) and any positive integer k, we have

$$
\mathrm{Q}_{k m, k n}(-1)^{k n}=\sum_{\mathrm{PF} \in \mathcal{P} \mathcal{F}_{k m, k n}}[r e t(\mathrm{PF})]_{\frac{1}{t}} t^{\operatorname{area}(\mathrm{PF})} q^{\operatorname{dinv}(\mathrm{PF})} F_{\mathrm{ides}(\mathrm{PF})}[X]
$$

Rational Shuffle Conjecture - Solved

In 2015, Carlson and Mellit proved the Classical Shuffle Conjecture that

$$
\nabla e_{n}=\mathrm{H}_{n+1, n}[X ; q, t]=\sum_{\mathrm{PF} \in \mathcal{P} \mathcal{F}_{n+1, n}} t^{\operatorname{area}(\mathrm{PF})} q^{\operatorname{dinv}(\mathrm{PF})} F_{\mathrm{ides}(\mathrm{PF})}[X] .
$$

Rational Shuffle Conjecture - Solved

In 2015, Carlson and Mellit proved the Classical Shuffle Conjecture that

$$
\nabla e_{n}=\mathrm{H}_{n+1, n}[X ; q, t]=\sum_{\mathrm{PF} \in \mathcal{P} \mathcal{F}_{n+1, n}} t^{\operatorname{area}(\mathrm{PF})} q^{\operatorname{dinv}(\mathrm{PF})} F_{\mathrm{ides}(\mathrm{PF})}[X] .
$$

In April 2016, Mellit proved the Rational Shuffle Conjecture that

$$
\mathrm{Q}_{k m, k n}(-1)^{k n}=\sum_{\mathrm{PF} \in \mathcal{P \mathcal { F }}_{k m, k n}}[r e t(\mathrm{PF})]_{\frac{1}{t}} t^{\operatorname{area}(\mathrm{PF})} q^{\operatorname{dinv}(\mathrm{PF})} F_{\mathrm{ides}(\mathrm{PF})}[X] .
$$

The real problem for the ring of diagonal harmonics and the $Q_{m, n}$ operators Find the Schur function expansions.

The real problem is to find the Schur function $\left(\left\{s_{\lambda}\right\}\right)$ expansion of ∇e_{n}.

Similarly, we want to find the Schur function expansion of $Q_{m, n}(-1)^{n}$.

Schur Basis Expansion of Rational Shuffle Conjecture

$[n]_{q, t}$ is the q, t-analogue of an integer that

$$
[n]_{q, t}=\frac{q^{n}-t^{n}}{q-t}=q^{n-1}+q^{n-2} t+\cdots+t^{n-1}
$$

Schur Basis Expansion of Rational Shuffle Conjecture

$[n]_{q, t}$ is the q, t-analogue of an integer that

$$
[n]_{q, t}=\frac{q^{n}-t^{n}}{q-t}=q^{n-1}+q^{n-2} t+\cdots+t^{n-1}
$$

In 2014, Leven worked out the Schur basis Expansion for both sides of the rational shuffle conjecture when $n=2$ and $m=2$ that

Theorem
For any $k \geq 0$,

$$
\mathrm{Q}_{2 k+1,2} 1=\mathrm{H}_{2 k+1,2}[X ; q, t]=[k]_{q, t} s_{2}+[k+1]_{q, t} s_{1,1}
$$

and

$$
\mathrm{Q}_{2,2 k+1} 1=\mathrm{H}_{2,2 k+1}[X ; q, t]=\sum_{r=0}^{k}[k+1-r]_{q, t} s_{2} 1^{2 k+1-2 r} .
$$

Schur Basis Expansion of Rational Shuffle Conjecture

Now from the extended rational shuffle conjecture of Garsia, Leven, Wallach and Xin that

$$
\mathrm{Q}_{k m, k n}(-1)^{k n}=\sum_{\mathrm{PF} \in \mathcal{P} \mathcal{F}_{k m, k n}}[r e t(\mathrm{PF})]_{\frac{1}{t}} t^{\operatorname{area}(\mathrm{PF})} q^{\operatorname{dinv}(\mathrm{PF})} F_{\mathrm{ides}(\mathrm{PF})}[X]
$$

we have worked out that

$$
\mathrm{Q}_{2 k, 2} 1=\mathrm{H}_{2 k, 2}[X ; q, t]=\left([k]_{q, t}+[k-1]_{q, t}\right) s_{2}+\left([k+1]_{q, t}+[k]_{q, t}\right) s_{1,1}
$$ and

$$
\mathrm{Q}_{2,2 k} 1=\mathrm{H}_{2,2 k}[X ; q, t]=\sum_{r=0}^{k}\left([k+1-r]_{q, t}+[k-r]_{q, t}\right) s_{2 r 1^{2 k+1-2 r}} .
$$

Schur Basis Expansion of Rational Shuffle Conjecture

- Problem: the Schur basis $\left(\left\{s_{\lambda}\right\}\right)$ Expansion of both sides.

Schur Basis Expansion of Rational Shuffle Conjecture

- Problem: the Schur basis $\left(\left\{s_{\lambda}\right\}\right)$ Expansion of both sides.
- Our main result is the Schur expansion for $(m, 3)$ case and some partial results about $(3, n)$ case.

Schur Basis Expansion of Rational Shuffle Conjecture

- Problem: the Schur basis $\left(\left\{s_{\lambda}\right\}\right)$ Expansion of both sides.
- Our main result is the Schur expansion for ($m, 3$) case and some partial results about $(3, n)$ case.
- We begin with the observation of $\mathrm{Q}_{m, 3}(-1)$. We take $m=3 k+1$ for an example.

Coefficients of s_{λ} in $\mathrm{Q}_{3 k+1,3}(-1)$

$\mathrm{Q}_{3 k+1,3}(-1)$	5_{3}	5_{21}	$s_{1}{ }^{3}$
$\mathrm{Q}_{1,3}(-1)$	0	0	$[1]_{q, t}$
$\mathrm{Q}_{4,3}(-1)$	$[1]_{q, t}$	$[2]_{q, t}+[3]_{q, t}$	$\begin{gathered} {[1]_{q, t}} \\ +q t[4]_{q, t} \end{gathered}$
$\mathrm{Q}_{7,3}(-1)$	$\begin{gathered} {[4]_{q, t}} \\ +q t[1]_{q, t} \end{gathered}$	$\begin{gathered} {[5]_{q, t}+[6]_{q, t}} \\ +q t\left([2]_{q, t}+[3]_{q, t}\right) \end{gathered}$	$\begin{gathered} {[7]_{q, t}} \\ +q t[4]_{q, t} \\ +(q t)^{2}[1]_{q, t} \end{gathered}$
$\mathrm{Q}_{10,3}(-1)$	$\begin{gathered} {[7]_{q, t}} \\ +q t[4]_{q, t} \\ +(q t)^{2}[1]_{q, t} \end{gathered}$	$\begin{gathered} {[8]_{q, t}+[9]_{q, t}} \\ +q t\left([5]_{q, t}+[6]_{q, t}\right) \\ +(q t)^{2}\left([2]_{q, t}+[3]_{q, t}\right) \end{gathered}$	$\begin{gathered} {[10]_{q, t}} \\ +q t[7]_{q, t} \\ +(q t)^{2}[4]_{q, t} \\ +(q t)^{3}[1]_{q, t} \end{gathered}$
$\mathrm{Q}_{13,3}(-1)$	$\begin{gathered} {[10]_{q, t}} \\ +q t[7]_{q, t} \\ +(q t)^{2}[4]_{q, t} \\ +(q t)^{3}[1]_{q, t} \end{gathered}$	$\begin{gathered} \quad[11]_{q, t}+[12]_{q, t} \\ +q t\left([8]_{q, t}+[9]_{q, t}\right) \\ +(q t)^{2}\left([5]_{q, t}+[6]_{q, t}\right) \\ +(q t)^{3}\left([2]_{q, t}+[3]_{q, t}\right) \end{gathered}$	$\begin{gathered} {[13]_{q, t}} \\ +q t[10]_{q, t} \\ +(q t)^{2}[7]_{q, t} \\ +(q t)^{3}[4]_{q, t} \\ +(q t)^{4}[1]_{q, t} \end{gathered}$

Main Result

Formula for the Coefficients of Schur function expansion when $n=3$.

Theorem

Let $\left[s_{\lambda}\right]_{m, n}$ be the coefficient of Schur basis s_{λ} in the polynomial $\mathrm{Q}_{m, n}(-1)$ and the polynomial $\mathrm{H}_{m, n}[X ; q, t]$, then
(1)

$$
\begin{aligned}
{\left[s_{3}\right]_{3 k+1,3} } & =\sum_{i=0}^{k-1}(q t)^{k-1-i}[3 i+1]_{q, t}, \\
{\left[s_{21}\right]_{3 k+1,3} } & =\sum_{i=0}^{k-1}(q t)^{k-1-i}\left([3 i+2]_{q, t}+[3 i+3]_{q, t}\right), \\
{\left[s_{1^{3}}\right]_{3 k+1,3} } & =\left[s_{3}\right]_{3 k+4,3}
\end{aligned}
$$

Formula for the Coefficients of Schur Basis When $n=3$
(2)

$$
\begin{aligned}
{\left[s_{3}\right]_{3 k+2,3} } & =\sum_{i=0}^{k-1}(q t)^{k-1-i}[3 i+2]_{q, t} \\
{\left[s_{21}\right]_{3 k+2,3} } & =\sum_{i=0}^{k}(q t)^{k-1-i}\left([3 i]_{q, t}+[3 i+1]_{q, t}\right) \\
{\left[s_{1^{3}}\right]_{3 k+2,3} } & =\left[s_{3}\right]_{3 k+5}
\end{aligned}
$$

(3)

$$
\begin{aligned}
{\left[s_{3}\right]_{3 k, 3}=} & \sum_{i=0}^{k-1}(q t)^{k-1-i}\left([3 i-1]_{q, t}+[3 i]_{q, t}+[3 i+1]_{q, t}\right), \\
{\left[s_{21}\right]_{3 k, 3}=} & (q t)^{k+1}\left([3]_{q, t}+2[2]_{q, t}+[1]_{q, t}\right) \\
& +\sum_{i=1}^{k-1}(q t)^{k-1-i}\left([3 i]_{q, t}+2[3 i+1]_{q, t}\right. \\
{\left[s_{1_{3}}\right]_{3 k, 3}=} & {\left[s_{3}\right]_{3 k+3} . }
\end{aligned}
$$

Example: Formula for $\left[s_{3}\right]_{3 k+1,3}$

Theorem
The coefficient of Schur basis s_{3} in the polynomial $\mathrm{Q}_{3 k+1,3}(-1)$ and the polynomial $\mathrm{H}_{3 k+1,3}[X ; q, t]$ is

$$
\left[s_{3}\right]_{3 k+1,3}=\sum_{i=0}^{k-1}(q t)^{k-1-i}[3 i+1]_{q, t}
$$

Symmetric Function Side
 The Coefficient of Schur Basis s_{3} in the Polynomial $\mathrm{Q}_{3 k+1,3}(-1)$

We need the following lemma from Bergeron, Garsia, Leven and Xin to prove the symmetric function side of the theorem.

Lemma
For any positive m, n,

$$
\nabla \mathrm{Q}_{m, n} \nabla^{-1}=\mathrm{Q}_{m+n, n} .
$$

Symmetric Function Side

 The Coefficient of Schur Basis s_{3} in the Polynomial $Q_{3 k+1,3}(-1)$We need the following lemma from Bergeron, Garsia, Leven and Xin to prove the symmetric function side of the theorem.

Lemma
For any positive m, n,

$$
\nabla \mathrm{Q}_{m, n} \nabla^{-1}=\mathrm{Q}_{m+n, n}
$$

From the lemma, we can get a recursion for $\mathrm{Q}_{m, n}$ operator that

$$
\begin{gathered}
\mathrm{Q}_{m+n, n}(-1)^{n}=\nabla \mathrm{Q}_{m, n} \nabla^{-1}(-1)^{n}=\nabla \mathrm{Q}_{m, n}(-1)^{n}, \quad \text { and } \\
\mathrm{Q}_{3(k+1)+1,3}(-1)^{n}=\nabla \mathrm{Q}_{3 k+1,3} \nabla^{-1}(-1)^{n}=\nabla \mathrm{Q}_{3 k+1,3}(-1)^{n} .
\end{gathered}
$$

Algebraic Proof

We first apply the operator ∇ to the Schur basis s_{3}, s_{21} and s_{13} :

$$
\begin{aligned}
\nabla s_{3} & =(q t)^{2} s_{21}+(q t)^{2}[2]_{q, t} s_{13}, \\
\nabla s_{21} & =(q t)[2]_{q, t} s_{21}-(q t)[3]_{q, t} s_{13}, \\
\nabla s_{1^{3}} & =s_{3}+\left([2]_{q, t}+[3]_{q, t}\right) s_{21}+\left(q t+[4]_{q, t}\right) s_{13} .
\end{aligned}
$$

Algebraic Proof

We first apply the operator ∇ to the Schur basis s_{3}, s_{21} and $s_{1_{3}}$:

$$
\begin{aligned}
\nabla s_{3} & =(q t)^{2} s_{21}+(q t)^{2}[2]_{q, t} s_{1^{3}}, \\
\nabla s_{21} & =(q t)[2]_{q, t} s_{21}-(q t)[3]_{q, t} s_{1^{3}}, \\
\nabla s_{1^{3}} & =s_{3}+\left([2]_{q, t}+[3]_{q, t}\right) s_{21}+\left(q t+[4]_{q, t}\right) s_{1^{3}} .
\end{aligned}
$$

Then we can apply ∇ to the polynomial $\mathrm{Q}_{3 k+1,3}(-1)$.

$$
\begin{aligned}
& \nabla \mathrm{Q}_{3 k+1,3}(-1) \\
= & \nabla\left(\left[s_{3}\right]_{3 k+1,3} s_{3}+\left[s_{21}\right]_{3 k+1,3} s_{21}+\left[s_{1^{3}}\right]_{3 k+1,3} s_{1^{3}}\right) \\
= & {\left[s_{3}\right]_{3 k+1,3} \nabla s_{3}+\left[s_{21}\right]_{3 k+1,3} \nabla s_{21}+\left[s_{1^{3}}\right]_{3 k+1,3} \nabla s_{1^{3}} } \\
= & {\left[s_{1^{3}}\right]_{3 k+1,3} s_{3} } \\
& +\left[(q t)^{2}\left[s_{3}\right]_{3 k+1,3}-q t[2]_{q, t}\left[s_{21}\right]_{3 k+1,3}+\left([2]_{q, t}+[3]_{q, t}\right)\left[s_{1^{3}}\right]_{3 k+1,3}\right] \\
& +\left[(q t)^{2}[2]_{q, t}\left[s_{3}\right]_{3 k+1,3}-q t[3]_{q, t}\left[s_{21}\right]_{3 k+1,3}+\left(q t+[4]_{q, t}\right)\left[s_{1^{3}}\right]_{3 k+1,}\right. \\
= & {\left[s_{3}\right]_{3 k+4,3} s_{3}+\left[s_{21}\right]_{3 k+4,3} s_{21}+\left[s_{1^{3}}\right]_{3 k+4,3} s_{1^{3}}, }
\end{aligned}
$$

Algebraic Proof

and the recursion from $\left[s_{\lambda}\right]_{3 k+1,3}$ to $\left[s_{\lambda}\right]_{3 k+4,3}$ is clear that $\left[s_{3}\right]_{3 k+4,3}=\left[s_{1^{3}}\right]_{3 k+1,3}$,
$\left[s_{21}\right]_{3 k+4,3}=(q t)^{2}\left[s_{3}\right]_{3 k+1,3}-q t[2]_{q, t}\left[s_{21}\right]_{3 k+1,3}+\left([2]_{q, t}+[3]_{q, t}\right)\left[s_{1^{3}}\right]_{3 k+1,3}$,
$\left[s_{1^{3}}\right]_{3 k+4,3}=(q t)^{2}[2]_{q, t}\left[s_{3}\right]_{3 k+1,3}-q t[3]_{q, t}\left[s_{21}\right]_{3 k+1,3}+\left(q t+[4]_{q, t}\right)\left[s_{1^{3}}\right]_{3 k+1}$

Combinatorial Side - From F_{α} to s_{λ}

Hikita(2012) proved that Hikita polynomials $\mathrm{H}_{m, n}[X ; q, t]$ are symmetric (in X) for any coprime m, n.

Combinatorial Side - From F_{α} to s_{λ}

Hikita(2012) proved that Hikita polynomials $\mathrm{H}_{m, n}[X ; q, t]$ are symmetric (in X) for any coprime m, n.

Egge, Loehr and Warrington(2010) gave a way to transform a symmetric function from fundamental quasi-symmetric function basis to Schur basis. Then Garsia and Remmel(2015) gave a formula for the coefficient of Schur basis.

Combinatorial Side - From F_{α} to s_{λ}

Hikita(2012) proved that Hikita polynomials $\mathrm{H}_{m, n}[X ; q, t]$ are symmetric (in X) for any coprime m, n.

Egge, Loehr and Warrington(2010) gave a way to transform a symmetric function from fundamental quasi-symmetric function basis to Schur basis. Then Garsia and Remmel(2015) gave a formula for the coefficient of Schur basis.

Theorem (Garsia and Remmel)

Suppose that $P(X)$ is a symmetric function which is homogeneous of degree n and $P(X)=\sum_{\alpha \Vdash n} a_{\alpha} F_{\alpha}(X)$, Then

$$
P(X)=\sum a_{\alpha} s_{\tilde{\alpha}}(X)
$$

Here $\tilde{\alpha}$ is the composition set of ${ }^{\downarrow}-\underline{1}$, and $s_{\alpha}(X)=\frac{\Delta_{\alpha}(X)}{\Delta(X)}$.
This allows us to transform $\mathrm{H}_{m, n}[X ; q, t]$ into Schur function expansion.

From F_{α} to s_{λ} — Straightening

- Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ be a composition of n. Suppose that for some $i, \alpha_{i}<\alpha_{i+1}$ (i.e. α is not a partition). Then $s_{\alpha}=-s_{\left(\alpha_{1}, \ldots, \alpha_{i+1}-1, \alpha_{i}+1, \ldots, \alpha_{k}\right)}$. This action is called straightening.

From F_{α} to s_{λ} — Straightening

- Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ be a composition of n. Suppose that for some $i, \alpha_{i}<\alpha_{i+1}$ (i.e. α is not a partition). Then $s_{\alpha}=-s_{\left(\alpha_{1}, \ldots, \alpha_{i+1}-1, \alpha_{i}+1, \ldots, \alpha_{k}\right)}$. This action is called straightening.
- Repeatedly applying this procedure will eventually yield a partition or a composition α^{\prime} such that $\alpha_{j}^{\prime}=\alpha_{j+1}^{\prime}-1$ for some j. In the latter case, the straightening action yields $s_{\alpha^{\prime}}=-s_{\alpha^{\prime}}$, hence $s_{\alpha^{\prime}}=0$.
- Ex. $s_{2,3,1}=-s_{3-1,2+1,1}=-s_{2,3,1}=0$.
- Ex. $s_{1,3,1}=-s_{3-1,1+1,1}=-s_{2,2,1}$.

Notation for the Coeff of s_{λ}

- We define

$$
\begin{aligned}
{\left[s_{\sigma}\right]_{m, n}(q, t) } & =\sum_{\mathrm{PF} \in \mathcal{P} \mathcal{F}_{m, n, s_{\sigma}}} t^{\operatorname{area}(\mathrm{PF})} q^{\operatorname{dinv}(\mathrm{PF})} \frac{s_{\mathrm{pides}(\mathrm{PF})}}{s_{\sigma}} \\
& =\sum_{\alpha \text { straightened to } \sigma} h_{m, n, \text { pides } \alpha}(q, t) \frac{s_{\alpha}}{s_{\sigma}}
\end{aligned}
$$

- Then naturally $\left[s_{\sigma}\right]_{m, n}(q, t)$ is the coefficient of s_{σ} in $\mathrm{H}_{m, n}[X ; q, t]$, i.e.

$$
\mathrm{H}_{m, n}[X ; q, t]=\sum_{\sigma \vdash n}\left[s_{\sigma}\right]_{m, n}(q, t) s_{\sigma}
$$

Notation for the Coeff of s_{λ}

- Recall that the combinatorial side is the Hikita polynomial:

$$
\mathrm{H}_{m, 3}[X ; q, t]=\sum_{\mathrm{PF} \in \mathcal{P} \mathcal{F}_{m, 3}} t^{\operatorname{area}(\mathrm{PF})} q^{\operatorname{dinv}(\mathrm{PF})} F_{\mathrm{ides}(\mathrm{PF})}[X] .
$$

- By the action straightening, we can transform it to

$$
\mathrm{H}_{m, 3}[X ; q, t]=\sum_{\mathrm{PF} \in \mathcal{P} \mathcal{F}_{m, 3}} t^{\operatorname{area}(\mathrm{PF})} q^{\operatorname{dinv}(\mathrm{PF})} s_{\text {pides }(\mathrm{PF})}[X] .
$$

Combinatorial Side Proof

Any parking function $\mathrm{PF} \in \mathcal{P} \mathcal{F}_{m, 3}$ has 3 rows, thus has only 3 cars: $1,2,3$. So the word $\sigma(\mathrm{PF})$ can be any permutation $\sigma \in \mathcal{S}_{3}$. Table 1 shows the $s_{\text {pides }}$ contribution of the 6 permutations in \mathcal{S}_{3}.

$\sigma \in \mathcal{S}_{3}$	$s_{\text {pides }}$
123	s_{3}
132	s_{21}
213	$s_{12}=0$
231	s_{21}
312	$s_{12}=0$
321	$s_{1^{3}}$

Table 1: Coefficients of s_{λ} in $\mathrm{Q}_{3 k+1,3}(-1)$
Since there are only 3 partitions of $3:\left\{3,21,1^{3}\right\}$, the Hikita polynomial of $(m, 3)$ case is

$$
\mathrm{H}_{m, 3}[X ; q, t]=\left[s_{3}\right]_{m, 3} s_{3}+\left[s_{21}\right]_{m, 3} s_{21}+\left[s_{1^{3}}\right]_{m, 3} s_{1^{3}} .
$$

Combinatorial Side Proof

$\sigma \in \mathcal{S}_{3}$	$s_{\text {pides }}$
123	s_{3}
132	s_{21}
213	$s_{12}=0$
231	s_{21}
312	$s_{12}=0$
321	$s_{1^{3}}$

Table 1: Coefficients of s_{λ} in $\mathrm{Q}_{3 k+1,3}(-1)$
From the table we can see that

- $\left[s_{3}\right]_{m, 3}=h_{m, 3, \text { word } 123,}$
- $\left[s_{21}\right]_{m, 3}=h_{m, 3, \text { word } 132}+h_{m, 3, \text { word } 231}$,
- $\left[s_{1^{3}}\right]_{m, 3}=h_{m, 3, \text { word } 321}$,

The combinatorics of $\left[s_{3}\right]_{3 k+1,3}$

We take $\left[s_{3}\right]_{3 k+1,3}$ as an example. We will construct

$$
\left[s_{3}\right]_{3 k+1,3}=\sum_{i=0}^{k-1}(q t)^{k-1-i}[3 i+1]_{q, t}
$$

Since $\left[s_{3}\right]_{m, 3}=h_{m, 3, \text { word } 123}$, we are looking at the set of parking functions in $\mathcal{P F} \mathcal{F}_{m, 3, \text { word } 123 .}$.

This set $\mathcal{P} \mathcal{F}_{m, 3, \text { word } 123}$ of parking functions can be obtained by adding cars $1,2,3$ in a rank-decreasing way to a $m \times 3$ Dyck path, and smaller cars can't be put on top of bigger cars, so we have one $\mathrm{PF} \in \mathcal{P} \mathcal{F}_{m, 3 \text {, word123 }}$ on each $m \times 3$ Dyck path with no consecutive u, u steps.

The combinatorics of $\left[s_{3}\right]_{3 k+1,3}$

Recall that tdinv is defined as

$$
\operatorname{tdinv}(\mathrm{PF})=\sum_{\text {cars } i<j} \chi(\operatorname{rank}(i)<\operatorname{rank}(j)<\operatorname{rank}(i)+m)
$$

Since the word is 123 , we have $\operatorname{rank}(1)>\operatorname{rank}(2)>\operatorname{rank}(3)$, so there will always be no tdinv for $\mathrm{PF} \in \mathcal{P} \mathcal{F}_{m, 3 \text {,word123 }}$. Since $m=3 k+1>n=3$ for $k \geq 1$, the dinv correction is of the third type. We have

$$
\operatorname{dinv}(\mathrm{PF})=\operatorname{dinvcorr}(\mathrm{PF})=\sum_{c \in \lambda(\Pi)} \chi\left(\frac{\operatorname{arm}(c)+1}{\operatorname{leg}(c)+1} \leq \frac{m}{n}<\frac{\operatorname{arm}(c)}{\operatorname{leg}(c)}\right)
$$

The combinatorics of $\left[s_{3}\right]_{3 k+1,3}$

The partition $\lambda(\Pi)$ correspond with the Dyck path Π of $\mathrm{PF} \in \mathcal{P} \mathcal{F}_{m, 3}$ is at most of hight 2 , so the leg of cells in $\lambda(\Pi)$ can be either 0 or 1. Taking Figure 9 for reference, we have
(a) Cells in $\lambda(\Pi)$ with leg $=0$ and $1<\operatorname{arm}<k$ contribute 1 to dinv correction, marked \bigcirc in Figure 9,
(b) Cells in $\lambda(\Pi)$ with leg $=1$ and $k<\operatorname{arm}<2 k-1$ contribute 1 to dinv correction, marked \triangle in Figure 9.

Figure 9: The dinv correction of a $(3 k+1) \times 3$ Dyck path

The combinatorics of $\left[s_{3}\right]_{3 k+1,3}$

We can count dinv correction and area according to the partition $\lambda(\Pi)$ of the path Π. Each path Π corresponds with a partition $\lambda=\left(\lambda_{1}, \lambda_{2}\right) \subseteq \lambda_{0}=(2 k, k)$. Let dinvcorr $(\lambda(\Pi))=\operatorname{dinvcorr}(\Pi)$ and $\operatorname{area}(\lambda(\Pi))=\operatorname{area}(\Pi)$, then

$$
\operatorname{area}(\Pi)=2 k-\lambda_{1}-\lambda_{2},
$$

and we can also write the formula for dinv correction:
$\operatorname{dinvcorr}(\lambda)= \begin{cases}\lambda_{1}-2 & \text { if } \lambda_{2} \geq 1,1 \leq \lambda_{1}-\lambda_{2} \leq k, \text { and } \lambda_{1} \leq k \\ 2 \lambda_{1}-k-3 & \text { if } \lambda_{2} \geq 1,1 \leq \lambda_{1}-\lambda_{2} \leq k, \text { and } \lambda_{1} \geq k+1 . \\ 2 \lambda_{2}+k-2 & \text { if } \lambda_{2} \geq 1 \text { and } \lambda_{1}-\lambda_{2} \geq k+1\end{cases}$

The combinatorics of $\left[s_{3}\right]_{3 k+1,3}$

Now for $\left[s_{3}\right]_{3 k+1,3}=\sum_{i=0}^{k-1}(q t)^{k-1-i}[3 i+1]_{q, t}$, we construct each term $(q t)^{k-1-i}[3 i+1]_{q, t}$ as a sequence of parking functions.

For each i, we have 3 branches of partitions(or parking functions):

$$
\begin{aligned}
& \Lambda_{1}=\{(k+i+1, k),(k+i, k-1), \ldots,(k+1, k-i)\} \\
& \Lambda_{2}=\{(2 k, i),(2 k-1, i-1), \ldots,(2 k+1-i, 1)\} \\
& \Lambda_{3}=\{(k+1, i+1),(k, i+1), \ldots,(i+2, i+1)\}
\end{aligned}
$$

- The branch Λ_{1} contains λ 's such that $\lambda_{1}-\lambda_{2}=i+1 \leq k$ with $\lambda_{2} \geq i+1$,
- the branch Λ_{2} contains all λ 's such that $\lambda_{1}-\lambda_{2}=2 k-i>k$, and
- the branch Λ_{3} contains λ 's such that $\lambda_{2}=i+1$ and $\lambda_{1}-\lambda_{2} \leq k-i$.

The combinatorics of $\left[s_{3}\right]_{3 k+1,3}$

$\left|\Lambda_{1}\right|=\left|\Lambda_{2}\right|+1$, and the last partition of Λ_{1} is the same as the first partition in Λ_{3}. So as shown in Figure 10, the construction begin with alternatively taking partitions from Λ_{1} and Λ_{2}, ending with the last partition of Λ_{1}. Then continue the chain by taking partitions in Λ_{3} and end the chain with the last partition $(k-i+1, k-i)$ in Λ_{3}.

Figure 10: The construction of $(q t)^{k-1-i}[3 i+1]_{q, t}$

The combinatorics of $\left[s_{3}\right]_{3 k+1,3}$

Figure 11：The construction of $\left[s_{3}\right]_{13,3}$

The combinatorics of $\left[s_{1^{3}}\right]_{3 k+1,3}$

- $\left[s_{1^{3}}\right]_{m-3,3}=\left[s_{3}\right]_{m, 3}$. Bijection:

- $\left[s_{21}\right]_{m, 3}$ is a construction problem similar to $\left[s_{3}\right]_{m, 3}$.
- For the case $m=3$, we have several results about $\left[s_{\lambda}\right]_{3, n}$. Every equation about $\left[s_{\lambda}\right]_{3, n}$ implies a bijection about parking functions.

Remark about pides in $(3, n)$ Case

Remark

Let $i<j$ be two cars in the parking function. If i appears to the left of j in the diagonal word, then the cars i, j must be in different columns.

Remark

The elements in the pides of a parking function $\mathrm{PF} \in \mathcal{P} \mathcal{F}_{m, n}$ is at most m.

So in $(3, n)$ case, the λ in $\left[s_{\lambda}\right]_{3, n}$ can only be of form $3^{a} 2^{b} 1^{c}$ with $3 a+2 b+c=n$.

Coefficients of s_{λ} in $\mathrm{Q}_{3,3 k+1}(-1)^{3 k+1}$

$$
\mathrm{Q}_{3,4,1}=s_{31}+[2]_{q, t} s_{2^{2}}+\left([3]_{q, t}+[2]_{q, t}\right) s_{21^{2}}+\left([4]_{q, t}+(q t)[1]_{q, t}\right) s_{1^{4}}
$$

$$
\begin{aligned}
& \mathrm{Q}_{3,7,-1}= \\
& s_{3^{2} 1}+[2]_{q, t} s_{32^{2}}+\left([3]_{q, t}+[2]_{q, t}\right) s_{321^{2}}+\left([4]_{q, t}+(q t)[1]_{q, t}\right) s_{31^{4}} \\
&+\left([4]_{q, t}+[3]_{q, t}+(q t)[1]_{q, t}\right) s_{2^{3} 1} \\
&+\left([5]_{q, t}+[4]_{q, t}+[3]_{q, t}+(q t)[2]_{q, t}\right) s_{2^{2} 1^{3}} \\
&+\left([6]_{q, t}+[5]_{q, t}+(q t)\left([3]_{q, t}+[2]_{q, t}\right)\right) s_{21^{5}} \\
&+\left([7]_{q, t}+[4]_{q, t}+[1]_{q, t}\right) s_{1^{7}}
\end{aligned}
$$

Combinatorial Results about $\left[s_{\lambda}\right]_{3, n}$

- $\left[s_{3 a+12^{b} 1^{c}}\right]_{3, n}=\left[s_{3 a 2^{b} 1}\right]_{3, n-3}$. Bijection:

- $\left[s_{1^{3}}\right]_{n, 3}=\left[s_{1^{n}}\right]_{3, n}$. Bijection:

Combinatorial Results about $\left[s_{\lambda}\right]_{3, n}$

- $\left[s_{21}\right]_{n, 3}=\left[s_{21^{n-2}}\right]_{3, n}$. Bijection:

- Straitening action: $\operatorname{pides}\{\cdots 1,3 \cdots\} \Rightarrow \operatorname{pides}\{\cdots 2,2 \cdots\}$ for $\mathcal{P F}_{3, n}$ is clear - an involution whose fixed points are the coefficients of $\left[s_{2^{a} 1^{b}}\right]_{3, n}$.
- $\left[s_{2^{a} 1^{b}}\right]_{3, n}=\left[s_{2^{b} 1^{a}}\right]_{3,3(a+b)-n}$. Bijection:

Combinatorial Results about $\left[s_{\lambda}\right]_{3, n}$

Conjecture

Let $a<b$, then

$$
\left[s_{2^{a} 1^{b}}\right]_{3, n}=\sum_{i=0}^{a}[b+i]_{q, t}+(q t)\left[s_{2^{a} 1^{b-3}}\right]_{3, n-3} .
$$

We verified this formula by Maple for $n<27$. If this conjecture is true, then we have solved the Schur function expansion in the $(3, n)$ case.

Combinatorial Results about $\left[s_{\lambda}\right]_{m, n}$

Theorem
For all $m, n>0$ and $\lambda^{\prime} \vdash(n-a m)$,
(a) $\left[s_{1 n}\right]_{m-n, n}=\left[s_{n}\right]_{m, n}$,
(b) $\left[s_{m^{2} \lambda}\right]_{m, n}=\left[s_{\lambda^{\prime}}\right]_{m, n-a m}$,
(c) $\left[s_{1}{ }^{n}\right]_{m, n}=\left[s_{1 m}\right]_{n, m}$,
(d) $\left[s_{k 1^{n-k}}\right]_{m, n}=\left[s_{k 1^{m-k}}\right]_{n, m}$.

Conjecture

Thank You!

