Classical pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu
UC San Diego
duqiu@ucsd.edu

Based on joint work with Jeffrey Remmel

Permutation Patterns 2018, Dartmouth College July 11, 2018

In Memory of Jeffrey Remmel

Outline

(1) Motivation
(2) Introduction
(3) Wilf-equivalence of $Q_{\lambda}^{\gamma}(t, x)$
(4) Recursions of $Q_{\lambda}^{\gamma}(t, x)$
(5) Other Results and Open Problems

Outline

(1) Motivation

(2) Introduction

(3) Wilf-equivalence of $Q_{\lambda}^{\gamma}(t, x)$
(4) Recursions of $Q_{\lambda}^{\gamma}(t, x)$

(5) Other Results and Open Problems

Motivation

Ran Pan's Project P Project P
http://www.math.ucsd.edu/~projectp/

Problem 13: enumerate permutations in \mathcal{S}_{n} avoiding a classical pattern and a consecutive pattern at the same time.

Then Professor Remmel conducted researchs on distribution of classical patterns and consecutive patterns in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$.

Outline

(1) Motivation

(2) Introduction

(3) Wilf-equivalence of $Q_{\lambda}^{\gamma}(t, x)$
(4) Recursions of $Q_{\lambda}^{\gamma}(t, x)$

(5) Other Results and Open Problems

Permutations, Descents, LRmins

- A permutation $\sigma=\sigma_{1} \cdots \sigma_{n}$ of $[n]=\{1, \ldots, n\}$ is a rearrangement of the numbers $1, \ldots, n$.
- The set of permutations of $[n]$ is denoted by \mathcal{S}_{n}.
- σ_{i} is a descent if $\sigma_{i}>\sigma_{i+1} . \operatorname{des}(\sigma)$ is the number of descents in σ.
- We let $L \operatorname{Rmin}(\sigma)$ denote the number of left to right minima of σ.

Inversions, Coinversions

- $\left(\sigma_{i}, \sigma_{j}\right)$ is an inversion if $i<j$ and $\sigma_{i}>\sigma_{j}$.
- $\operatorname{inv}(\sigma)$ denotes the number of inversions in σ.
- $\left(\sigma_{i}, \sigma_{j}\right)$ is a coinversion if $i<j$ and $\sigma_{i}<\sigma_{j}$.
- $\operatorname{coinv}(\sigma)$ denotes the number of coinversions in σ.

Reduction of A Sequence

Given a sequence of distinct positive integers $w=w_{1} \ldots w_{n}$, we let the reduction (or standardization) of the sequence, red (w), denote the permutation of $[n]$ obtained from w by replacing the i-th smallest letter in w by i.

Example

If $w=4592$, then $\operatorname{red}(w)=2341$.

Classical Patterns Occurrence and Avoidance

- Given a permutation $\tau=\tau_{1} \ldots \tau_{j}$ in S_{j},
- we say the pattern τ occurs in $\sigma=\sigma_{1} \ldots \sigma_{n} \in \mathcal{S}_{n}$ if there exist $1 \leq i_{1}<\cdots<i_{j} \leq n$ such that $\operatorname{red}\left(\sigma_{i_{1}} \ldots \sigma_{i_{j}}\right)=\tau$.
- We let $\operatorname{occr}_{\tau}(\sigma)$ denote the number of τ occurrence in σ.
- We say σ avoids the pattern τ if τ does not occur in σ.

Classical Patterns Occurrence and Avoidance

- Given a permutation $\tau=\tau_{1} \ldots \tau_{j}$ in S_{j},
- we say the pattern τ occurs in $\sigma=\sigma_{1} \ldots \sigma_{n} \in \mathcal{S}_{n}$ if there exist $1 \leq i_{1}<\cdots<i_{j} \leq n$ such that $\operatorname{red}\left(\sigma_{i_{1}} \ldots \sigma_{i_{j}}\right)=\tau$.
- We let $\operatorname{occr}_{\tau}(\sigma)$ denote the number of τ occurrence in σ.
- We say σ avoids the pattern τ if τ does not occur in σ.

Example

$\pi=867932451$ avoids pattern 132 , contains pattern 123. $\operatorname{occr}_{123}(\pi)=2$ since pattern occurrences are $6,7,9$ and $3,4,5$.

Classical Patterns Occurrence and Avoidance

- Given a permutation $\tau=\tau_{1} \ldots \tau_{j}$ in S_{j},
- we say the pattern τ occurs in $\sigma=\sigma_{1} \ldots \sigma_{n} \in \mathcal{S}_{n}$ if there exist $1 \leq i_{1}<\cdots<i_{j} \leq n$ such that $\operatorname{red}\left(\sigma_{i_{1}} \ldots \sigma_{i_{j}}\right)=\tau$.
- We let $\operatorname{occr}_{\tau}(\sigma)$ denote the number of τ occurrence in σ.
- We say σ avoids the pattern τ if τ does not occur in σ.

Example

$\pi=867932451$ avoids pattern 132, contains pattern 123. $\operatorname{occr}_{123}(\pi)=2$ since pattern occurrences are $6,7,9$ and $3,4,5$.

- τ is called a classical pattern.
- inversion \longrightarrow pattern 21 , coinversion \longrightarrow pattern 12 .

$\mathcal{S}_{n}(\sigma)$

- We let $\mathcal{S}_{n}(\lambda)$ denote the set of permutations in \mathcal{S}_{n} avoiding λ.
- $\left|\mathcal{S}_{n}(132)\right|=\left|\mathcal{S}_{n}(123)\right|=C_{n}=\frac{1}{n+1}\binom{2 n}{n}$, the $n^{\text {th }}$ Catalan number.
- C_{n} is also the number of $n \times n$ Dyck paths.
- Let $\Lambda=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$, then $\mathcal{S}_{n}(\Lambda)$ is the set of permutations in \mathcal{S}_{n} avoiding $\lambda_{1}, \ldots, \lambda_{r}$.

Our Problem

Given two sets of permutations $\Lambda=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$ and $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{s}\right\}$, we study the distribution of classical patterns $\gamma_{1}, \ldots, \gamma_{s}$ in $\mathcal{S}_{n}(\Lambda)$.

Especially, we study pattern τ distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$ in the case when τ is of length 3 and some special form.

Generating Function

We define

$$
Q_{\Lambda}^{\Gamma}\left(t, x_{1}, \ldots, x_{s}\right)=1+\sum_{n \geq 1} t^{n} Q_{n, \Lambda}^{\Gamma}\left(x_{1}, \ldots, x_{s}\right)
$$

where

$$
Q_{n, \Lambda}^{\Gamma}\left(x_{1}, \ldots, x_{s}\right)=\sum_{\sigma \in \mathcal{S}_{n}(\Lambda)} x_{1}^{o c c r_{\gamma_{1}}(\sigma)} \cdots x_{s}^{o c c r_{\gamma_{s}}(\sigma)}
$$

Especially, we have

$$
Q_{\lambda}^{\gamma}(t, x)=1+\sum_{n \geq 1} t^{n} Q_{n, \lambda}^{\gamma}(x) \text { and } Q_{n, \lambda}^{\gamma}(x)=\sum_{\sigma \in \mathcal{S}_{n}(\lambda)} x^{o c c r_{\gamma}(\sigma)}
$$

Outline

(1) Motivation

(2) Introduction
(3) Wilf-equivalence of $Q_{\lambda}^{\gamma}(t, x)$
(4) Recursions of $Q_{\lambda}^{\gamma}(t, x)$

(5) Other Results and Open Problems

Wilf-equivalence

Given a permutation σ, we denote the reverse of σ by σ^{r}, the complement of σ by σ^{c}, the reverse-complement of σ by $\sigma^{r c}$, and the inverse of σ by σ^{-1}.

Example

Let $\sigma=15324$, then
$\sigma^{r}=42351, \sigma^{c}=51342, \sigma^{r c}=24315, \sigma^{-1}=14352$.

Wilf-equivalence

- $\mathcal{S}_{n}(123)$ is closed under the operation reverse-complement.
- Both $\mathcal{S}_{n}(123)$ and $\mathcal{S}_{n}(132)$ are closed under the operation inverse.

Thus,

Theorem

Given any permutation pattern γ,

$$
Q_{123}^{\gamma}(t, x)=Q_{123}^{\gamma^{r c}}(t, x)=Q_{123}^{\gamma^{-1}}(t, x), \quad Q_{132}^{\gamma}(t, x)=Q_{132}^{\gamma^{-1}}(t, x)
$$

Wilf-equivalence

When we let γ be a pattern of length 3 ,

Corollary

There are 4 Wilf-equivalent classes for $\mathcal{S}_{n}(132)$,
(1) $Q_{132}^{123}(t, x)$,
(2) $Q_{132}^{213}(t, x)$,
(3) $Q_{132}^{231}(t, x)=Q_{132}^{312}(t, x)$,
(4) $Q_{132}^{321}(t, x)$,
and there are 3 Wilf-equivalent classes for $\mathcal{S}_{n}(123)$,
(1) $Q_{123}^{132}(t, x)=Q_{123}^{213}(t, x)$,
(2) $Q_{123}^{231}(t, x)=Q_{123}^{312}(t, x)$,
(3) $Q_{123}^{321}(t, x)$.

Outline

(1) Motivation

(2) Introduction
(3) Wilf-equivalence of $Q_{\lambda}^{\gamma}(t, x)$
(4) Recursions of $Q_{\lambda}^{\gamma}(t, x)$

(5) Other Results and Open Problems

Method - Using Dyck Path Bijections

We use Dyck path bijections to calculate the recursive formulas for $Q_{\lambda}^{\gamma}(t, x)$.

Krattenthaler $\Phi: S_{n}(132) \rightarrow D_{n}$, Elizalde and Deutsch $\Psi: \mathcal{S}_{n}(123) \rightarrow \mathcal{D}_{n}$.

Method - Using Dyck Path Bijections

Then, we the recursion of Dyck path by breaking the path at the first place it hits the diagonal to break it into 2 Dyck paths.

Let $D(x)$ be the generating function enumerating the number of Dyck paths of size n,

$$
D(x)=1+x D(x)^{2} .
$$

Recursion of Dyck path

Counting Length 2 pattern in $\mathcal{S}_{n}(132)$

We first consider permutations that are avoiding 132 and the distribution of pattern of length 2, i.e. inv and coinv.

We let

$$
\begin{gathered}
Q_{n}(q)=Q_{n, 132}^{12}(q)=\sum_{\sigma \in \mathcal{S}_{n}(132)} q^{\operatorname{coinv}(\sigma)}, \\
Q(t, q)=Q_{132}^{12}(t, q)=1+\sum_{n \geq 1} t^{n} \sum_{\sigma \in \mathcal{S}_{n}(132)} q^{\operatorname{coinv}(\sigma)}, \\
\text { and } \quad P_{n}(p, q)=\sum_{\sigma \in \mathcal{S}_{n}(132)} p^{i n v(\sigma)} q^{\operatorname{coinv}(\sigma)}
\end{gathered}
$$

Counting Length 2 pattern in $\mathcal{S}_{n}(132)$

We first consider permutations that are avoiding 132 and the distribution of pattern of length 2, i.e. inv and coinv.

We let

$$
\begin{gathered}
Q_{n}(q)=Q_{n, 132}^{12}(q)=\sum_{\sigma \in \mathcal{S}_{n}(132)} q^{\operatorname{coinv}(\sigma)}, \\
Q(t, q)=Q_{132}^{12}(t, q)=1+\sum_{n \geq 1} t^{n} \sum_{\sigma \in \mathcal{S}_{n}(132)} q^{\operatorname{coinv}(\sigma)}, \\
\text { and } \quad P_{n}(p, q)=\sum_{\sigma \in \mathcal{S}_{n}(132)} p^{i n v(\sigma)} q^{\operatorname{coinv}(\sigma)} .
\end{gathered}
$$

Since $\operatorname{inv}(\sigma)+\operatorname{coinv}(\sigma)=\binom{n}{2}$, we have the following relation about $P_{n}(p, q)$ and $Q_{n}(q)$,

$$
P_{n}(p, q)=\sum_{\sigma \in \mathcal{S}_{n}(132)} p^{\binom{n}{2}-\operatorname{coinv}(\sigma)} q^{\operatorname{coinv}(\sigma)}=p^{\binom{n}{2}} Q_{n}\left(\frac{q}{p}\right)
$$

Counting Length 2 pattern in $\mathcal{S}_{n}(132)$

$Q_{n}(q)-q$-Catalan number.

Theorem (Fürlinger and Hofbauer)

Let $Q_{n}(q)=Q_{n, 132}^{12}(q)$ and $Q(t, q)=Q_{132}^{12}(t, q)$, then we have the recursions,

$$
\begin{align*}
& Q_{0}(q)=1, Q_{n}(q)=\sum_{k=1}^{n} q^{k-1} Q_{k-1}(q) Q_{n-k}(q) \tag{1}\\
& P_{0}(q)=1, P_{n}(q)=\sum_{k=1}^{n} q^{k(n-k)} P_{k-1}(q) P_{n-k}(q), \tag{2}
\end{align*}
$$

and we have the functional equation,

$$
\begin{equation*}
Q(t, q)=1+t Q(t, q) \cdot Q(t q, q) \tag{3}
\end{equation*}
$$

Counting Length 3 pattern in $\mathcal{S}_{n}(132)$

Theorem

We let $Q_{n, 132}^{\gamma}(q, x)=\sum_{\sigma \in \mathcal{S}_{n}(132)} q^{\operatorname{coinv}(\sigma)_{x} x^{o c c r_{\gamma}(\sigma)}}$, then we have the following recursive equations for the generating function $Q_{n, 132}^{\gamma}(q, x)$.

$$
\begin{align*}
& Q_{0,132}^{\gamma}(q, x)=1 \quad \text { for each pattern } \gamma, \tag{4}\\
& Q_{n, 132}^{123}(q, x)=\sum_{k=1}^{n} q^{k-1} Q_{k-1}(q x, x) Q_{n-k}(q, x), \tag{5}\\
& Q_{n, 132}^{213}(q, x)=\sum_{k=1}^{n} q^{k-1} x^{\frac{(k-1)(k-2)}{2}} Q_{k-1}\left(\frac{q}{x}, x\right) Q_{n-k}(q, x), \tag{6}\\
& Q_{n, 132}^{231}(q, x)=\sum_{k=1}^{n} q^{k-1} x^{(k-1)(n-k)} Q_{k-1}\left(q x^{(n-k)}, x\right) Q_{n-k}(q, x), \tag{7}\\
& Q_{n, 132}^{321}(q, x)=\sum_{k=1}^{n} q^{k-1} x^{\frac{(n-k)(k n-4 k+2)}{2}} Q_{k-1}\left(\frac{q}{x^{n-k}}, x\right) Q_{n-k}\left(\frac{q}{x^{k}}, x\right) . \tag{8}
\end{align*}
$$

Track all patterns of length 2 and 3 in $\mathcal{S}_{n}(132)$

We can also track all the patterns that

$$
\begin{align*}
& Q_{n, 132}^{12,21,123,213,231,312,321}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right) \\
= & \sum_{k=1}^{n} x_{1}^{k-1} x_{2}^{k(n-k)} x_{5}^{(k-1)(n-k)} \\
\cdot & Q_{k-1}\left(x_{1} x_{3} x_{5}^{(n-k)}, x_{2} x_{4} x_{7}^{(n-k)}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right) \\
\cdot & Q_{n-k}\left(x_{1} x_{6}^{k}, x_{2} x_{7}^{k}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right) \tag{9}
\end{align*}
$$

Track all patterns of length 2 and 3 in $\mathcal{S}_{n}(132)$

$$
\text { Expansion of } Q_{n, 132}^{12,21,123,213,231,312,321}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)
$$

n	$Q_{n, 132}^{12,21,123,213,231,312,321}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)$
0	1
1	1
2	$x_{1}+x_{2}$
3	$x_{1}^{3} x_{7}+x_{1}^{2} x_{2} x_{5}+x_{1}^{2} x_{2} x_{6}+x_{1} x_{2}^{2} x_{4}+x_{2}^{3} x_{3}$
4	$\begin{aligned} & x_{1}^{6} x_{7}^{4}+x_{1}^{5} x_{2} x_{5}^{2} x_{7}^{2}+x_{1}^{5} x_{2} x_{5} x_{6} x_{7}^{2}+x_{1}^{5} x_{2} x_{6}^{2} x_{7}^{2}+x_{1}^{4} x_{2}^{2} x_{4} x_{5}^{2} x_{7}+x_{1}^{4} x_{2}^{2} x_{4} x_{6}^{2} x_{7}+x_{1}^{4} x_{2}^{2} x_{5}^{2} x_{6}^{2} \\ & \quad+x_{1}^{3} x_{2}^{3} x_{3} x_{5}^{3}+x_{1}^{3} x_{2}^{3} x_{3} x_{6}^{3}+x_{1}^{3} x_{2}^{3} x_{4}^{3} x_{7}+x_{1}^{2} x_{2}^{4} x_{3} x_{4}^{2} x_{5}+x_{1}^{2} x_{2}^{4} x_{3} x_{4}^{2} x_{6}+x_{1} x_{2}^{5} x_{3}^{2} x_{4}^{2}+x_{2}^{6} x_{3}^{4} \end{aligned}$
5	$\begin{aligned} & x_{1}^{10} x_{7}^{10}+x_{1}^{9} x_{2} x_{5}^{3} x_{7}^{7}+x_{1}^{9} x_{2} x_{5}^{2} x_{6} x_{7}^{7}+x_{1}^{9} x_{2} x_{5} x_{6}^{2} x_{7}^{7}+x_{1}^{9} x_{2} x_{6}^{3} x_{7}^{7}+x_{1}^{8} x_{2}^{2} x_{4} x_{5}^{4} x_{7}^{5}+x_{1}^{8} x_{2}^{2} x_{4} x_{5}^{2} x_{6}^{2} x_{7}^{5} \\ & \quad+x_{1}^{8} x_{2}^{2} x_{4} x_{6}^{4} x_{7}^{5}+x_{1}^{8} x_{2}^{2} x_{5}^{4} x_{6}^{2} x_{7}^{4}+x_{1}^{8} x_{2}^{2} x_{5}^{3} x_{6}^{3} x_{7}^{4}+x_{1}^{8} x_{2}^{2} x_{5}^{2} x_{6}^{4} x_{7}^{4}+x_{1}^{7} x_{2}^{3} x_{3} x_{5}^{6} x_{7}^{3}+x_{1}^{7} x_{2}^{3} x_{3} x_{5}^{3} x_{6}^{3} x_{7}^{3} \\ & \quad+x_{1}^{7} x_{2}^{3} x_{3} x_{6}^{6} x_{7}^{3}+x_{1}^{7} x_{2}^{3} x_{4}^{3} x_{5}^{3} x_{7}^{4}+x_{1}^{7} x_{2}^{3} x_{4}^{3} x_{6}^{3} x_{7}^{4}+x_{1}^{7} x_{2}^{3} x_{4} x_{5}^{4} x_{6}^{3} x_{7}^{2}+x_{1}^{7} x_{2}^{3} x_{4} x_{5}^{3} x_{6}^{4} x_{7}^{2}+x_{1}^{6} x_{2}^{4} x_{3} x_{4}^{2} x_{5}^{5} x_{7}^{4} \\ & \quad+x_{1}^{6} x_{2}^{4} x_{3} x_{4}^{2} x_{5}^{4} x_{6} x_{7}^{2}+x_{1}^{6} x_{2}^{4} x_{3} x_{4}^{2} x_{5} x_{6}^{4} x_{7}^{2}+x_{1}^{6} x_{2}^{4} x_{3} x_{4}^{2} x_{6}^{5} x_{7}^{2}+x_{1}^{6} x_{2}^{4} x_{3} x_{5}^{6} x_{6}^{3}+x_{1}^{6} x_{2}^{4} x_{3} x_{5}^{3} x_{6}^{6} \\ & \quad+x_{1}^{6} x_{2}^{4} x_{4}^{6} x_{7}^{4}+x_{1}^{5} x_{2}^{5} x_{3}^{2} x_{4}^{2} x_{5}^{5} x_{7}+x_{1}^{5} x_{2}^{5} x_{3}^{2} x_{4}^{2} x_{6}^{5} x_{7}+x_{1}^{5} x_{2}^{5} x_{3} x_{4}^{5} x_{5}^{2} x_{7}^{2}+x_{1}^{5} x_{2}^{5} x_{3} x_{4}^{5} x_{5} x_{6} x_{7}^{2} \\ & \quad+x_{1}^{5} x_{2}^{5} x_{3} x_{4}^{5} x_{6}^{2} x_{7}^{2}+x_{1}^{4} x_{2}^{6} x_{3}^{4} x_{5}^{6}+x_{1}^{4} x_{2}^{6} x_{3}^{4} x_{6}^{6}+x_{1}^{4} x_{2}^{6} x_{3}^{2} x_{4}^{5} x_{5}^{2} x_{7}+x_{1}^{4} x_{2}^{6} x_{3}^{2} x_{4}^{5} x_{6}^{2} x_{7}+x_{1}^{4} x_{2}^{6} x_{3}^{4} x_{4}^{2} x_{5}^{2} x_{6}^{3} \\ & \quad+x_{1}^{3} x_{2}^{7} x_{3}^{4} x_{4}^{3} x_{5}^{3}+x_{1}^{3} x_{2}^{7} x_{3}^{4} x_{4}^{3} x_{6}^{3}+x_{1}^{3} x_{2}^{7} x_{3}^{3} x_{4}^{6} x_{7}+x_{1}^{2} x_{2}^{8} x_{3}^{5} x_{4}^{4} x_{5}+x_{1}^{2} x_{2}^{8} x_{3}^{5} x_{4}^{4} x_{6}+x_{1} x_{2}^{9} x_{3}^{7} x_{4}^{3}+x_{2}^{10} x_{3}^{10} \end{aligned}$

Counting Length 3 pattern in $\mathcal{S}_{n}(132)$

We also get nice recursions for pattern distributions in $\mathcal{S}_{n}(123)$. For example, we have

Theorem

Let $Q_{n, 123}^{132}(s, q, x)=\sum_{\sigma \in \mathcal{S}_{n}(123)} s^{L R \min (\sigma)} q^{\operatorname{coinv}(\sigma)} x^{o c c r_{132}(\sigma)}$, then we have the following recursions,

$$
\begin{aligned}
& Q_{0,123}^{132}(s, q, x)=1 \\
& Q_{n, 123}^{132}(s, q, x)=s Q_{n-1}+\sum_{k=2}^{n} Q_{k-1}(s q, q x, x) Q_{n-k}(s, q, x)
\end{aligned}
$$

An equality between $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

We get nice recursions and functional equations for the function counting pattern $12 \cdots m$ in $\mathcal{S}_{n}(132)$ and the function counting pattern $1 m(m-1) \cdots 2$ in $\mathcal{S}_{n}(123)$, for any $m>1$.

We found a big coincidence among $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$ that,
$\left|\left\{\sigma \in \mathcal{S}_{n}(132): \operatorname{occr}_{12 \cdots j}(\sigma)=i\right\}\right|=\left|\left\{\sigma \in \mathcal{S}_{n}(123): \operatorname{occr}_{1 j(j-1) \cdots 2}(\sigma)=i\right\}\right|$, for all $i<j$.

An equality between $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

This result is described in the following theorem.

Theorem

We let

$$
\begin{gathered}
Q_{n, 132}\left(x_{2}, x_{3}, \ldots, x_{m}\right)=\sum_{\sigma \in \mathcal{S}_{n}(132)} x_{2}^{o c c r_{12}} x_{3}^{o c c r_{123}} \cdots x_{m}^{o c c r_{12 \cdots m}}, \\
Q_{132}\left(t, x_{2}, x_{3}, \ldots, x_{m}\right)=\sum_{n \geq 0} t^{n} Q_{n, 132}\left(x_{2}, x_{3}, \ldots, x_{m}\right) \text { and } \\
Q_{n, 123}\left(s, x_{2}, x_{3}, \ldots, x_{m}\right)=\sum_{\sigma \in \mathcal{S}_{n}(123)} s^{L R m i n} x_{2}^{o c c r_{12}} x_{3}^{o c c r_{132}} \cdots x_{m}^{o c c r_{1 m(m-1) \cdots 2}}, \\
Q_{123}\left(t, s, x_{2}, x_{3}, \ldots, x_{m}\right)=\sum_{n \geq 0} t^{n} Q_{n, 123}\left(s, x_{2}, x_{3}, \ldots, x_{m}\right),
\end{gathered}
$$

Theorem

then we have the following equations,
$Q_{n, 132}\left(x_{2}, \ldots, x_{m}\right)$
$=\sum_{k=1}^{n} x_{2}^{k-1} Q_{k-1,132}\left(x_{2} x_{3}, x_{3} x_{4}, \ldots, x_{m-1} x_{m}, x_{m}\right) Q_{n-k, 132}\left(x_{2}, \ldots, x_{m}\right)$,

$$
\begin{aligned}
& Q_{n, 123}\left(s, x_{2}, \ldots, x_{m}\right) \\
& \quad=s Q_{n-1,123}\left(t, s, x_{2}, \ldots, x_{m}\right) \\
& \quad+\sum_{k=2}^{n} Q_{k-1,123}\left(s x_{2}, x_{2} x_{3}, x_{3} x_{4}, \ldots, x_{m-1} x_{m}, x_{m}\right) Q_{n-k, 123}\left(s, x_{2}, \ldots, x_{m}\right)
\end{aligned}
$$

Theorem

also the functional equations,
$Q_{132}\left(t, x_{2}, \ldots, x_{m}\right)$
$=1+Q_{132}\left(t x_{2}, x_{2} x_{3}, x_{3} x_{4}, \ldots, x_{m-1} x_{m}, x_{m}\right) Q_{132}\left(t, x_{2}, \ldots, x_{m}\right)$,
$Q_{123}\left(t, s, x_{2}, \ldots, x_{m}\right)=1+t(s-1) Q_{123}\left(t, s, x_{2}, \ldots, x_{m}\right)$ $+t Q_{123}\left(t, s x_{2}, x_{2} x_{3}, x_{3} x_{4}, \ldots, x_{m-1} x_{m}, x_{m}\right) Q_{123}\left(s, x_{2}, \ldots, x_{m}\right)$.

Further, let $\left[x^{i}\right]_{Q}$ denote the coefficient of x^{i} in function Q, then

$$
\begin{equation*}
\left[t^{n} x_{i}^{j}\right]_{Q_{132}}=\left[t^{n} x_{j}^{j}\right]_{Q_{123}} \text { for } i<j \text {. } \tag{10}
\end{equation*}
$$

Outline

(1) Motivation

(2) Introduction
(3) Wilf-equivalence of $Q_{\lambda}^{\gamma}(t, x)$
(4) Recursions of $Q_{\lambda}^{\gamma}(t, x)$
(5) Other Results and Open Problems

Other Results and Open Problems

- We obtained the recursion tracking all patterns of length ≤ 4 on $\mathcal{S}_{n}(132)$, see that every pattern is trackable on $\mathcal{S}_{n}(132)$.

Other Results and Open Problems

- We obtained the recursion tracking all patterns of length ≤ 4 on $\mathcal{S}_{n}(132)$, see that every pattern is trackable on $\mathcal{S}_{n}(132)$.
- On $\mathcal{S}_{n}(123)$, we only track patterns of length 2 and 3 and the special pattern $1 m(m-1) \cdots 2$. A simpler recursion on $\mathcal{S}_{n}(123)$ is desired.

Other Results and Open Problems

- We obtained the recursion tracking all patterns of length ≤ 4 on $\mathcal{S}_{n}(132)$, see that every pattern is trackable on $\mathcal{S}_{n}(132)$.
- On $\mathcal{S}_{n}(123)$, we only track patterns of length 2 and 3 and the special pattern $1 m(m-1) \cdots 2$. A simpler recursion on $\mathcal{S}_{n}(123)$ is desired.
- We adapt our method to circular permutations. We track all circular patterns of size ≤ 4 on circular permutations avoiding circular pattern 1243.

Other Results and Open Problems

- We obtained the recursion tracking all patterns of length ≤ 4 on $\mathcal{S}_{n}(132)$, see that every pattern is trackable on $\mathcal{S}_{n}(132)$.
- On $\mathcal{S}_{n}(123)$, we only track patterns of length 2 and 3 and the special pattern $1 m(m-1) \cdots 2$. A simpler recursion on $\mathcal{S}_{n}(123)$ is desired.
- We adapt our method to circular permutations. We track all circular patterns of size ≤ 4 on circular permutations avoiding circular pattern 1243.
- There are other equality of coefficients of generating functions Q_{132}^{γ} and Q_{123}^{γ} except equation (10) which we can study in the future.

Other Results and Open Problems

- We obtained the recursion tracking all patterns of length ≤ 4 on $\mathcal{S}_{n}(132)$, see that every pattern is trackable on $\mathcal{S}_{n}(132)$.
- On $\mathcal{S}_{n}(123)$, we only track patterns of length 2 and 3 and the special pattern $1 m(m-1) \cdots 2$. A simpler recursion on $\mathcal{S}_{n}(123)$ is desired.
- We adapt our method to circular permutations. We track all circular patterns of size ≤ 4 on circular permutations avoiding circular pattern 1243.
- There are other equality of coefficients of generating functions Q_{132}^{γ} and Q_{123}^{γ} except equation (10) which we can study in the future.
- We only studied classical patterns on $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$, and circular patterns on 1243.

Thank You!

