Special Cases in the Combinatorics of Rational Shuffle Conjecture

Dun Qiu UC San Diego duqiu@ucsd.edu Joint work with Jeffery Remmel

August 22, 2017

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Ring of Diagonal Harmonics

Let $\mathbf{X} = x_1, x_2, \dots, x_n$ and $\mathbf{Y} = y_1, y_2, \dots, y_n$ be two sets of n variables. The ring of Diagonal harmonics consists of those polynomials in $\mathbb{Q}[\mathbf{X}, \mathbf{Y}]$ which satisfy the following system of differential equations

$$\partial_{x_1}^a \partial_{y_1}^b f(\mathbf{x}, \mathbf{y}) + \partial_{x_2}^a \partial_{y_2}^b f(\mathbf{x}, \mathbf{y}) + \ldots + \partial_{x_n}^a \partial_{y_n}^b f(\mathbf{x}, \mathbf{y}) = 0,$$

for each pair of integers a and b, such that a + b > 0.

Haiman proved that the ring of diagonal harmonics has dimension $(n+1)^{n-1}$.

<□ ▶ < @ ▶ < E ▶ < E ▶ E り < 2/60

- $\lambda = \lambda_1, \ldots, \lambda_k$ is a partition of n if $\lambda_1 \ge \ldots \ge \lambda_k$ and $\sum_{i=1}^k \lambda_i = n$, written $\lambda \vdash n$.
- Ex. $\lambda \vdash 3$: (3), (2, 1), (1, 1, 1).

- $\lambda = \lambda_1, \dots, \lambda_k$ is a partition of n if $\lambda_1 \ge \dots \ge \lambda_k$ and $\sum_{i=1}^k \lambda_i = n$, written $\lambda \vdash n$.
- Ex. $\lambda \vdash 3$: (3), (2, 1), (1, 1, 1).
- ► Each partition corresponds to a Ferrers diagram. For example, $\lambda = (4, 2, 1) \vdash 7$ corresponds to _____.

▲□▶▲□▶▲■▶▲■▶ ■ のへで 3/60

We can fill the cells of the Ferrers diagram with integers.

- $\lambda = \lambda_1, \dots, \lambda_k$ is a partition of n if $\lambda_1 \ge \dots \ge \lambda_k$ and $\sum_{i=1}^k \lambda_i = n$, written $\lambda \vdash n$.
- Ex. $\lambda \vdash 3$: (3), (2, 1), (1, 1, 1).
- ► Each partition corresponds to a Ferrers diagram. For example, $\lambda = (4, 2, 1) \vdash 7$ corresponds to _____.

We can fill the cells of the Ferrers diagram with integers.

Column strict tableau:

$$\begin{array}{c} 5\\ \hline 23\\ \hline 1134\\ \leq \end{array}$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ り Q () 3/60

- $\lambda = \lambda_1, \ldots, \lambda_k$ is a partition of *n* if $\lambda_1 \ge \ldots \ge \lambda_k$ and $\sum_{i=1}^k \lambda_i = n$, written $\lambda \vdash n$.
- Ex. $\lambda \vdash 3$: (3), (2, 1), (1, 1, 1).
- ► Each partition corresponds to a Ferrers diagram. For example, $\lambda = (4, 2, 1) \vdash 7$ corresponds to _____.

We can fill the cells of the Ferrers diagram with integers.

• Column strict tableau: $\sqrt{\frac{5}{23}}$

▶ Injective tableau:
$$\lambda \to \mathbb{Z}_+$$
, $\begin{array}{c} 4\\ \hline 15\\ \hline 2624 \end{array}$

S_n = {σ : σ is a permutation of [n]} is the nth symmetric group.

- S_n = {σ : σ is a permutation of [n]} is the nth symmetric group.
- f(X) ∈ ℝ[[x]] is a symmetric function if f(X) = f(σ(X)) for any permutation σ.
- ► Ex. $f(x_1, x_2, x_3) =$ $3x_1x_2 + 3x_1x_3 + 3x_2x_3 + \dots + 5x_1^2x_2 + 5x_1x_2^2 + 5x_1^2x_3 + \dots$

- S_n = {σ : σ is a permutation of [n]} is the nth symmetric group.
- f(X) ∈ ℝ[[x]] is a symmetric function if f(X) = f(σ(X)) for any permutation σ.
- ► Ex. $f(x_1, x_2, x_3) =$ $3x_1x_2 + 3x_1x_3 + 3x_2x_3 + \dots + 5x_1^2x_2 + 5x_1x_2^2 + 5x_1^2x_3 + \dots$
- The ring of symmetric functions has several bases:
 {s_λ}, {e_λ},

- S_n = {σ : σ is a permutation of [n]} is the nth symmetric group.
- f(X) ∈ ℝ[[x]] is a symmetric function if f(X) = f(σ(X)) for any permutation σ.
- ► Ex. $f(x_1, x_2, x_3) =$ $3x_1x_2 + 3x_1x_3 + 3x_2x_3 + \dots + 5x_1^2x_2 + 5x_1x_2^2 + 5x_1^2x_3 + \dots$

<□ > < @ > < E > < E > E の Q @ 4/60

- The ring of symmetric functions has several bases:
 {s_λ}, {e_λ},
- $e_n = \sum_{i_1 < \cdots < i_n} x_{i_1} x_{i_2} \cdots x_{i_n}$, and $e_\lambda = e_{\lambda_1} e_{\lambda_2} \cdots e_{\lambda_k}$.

- S_n = {σ : σ is a permutation of [n]} is the nth symmetric group.
- f(X) ∈ ℝ[[x]] is a symmetric function if f(X) = f(σ(X)) for any permutation σ.
- Ex. $f(x_1, x_2, x_3) =$ $3x_1x_2 + 3x_1x_3 + 3x_2x_3 + \dots + 5x_1^2x_2 + 5x_1x_2^2 + 5x_1^2x_3 + \dots$
- The ring of symmetric functions has several bases:
 {s_λ}, {e_λ},

•
$$e_n = \sum_{i_1 < \cdots < i_n} x_{i_1} x_{i_2} \cdots x_{i_n}$$
, and $e_{\lambda} = e_{\lambda_1} e_{\lambda_2} \cdots e_{\lambda_k}$.
• $s_{\lambda} = \sum_{\text{T a column strict tableau of shape } \lambda} X^{\text{T}}$.

Quasi-symmetric Functions

f(X) ∈ ℝ[[x]] is a quasi-symmetric function if for each composition o(α₁,..., α_k), the coefficient of the monomial x₁^{α1}x₂^{α2} ··· x_k^{αk} is equal to the coefficient of the monomial x_{i₁}^{α1}x_{i₂^{α2}} ··· x_{i_k}^{αk} for any strictly increasing sequence of positive integers i₁ < i₂ < ··· < i_k.

Quasi-symmetric Functions

f(X) ∈ ℝ[[x]] is a quasi-symmetric function if for each composition o(α₁,..., α_k), the coefficient of the monomial x₁^{α1}x₂^{α2} ··· x_k^{αk} is equal to the coefficient of the monomial x_{i₁}^{α1}x_{i₂^{α2}} ··· x_{i_k^{αk}} for any strictly increasing sequence of positive integers i₁ < i₂ < ··· < i_k.

$$F_{\mathcal{S}} = \sum_{i_1 \leq i_2 \leq \ldots \leq i_n, i_j < i_{j+1} \text{ if } j \in \mathcal{S}} x_{i_1} x_{i_2} \ldots x_{i_n}$$

is the fundamental quasi-symmetric function associated with a set $S \subset [n-1]$.

Arm and Leg of a Cell

Given any partition $\mu \vdash n$, we can draw the Ferrers diagram (in French notation) of μ as shown in Figure 1.

Figure 1: The Young tableau of the partition (7, 7, 5, 3, 3)

Then for each cell $c \in \mu$, we have the arm $a_{\mu}(c)$, the coarm $a'_{\mu}(c)$, the leg $l_{\mu}(c)$, and the coleg $l'_{\mu}(c)$ of c.

Macdonald polynomials

► The Macdonald polynomial H
_µ(X; q, t) is a q, t-weighted symmetric function given by

$$\widetilde{H}_{\mu}(X;q,t) = \sum_{\sigma: \; \mu o \mathbb{Z}_+ \; ext{ injective tableau}} q^{\textit{inv}(\sigma)} t^{\textit{maj}(\sigma)} x^{\sigma}.$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ ~ 7/60

Macdonald polynomials

► The Macdonald polynomial H
_µ(X; q, t) is a q, t-weighted symmetric function given by

$$\widetilde{H}_{\mu}(X;q,t) = \sum_{\sigma: \; \mu o \mathbb{Z}_+ \; ext{injective tableau}} q^{\textit{inv}(\sigma)} t^{\textit{maj}(\sigma)} x^{\sigma}.$$

► The symmetric function operator nabla ∇ is the eigenoperator on Macdonald polynomials defined by Bergeron and Garsia where

$$abla \widetilde{H}_{\mu}(X;q,t) = T_{\mu}\widetilde{H}_{\mu}(X;q,t).$$

<□ ▶ < @ ▶ < E ▶ < E ▶ E の < で 7/60

Here $T_{\mu} = \prod_{c \in \mu} q^{a'_{\mu}(c)} t''_{\mu}(c)$.

Dyck Paths and Parking Functions

Definition (Dyck path)

An $n \times n$ Dyck path is a lattice path from (0,0) to (n, n) consisting of east and north steps which stays above the diagonal y = x.

We can get an $n \times n$ parking function by labeling the cells east of and adjacent to a north step of a Dyck path.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ 키९은 8/60

Dyck Paths and Parking Functions

Definition (Dyck path)

An $n \times n$ Dyck path is a lattice path from (0,0) to (n, n) consisting of east and north steps which stays above the diagonal y = x.

We can get an $n \times n$ parking function by labeling the cells east of and adjacent to a north step of a Dyck path.

Figure 2: The construction of a parking function

▲□▶▲圖▶▲≣▶▲≣▶ ≣ 키९은 8/60

Area of a Dyck Path Definition (area)

The number of full cells between an (n, n)-Dyck path Π and the main diagonal is denoted $area(\Pi)$.

The collection of cells above a Dyck path Π forms an the Ferrers diagram (English) of a partition $\lambda(\Pi)$.

Figure 3: A (7,7)-Dyck path

Dinv of a Dyck Path

Definition (dinv)

The dinv of an (n, n)-Dyck path Π is given by

$$\operatorname{dinv}(\Pi) = \sum_{c \in \lambda(\Pi)} \chi\left(\frac{\operatorname{arm}(c)}{\operatorname{leg}(c) + 1} \leq 1 < \frac{\operatorname{arm}(c) + 1}{\operatorname{leg}(c)}\right).$$

Figure 3: A (7,7)-Dyck path

- $\operatorname{area}(\operatorname{PF}) = \operatorname{area}(\Pi(\operatorname{PF})) = 8$,
- rank of a cell is rank(x, y) = (n + 1)y nx,
- dinv(PF) = $\sum_{cars \ i < j} \chi(rank(i) < rank(j) \le rank(i) + n) = 0$,
- ▶ word σ : reading cars from highest \rightarrow lowest rank. $\sigma(PF) = 52431.$
- ides(σ) = {i ∈ σ : i + 1 ← i}, pides(σ) is the composition corresponding to ides(σ). ides(PF) = {1,3,4} and pides(PF) = {1,2,1,1}.

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ♪ ○ ○ 11/60

- $\operatorname{area}(\operatorname{PF}) = \operatorname{area}(\Pi(\operatorname{PF})) = 8$,
- rank of a cell is rank(x, y) = (n + 1)y nx,
- dinv(PF) = $\sum_{cars \ i < j} \chi(rank(i) < rank(j) \le rank(i) + n) = 0$,
- ▶ word σ : reading cars from highest → lowest rank. $\sigma(PF) = 52431.$
- ides(σ) = {i ∈ σ : i + 1 ← i}, pides(σ) is the composition corresponding to ides(σ). ides(PF) = {1,3,4} and pides(PF) = {1,2,1,1}.

24	19	14	9	4
18	13	8	3	
12	7	2		
6	1			
0				

Figure 4: A (5,5)-Parking Function

- $\operatorname{area}(\operatorname{PF}) = \operatorname{area}(\Pi(\operatorname{PF})) = 8$,
- rank of a cell is rank(x, y) = (n + 1)y nx,
- dinv(PF) = $\sum_{cars \ i < j} \chi(rank(i) < rank(j) \le rank(i) + n) = 0$,
- ▶ word σ : reading cars from highest → lowest rank. $\sigma(PF) = 52431.$
- ides(σ) = {i ∈ σ : i + 1 ← i}, pides(σ) is the composition corresponding to ides(σ). ides(PF) = {1,3,4} and pides(PF) = {1,2,1,1}.

Figure 4: A (5,5)-Parking Function

- $\operatorname{area}(\operatorname{PF}) = \operatorname{area}(\Pi(\operatorname{PF})) = 8$,
- rank of a cell is rank(x, y) = (n + 1)y nx,
- dinv(PF) = $\sum_{cars \ i < j} \chi(rank(i) < rank(j) \le rank(i) + n) = 0$,
- ▶ word σ : reading cars from highest → lowest rank. $\sigma(PF) = 52431.$
- ides(σ) = {i ∈ σ : i + 1 ← i}, pides(σ) is the composition corresponding to ides(σ). ides(PF) = {1,3,4} and pides(PF) = {1,2,1,1}.

Figure 4: A (5,5)-Parking Function

Classical Shuffle Conjecture

The bigraded Frobenius characteristic of the S_n -module (under the diagonal action) of the ring of diagonal harmonics is given by ∇e_n .

The classical shuffle conjecture of Haglund, Haiman, Loehr, Remmel, and Ulyanov(2005) gives a well-studied combinatorial expression for the bigraded Frobenius characteristic of the ring of diagonal harmonics:

Conjecture (Haglund-Haiman-Loehr-Remmel-Ulyanov) For all $n \ge 0$,

$$abla e_n = \sum_{\mathrm{PF}\in\mathcal{PF}_n} t^{\mathrm{area}(\mathrm{PF})} q^{\mathrm{dinv}(\mathrm{PF})} F_{\mathrm{ides}(\mathrm{PF})}.$$

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Gorsky and Negut introduced operator $Q_{m,n}$ and extended the shuffle conjecture from ∇e_n to $Q_{m,n}(-1)^n$.

The main actors on the symmetric function side of the Gorsky-Negut conjecture are the operators D_k for each integer k, which were introduced in Garsia et al.(1999). The action of D_k on a symmetric function F[X] is defined as

$$D_k F[X] = F\left[X + \frac{M}{z}\right] \sum_{i\geq 0} (-z)^i e_i[X]\Big|_{z^k},$$

▲□▶▲□▶▲■▶▲■▶ ■ のへで 13/60

where M = (1 - t)(1 - q).

We will construct a family of symmetric function operators $Q_{a,b}$ for any pair of positive integers (a, b). It will be convenient to use the notation $Q_{km,kn}$ with (m, n) coprime.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For any $n \ge 0$, set $Q_{1,n} = D_n$.

We will construct a family of symmetric function operators $Q_{a,b}$ for any pair of positive integers (a, b). It will be convenient to use the notation $Q_{km,kn}$ with (m, n) coprime.

- For any $n \ge 0$, set $Q_{1,n} = D_n$.
- ► Then we will recursively define Q_{m,n} as follows for m > 1. Consider the m × n lattice with diagonal y = n/m x. Let (a, b) be the lattice point which is closest to and below the diagonal. Set (c, d) = (m - a, n - b). We will write

 $\operatorname{Split}(m, n) = (a, b) + (c, d).$

Then let

$$\mathbf{Q}_{m,n} = \frac{1}{M} [\mathbf{Q}_{c,d}, \mathbf{Q}_{a,b}] = \frac{1}{M} (\mathbf{Q}_{c,d} \mathbf{Q}_{a,b} - \mathbf{Q}_{a,b} \mathbf{Q}_{c,d})$$

Figure 5 gives an example of Split(3, 5).

Figure 5: The geometry of Split(3,5)

Split(3,5) = (2,3) + (1,2) so that $Q_{3,5} = \frac{1}{M}[Q_{1,2}, Q_{2,3}].$ The same procedure gives $Q_{2,3} = \frac{1}{M}[Q_{1,2}, Q_{1,1}].$ Therefore

$$Q_{3,5} = \frac{1}{M^2} [D_2, [D_2, D_1]] = \frac{1}{M^2} (D_2 D_2 D_1 - 2D_2 D_1 D_2 + D_1 D_2 D_2).$$

Combinatorial Side Extension – Rational Dyck Paths

Definition (Rational Dyck path)

An (m, n)-Dyck path is a lattice paths from (0, 0) to (m, n) which always remains weakly above the main diagonal $y = \frac{n}{m}x$.

The cells that are passed through by the main diagonal are marked as diagonal cells.

Figure 6: A rational Dyck path

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ♪ ○ ○ 16/60

Rational Dyck Paths Definition (area)

The number of full cells between an (m, n)-Dyck path Π and the

main diagonal is denoted $area(\Pi)$.

The collection of cells above a Dyck path Π forms the Ferrers diagram (in English notation) of a partition $\lambda(\Pi)$. Ex.

$$\lambda(\Pi) = (3, 3, 1, 1),$$

Figure 5: A rational Dyck path

Rational Dyck Paths

Definition (pdinv)

The path dinv of an (m, n)-Dyck path Π is given by

$$\operatorname{pdinv}(\Pi) = \sum_{c \in \lambda(\Pi)} \chi\left(\frac{\operatorname{arm}(c)}{\operatorname{leg}(c) + 1} \leq \frac{m}{n} < \frac{\operatorname{arm}(c) + 1}{\operatorname{leg}(c)}\right).$$

Figure 5: A rational Dyck path

- $\operatorname{area}(\operatorname{PF}) = \operatorname{area}(\Pi(\operatorname{PF})) = 4$,
- rank of a cell is rank(x, y) = my nx,
- ▶ word σ : reading cars from highest \rightarrow lowest rank. $\sigma(PF) = 7563412.$
- $ides(\sigma) = \{i \in \sigma : i + 1 \leftarrow i\}, pides(\sigma) \text{ is the composition set}$ of $ides(\sigma)$. $ides(PF) = \{2, 4, 6\}$ and $pides(PF) = \{2, 2, 2, 1\}$.

- $\operatorname{area}(\operatorname{PF}) = \operatorname{area}(\Pi(\operatorname{PF})) = 4$,
- rank of a cell is rank(x, y) = my nx,
- ▶ word σ : reading cars from highest \rightarrow lowest rank. $\sigma(PF) = 7563412.$
- $ides(\sigma) = \{i \in \sigma : i + 1 \leftarrow i\}, pides(\sigma) \text{ is the composition set}$ of $ides(\sigma)$. $ides(PF) = \{2, 4, 6\}$ and $pides(PF) = \{2, 2, 2, 1\}.$

Figure 7: A (5,7)-parking function and the ranks of its cars

Definition (tdinv) $tdinv(PF) = \sum_{cars \ i < j} \chi(rank(i) < rank(j) < rank(i) + m).$

In Figure 7, the pairs of cars contributing to tdinv are (1,3), (1,4), (3,5), (3,6), (4,6), (5,7) and (6,7).

Figure 7: A (5,7)-parking function and the ranks of its cars

Leven and Hicks gave a simplified formula for the dinv of a PF. Set $\frac{0}{0} = 0$ and $\frac{x}{0} = \infty$ for all $x \neq 0$, then

Definition (dinvcorr)

dinvcorr(
$$\Pi$$
) = $\sum_{c \in \lambda(\Pi)} \chi\left(\frac{\operatorname{arm}(c) + 1}{\operatorname{leg}(c) + 1} \le \frac{m}{n} < \frac{\operatorname{arm}(c)}{\operatorname{leg}(c)}\right)$
 $-\sum_{c \in \lambda(\Pi)} \chi\left(\frac{\operatorname{arm}(c)}{\operatorname{leg}(c)} \le \frac{m}{n} < \frac{\operatorname{arm}(c) + 1}{\operatorname{leg}(c) + 1}\right).$

Definition (dinv(PF))

Let PF be any (m, n)-parking function with underlying Dyck path Π , then

 $\operatorname{dinv}(\operatorname{PF}) = \operatorname{tdinv}(\operatorname{PF}) + \operatorname{dinvcorr}(\Pi).$
Rational Parking Functions

► If
$$n > m$$
 then
dinv(PF) = tdinv(PF) - $\sum_{c \in \lambda(\Pi)} \chi\left(\frac{\operatorname{arm}(c)}{\operatorname{leg}(c)} \le \frac{m}{n} < \frac{\operatorname{arm}(c) + 1}{\operatorname{leg}(c) + 1}\right)$

• If n = m then dinv(PF) = tdinv(PF).

Figure 8: Types of cells that contribute to dinvcorr

Rational Parking Functions

Definition (ret)

The *ret* of a (km, kn)-parking function PF is the smallest positive *i* such that the supporting path of PF goes through the point (im, in).

Figure 9: The ret of a (9,6)-parking function

Extension of Shuffle Conjecture

In 2012, Hikita defined the Hikita polynomial to extend the combinatorial side of the shuffle conjecture to rational parking functions:

$$\mathrm{H}_{m,n}[X;q,t] = \sum_{\mathrm{PF}\in\mathcal{PF}_{m,n}} t^{\mathrm{area}(\mathrm{PF})} q^{\mathrm{dinv}(\mathrm{PF})} \mathcal{F}_{\mathrm{ides}(\mathrm{PF})}[X].$$

Then the classical shuffle conjecture of HHLRU can be restated as follows.

Conjecture (Haglund-Haiman-Loehr-Remmel-Ulyanov) For all $n \ge 0$,

$$\nabla e_n = \mathrm{H}_{n+1,n}[X;q,t].$$

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

In 2013, Gorsky and Negut introduced the operator $Q_{m,n}$ and give a symmetric function expression for each coprime pair (m, n) which conjecturally coincides with $H_{m,n}[X; q, t]$.

Conjecture (Gorsky-Negut)

For all pairs of coprime positive integers (m, n), we have

$$\mathbf{Q}_{m,n}(-1)^n = \mathbf{H}_{m,n}[X;q,t]$$

▲□▶▲□▶▲■▶▲■▶ ■ のへで 25/60

In 2015, Garsia, Leven, Wallach and Xin extended the conjecture of Gorsky and Negut to any pair of integers (km, kn):

Conjecture (Garsia, Leven, Wallach and Xin)

For all pairs of coprime positive integers (m, n) and any positive integer k, we have

$$Q_{km,kn}(-1)^{kn} = \sum_{\mathrm{PF}\in\mathcal{PF}_{km,kn}} [ret(\mathrm{PF})]_{\frac{1}{t}} t^{\mathrm{area}(\mathrm{PF})} q^{\mathrm{dinv}(\mathrm{PF})} \mathcal{F}_{\mathrm{ides}(\mathrm{PF})}[X],$$

<ロト

Rational Shuffle Conjecture - Solved

In 2015, Carlson and Mellit proved the Classical Shuffle Conjecture that

$$abla e_n = \mathrm{H}_{n+1,n}[X;q,t] = \sum_{\mathrm{PF}\in\mathcal{PF}_{n+1,n}} t^{\mathrm{area}(\mathrm{PF})} q^{\mathrm{dinv}(\mathrm{PF})} \mathcal{F}_{\mathrm{ides}(\mathrm{PF})}[X].$$

< □ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ E の Q C 27/60

Rational Shuffle Conjecture – Solved

In 2015, Carlson and Mellit proved the Classical Shuffle Conjecture that

$$\nabla e_n = \mathrm{H}_{n+1,n}[X; q, t] = \sum_{\mathrm{PF} \in \mathcal{PF}_{n+1,n}} t^{\mathrm{area}(\mathrm{PF})} q^{\mathrm{dinv}(\mathrm{PF})} \mathcal{F}_{\mathrm{ides}(\mathrm{PF})}[X].$$

In April 2016, Mellit proved the Rational Shuffle Conjecture that

$$Q_{km,kn}(-1)^{kn} = \sum_{\mathrm{PF}\in\mathcal{PF}_{km,kn}} [ret(\mathrm{PF})]_{\frac{1}{t}} t^{\mathrm{area}(\mathrm{PF})} q^{\mathrm{dinv}(\mathrm{PF})} \mathcal{F}_{\mathrm{ides}(\mathrm{PF})}[X].$$

▲□▶▲□▶▲≣▶▲≣▶ ≣ の�♡ 27/60

The real problem for the ring of diagonal harmonics and the $Q_{m,n}$ operators Find the Schur function expansions.

The real problem is to find the Schur function $({s_{\lambda}})$ expansion of ∇e_n .

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Similarly, we want to find the Schur function expansion of $Q_{m,n}(-1)^n$.

 $[n]_{q,t}$ is the q, t-analogue of an integer that

$$[n]_{q,t} = \frac{q^n - t^n}{q - t} = q^{n-1} + q^{n-2}t + \dots + t^{n-1}.$$

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ ミ ● ○ Q (~ 29/60

 $[n]_{q,t}$ is the q, t-analogue of an integer that

$$[n]_{q,t} = \frac{q^n - t^n}{q - t} = q^{n-1} + q^{n-2}t + \dots + t^{n-1}.$$

In 2014, Leven worked out the Schur basis Expansion for both sides of the rational shuffle conjecture when n = 2 and m = 2 that

Theorem

For any $k \geq 0$,

$$Q_{2k+1,2}1 = H_{2k+1,2}[X; q, t] = [k]_{q,t}s_2 + [k+1]_{q,t}s_{1,1}$$

and

$$Q_{2,2k+1} = H_{2,2k+1}[X; q, t] = \sum_{r=0}^{k} [k+1-r]_{q,t} s_{2^r 1^{2k+1-2r}}.$$

Now from the extended rational shuffle conjecture of Garsia, Leven, Wallach and Xin that

$$Q_{km,kn}(-1)^{kn} = \sum_{\mathrm{PF}\in\mathcal{PF}_{km,kn}} [ret(\mathrm{PF})]_{\frac{1}{t}} t^{\mathrm{area}(\mathrm{PF})} q^{\mathrm{dinv}(\mathrm{PF})} \mathcal{F}_{\mathrm{ides}(\mathrm{PF})}[X],$$

we have worked out that

$$Q_{2k,2}1 = H_{2k,2}[X;q,t] = ([k]_{q,t} + [k-1]_{q,t})s_2 + ([k+1]_{q,t} + [k]_{q,t})s_{1,1}$$

and

$$Q_{2,2k} 1 = H_{2,2k}[X; q, t] = \sum_{r=0}^{k} ([k+1-r]_{q,t} + [k-r]_{q,t}) s_{2^r 1^{2k+1-2r}}.$$

• Problem: the Schur basis($\{s_{\lambda}\}$) Expansion of both sides.

- Problem: the Schur basis($\{s_{\lambda}\}$) Expansion of both sides.
- ► Our main result is the Schur expansion for (m, 3) case and some partial results about (3, n) case.

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ 31/60

- Problem: the Schur basis($\{s_{\lambda}\}$) Expansion of both sides.
- ► Our main result is the Schur expansion for (m, 3) case and some partial results about (3, n) case.

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ 31/60

► We begin with the observation of Q_{m,3}(-1). We take m = 3k + 1 for an example.

Coefficients of s_{λ} in $Q_{3k+1,3}(-1)$

S_{λ} $Q_{3k+1,3}(-1)$	<i>s</i> 3	<i>s</i> ₂₁	<i>S</i> ₁ ³
$Q_{1,3}(-1)$	0	0	$[1]_{q,t}$
$Q_{4,3}(-1)$	$[1]_{q,t}$	$[2]_{q,t} + [3]_{q,t}$	$[1]_{q,t}$
			$+qt[4]_{q,t}$
$Q_{7,3}(-1)$	[4] _{q,t}	$[5]_{q,t} + [6]_{q,t}$	[7] _{q,t}
	$+qt[1]_{q,t}$	$+qt([2]_{q,t}+[3]_{q,t})$	$+qt[4]_{q,t}$
			$+(qt)^{2}[1]_{q,t}$
$Q_{10,3}(-1)$	$[7]_{q,t}$	$[8]_{q,t} + [9]_{q,t}$	$[10]_{q,t}$
	$+qt[4]_{q,t}$	$+qt([5]_{q,t}+[6]_{q,t})$	$+qt[7]_{q,t}$
	$+(qt)^{2}[1]_{q,t}$	$+(qt)^2([2]_{q,t}+[3]_{q,t})$	$+(qt)^{2}[4]_{q,t}$
			$+(qt)^{3}[1]_{q,t}$
$Q_{13,3}(-1)$	$[10]_{q,t}$	$[11]_{q,t} + [12]_{q,t}$	$[13]_{q,t}$
	$+qt[7]_{q,t}$	$+qt([8]_{q,t}+[9]_{q,t})$	$+qt[10]_{q,t}$
	$+(qt)^{2}[4]_{q,t}$	$+(qt)^2([5]_{q,t}+[6]_{q,t})$	$+(qt)^{2}[7]_{q,t}$
	$+(qt)^{3}[1]_{q,t}$	$+(qt)^{3}([2]_{q,t}+[3]_{q,t})$	$+(qt)^{3}[4]_{q,t}$
			$+(qt)^{4}[1]_{q,t}$

< □ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ = の < C 32/60

Main Result

Formula for the Coefficients of Schur function expansion when n = 3.

Theorem

Let $[s_{\lambda}]_{m,n}$ be the coefficient of Schur basis s_{λ} in the polynomial $Q_{m,n}(-1)$ and the polynomial $H_{m,n}[X; q, t]$, then

(1)

$$[s_{3}]_{3k+1,3} = \sum_{i=0}^{k-1} (qt)^{k-1-i} [3i+1]_{q,t},$$

$$[s_{21}]_{3k+1,3} = \sum_{i=0}^{k-1} (qt)^{k-1-i} ([3i+2]_{q,t} + [3i+3]_{q,t}),$$

$$[s_{13}]_{3k+1,3} = [s_{3}]_{3k+4,3};$$

<ロト
・< 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 10 < 00 33/60</p>

Formula for the Coefficients of Schur Basis When n = 3

(2)

$$[s_{3}]_{3k+2,3} = \sum_{i=0}^{k-1} (qt)^{k-1-i} [3i+2]_{q,t},$$

$$[s_{21}]_{3k+2,3} = \sum_{i=0}^{k} (qt)^{k-1-i} ([3i]_{q,t} + [3i+1]_{q,t}),$$

$$[s_{13}]_{3k+2,3} = [s_{3}]_{3k+5};$$

< □ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ E の Q C 34/60

$$\begin{split} [s_3]_{3k,3} &= \sum_{i=0}^{k-1} (qt)^{k-1-i} ([3i-1]_{q,t} + [3i]_{q,t} + [3i+1]_{q,t}), \\ [s_{21}]_{3k,3} &= (qt)^{k+1} ([3]_{q,t} + 2[2]_{q,t} + [1]_{q,t}) \\ &+ \sum_{i=1}^{k-1} (qt)^{k-1-i} ([3i]_{q,t} + 2[3i+1]_{q,t} \\ &+ 2[3i+2]_{q,t} + [3i+3]_{q,t}), \\ [s_{13}]_{3k,3} &= [s_3]_{3k+3}. \end{split}$$

< □ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ Ξ のへで 35/60

Example: Formula for $[s_3]_{3k+1,3}$

Theorem

The coefficient of Schur basis s_3 in the polynomial $Q_{3k+1,3}(-1)$ and the polynomial $H_{3k+1,3}[X; q, t]$ is

$$[s_3]_{3k+1,3} = \sum_{i=0}^{k-1} (qt)^{k-1-i} [3i+1]_{q,t}$$

<ロト

Symmetric Function Side The Coefficient of Schur Basis s_3 in the Polynomial $Q_{3k+1,3}(-1)$

We need the following lemma from Bergeron, Garsia, Leven and Xin to prove the symmetric function side of the theorem.

Lemma

For any positive m, n,

 $\nabla \mathbf{Q}_{m,n} \nabla^{-1} = \mathbf{Q}_{m+n,n}.$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ ミ ● < 37/60

Symmetric Function Side The Coefficient of Schur Basis s_3 in the Polynomial $Q_{3k+1,3}(-1)$

We need the following lemma from Bergeron, Garsia, Leven and Xin to prove the symmetric function side of the theorem.

Lemma For any positive m, n,

$$\nabla \mathbf{Q}_{m,n} \nabla^{-1} = \mathbf{Q}_{m+n,n}.$$

From the lemma, we can get a recursion for $Q_{m,n}$ operator that

$$Q_{m+n,n}(-1)^n = \nabla Q_{m,n} \nabla^{-1} (-1)^n = \nabla Q_{m,n} (-1)^n, \text{ and}$$
$$Q_{3(k+1)+1,3}(-1)^n = \nabla Q_{3k+1,3} \nabla^{-1} (-1)^n = \nabla Q_{3k+1,3} (-1)^n$$

Algebraic Proof

We first apply the operator ∇ to the Schur basis s_3 , s_{21} and s_{13} :

$$\begin{aligned} \nabla s_3 &= (qt)^2 s_{21} + (qt)^2 [2]_{q,t} s_{1^3}, \\ \nabla s_{21} &= (qt) [2]_{q,t} s_{21} - (qt) [3]_{q,t} s_{1^3}, \\ \nabla s_{1^3} &= s_3 + ([2]_{q,t} + [3]_{q,t}) s_{21} + (qt + [4]_{q,t}) s_{1^3}. \end{aligned}$$

< □ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ E の Q C 38/60

Algebraic Proof

We first apply the operator ∇ to the Schur basis s_3 , s_{21} and s_{13} :

$$\begin{aligned} \nabla s_3 &= (qt)^2 s_{21} + (qt)^2 [2]_{q,t} s_{1^3}, \\ \nabla s_{21} &= (qt) [2]_{q,t} s_{21} - (qt) [3]_{q,t} s_{1^3}, \\ \nabla s_{1^3} &= s_3 + ([2]_{q,t} + [3]_{q,t}) s_{21} + (qt + [4]_{q,t}) s_{1^3}. \end{aligned}$$

Then we can apply ∇ to the polynomial $Q_{3k+1,3}(-1)$.

$$\begin{aligned} \nabla \mathbf{Q}_{3k+1,3}(-1) \\ &= \nabla ([s_3]_{3k+1,3}s_3 + [s_{21}]_{3k+1,3}s_{21} + [s_{1^3}]_{3k+1,3}s_{1^3}) \\ &= [s_3]_{3k+1,3}\nabla s_3 + [s_{21}]_{3k+1,3}\nabla s_{21} + [s_{1^3}]_{3k+1,3}\nabla s_{1^3} \\ &= [s_{1^3}]_{3k+1,3}s_3 \\ &+ [(qt)^2[s_3]_{3k+1,3} - qt[2]_{q,t}[s_{21}]_{3k+1,3} + ([2]_{q,t} + [3]_{q,t})[s_{1^3}]_{3k+1,3}] \\ &+ [(qt)^2[2]_{q,t}[s_3]_{3k+1,3} - qt[3]_{q,t}[s_{21}]_{3k+1,3} + (qt + [4]_{q,t})[s_{1^3}]_{3k+1}] \\ &= [s_3]_{3k+4,3}s_3 + [s_{21}]_{3k+4,3}s_{21} + [s_{1^3}]_{3k+4,3}s_{1^3}, \end{aligned}$$

,

and the recursion from $[s_{\lambda}]_{3k+1,3}$ to $[s_{\lambda}]_{3k+4,3}$ is clear that $[s_{3}]_{3k+4,3} = [s_{1^{3}}]_{3k+1,3},$ $[s_{21}]_{3k+4,3} = (qt)^{2}[s_{3}]_{3k+1,3} - qt[2]_{q,t}[s_{21}]_{3k+1,3} + ([2]_{q,t} + [3]_{q,t})[s_{1^{3}}]_{3k+1,3},$ $[s_{1^{3}}]_{3k+4,3} = (qt)^{2}[2]_{q,t}[s_{3}]_{3k+1,3} - qt[3]_{q,t}[s_{21}]_{3k+1,3} + (qt+[4]_{q,t})[s_{1^{3}}]_{3k+1}$

Combinatorial Side – From F_{α} to s_{λ}

Hikita(2012) proved that Hikita polynomials $H_{m,n}[X; q, t]$ are symmetric (in X) for any coprime m, n.

Combinatorial Side – From F_{α} to s_{λ}

Hikita(2012) proved that Hikita polynomials $H_{m,n}[X; q, t]$ are symmetric (in X) for any coprime m, n.

Egge, Loehr and Warrington(2010) gave a way to transform a symmetric function from fundamental quasi-symmetric function basis to Schur basis. Then Garsia and Remmel(2015) gave a formula for the coefficient of Schur basis.

▲□▶▲□▶▲□▶▲□▶ = のへで 40/60

Combinatorial Side – From F_{α} to s_{λ}

Hikita(2012) proved that Hikita polynomials $H_{m,n}[X; q, t]$ are symmetric (in X) for any coprime m, n.

Egge, Loehr and Warrington(2010) gave a way to transform a symmetric function from fundamental quasi-symmetric function basis to Schur basis. Then Garsia and Remmel(2015) gave a formula for the coefficient of Schur basis.

Theorem (Garsia and Remmel)

ŀ

Suppose that P(X) is a symmetric function which is homogeneous of degree n and $P(X) = \sum_{\alpha \Vdash n} a_{\alpha} F_{\alpha}(X)$, Then

This allows us to transform $H_{m,n}[X; q, t]$ into Schur function expansion.

From F_{α} to s_{λ} — Straightening

► Let
$$\alpha = (\alpha_1, ..., \alpha_k)$$
 be a composition of *n*. Suppose that for some *i*, $\alpha_i < \alpha_{i+1}$ (i.e. α is not a partition). Then $s_{\alpha} = -s_{(\alpha_1,...,\alpha_{i+1}-1,\alpha_i+1,...,\alpha_k)}$. This action is called straightening.

From F_{α} to s_{λ} — Straightening

- Let α = (α₁,..., α_k) be a composition of *n*. Suppose that for some *i*, α_i < α_{i+1} (i.e. α is not a partition). Then s_α = −s_{(α1,...,αi+1}−1,α_i+1,...,α_k). This action is called straightening.
- ► Repeatedly applying this procedure will eventually yield a partition or a composition α' such that α'_j = α'_{j+1} 1 for some j. In the latter case, the straightening action yields s_{α'} = -s_{α'}, hence s_{α'} = 0.
- ► Ex. $s_{2,3,1} = -s_{3-1,2+1,1} = -s_{2,3,1} = 0.$
- Ex. $s_{1,3,1} = -s_{3-1,1+1,1} = -s_{2,2,1}$.

Notation for the Coeff of s_{λ}

► We define

Then naturally [s_σ]_{m,n}(q, t) is the coefficient of s_σ in H_{m,n}[X; q, t], i.e.

$$\mathrm{H}_{m,n}[X;q,t] = \sum_{\sigma \vdash n} [s_{\sigma}]_{m,n}(q,t) s_{\sigma}.$$

<ロト

Notation for the Coeff of s_{λ}

Recall that the combinatorial side is the Hikita polynomial:

$$\mathrm{H}_{m,3}[X;q,t] = \sum_{\mathrm{PF}\in\mathcal{PF}_{m,3}} t^{\mathrm{area}(\mathrm{PF})} q^{\mathrm{dinv}(\mathrm{PF})} \mathcal{F}_{\mathrm{ides}(\mathrm{PF})}[X].$$

By the action straightening, we can transform it to

$$\mathrm{H}_{m,3}[X;q,t] = \sum_{\mathrm{PF}\in\mathcal{PF}_{m,3}} t^{\mathrm{area}(\mathrm{PF})} q^{\mathrm{dinv}(\mathrm{PF})} s_{\mathrm{pides}(\mathrm{PF})}[X].$$

<ロト

Combinatorial Side Proof

Any parking function $PF \in \mathcal{PF}_{m,3}$ has 3 rows, thus has only 3 cars: 1,2,3. So the word $\sigma(PF)$ can be any permutation $\sigma \in S_3$. Table 1 shows the s_{pides} contribution of the 6 permutations in S_3 .

$\sigma \in \mathcal{S}_3$	$s_{ m pides}$
123	<i>s</i> 3
132	<i>s</i> ₂₁
213	$s_{12} = 0$
231	<i>s</i> ₂₁
312	$s_{12} = 0$
321	<i>S</i> ₁ ³

Table 1: Coefficients of s_{λ} in $Q_{3k+1,3}(-1)$

Since there are only 3 partitions of 3: $\{3, 21, 1^3\}$, the Hikita polynomial of (m, 3) case is

$$H_{m,3}[X; q, t] = [s_3]_{m,3}s_3 + [s_{21}]_{m,3}s_{21} + [s_{1^3}]_{m,3}s_{1^3}.$$

Combinatorial Side Proof

$\sigma \in \mathcal{S}_3$	<i>s</i> _{pides}
123	<i>s</i> 3
132	<i>s</i> ₂₁
213	$s_{12} = 0$
231	<i>s</i> ₂₁
312	$s_{12} = 0$
321	<i>s</i> ₁ ³

Table 1: Coefficients of s_{λ} in $Q_{3k+1,3}(-1)$ From the table we can see that

•
$$[s_3]_{m,3} = h_{m,3,\text{word }123}$$

•
$$[s_{21}]_{m,3} = h_{m,3,\text{word } 132} + h_{m,3,\text{word } 231}$$

•
$$[s_{1^3}]_{m,3} = h_{m,3,\text{word }321}$$

The combinatorics of $[s_3]_{3k+1,3}$

We take $[s_3]_{3k+1,3}$ as an example. We will construct

$$[s_3]_{3k+1,3} = \sum_{i=0}^{k-1} (qt)^{k-1-i} [3i+1]_{q,t}.$$

Since $[s_3]_{m,3} = h_{m,3,\text{word 123}}$, we are looking at the set of parking functions in $\mathcal{PF}_{m,3,\text{word 123}}$.

This set $\mathcal{PF}_{m,3,\text{word }123}$ of parking functions can be obtained by adding cars 1, 2, 3 in a rank-decreasing way to a $m \times 3$ Dyck path, and smaller cars can't be put on top of bigger cars, so we have one $PF \in \mathcal{PF}_{m,3,\text{word}123}$ on each $m \times 3$ Dyck path with no consecutive u, u steps.

The combinatorics of $[s_3]_{3k+1,3}$

Recall that tdinv is defined as

$$\operatorname{tdinv}(\operatorname{PF}) = \sum_{\operatorname{cars}\ i < j} \chi(\operatorname{rank}(i) < \operatorname{rank}(j) < \operatorname{rank}(i) + m).$$

Since the word is 123, we have rank(1) > rank(2) > rank(3), so there will always be no tdinv for $PF \in \mathcal{PF}_{m,3,word123}$. Since m = 3k + 1 > n = 3 for $k \ge 1$, the dinv correction is of the third type. We have

$$\operatorname{dinv}(\operatorname{PF}) = \operatorname{dinvcorr}(\operatorname{PF}) = \sum_{c \in \lambda(\Pi)} \chi\left(\frac{\operatorname{arm}(c) + 1}{\operatorname{leg}(c) + 1} \le \frac{m}{n} < \frac{\operatorname{arm}(c)}{\operatorname{leg}(c)}\right)$$

The combinatorics of $[s_3]_{3k+1,3}$

The partition $\lambda(\Pi)$ correspond with the Dyck path Π of $PF \in \mathcal{PF}_{m,3}$ is at most of hight 2, so the leg of cells in $\lambda(\Pi)$ can be either 0 or 1. Taking Figure 9 for reference, we have

- (a) Cells in λ(Π) with leg = 0 and 1 < arm < k contribute 1 to dinv correction, marked in Figure 9,
- (b) Cells in λ(Π) with leg = 1 and k < arm < 2k − 1 contribute 1 to dinv correction, marked △ in Figure 9.

Figure 9: The dinv correction of a $(3k + 1) \times 3$ Dyck path
We can count dinv correction and area according to the partition $\lambda(\Pi)$ of the path Π . Each path Π corresponds with a partition $\lambda = (\lambda_1, \lambda_2) \subseteq \lambda_0 = (2k, k)$. Let dinvcorr $(\lambda(\Pi)) = \text{dinvcorr}(\Pi)$ and area $(\lambda(\Pi)) = \text{area}(\Pi)$, then

$$\operatorname{area}(\Pi) = 2k - \lambda_1 - \lambda_2,$$

and we can also write the formula for dinv correction:

$$\operatorname{dinvcorr}(\lambda) = \begin{cases} \lambda_1 - 2 & \text{if } \lambda_2 \ge 1, 1 \le \lambda_1 - \lambda_2 \le k, \text{ and } \lambda_1 \le k \\ 2\lambda_1 - k - 3 & \text{if } \lambda_2 \ge 1, 1 \le \lambda_1 - \lambda_2 \le k, \text{ and } \lambda_1 \ge k + 1 \\ 2\lambda_2 + k - 2 & \text{if } \lambda_2 \ge 1 \text{ and } \lambda_1 - \lambda_2 \ge k + 1 \end{cases}$$

▲□▶▲□▶▲■▶▲■▶ ■ のへで 49/60

Now for $[s_3]_{3k+1,3} = \sum_{i=0}^{k-1} (qt)^{k-1-i} [3i+1]_{q,t}$, we construct each term $(qt)^{k-1-i} [3i+1]_{q,t}$ as a sequence of parking functions.

For each *i*, we have 3 branches of partitions(or parking functions):

$$\begin{split} \Lambda_1 &= \{(k+i+1,k), (k+i,k-1), \dots, (k+1,k-i)\}, \\ \Lambda_2 &= \{(2k,i), (2k-1,i-1), \dots, (2k+1-i,1)\}, \\ \Lambda_3 &= \{(k+1,i+1), (k,i+1), \dots, (i+2,i+1)\}. \end{split}$$

- The branch Λ₁ contains λ's such that λ₁ − λ₂ = i + 1 ≤ k with λ₂ ≥ i + 1,
- the branch Λ_2 contains all λ 's such that $\lambda_1 \lambda_2 = 2k i > k$, and
- the branch Λ_3 contains λ 's such that $\lambda_2 = i + 1$ and $\lambda_1 \lambda_2 \le k i$.

 $|\Lambda_1| = |\Lambda_2| + 1$, and the last partition of Λ_1 is the same as the first partition in Λ_3 . So as shown in Figure 10, the construction begin with alternatively taking partitions from Λ_1 and Λ_2 , ending with the last partition of Λ_1 . Then continue the chain by taking partitions in Λ_3 and end the chain with the last partition (k - i + 1, k - i) in Λ_3 .

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Figure 11: The construction of $[s_3]_{13,3}$

•
$$[s_{1^3}]_{m-3,3} = [s_3]_{m,3}$$
. Bijection:

- $[s_{21}]_{m,3}$ is a construction problem similar to $[s_3]_{m,3}$.
- For the case m = 3, we have several results about [s_λ]_{3,n}.
 Every equation about [s_λ]_{3,n} implies a bijection about parking functions.

Remark about pides in (3, n) Case

Remark

Let i < j be two cars in the parking function. If i appears to the left of j in the diagonal word, then the cars i, j must be in different columns.

Remark

The elements in the pides of a parking function $PF \in \mathcal{PF}_{m,n}$ is at most m.

So in (3, *n*) case, the λ in $[s_{\lambda}]_{3,n}$ can only be of form $3^{a}2^{b}1^{c}$ with 3a + 2b + c = n.

Coefficients of s_{λ} in $Q_{3,3k+1}(-1)^{3k+1}$

$$Q_{3,4,1} = \mathbf{s_{31}} + [2]_{q,t}\mathbf{s_{2^2}} + ([3]_{q,t} + [2]_{q,t})\mathbf{s_{21^2}} + ([4]_{q,t} + (qt)[1]_{q,t})\mathbf{s_{1^4}}$$

$$Q_{3,7,-1} = \\ \mathbf{s}_{3^{2}1} + [2]_{q,t}\mathbf{s}_{32^{2}} + ([3]_{q,t} + [2]_{q,t})\mathbf{s}_{321^{2}} + ([4]_{q,t} + (qt)[1]_{q,t})\mathbf{s}_{31^{4}} \\ + ([4]_{q,t} + [3]_{q,t} + (qt)[1]_{q,t})\mathbf{s}_{2^{3}1} \\ + ([5]_{q,t} + [4]_{q,t} + [3]_{q,t} + (qt)[2]_{q,t})\mathbf{s}_{2^{2}1^{3}} \\ + ([6]_{q,t} + [5]_{q,t} + (qt)([3]_{q,t} + [2]_{q,t}))\mathbf{s}_{21^{5}} \\ + ([7]_{q,t} + [4]_{q,t} + [1]_{q,t})\mathbf{s}_{1^{7}} \end{aligned}$$

<□ ▶ < 団 ▶ < 壹 ▶ < 亘 ▶ 三 の < ⊙ 55/60

Combinatorial Results about $[s_{\lambda}]_{3,n}$

Combinatorial Results about $[s_{\lambda}]_{3,n}$

 Straitening action: pides{···1, 3···} ⇒ pides{···2, 2···} for *PF*_{3,n} is clear – an involution whose fixed points are the coefficients of [s_{2^a1^b}]_{3,n}.

•
$$[s_{2^a1^b}]_{3,n} = [s_{2^b1^a}]_{3,3(a+b)-n}$$
. Bijection

Combinatorial Results about $[s_{\lambda}]_{3,n}$

Conjecture Let a < b, then

$$[s_{2^{a}1^{b}}]_{3,n} = \sum_{i=0}^{a} [b+i]_{q,t} + (qt)[s_{2^{a}1^{b-3}}]_{3,n-3}.$$

We verified this formula by Maple for n < 27. If this conjecture is true, then we have solved the Schur function expansion in the (3, n) case.

<ロト

Combinatorial Results about $[s_{\lambda}]_{m,n}$

Theorem

For all
$$m, n > 0$$
 and $\lambda' \vdash (n - am)$,
(a) $[s_{1^n}]_{m-n,n} = [s_n]_{m,n}$, (b) $[s_{m^a\lambda'}]_{m,n} = [s_{\lambda'}]_{m,n-am}$,
(c) $[s_{1^n}]_{m,n} = [s_{1^m}]_{n,m}$, (d) $[s_{k1^{n-k}}]_{m,n} = [s_{k1^{m-k}}]_{n,m}$.

Conjecture

$$[s_{(m-1)^{\alpha_{m-1}}(m-2)^{\alpha_{m-2}}\cdots 1^{\alpha_1}}] = [s_{(m-1)^{\alpha_1}(m-2)^{\alpha_2}\cdots 1^{\alpha_{m-1}}}].$$

< □ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ = の < ⊙ 59/60

Thank You!

< □ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ = の < 0 60/60