Classical pattern distribution in $S_n(132)$ and $S_n(123)$

Dun Qiu UC San Diego duqiu@ucsd.edu

Based on joint work with Jeffrey Remmel

Permutation Patterns 2018, Dartmouth College July 11, 2018

Pattern distribution in $S_n(132)$ and $S_n(123)$

In Memory of Jeffrey Remmel

Pattern distribution in $S_n(132)$ and $S_n(123)$

Outline

Motivation

2 Introduction

- 3 Wilf-equivalence of $Q_{\lambda}^{\gamma}(t,x)$
- 4 Recursions of $Q_{\lambda}^{\gamma}(t,x)$

Outline

Motivation

- 2 Introduction
- 3) Wilf-equivalence of ${\it Q}_{\lambda}^{\gamma}(t,x)$
- 4 Recursions of $Q_{\lambda}^{\gamma}(t,x)$
- 5 Other Results and Open Problems

Ran Pan's Project P Project P

http://www.math.ucsd.edu/~projectp/

Problem 13: enumerate permutations in S_n avoiding a classical pattern and a consecutive pattern at the same time.

Then Professor Remmel conducted researchs on distribution of classical patterns and consecutive patterns in $S_n(132)$ and $S_n(123)$.

1 Motivation

2 Introduction

3) Wilf-equivalence of ${\it Q}_\lambda^\gamma(t,x)$

4 Recursions of $Q_{\lambda}^{\gamma}(t,x)$

- A permutation σ = σ₁ · · · σ_n of [n] = {1, . . . , n} is a rearrangement of the numbers 1, . . . , n.
- The set of permutations of [n] is denoted by S_n .
- σ_i is a descent if $\sigma_i > \sigma_{i+1}$. $des(\sigma)$ is the number of descents in σ .
- We let $LRmin(\sigma)$ denote the number of left to right minima of σ .

- (σ_i, σ_j) is an inversion if i < j and $\sigma_i > \sigma_j$.
- $inv(\sigma)$ denotes the number of inversions in σ .
- (σ_i, σ_j) is a coinversion if i < j and $\sigma_i < \sigma_j$.
- $coinv(\sigma)$ denotes the number of coinversions in σ .

Given a sequence of distinct positive integers $w = w_1 \dots w_n$, we let the reduction (or standardization) of the sequence, red(w), denote the permutation of [n] obtained from w by replacing the *i*-th smallest letter in w by *i*.

Example

If w = 4592, then red(w) = 2341.

Classical Patterns Occurrence and Avoidance

- Given a permutation $\tau = \tau_1 \dots \tau_j$ in S_j ,
- we say the pattern τ occurs in $\sigma = \sigma_1 \dots \sigma_n \in S_n$ if there exist $1 \leq i_1 < \dots < i_j \leq n$ such that $red(\sigma_{i_1} \dots \sigma_{i_j}) = \tau$.
- We let $occr_{\tau}(\sigma)$ denote the number of τ occurrence in σ .
- We say σ avoids the pattern τ if τ does not occur in σ .

Classical Patterns Occurrence and Avoidance

- Given a permutation $\tau = \tau_1 \dots \tau_j$ in S_j ,
- we say the pattern τ occurs in $\sigma = \sigma_1 \dots \sigma_n \in S_n$ if there exist $1 \leq i_1 < \dots < i_j \leq n$ such that $red(\sigma_{i_1} \dots \sigma_{i_j}) = \tau$.
- We let $occr_{\tau}(\sigma)$ denote the number of τ occurrence in σ .
- We say σ avoids the pattern τ if τ does not occur in σ .

Example

 $\pi = 867932451$ avoids pattern 132, contains pattern 123. $occr_{123}(\pi) = 2$ since pattern occurrences are 6, 7, 9 and 3, 4, 5.

Classical Patterns Occurrence and Avoidance

- Given a permutation $\tau = \tau_1 \dots \tau_j$ in S_j ,
- we say the pattern τ occurs in $\sigma = \sigma_1 \dots \sigma_n \in S_n$ if there exist $1 \leq i_1 < \dots < i_j \leq n$ such that $red(\sigma_{i_1} \dots \sigma_{i_j}) = \tau$.
- We let $occr_{\tau}(\sigma)$ denote the number of τ occurrence in σ .
- We say σ avoids the pattern τ if τ does not occur in σ .

Example

 $\pi = 867932451$ avoids pattern 132, contains pattern 123. $occr_{123}(\pi) = 2$ since pattern occurrences are 6, 7, 9 and 3, 4, 5.

- τ is called a classical pattern.
- inversion \longrightarrow pattern 21, coinversion \longrightarrow pattern 12.

• We let $S_n(\lambda)$ denote the set of permutations in S_n avoiding λ .

•
$$|\mathcal{S}_n(132)| = |\mathcal{S}_n(123)| = C_n = \frac{1}{n+1} \binom{2n}{n}$$
, the *n*th Catalan number.

- C_n is also the number of $n \times n$ Dyck paths.
- Let $\Lambda = \{\lambda_1, \dots, \lambda_r\}$, then $S_n(\Lambda)$ is the set of permutations in S_n avoiding $\lambda_1, \dots, \lambda_r$.

Given two sets of permutations $\Lambda = \{\lambda_1, \ldots, \lambda_r\}$ and $\Gamma = \{\gamma_1, \ldots, \gamma_s\}$, we study the distribution of classical patterns $\gamma_1, \ldots, \gamma_s$ in $S_n(\Lambda)$.

Especially, we study pattern τ distribution in $S_n(132)$ and $S_n(123)$ in the case when τ is of length 3 and some special form.

We define

$$Q^{\Gamma}_{\Lambda}(t,x_1,\ldots,x_s) = 1 + \sum_{n\geq 1} t^n Q^{\Gamma}_{n,\Lambda}(x_1,\ldots,x_s),$$

where

$$Q_{n,\Lambda}^{\Gamma}(x_1,\ldots,x_s) = \sum_{\sigma\in\mathcal{S}_n(\Lambda)} x_1^{occr_{\gamma_1}(\sigma)}\cdots x_s^{occr_{\gamma_s}(\sigma)}.$$

Especially, we have

$$Q_\lambda^\gamma(t,x) = 1 + \sum_{n\geq 1} t^n Q_{n,\lambda}^\gamma(x) ext{ and } Q_{n,\lambda}^\gamma(x) = \sum_{\sigma\in\mathcal{S}_n(\lambda)} x^{occr_\gamma(\sigma)}.$$

1 Motivation

- 2 Introduction
- 3 Wilf-equivalence of $Q_{\lambda}^{\gamma}(t,x)$
 - 4 Recursions of $Q_{\lambda}^{\gamma}(t,x)$
- 5 Other Results and Open Problems

Given a permutation σ , we denote the reverse of σ by σ^r , the complement of σ by σ^c , the reverse-complement of σ by σ^{rc} , and the inverse of σ by σ^{-1} .

Example

Let $\sigma = 15324$, then $\sigma^r = 42351$, $\sigma^c = 51342$, $\sigma^{rc} = 24315$, $\sigma^{-1} = 14352$.

• $S_n(123)$ is closed under the operation reverse-complement.

• Both $S_n(123)$ and $S_n(132)$ are closed under the operation inverse.

Thus,

Theorem Given any permutation pattern γ , $Q_{123}^{\gamma}(t,x) = Q_{123}^{\gamma^{rc}}(t,x) = Q_{123}^{\gamma^{-1}}(t,x), \quad Q_{132}^{\gamma}(t,x) = Q_{132}^{\gamma^{-1}}(t,x).$

When we let γ be a pattern of length 3,

Corollary

There are 4 Wilf-equivalent classes for $S_n(132)$,

(1) $Q_{132}^{123}(t,x)$, (2) $Q_{132}^{213}(t,x)$, (3) $Q_{132}^{231}(t,x) = Q_{132}^{312}(t,x)$, (4) $Q_{132}^{321}(t,x)$,

and there are 3 Wilf-equivalent classes for $S_n(123)$, (1) $Q_{123}^{132}(t,x) = Q_{123}^{213}(t,x)$, (2) $Q_{123}^{231}(t,x) = Q_{123}^{312}(t,x)$, (3) $Q_{123}^{321}(t,x)$.

1 Motivation

- 2 Introduction
- 3) Wilf-equivalence of ${\it Q}_{\lambda}^{\gamma}(t,x)$
- 4 Recursions of $Q_{\lambda}^{\gamma}(t,x)$
- 5 Other Results and Open Problems

We use Dyck path bijections to calculate the recursive formulas for $Q_\lambda^\gamma(t,x).$

Krattenthaler $\Phi : S_n(132) \rightarrow D_n$, Elizalde and Deutsch $\Psi : S_n(123) \rightarrow D_n$.

Then, we the recursion of Dyck path by breaking the path at the first place it hits the diagonal to break it into 2 Dyck paths.

Let D(x) be the generating function enumerating the number of Dyck paths of size n,

$$D(x) = 1 + xD(x)^2.$$

Recursion of Dyck path

Counting Length 2 pattern in $S_n(132)$

We first consider permutations that are avoiding 132 and the distribution of pattern of length 2, i.e. inv and coinv.

We let

$$egin{aligned} Q_n(q) &= Q_{n,132}^{12}(q) = \sum_{\sigma \in \mathcal{S}_n(132)} q^{coinv(\sigma)}, \ Q(t,q) &= Q_{132}^{12}(t,q) = 1 + \sum_{n \geq 1} t^n \sum_{\sigma \in \mathcal{S}_n(132)} q^{coinv(\sigma)}, \ ext{and} \quad P_n(p,q) &= \sum_{\sigma \in \mathcal{S}_n(132)} p^{inv(\sigma)} q^{coinv(\sigma)}. \end{aligned}$$

Counting Length 2 pattern in $S_n(132)$

We first consider permutations that are avoiding 132 and the distribution of pattern of length 2, i.e. inv and coinv.

We let

$$\begin{split} Q_n(q) &= Q_{n,132}^{12}(q) = \sum_{\sigma \in \mathcal{S}_n(132)} q^{\operatorname{coinv}(\sigma)}, \\ Q(t,q) &= Q_{132}^{12}(t,q) = 1 + \sum_{n \geq 1} t^n \sum_{\sigma \in \mathcal{S}_n(132)} q^{\operatorname{coinv}(\sigma)}, \\ \text{and} \quad P_n(p,q) &= \sum_{\sigma \in \mathcal{S}_n(132)} p^{\operatorname{inv}(\sigma)} q^{\operatorname{coinv}(\sigma)}. \end{split}$$

Since $inv(\sigma) + coinv(\sigma) = \binom{n}{2}$, we have the following relation about $P_n(p,q)$ and $Q_n(q)$,

$$P_n(p,q) = \sum_{\sigma \in \mathcal{S}_n(132)} p^{\binom{n}{2} - \operatorname{coinv}(\sigma)} q^{\operatorname{coinv}(\sigma)} = p^{\binom{n}{2}} Q_n\left(\frac{q}{p}\right).$$

Counting Length 2 pattern in $S_n(132)$

 $Q_n(q) - q$ -Catalan number.

Theorem (Fürlinger and Hofbauer)

Let $Q_n(q) = Q_{n,132}^{12}(q)$ and $Q(t,q) = Q_{132}^{12}(t,q)$, then we have the recursions,

$$Q_0(q) = 1, \ Q_n(q) = \sum_{k=1}^n q^{k-1} Q_{k-1}(q) Q_{n-k}(q),$$
 (1)

$$P_0(q) = 1, \ P_n(q) = \sum_{k=1}^n q^{k(n-k)} P_{k-1}(q) P_{n-k}(q), \tag{2}$$

and we have the functional equation,

$$Q(t,q) = 1 + tQ(t,q) \cdot Q(tq,q). \tag{3}$$

Pattern distribution in $S_n(132)$ and $S_n(123)$

Counting Length 3 pattern in $S_n(132)$

Theorem

We let $Q_{n,132}^{\gamma}(q,x) = \sum_{\sigma \in S_n(132)} q^{\operatorname{coinv}(\sigma)} x^{\operatorname{occr}_{\gamma}(\sigma)}$, then we have the following recursive equations for the generating function $Q_{n,132}^{\gamma}(q,x)$.

$$Q_{0,132}^{\gamma}(q,x) = 1 \quad \text{for each pattern } \gamma, \tag{4}$$

$$Q_{n,132}^{123}(q,x) = \sum_{k=1}^{n} q^{k-1} Q_{k-1}(qx,x) Q_{n-k}(q,x), \tag{5}$$

$$Q_{n,132}^{213}(q,x) = \sum_{k=1}^{n} q^{k-1} x^{\frac{(k-1)(k-2)}{2}} Q_{k-1}(\frac{q}{x},x) Q_{n-k}(q,x), \tag{6}$$

$$Q_{n,132}^{231}(q,x) = \sum_{k=1}^{n} q^{k-1} x^{\frac{(k-1)(n-k)}{2}} Q_{k-1}(qx^{(n-k)},x) Q_{n-k}(q,x), \tag{7}$$

$$Q_{n,132}^{321}(q,x) = \sum_{k=1}^{n} q^{k-1} x^{\frac{(n-k)(kn-4k+2)}{2}} Q_{k-1}(\frac{q}{x^{n-k}},x) Q_{n-k}(\frac{q}{x^{k}},x). \tag{8}$$

Pattern distribution in $S_n(132)$ and $S_n(123)$

We can also track all the patterns that

$$Q_{n,132}^{12,21,123,213,231,312,321}(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = \sum_{k=1}^{n} x_1^{k-1} x_2^{k(n-k)} x_5^{(k-1)(n-k)} \\ \cdot Q_{k-1}(x_1 x_3 x_5^{(n-k)}, x_2 x_4 x_7^{(n-k)}, x_3, x_4, x_5, x_6, x_7) \\ \cdot Q_{n-k}(x_1 x_6^k, x_2 x_7^k, x_3, x_4, x_5, x_6, x_7).$$
(9)

Track all patterns of length 2 and 3 in $S_n(132)$

Expansion of $Q_{n,132}^{12,21,123,213,231,312,321}(x_1, x_2, x_3, x_4, x_5, x_6, x_7)$

n	$Q_{n,132}^{12,21,123,213,231,312,321}(x_1, x_2, x_3, x_4, x_5, x_6, x_7)$
0	1
1	1
2	$x_1 + x_2$
3	$x_1^3 x_7 + x_1^2 x_2 x_5 + x_1^2 x_2 x_6 + x_1 x_2^2 x_4 + x_2^3 x_3$
4	$x_1^6 x_7^4 + x_1^5 x_2 x_5^2 x_7^2 + x_1^5 x_2 x_5 x_6 x_7^2 + x_1^5 x_2 x_6^2 x_7^2 + x_1^4 x_2^2 x_4 x_5^2 x_7 + x_1^4 x_2^2 x_4 x_6^2 x_7 + x_1^4 x_2^2 x_5^2 x_6^2 x_7^2 + x_1^4 x_2^2 x_4 x_5^2 x_7 + x_1^4 x_2^2 x_5^2 x_5^$
	$+x_1^3 x_2^3 x_3 x_5^3 + x_1^3 x_2^3 x_3 x_6^3 + x_1^3 x_2^3 x_4^3 x_7 + x_1^2 x_2^4 x_3 x_4^2 x_5 + x_1^2 x_2^4 x_3 x_4^2 x_6 + x_1 x_2^5 x_3^2 x_4^2 + x_2^6 x_3^4 x_5 + x_1^2 x_2^2 x_3 x_4^2 x_5 + x_1^2 x_2^2 x_3 x_5 + x_1^2 x_2^2 x_5 + x_1^2 x$
5	$x_{1}^{10}x_{7}^{10} + x_{1}^{9}x_{2}x_{5}^{3}x_{7}^{7} + x_{1}^{9}x_{2}x_{5}^{2}x_{6}x_{7}^{7} + x_{1}^{9}x_{2}x_{5}x_{6}^{2}x_{7}^{7} + x_{1}^{9}x_{2}x_{5}x_{6}^{3}x_{7}^{7} + x_{1}^{8}x_{2}x_{4}x_{5}^{4}x_{5}^{5} + x_{1}^{8}x_{2}^{2}x_{4}x_{5}^{2}x_{6}^{2}x_{7}^{5}$
	$+x_{1}^{8}x_{2}^{2}x_{4}x_{6}^{4}x_{7}^{5}+x_{1}^{8}x_{2}^{2}x_{5}^{4}x_{6}^{2}x_{7}^{4}+x_{1}^{8}x_{2}^{2}x_{5}^{3}x_{6}^{3}x_{7}^{4}+x_{1}^{8}x_{2}^{2}x_{5}^{2}x_{6}^{4}x_{7}^{4}+x_{1}^{7}x_{2}^{3}x_{3}x_{5}^{6}x_{7}^{3}+x_{1}^{7}x_{2}^{3}x_{3}x_{5}^{3}x_{6}^{3}x_{7}^{3}$
	$+x_1^7 x_2^3 x_3 x_6^6 x_7^3 +x_1^7 x_2^3 x_4^3 x_5^3 x_7^4 +x_1^7 x_2^3 x_4^3 x_6^3 x_7^4 +x_1^7 x_2^3 x_4 x_5^4 x_6^3 x_7^2 +x_1^7 x_2^3 x_4 x_5^3 x_6^4 x_7^2 +x_1^6 x_2^4 x_3 x_4^2 x_5^5 x_7^2$
	$+x_{1}^{6}x_{2}^{4}x_{3}x_{4}^{2}x_{5}^{4}x_{6}x_{7}^{2}+x_{1}^{6}x_{4}^{4}x_{3}x_{4}^{2}x_{5}x_{6}^{4}x_{7}^{2}+x_{1}^{6}x_{2}^{4}x_{3}x_{4}^{2}x_{5}^{5}x_{7}^{2}+x_{1}^{6}x_{2}^{4}x_{3}x_{5}^{6}x_{6}^{3}+x_{1}^{6}x_{2}^{4}x_{3}x_{5}^{5}x_{6}^{6}$
	$+x_1^6x_2^4x_4^6x_7^4+x_1^5x_2^5x_3^2x_4^2x_5^5x_7+x_1^5x_2^5x_3^2x_4^2x_6^5x_7+x_1^5x_2^5x_3x_4^5x_5^2x_7^2+x_1^5x_2^5x_3x_4^5x_5x_6x_7^2$
	$+x_{1}^{5}x_{2}^{5}x_{3}x_{4}^{5}x_{6}^{2}x_{7}^{2}+x_{1}^{4}x_{2}^{6}x_{3}^{4}x_{5}^{6}+x_{1}^{4}x_{2}^{6}x_{3}^{4}x_{6}^{6}+x_{1}^{4}x_{2}^{6}x_{3}^{2}x_{4}^{5}x_{5}^{2}x_{7}+x_{1}^{4}x_{2}^{6}x_{3}^{2}x_{4}^{5}x_{5}^{2}x_{7}^{2}$
	$+x_{1}^{3}x_{2}^{7}x_{3}^{4}x_{4}^{3}x_{5}^{3}+x_{1}^{3}x_{2}^{7}x_{3}^{4}x_{4}^{3}x_{6}^{3}+x_{1}^{3}x_{2}^{7}x_{3}^{3}x_{6}^{4}x_{7}+x_{1}^{2}x_{2}^{8}x_{5}^{5}x_{4}^{4}x_{5}+x_{1}^{2}x_{2}^{8}x_{5}^{5}x_{4}^{4}x_{6}+x_{1}x_{2}^{9}x_{3}^{7}x_{4}^{3}+x_{2}^{10}x_{3}^{10}x_{5}^{10}x_$

We also get nice recursions for pattern distributions in $S_n(123)$. For example, we have

Theorem

Let $Q_{n,123}^{132}(s,q,x) = \sum_{\sigma \in S_n(123)} s^{LRmin(\sigma)} q^{coinv(\sigma)} x^{occr_{132}(\sigma)}$, then we have the following recursions,

$$Q_{0,123}^{132}(s,q,x) = 1,$$

$$Q_{n,123}^{132}(s,q,x) = sQ_{n-1} + \sum_{k=2}^{n} Q_{k-1}(sq,qx,x)Q_{n-k}(s,q,x).$$

We get nice recursions and functional equations for the function counting pattern $12 \cdots m$ in $S_n(132)$ and the function counting pattern $1m(m-1)\cdots 2$ in $S_n(123)$, for any m > 1.

We found a big coincidence among $S_n(132)$ and $S_n(123)$ that,

$$|\{\sigma \in S_n(132) : occr_{12\cdots j}(\sigma) = i\}| = |\{\sigma \in S_n(123) : occr_{1j(j-1)\cdots 2}(\sigma) = i\}|,$$

for all $i < j$.

An equality between $S_n(132)$ and $S_n(123)$

This result is described in the following theorem.

Theorem

We let

 Q_{n}

$$\begin{aligned} Q_{n,132}(x_2, x_3, \dots, x_m) &= \sum_{\sigma \in \mathcal{S}_n(132)} x_2^{occr_{12}} x_3^{occr_{123}} \cdots x_m^{occr_{12\dots m}}, \\ Q_{132}(t, x_2, x_3, \dots, x_m) &= \sum_{n \ge 0} t^n Q_{n,132}(x_2, x_3, \dots, x_m) \quad and \\ {}_{123}(s, x_2, x_3, \dots, x_m) &= \sum_{\sigma \in \mathcal{S}_n(123)} s^{LRmin} x_2^{occr_{12}} x_3^{occr_{132}} \cdots x_m^{occr_{1m(m-1)\dots 2}}, \\ Q_{123}(t, s, x_2, x_3, \dots, x_m) &= \sum t^n Q_{n,123}(s, x_2, x_3, \dots, x_m), \end{aligned}$$

n≥0

Theorem

then we have the following equations, $Q_{n,132}(x_2, \dots, x_m) = \sum_{k=1}^n x_2^{k-1} Q_{k-1,132}(x_2x_3, x_3x_4, \dots, x_{m-1}x_m, x_m) Q_{n-k,132}(x_2, \dots, x_m),$ $Q_{n,123}(s, x_2, \dots, x_m) = sQ_{n-1,123}(t, s, x_2, \dots, x_m) + \sum_{k=2}^n Q_{k-1,123}(sx_2, x_2x_3, x_3x_4, \dots, x_{m-1}x_m, x_m) Q_{n-k,123}(s, x_2, \dots, x_m),$

Theorem

also the functional equations, $Q_{132}(t, x_2, ..., x_m)$ $= 1 + Q_{132}(tx_2, x_2x_3, x_3x_4, ..., x_{m-1}x_m, x_m)Q_{132}(t, x_2, ..., x_m),$

$$Q_{123}(t, s, x_2, \dots, x_m) = 1 + t(s-1)Q_{123}(t, s, x_2, \dots, x_m) + tQ_{123}(t, sx_2, x_2x_3, x_3x_4, \dots, x_{m-1}x_m, x_m)Q_{123}(s, x_2, \dots, x_m).$$

Further, let $[x^i]_Q$ denote the coefficient of x^i in function Q, then

$$[t^n x_i^j]_{Q_{132}} = [t^n x_j^j]_{Q_{123}} \quad \text{for} \quad i < j. \tag{10}$$

Outline

1 Motivation

- 2 Introduction
- 3) Wilf-equivalence of ${\it Q}_{\lambda}^{\gamma}(t,x)$
- 4 Recursions of $Q^{\gamma}_{\lambda}(t,x)$

• We obtained the recursion tracking all patterns of length \leq 4 on $S_n(132)$, see that every pattern is trackable on $S_n(132)$.

- We obtained the recursion tracking all patterns of length \leq 4 on $S_n(132)$, see that every pattern is trackable on $S_n(132)$.
- On $S_n(123)$, we only track patterns of length 2 and 3 and the special pattern $1m(m-1)\cdots 2$. A simpler recursion on $S_n(123)$ is desired.

- We obtained the recursion tracking all patterns of length \leq 4 on $S_n(132)$, see that every pattern is trackable on $S_n(132)$.
- On $S_n(123)$, we only track patterns of length 2 and 3 and the special pattern $1m(m-1)\cdots 2$. A simpler recursion on $S_n(123)$ is desired.
- We adapt our method to circular permutations. We track all circular patterns of size≤ 4 on circular permutations avoiding circular pattern 1243.

- We obtained the recursion tracking all patterns of length \leq 4 on $S_n(132)$, see that every pattern is trackable on $S_n(132)$.
- On $S_n(123)$, we only track patterns of length 2 and 3 and the special pattern $1m(m-1)\cdots 2$. A simpler recursion on $S_n(123)$ is desired.
- We adapt our method to circular permutations. We track all circular patterns of size≤ 4 on circular permutations avoiding circular pattern 1243.
- There are other equality of coefficients of generating functions Q_{132}^{γ} and Q_{123}^{γ} except equation (10) which we can study in the future.

- We obtained the recursion tracking all patterns of length \leq 4 on $S_n(132)$, see that every pattern is trackable on $S_n(132)$.
- On $S_n(123)$, we only track patterns of length 2 and 3 and the special pattern $1m(m-1)\cdots 2$. A simpler recursion on $S_n(123)$ is desired.
- We adapt our method to circular permutations. We track all circular patterns of size≤ 4 on circular permutations avoiding circular pattern 1243.
- There are other equality of coefficients of generating functions Q_{132}^{γ} and Q_{123}^{γ} except equation (10) which we can study in the future.
- We only studied classical patterns on $S_n(132)$ and $S_n(123)$, and circular patterns on 1243.

Thank You!