Combinatorial Problems in Dyck paths and Parking Functions

Dun Qiu
UC San Diego
duqiu@ucsd.edu

July 3, 2018

$n \times n$ Dyck Paths

Definition (Dyck path)

An $n \times n$ Dyck path is a lattice path from $(0,0)$ to (n, n) consisting of east and north steps which stays above the diagonal $y=x$.

The set of $n \times n$ Dyck paths is denoted \mathcal{D}_{n}, and $\left|\mathcal{D}_{n}\right|=C_{n}=\frac{1}{n+1}\binom{2 n}{n}$.

A (7, 7)-Dyck path

Area of a Dyck Path

Definition (area)

The number of full cells between an (n, n)-Dyck path Π and the main diagonal is denoted area(П).

The number of full cells above the Dyck path Π is denoted coarea(Π).

A (7, 7)-Dyck path

Partition of a Dyck Path

The collection of cells above Π forms an the Ferrers diagram of a partition $\lambda(\Pi) . E x . ~ \lambda(П)=(3,3,1,1)$, | | | |
| :--- | :--- | :--- |
| | | |
| | | |
| | | |

$$
\begin{aligned}
& a_{\mu}(c)=\operatorname{arm} \text { of } c, \\
& a_{\mu}^{\prime}(c)=\text { coarm of } c, \\
& I_{\mu}(c)=\text { leg of } c, \\
& I_{\mu}^{\prime}(c)=\text { coleg of } c .
\end{aligned}
$$

Dinv of a Dyck Path

Definition (dinv)

The dinv of an (n, n)-Dyck path Π is given by

$$
\operatorname{dinv}(\Pi)=\sum_{c \in \lambda(\Pi)} \chi\left(\frac{\operatorname{arm}(c)}{\operatorname{leg}(c)+1} \leq 1<\frac{\operatorname{arm}(c)+1}{\operatorname{leg}(c)}\right)
$$

A (7, 7)-Dyck path

Bounce of a Dyck Path

bounce $(\square)=4+2=6$.

A (7, 7)-Dyck path

Polynomials about $n \times n$ Dyck paths

t, q, s-Catalan polynomial

$$
C_{n}(t, q, s)=\sum_{\Pi \in \mathcal{D}_{n}} t^{\operatorname{area}(\Pi)} q^{\operatorname{dinv}(\Pi)} s^{\text {bounce }(\Pi)} .
$$

- $C_{n}(t, q, s)$ is not symmetric in t, q, s.
- $C_{n}(1,1,1)=C_{n}=\frac{1}{n+1}\binom{2 n}{n}$.
- $C_{n}(q, 1,1)=C_{n}(1, q, 1)=C_{n}(1,1, q): q$-Catalan number.
- Let $T_{n}(q)=$

$$
\sum \quad q^{i n v(T)}
$$

$$
\text { T rooted planar tree of } n+1 \text { vertices }
$$

then

$$
C_{n}(q, 1,1)=T_{n}(q)
$$

t, q, s-Catalan polynomial

$$
C_{n}(t, q, s)=\sum_{\Pi \in \mathcal{D}_{n}} t^{\text {area(П) }} q^{\operatorname{dinv}(\Pi)} s^{\text {bounce }(\Pi)}
$$

- $C_{n}(t, q, 1)=C_{n}(q, 1, t)$ is symmetric in q and t, called q, t-Catalan number.
- Haglund's Zeta map: dinv \rightarrow area, area \rightarrow bounce.
- No direct combinatorial approach on dinv \longleftrightarrow area.

Parking Functions

Definition (Parking Functions - Richard Stanley)

Let $\alpha=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{P}^{n}$. Let $b_{1} \leq \cdots \leq b_{n}$ be the increasing rearrangement of α. Then α is a parking function iff $b_{i} \leq i$.

Garsia's construction of parking functions - labeling Dyck paths.
We can get an $n \times n$ parking function by labeling the cells east of and adjacent to a north step of a Dyck path with numbers $1, \ldots, n$.

The set of $n \times n$ parking functions is denoted $\mathcal{P \mathcal { F }}{ }_{n}$.

The construction of a parking function

Statistics of an $(n, n)-P F$

- $\operatorname{area}(\mathrm{PF})=\operatorname{area}(\Pi(\mathrm{PF}))=8$,
- rank of a cell is $\operatorname{rank}(x, y)=(n+1) y-n x$,
- $\operatorname{dinv}(\mathrm{PF})=\sum_{\text {cars } i<j} \chi(\operatorname{rank}(i)<\operatorname{rank}(j) \leq \operatorname{rank}(i)+n)=0$,

A $(5,5)$-Parking Function

q, t-Polynomials about $n \times n$ Parking Functions

$P F_{n}(q, t)$

$$
P F_{n}(q, t)=\sum_{\mathrm{PF} \in \mathcal{P} \mathcal{F}_{n}} t^{\operatorname{area}(\mathrm{PF})} q^{\operatorname{dinv}(\mathrm{PF})}
$$

- $P F_{n}(1,1)=(n+1)^{(n-1)}$.
- $P F_{n}(q, 1)=P F_{n}(1, q)=P_{n}(q)$ satisfy the recursion

$$
P_{n+1}(q)=\sum_{i=0}^{n}\binom{n}{i}[i+1]_{q} P_{i}(q) P_{n-i}(q)
$$

- Let $L T_{n}(q)=$

$q^{i n v(T)}$,
T rooted labeled tree of $n+1$ vertices then

$$
P_{n}(q)=L T_{n}(q)
$$

q, t-Polynomials about $n \times n$ Parking Functions

$P F_{n}(q, t)$

$$
P F_{n}(q, t)=\sum_{\mathrm{PF} \in \mathcal{P} \mathcal{F}_{n}} t^{\operatorname{area}(\mathrm{PF})} q^{\operatorname{dinv}(\mathrm{PF})}
$$

- $P F_{n}(q, t)=\left\langle\nabla e_{n}, p_{1}^{n}\right\rangle$ is symmetric in t, q as a consequence of the Shuffle conjecture.
- There is no elementary combinatorial proof that $P F_{n}(t, q)=P F_{n}(q, t)$.
- There are well studied bijections between parking functions and rooted labeled trees.

(n, n)-Labeled Dyck paths

- We can get an $n \times n$ labeled Dyck path by labeling the cells east of and adjacent to a north step of a Dyck path with numbers in (P).
- The set of $n \times n$ labeled Dyck paths is denoted $\mathcal{L D}{ }_{n}$.
- Weight of $P \in \mathcal{L D} \mathcal{D}_{n}$ is $t^{\operatorname{area}(P)} q^{\operatorname{dinv}(P)} X^{P}$.

The construction of a labeled Dyck path with weight $t^{5} q^{3} x_{2} x_{3}^{2} x_{4} x_{5}$.

Symmetric Functions about $n \times n$ Parking Functions

For any given path $\Pi \in(D)_{n}$, the LLT polynomial corresponding to Π is

LLT Polynomials

$$
L L T_{\Pi}[X ; q, t]=\sum_{P \text { labeled Dyck path on } \Pi} t^{\operatorname{area}(P)} q^{\operatorname{dinv}(P)} X^{P} .
$$

- $L L T_{\Pi}$ is symmetric and Schur positive in $X=\left\{x_{1}, x_{2}, \ldots\right\}$, proved by Algebraic Geometry.
- There is currently even NO proof of symmetry combinatorially.
- We have a combinatorial translation of the LLT symmetry.

Symmetric Functions about $n \times n$ Parking Functions

Further, we have the Hikita polynomimal,
Hikita Polynomials

$$
H_{n}[X ; q, t]=\sum_{\Pi \in \mathcal{D}_{n}} L L T_{\Pi} .
$$

- H_{n} is symmetric in q, t, as a consequence of the Shuffle conjecture.
- No combinatorial proof of q, t-symmetry.

Conjectures and Theorems about $n \times n$ Parking Functions

Shuffle Conjecture (proved by Carlson and Mellit)

$$
\nabla e_{n}=H_{n} .
$$

Delta Conjecture (not proved yet)

$$
\Delta_{e_{k}} e_{n}=\sum_{P \in \mathcal{L D}_{n}^{*}} t^{\operatorname{area}^{-}(P)} q^{\operatorname{dinv}(P)} X^{P}
$$

Rational Extension - Rational Dyck Paths

Definition (Rational Dyck path)

An (m, n)-Dyck path is a lattice paths from $(0,0)$ to (m, n) which always remains weakly above the main diagonal $y=\frac{n}{m} x$.

The cells that are passed through by the main diagonal are marked as diagonal cells.

The number of (m, n)-Dyck path is $C_{m, n}=\frac{1}{m+n}\binom{m+n}{m, n}$.

A rational Dyck path

Rational Dyck Paths

Definition (area)

The number of full cells between an (m, n)-Dyck path Π and the main diagonal is denoted area(П).

The collection of cells above Π forms the Ferrers diagram of a partition
$\lambda(П) . E x . \quad \lambda(П)=(3,3,1,1)$,

area
dinv
diagonal

A rational Dyck path

Rational Dyck Paths

Definition (pdinv)

The path dinv of an (m, n)-Dyck path Π is given by

$$
\operatorname{pdinv}(\Pi)=\sum_{c \in \lambda(\Pi)} \chi\left(\frac{\operatorname{arm}(c)}{\operatorname{leg}(c)+1} \leq \frac{m}{n}<\frac{\operatorname{arm}(c)+1}{\operatorname{leg}(c)}\right) .
$$

A rational Dyck path

Polynomials about rational Dyck paths

rational q, t-Catalan number

$$
C_{m, n}(q, t)=\sum_{\Pi \in \mathcal{D}_{m, n}} t^{\operatorname{area(\Pi)}} q^{p \operatorname{dinv}(\Pi)}
$$

- $C_{n}(q, t)$ is symmetric in q, t.
- There is a Phi map analogues to Haglund's Zeta map: dinv \rightarrow area, area \rightarrow something like bounce.
- No direct combinatorial approach on $\operatorname{dinv} \longleftrightarrow$ area.

Rational Parking Functions

We label the north steps to get rational parking functions and rational labeled Dyck paths.

- $\operatorname{area}(\mathrm{PF})=\operatorname{area}(\Pi(\mathrm{PF}))=4$,
- rank of a cell is $\operatorname{rank}(x, y)=m y-n x$,

A (5, 7)-parking function and the ranks of its cars

Rational Parking Functions

Definition (tdinv)

$$
\operatorname{tdinv}(\mathrm{PF})=\sum_{\text {cars } i<j} \chi(\operatorname{rank}(i)<\operatorname{rank}(j)<\operatorname{rank}(i)+m)
$$

In the following example, the pairs of cars contributing to tdinv are $(1,3)$, $(1,4),(3,5),(3,6),(4,6),(5,7)$ and $(6,7)$.

A (5, 7)-parking function and the ranks of its cars

Rational Parking Functions

Leven and Hicks gave a simplified formula for the dinv of a PF. Set $\frac{0}{0}=0$ and $\frac{x}{0}=\infty$ for all $x \neq 0$, then

Definition (dinvcorr)

$$
\begin{aligned}
\operatorname{dinvcorr}(\Pi)= & \sum_{c \in \lambda(\Pi)} \chi\left(\frac{\operatorname{arm}(c)+1}{\operatorname{leg}(c)+1} \leq \frac{m}{n}<\frac{\operatorname{arm}(c)}{\operatorname{leg}(c)}\right) \\
& -\sum_{c \in \lambda(\Pi)} \chi\left(\frac{\operatorname{arm}(c)}{\operatorname{leg}(c)} \leq \frac{m}{n}<\frac{\operatorname{arm}(c)+1}{\operatorname{leg}(c)+1}\right) .
\end{aligned}
$$

Definition $(\operatorname{dinv}(\mathrm{PF}))$

Let PF be any (m, n)-parking function with underlying Dyck path Π, then

$$
\operatorname{dinv}(P F)=\operatorname{tdinv}(P F)+\operatorname{dinvcorr}(\Pi)
$$

Rational Parking Functions

Definition (return)

The return(ret) of a ($k m, k n$)-parking function PF is the smallest positive i such that the supporting path of PF goes through the point (im, in).

The ret of a (9, 6)-parking function

Hikita Polynomial

For coprime m, n,

$$
\mathrm{H}_{k m, k n}[X ; q, t]=\sum_{P \in \mathcal{L D}_{k m, k n}}[r e t(P)]_{\frac{1}{t}} t^{\operatorname{area}(P)} q^{\operatorname{dinv}(P)} X^{P} .
$$

$\mathrm{H}_{k m, k n}[X ; q, t]$ is symmetric in X, symmetric in q, t and Schur positive.

Rational Shuffle Conjecture

In 2013, Gorsky and Negut introduced the operator $Q_{m, n}$ and give a symmetric function expression for each coprime pair (m, n) which conjecturally coincides with $\mathrm{H}_{m, n}[X ; q, t]$. The Rational Shuffle Conjecture was proved by Mellit.

Theorem (Mellit)

For all pairs of coprime positive integers (m, n), we have

$$
\mathrm{Q}_{m, n}(-1)^{n}=\mathrm{H}_{m, n}[X ; q, t] .
$$

Combinatorial Problem 1 - LLT Symmetry

For an $n \times n$ Dyck path Π, we assign either a horizontal or a vertical line at each diagonal cell, and count the intersections of the lines in the area cells.

There are 2^{n} ways to assign the lines.
Let

$$
F_{\Pi, k}(q)=\sum_{\text {assignments with } \mathrm{k} \text { verticle }} q^{\mid \text {intersections in area } \mid .}
$$

Combinatorial Problem 1 - LLT Symmetry

It is clear that $F_{\Pi, k}(1)=\binom{n}{k}$.
LLT of path Π is symmetric iff $F_{\Pi, k}(q)=F_{\Pi, n-k}(q)$ for all k.
Problem: We want to find a way to switch the horizontal and vertical lines such that we have the same number of intersections.

Combinatorial Problem 2 - Counting Dyck Paths with

Square Paths

There is a known consequence of the Shuffle Conjecture that,

$$
\sum_{\Pi \in \mathcal{D}_{m, n}} q^{\operatorname{coarea}(\Pi)+\operatorname{dinv}(\Pi)}=\frac{s_{n}[m]_{q}}{[m]_{q}}=\frac{1}{[m]_{q}}\left[\begin{array}{c}
m+n-1 \\
n
\end{array}\right]_{q}
$$

The LHS is a sum over Dyck paths, and in the RHS, $\left[\begin{array}{c}m+n-1 \\ n\end{array}\right]_{q}$ is a sum over lattice path tracking coarea then divided by $[\mathrm{m}]_{q}$.

Problem: can we correspond each Dyck path with m lattice paths to prove the identity directly?

Combinatorial Problem 3 - A Map on Labeled Dyck Paths

We discovered from experiment that there is a map on labeled Dyck paths keeping area and dinv.

4	4	(4)
(3)	(3)	3
(2)	2	(2)
(1)	(1)	1

area(LD1)=area(LD2) proved.
Problem: prove $\operatorname{dinv}(L D 1)=\operatorname{dinv}(L D 2)$.

Thank You!

