Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Counting classical patterns in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu
UC San Diego
duqiu@ucsd.edu

Based on joint work with Jeffrey Remmel

University of California, Los Angeles
January 17, 2019

Outline

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation

Introduction
Counting
Patterns in $S_{n}(132)$

Counting
Patterns in $S_{n}(123)$

Applications in Pattern
Popularity
Applications in Circular Permutations

1 Motivation

2 Introduction

3 Counting Patterns in $\mathcal{S}_{n}(132)$

4 Counting Patterns in $\mathcal{S}_{n}(123)$

5 Applications in Pattern Popularity

6 Applications in Circular Permutations

Outline

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation
Introduction
Counting
Patterns in
$S_{n}(132)$
Counting
Patterns in
$\mathcal{S}_{n}(123)$
Applications in Pattern
Popularity
Applications in Circular Permutations

1 Motivation

2 Introduction

3 Counting Patterns in $\mathcal{S}_{n}(132)$

4 Counting Patterns in $\mathcal{S}_{n}(123)$

5 Applications in Pattern Popularity

6 Applications in Circular Permutations

Motivation

Pattern

Ran Pan's Project P Project P
http://www.math.ucsd.edu/~projectp/

Problem 13: enumerate permutations in \mathcal{S}_{n} avoiding a classical pattern and a consecutive pattern at the same time.

Pan, Remmel and I worked on the distribution of consecutive patterns in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$.

Remmel and I started work on the distribution of classical patterns in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$.

Outline

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation
Introduction
Counting
Patterns in
$S_{n}(132)$
Counting
Patterns in
$S_{n}(123)$
Applications in Pattern
Popularity
Applications in Circular
Permutations

1 Motivation

2 Introduction

3 Counting Patterns in $\mathcal{S}_{n}(132)$

4 Counting Patterns in $\mathcal{S}_{n}(123)$

5 Applications in Pattern Popularity

6 Applications in Circular Permutations

Permutations, LRmins

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation

Introduction
Counting
Patterns in $S_{n}(132)$

Counting Patterns in $\mathcal{S}_{n}(123)$

Applications in Pattern Popularity

■ A permutation $\sigma=\sigma_{1} \cdots \sigma_{n}$ of $[n]=\{1, \ldots, n\}$ is a rearrangement of the numbers $1, \ldots, n$.

- The set of permutations of [n] is denoted by \mathcal{S}_{n}.

Permutations, LRmins

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation

Introduction
Counting
Patterns in $S_{n}(132)$

Counting Patterns in $S_{n}(123)$

Applications in
Pattern
Popularity

■ A permutation $\sigma=\sigma_{1} \cdots \sigma_{n}$ of $[n]=\{1, \ldots, n\}$ is a rearrangement of the numbers $1, \ldots, n$.

- The set of permutations of $[n]$ is denoted by \mathcal{S}_{n}.
$■$ We let $\operatorname{LRmin}(\sigma)$ denote the number of left to right minima of σ.

Permutations, LRmins

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation

Introduction
Counting
Patterns in $S_{n}(132)$

Counting Patterns in $\mathcal{S}_{n}(123)$

Applications in
Pattern
Popularity
Applications in Circular Permutations

■ A permutation $\sigma=\sigma_{1} \cdots \sigma_{n}$ of $[n]=\{1, \ldots, n\}$ is a rearrangement of the numbers $1, \ldots, n$.

- The set of permutations of $[n]$ is denoted by \mathcal{S}_{n}.
$■$ We let $\operatorname{LRmin}(\sigma)$ denote the number of left to right minima of σ.

3672418

Inversions, Coinversions

Pattern
distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation
Introduction
Counting
Patterns in $S_{n}(132)$

Counting Patterns in $S_{n}(123)$

Applications in Pattern
Popularity
Applications in Circular Permutations

- $\left(\sigma_{i}, \sigma_{j}\right)$ is an inversion if $i<j$ and $\sigma_{i}>\sigma_{j}$.
- $\operatorname{inv}(\sigma)$ denotes the number of inversions in σ.

Inversions, Coinversions

Pattern

Motivation

Introduction
Counting
Patterns in $\mathcal{S}_{n}(132)$

Counting Patterns in $\mathcal{S}_{n}(123)$

Applications in Pattern
Popularity
$\square\left(\sigma_{i}, \sigma_{j}\right)$ is an inversion if $i<j$ and $\sigma_{i}>\sigma_{j}$.

- $\operatorname{inv}(\sigma)$ denotes the number of inversions in σ.
$\square\left(\sigma_{i}, \sigma_{j}\right)$ is a coinversion if $i<j$ and $\sigma_{i}<\sigma_{j}$.
- $\operatorname{coinv}(\sigma)$ denotes the number of coinversions in σ.

Inversions, Coinversions

Pattern

Motivation

Introduction
Counting
Patterns in $\mathcal{S}_{n}(132)$

Counting Patterns in $S_{n}(123)$

Applications in Pattern
Popularity

- $\left(\sigma_{i}, \sigma_{j}\right)$ is an inversion if $i<j$ and $\sigma_{i}>\sigma_{j}$.
- $\operatorname{inv}(\sigma)$ denotes the number of inversions in σ.
$\square\left(\sigma_{i}, \sigma_{j}\right)$ is a coinversion if $i<j$ and $\sigma_{i}<\sigma_{j}$.
- $\operatorname{coinv}(\sigma)$ denotes the number of coinversions in σ.

$$
\begin{aligned}
& \sigma=24531 \\
& \operatorname{inv}(\sigma)=6 \quad\{(2,1),(4,3),(4,1),(5,3),(5,1),(3,1)\} \\
& \operatorname{coinv}(\sigma)=4 \quad\{(2,4),(2,5),(2,3),(4,5)\}
\end{aligned}
$$

Reduction of A Sequence

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation
Introduction
Counting
Patterns in $S_{n}(132)$

Counting
Patterns in $S_{n}(123)$

Applications ir
Pattern
Popularity
Applications in Circular Permutations

Given a sequence of distinct positive integers $w=w_{1} \ldots w_{n}$, we let the reduction (or standardization) of the sequence, $\operatorname{red}(w)$, denote the permutation of $[n]$ obtained from w by replacing the i-th smallest letter in w by i.

> Example
> If $w=4592$, then $\operatorname{red}(w)=2341$.

Classical Patterns Occurrence and Avoidance

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation

Introduction

Counting

Patterns in $S_{n}(132)$

Counting Patterns in $S_{n}(123)$

Applications in Pattern Popularity

- Given a permutation $\tau=\tau_{1} \ldots \tau_{j}$ in S_{j},

■ we say the pattern τ occurs in $\sigma=\sigma_{1} \ldots \sigma_{n} \in \mathcal{S}_{n}$ if there exist $1 \leq i_{1}<\cdots<i_{j} \leq n$ such that $\operatorname{red}\left(\sigma_{i_{1}} \ldots \sigma_{i_{j}}\right)=\tau$.

Classical Patterns Occurrence and Avoidance

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation
Introduction
Counting
Patterns in $\mathcal{S}_{n}(132)$

Counting Patterns in $S_{n}(123)$

Applications in Pattern
Popularity

- Given a permutation $\tau=\tau_{1} \ldots \tau_{j}$ in S_{j},

■ we say the pattern τ occurs in $\sigma=\sigma_{1} \ldots \sigma_{n} \in \mathcal{S}_{n}$ if there exist $1 \leq i_{1}<\cdots<i_{j} \leq n$ such that $\operatorname{red}\left(\sigma_{i_{1}} \ldots \sigma_{i_{j}}\right)=\tau$.

■ We let $\operatorname{occr}_{\tau}(\sigma)$ denote the number of τ occurrence in σ.

Classical Patterns Occurrence and Avoidance

Pattern

- Given a permutation $\tau=\tau_{1} \ldots \tau_{j}$ in S_{j},

■ we say the pattern τ occurs in $\sigma=\sigma_{1} \ldots \sigma_{n} \in \mathcal{S}_{n}$ if there exist $1 \leq i_{1}<\cdots<i_{j} \leq n$ such that $\operatorname{red}\left(\sigma_{i_{1}} \ldots \sigma_{i_{j}}\right)=\tau$.

■ We let $\operatorname{occr}_{\tau}(\sigma)$ denote the number of τ occurrence in σ.
■ We say σ avoids the pattern τ if τ does not occur in σ.

Classical Patterns Occurrence and Avoidance

Pattern

- Given a permutation $\tau=\tau_{1} \ldots \tau_{j}$ in S_{j},

■ we say the pattern τ occurs in $\sigma=\sigma_{1} \ldots \sigma_{n} \in \mathcal{S}_{n}$ if there exist $1 \leq i_{1}<\cdots<i_{j} \leq n$ such that $\operatorname{red}\left(\sigma_{i_{1}} \ldots \sigma_{i_{j}}\right)=\tau$.

■ We let $\operatorname{occr}_{\tau}(\sigma)$ denote the number of τ occurrence in σ.
■ We say σ avoids the pattern τ if τ does not occur in σ.

Example

$\pi=867932451$ avoids pattern 132, contains pattern 123. $\operatorname{occr}_{123}(\pi)=2$ since pattern occurrences are $6,7,9$ and $3,4,5$.

Classical Patterns Occurrence and Avoidance

Pattern

■ Given a permutation $\tau=\tau_{1} \ldots \tau_{j}$ in S_{j},
■ we say the pattern τ occurs in $\sigma=\sigma_{1} \ldots \sigma_{n} \in \mathcal{S}_{n}$ if there exist $1 \leq i_{1}<\cdots<i_{j} \leq n$ such that $\operatorname{red}\left(\sigma_{i_{1}} \ldots \sigma_{i_{j}}\right)=\tau$.

■ We let $\operatorname{occr}_{\tau}(\sigma)$ denote the number of τ occurrence in σ.
■ We say σ avoids the pattern τ if τ does not occur in σ.

Example

$\pi=867932451$ avoids pattern 132, contains pattern 123. $\operatorname{occr}_{123}(\pi)=2$ since pattern occurrences are $6,7,9$ and $3,4,5$.

■ τ is called a classical pattern.

Classical Patterns Occurrence and Avoidance

Pattern

■ Given a permutation $\tau=\tau_{1} \ldots \tau_{j}$ in S_{j},
■ we say the pattern τ occurs in $\sigma=\sigma_{1} \ldots \sigma_{n} \in \mathcal{S}_{n}$ if there exist $1 \leq i_{1}<\cdots<i_{j} \leq n$ such that $\operatorname{red}\left(\sigma_{i_{1}} \ldots \sigma_{i_{j}}\right)=\tau$.

■ We let $\operatorname{occr}_{\tau}(\sigma)$ denote the number of τ occurrence in σ.
■ We say σ avoids the pattern τ if τ does not occur in σ.

Example

$\pi=867932451$ avoids pattern 132, contains pattern 123. $\operatorname{occr}_{123}(\pi)=2$ since pattern occurrences are $6,7,9$ and $3,4,5$.

- τ is called a classical pattern.

■ inversion \longrightarrow pattern 21 , coinversion \longrightarrow pattern 12.

$$
\mathcal{S}_{n}(\sigma)
$$

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation

Introduction
Counting
Patterns in $\mathcal{S}_{n}(132)$

Counting Patterns in $\mathcal{S}_{n}(123)$

Applications in Pattern
Popularity

- We let $\mathcal{S}_{n}(\lambda)$ denote the set of permutations in \mathcal{S}_{n} avoiding λ.

■ Let $\Lambda=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$, then $\mathcal{S}_{n}(\Lambda)$ is the set of permutations in \mathcal{S}_{n} avoiding $\lambda_{1}, \ldots, \lambda_{r}$.

$$
\mathcal{S}_{n}(\sigma)
$$

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation

Introduction
Counting
Patterns in $\mathcal{S}_{n}(132)$

Counting
Patterns in $\mathcal{S}_{n}(123)$

Applications in Pattern
Popularity

■ We let $\mathcal{S}_{n}(\lambda)$ denote the set of permutations in \mathcal{S}_{n} avoiding λ.

■ Let $\Lambda=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$, then $\mathcal{S}_{n}(\Lambda)$ is the set of permutations in \mathcal{S}_{n} avoiding $\lambda_{1}, \ldots, \lambda_{r}$.

- $\left|\mathcal{S}_{n}(132)\right|=\left|\mathcal{S}_{n}(123)\right|=C_{n}=\frac{1}{n+1}\binom{2 n}{n}$, the $n^{\text {th }}$ Catalan number.
- C_{n} is also the number of $n \times n$ Dyck paths.

Our Problem

Pattern

Dun Qiu

Motivation

Introduction
Counting
Patterns in $\mathcal{S}_{n}(132)$

Counting
Patterns in $\mathcal{S}_{n}(123)$

Applications in
Pattern
Popularity

Given two sets of permutations $\Lambda=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$ and $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{s}\right\}$, we study the distribution of classical patterns $\gamma_{1}, \ldots, \gamma_{s}$ in $\mathcal{S}_{n}(\Lambda)$.

Especially, we study pattern τ distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$ in the case when τ is of length 3 and some special form.

Generating Function

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qu

Motivation
Introduction
Counting
Patterns in $S_{n}(132)$

Counting
Patterns in $\mathcal{S}_{n}(123)$

Applications in
Pattern
Popularity
Applications in

Circular

Permutations

For $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{s}\right\}$, we define
Generating functions $Q_{n, \wedge}^{\Gamma}, Q_{\Lambda}^{\Gamma}$

$$
\begin{aligned}
Q_{n, \Lambda}^{\Gamma}\left(x_{1}, \ldots, x_{s}\right) & =\sum_{\sigma \in \mathcal{S}_{n}(\Lambda)} x_{1}^{\operatorname{occr}_{\gamma_{1}}(\sigma)} \cdots x_{s}^{\text {ocr }_{\gamma_{s}}(\sigma)}, \text { and } \\
Q_{\Lambda}^{\Gamma}\left(t, x_{1}, \ldots, x_{s}\right) & =1+\sum_{n \geq 1} t^{n} Q_{n, \Lambda}^{\Gamma}\left(x_{1}, \ldots, x_{s}\right) \\
& =1+\sum_{n \geq 1} t^{n} \sum_{\sigma \in \mathcal{S}_{n}(\Lambda)} x_{1}^{\operatorname{ooccr}_{\gamma_{1}}(\sigma)} \cdots x_{s}^{\text {ocr }_{\gamma_{s}}(\sigma)} .
\end{aligned}
$$

Generating Function

Pattern
distribution in $\mathcal{S}_{n}(132)$ and
$\mathcal{S}_{n}(123)$
Dun Qiu

Motivation
Introduction
Counting
Patterns in $\mathcal{S}_{n}(132)$

Counting
Patterns in $\mathcal{S}_{n}(123)$

Applications in Pattern Popularity

Especially, we have

Generating functions $Q_{n, \lambda}^{\gamma}, Q_{\lambda}^{\gamma}$

$$
\begin{gathered}
Q_{n, \lambda}^{\gamma}(x)=\sum_{\sigma \in \mathcal{S}_{n}(\lambda)} x^{\operatorname{occr}_{\gamma}(\sigma)} \text { and } \\
Q_{\lambda}^{\gamma}(t, x)=1+\sum_{n \geq 1} t^{n} Q_{n, \lambda}^{\gamma}(x)=1+\sum_{n \geq 1} t^{n} \sum_{\sigma \in \mathcal{S}_{n}(\lambda)} x^{\text {occr }_{\gamma}(\sigma)} .
\end{gathered}
$$

Wilf-equivalence

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation

Introduction
Counting
Patterns in $\mathcal{S}_{n}(132)$

Counting Patterns in $S_{n}(123)$

Applications in Pattern Popularity

Given a permutation $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{n} \in \mathcal{S}_{n}$,
■ reverse : $\sigma^{r}=\sigma_{n} \ldots \sigma_{2} \sigma_{1}$,

- complement :

$$
\sigma^{c}=\left(n+1-\sigma_{1}\right)\left(n+1-\sigma_{2}\right) \ldots\left(n+1-\sigma_{n}\right),
$$

■ reverse-complement : $\sigma^{r c}=\left(\sigma^{r}\right)^{c}$,
■ inverse: σ^{-1}.

Wilf-equivalence

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation
Introduction
Counting
Patterns in $S_{n}(132)$

Counting
Patterns in $S_{n}(123)$

Applications in Pattern Popularity

Applications in Circular Permutations

Given a permutation $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{n} \in \mathcal{S}_{n}$,
■ reverse : $\sigma^{r}=\sigma_{n} \ldots \sigma_{2} \sigma_{1}$,

- complement :

$$
\sigma^{c}=\left(n+1-\sigma_{1}\right)\left(n+1-\sigma_{2}\right) \ldots\left(n+1-\sigma_{n}\right)
$$

■ reverse-complement : $\sigma^{r c}=\left(\sigma^{r}\right)^{c}$,
■ inverse: σ^{-1}.

Example

Let $\sigma=15324$, then
$\sigma^{r}=42351, \sigma^{c}=51342, \sigma^{r c}=24315, \sigma^{-1}=14352$.

Wilf-equivalence

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation
Introduction
Counting
Patterns in $S_{n}(132)$

Counting Patterns in $S_{n}(123)$

Applications in Pattern Popularity

Applications in Circular Permutations

Lemma

Given any permutation pattern γ,

$$
Q_{\lambda}^{\gamma}(t, x)=Q_{\lambda^{*}}^{\gamma^{*}}(t, x)
$$

where $*$ is $r, c, r c$ or -1 .
reason: e.g. $\sigma \in \mathcal{S}_{n}(\lambda) \longleftrightarrow \sigma^{r} \in \mathcal{S}_{n}\left(\lambda^{r}\right)$,

$$
\operatorname{occr}_{\gamma}(\sigma)=\operatorname{occr}_{\gamma^{r}}\left(\sigma^{r}\right)
$$

Wilf-equivalence

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation
Introduction
Counting
Patterns in
$S_{n}(132)$
Counting
Patterns in $S_{n}(123)$

Applications in
Pattern
Popularity

Since $123=123^{r c}=123^{-1}$ and $132=132^{-1}$, we have the following corollary.

Corollary

Given any permutation pattern γ,

$$
\begin{gathered}
Q_{123}^{\gamma}(t, x)=Q_{123}^{\gamma^{r c}}(t, x)=Q_{123}^{\gamma^{-1}}(t, x), \\
Q_{132}^{\gamma}(t, x)=Q_{132}^{\gamma^{-1}}(t, x)
\end{gathered}
$$

Wilf-equivalence

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation
Introduction
Counting
Patterns in $S_{n}(132)$

Counting Patterns in $S_{n}(123)$

Applications in

Pattern

Popularity
Applications in
Circular
Permutations

When we let γ be a pattern of length 3 ,

Corollary

There are 4 Wilf-equivalent classes for $\mathcal{S}_{n}(132)$,
(1) $Q_{132}^{123}(t, x)$,
(2) $Q_{132}^{13}(t, x)$,
(3) $Q_{132}^{231}(t, x)=Q_{132}^{312}(t, x)$,
(4) $Q_{132}^{321}(t, x)$,
and there are 3 Wilf-equivalent classes for $\mathcal{S}_{n}(123)$,
(1) $Q_{123}^{132}(t, x)=Q_{123}^{213}(t, x)$,
(2) $Q_{123}^{231}(t, x)=Q_{123}^{312}(t, x)$,
(3) $Q_{123}^{321}(t, x)$.

Method - Using Dyck Path Bijections

Pattern distribution in $\mathcal{S}_{n}(132)$ and
$\mathcal{S}_{n}(123)$
Dun Qiu

Motivation

Introduction
Counting
Patterns in $\mathcal{S}_{n}(132)$

Counting
Patterns in $\mathcal{S}_{n}(123)$

Applications in

Pattern

Popularity
Applications in Circular Permutations

An (n, n)-Dyck path is a path from $(0,0)$ to (n, n) that stays on or below the diagonal $y=x$.

The return of a Dyck path P is the smallest number $i>0$ such that P goes through the point (i, i).
Example: a (9, 9)-Dyck path.
$(0,0)$

Method - Using Dyck Path Bijections

Pattern
distribution in $\mathcal{S}_{n}(132)$ and
$\mathcal{S}_{n}(123)$
Dun Qiu
Krattenthaler's map $\Phi: S_{n}(132) \rightarrow D_{n}$.

Motivation

Introduction
Counting
Patterns in
$S_{n}(132)$
Counting
Patterns in
$\mathcal{S}_{n}(123)$
Applications in
Pattern
Popularity
Applications in
Circular
Permutations

Method - Using Dyck Path Bijections

Pattern
distribution in $\mathcal{S}_{n}(132)$ and
$\mathcal{S}_{n}(123)$
Dun Qiu
Elizalde and Deutsch's map $\Psi: \mathcal{S}_{n}(123) \rightarrow \mathcal{D}_{n}$.

Motivation

Introduction
Counting
Patterns in
$\mathcal{S}_{n}(132)$
Counting
Patterns in
$\mathcal{S}_{n}(123)$
Applications in
Pattern
Popularity
Applications in
Circular
Permutations

Method - Using Dyck Path Bijections

Pattern distribution in $\mathcal{S}_{n}(132)$ and
$\mathcal{S}_{n}(123)$
Dun Qiu

Motivation
Introduction
Counting
Patterns in $\mathcal{S}_{n}(132)$

Counting
Patterns in $\mathcal{S}_{n}(123)$

Applications in
Pattern
Popularity
Applications in Circular Permutations

Then, we the recursion of Dyck path by breaking the path at the first place it hits the diagonal to break it into 2 Dyck paths.

Let $D(x)$ be the generating function enumerating the number of Dyck paths of size n,

$$
D(x)=1+x D(x)^{2} .
$$

Recursion of Dyck path

Method - Recursive Counting for $\mathcal{S}_{n}(132)$

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation
Introduction
Counting
Patterns in $S_{n}(132)$

Counting Patterns in $\mathcal{S}_{n}(123)$

Applications in Pattern Popularity

Let $\sigma=\sigma_{1} \cdots \sigma_{n} \in \mathcal{S}_{n}(132)$ such that $\sigma_{k}=n$. The numbers $\sigma_{1}, \ldots, \sigma_{k-1}$ must be bigger than the numbers $\sigma_{k+1}, \ldots, \sigma_{n}$.

We let $A(\sigma)=\operatorname{red}\left(\sigma_{1} \cdots \sigma_{k-1}\right)$ and $B(\sigma)=\operatorname{red}\left(\sigma_{k+1} \cdots \sigma_{n}\right)$, then $A(\sigma) \in \mathcal{S}_{k-1}(132)$ and $B(\sigma) \in \mathcal{S}_{n-k}(132)$.

Outline

Pattern
distribution in
$\mathcal{S}_{n}(132)$ and
$\mathcal{S}_{n}(123)$
Dun Qiu

Motivation

Introduction
Counting
Patterns in
$S_{n}(132)$
Counting
Patterns in
$S_{n}(123)$
Applications in Pattern
Popularity
Applications in Circular Permutations

1 Motivation

2 Introduction

3 Counting Patterns in $\mathcal{S}_{n}(132)$

4 Counting Patterns in $\mathcal{S}_{n}(123)$

5 Applications in Pattern Popularity

6 Applications in Circular Permutations

Counting Length 2 pattern in $\mathcal{S}_{n}(132)$

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation

Introduction
Counting
Patterns in $\mathcal{S}_{n}(132)$

Counting
Patterns in $\mathcal{S}_{n}(123)$

Applications in Pattern Popularity

We first consider permutations that are avoiding 132 and the distribution of pattern of length 2, i.e. inv and coinv.

$$
\begin{aligned}
& \text { Let } Q_{n}\left(x_{1}, x_{2}\right):=Q_{n, 132}^{\{12,21\}}\left(x_{1}, x_{2}\right), \\
& Q\left(t, x_{1}, x_{2}\right):=Q_{132}^{\{12,21\}}\left(t, x_{1}, x_{2}\right) .
\end{aligned}
$$

Counting Length 2 pattern in $\mathcal{S}_{n}(132)$

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation

Introduction
Counting
Patterns in $\mathcal{S}_{n}(132)$

Counting
Patterns in $\mathcal{S}_{n}(123)$

Applications in

Pattern

Popularity
Applications in Circular Permutations

$$
\begin{aligned}
& \text { Let } Q_{n}\left(x_{1}, x_{2}\right):=Q_{n, 132}^{\{12,21\}}\left(x_{1}, x_{2}\right), \\
& Q\left(t, x_{1}, x_{2}\right):=Q_{132}^{\{12,21\}}\left(t, x_{1}, x_{2}\right) .
\end{aligned}
$$

Theorem (Fürlinger and Hofbauer)

$$
\begin{aligned}
Q_{0}\left(x_{1}, x_{2}\right) & =1 \\
Q_{n}\left(x_{1}, x_{2}\right) & =\sum_{k=1}^{n} x_{1}^{k-1} x_{2}^{k(n-k)} Q_{k-1}\left(x_{1}, x_{2}\right) Q_{n-k}\left(x_{1}, x_{2}\right),
\end{aligned}
$$

and

$$
Q(t, x, 1)=1+t Q(t, x, 1) \cdot Q(t x, x, 1)
$$

$Q_{n}(q, 1)$ is q-Catalan number.

Counting Length 3 pattern in $\mathcal{S}_{n}(132)$

Pattern

Dun Qiu

Motivation
Introduction
Counting
Patterns in $\mathcal{S}_{n}(132)$
Counting
Patterns in $\mathcal{S}_{n}(123)$

Applications in Pattern Popularity

Let $\Gamma_{2}=\{12,21\}$ and $\Gamma_{3}=\{123,213,231,312,321\}$ be sets of permutation patterns. We shall prove the following theorem about the function

$$
\begin{aligned}
& Q_{n, 132}^{\Gamma_{2} \cup \Gamma_{3}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right) \\
& \quad=Q_{n, 132}^{\{12,21,123,213,231,312,321\}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)
\end{aligned}
$$

Counting Length 3 pattern in $\mathcal{S}_{n}(132)$

Pattern

Motivation

Introduction
Counting
Patterns in $\mathcal{S}_{n}(132)$

Counting
Patterns in $\mathcal{S}_{n}(123)$

Applications in

Pattern

Popularity

Theorem

The function $Q_{n, 132}^{\Gamma_{2} \cup \Gamma_{3}}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)$ satisfies the recursion

$$
Q_{0}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)=1,
$$

$$
\begin{aligned}
& Q_{n}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)=\sum_{k=1}^{n} x_{1}^{k-1} x_{2}^{k(n-k)} x_{5}^{(k-1)(n-k)} \\
& \cdot Q_{k-1}\left(x_{1} x_{3} x_{5}^{(n-k)},\right.\left.x_{2} x_{4} x_{7}^{(n-k)}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right) \\
& \cdot Q_{n-k}\left(x_{1} x_{6}^{k}, x_{2} x_{7}^{k}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right) .
\end{aligned}
$$

Counting Length 3 pattern in $\mathcal{S}_{n}(132)$

Pattern
distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation
Introduction
Counting
Patterns in $S_{n}(132)$

Counting Patterns in $\mathcal{S}_{n}(123)$

Applications in Pattern
Popularity
Applications in Circular Permutations

Let

$$
P_{n}^{\gamma}(q, x):=\sum_{\sigma \in \mathcal{S}_{n}(132)} q^{\operatorname{coinv}(\sigma)} x^{\operatorname{occr}_{\gamma}(\sigma)},
$$

then

$$
P_{0}^{\gamma}(q, x)=1 \quad \text { for each pattern } \gamma, \text { and }
$$

Counting Length 3 pattern in $\mathcal{S}_{n}(132)$

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation
Introduction
Counting
Patterns in
$\mathcal{S}_{n}(132)$
Counting
Patterns in $\mathcal{S}_{n}(123)$

Applications in Pattern Popularity

Corollary

We have the following equations.

$$
\begin{aligned}
& P_{n}^{123}(q, x)=\sum_{k=1}^{n} q^{k-1} P_{k-1}(q x, x) P_{n-k}(q, x), \\
& P_{n}^{213}(q, x)=\sum_{k=1}^{n} q^{k-1} x^{\frac{(k-1)(k-2)}{2}} P_{k-1}\left(\frac{q}{x}, x\right) P_{n-k}(q, x), \\
& P_{n}^{231}(q, x)=\sum_{k=1}^{n} q^{k-1} x^{(k-1)(n-k)} P_{k-1}\left(q x^{(n-k)}, x\right) P_{n-k}(q, x), \\
& P_{n}^{321}(q, x)=\sum_{k=1}^{n} q^{k-1} x^{\frac{(n-k)(k n-4 k+2)}{2}} P_{k-1}\left(\frac{q}{x^{n-k}}, x\right) P_{n-k}\left(\frac{q}{x^{k}}, x\right) .
\end{aligned}
$$

Track all patterns of length 2 and 3 in $\mathcal{S}_{n}(132)$

Pattern

 distribution in $\mathcal{S}_{n}(132)$ and```
 Expansion of }\mp@subsup{Q}{n,132}{{12,21,123,213,231,312,321}}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{},\mp@subsup{x}{4}{},\mp@subsup{x}{5}{},\mp@subsup{x}{6}{},\mp@subsup{x}{7}{}
```

Motivation
Introduction

## Counting

Patterns in $\mathcal{S}_{n}(132)$

Counting Patterns in $S_{n}(123)$

Applications in Pattern
Popularity
Applications in Circular Permutations

$$
\begin{aligned}
& Q_{n, 132}^{12,21,123,213,231,312,321}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right) \\
& 1 \\
& 1 \\
& x_{1}+x_{2} \\
& x_{1}^{3} x_{7}+x_{1}^{2} x_{2} x_{5}+x_{1}^{2} x_{2} x_{6}+x_{1} x_{2}^{2} x_{4}+x_{2}^{3} x_{3} \\
& x_{1}^{6} x_{7}^{4}+x_{1}^{5} x_{2} x_{5}^{2} x_{7}^{2}+x_{1}^{5} x_{2} x_{5} x_{6} x_{7}^{2}+x_{1}^{5} x_{2} x_{6}^{2} x_{7}^{2}+x_{1}^{4} x_{2}^{2} x_{4} x_{5}^{2} x_{7}+x_{1}^{4} x_{2}^{2} x_{4} x_{6}^{2} x_{7}+x_{1}^{4} x_{2}^{2} x_{5}^{2} x_{6}^{2} \\
& +x_{1}^{3} x_{2}^{3} x_{3} x_{5}^{3}+x_{1}^{3} x_{2}^{3} x_{3} x_{6}^{3}+x_{1}^{3} x_{2}^{3} x_{4}^{3} x_{7}+x_{1}^{2} x_{2}^{4} x_{3} x_{4}^{2} x_{5}+x_{1}^{2} x_{2}^{4} x_{3} x_{4}^{2} x_{6}+x_{1} x_{2}^{5} x_{3}^{2} x_{4}^{2}+x_{2}^{6} x_{3}^{4} \\
& 5 x_{1}^{10} x_{7}^{10}+x_{1}^{9} x_{2} x_{5}^{3} x_{7}^{7}+x_{1}^{9} x_{2} x_{5}^{2} x_{6} x_{7}^{7}+x_{1}^{9} x_{2} x_{5} x_{6}^{2} x_{7}^{7}+x_{1}^{9} x_{2} x_{6}^{3} x_{7}^{7}+x_{1}^{8} x_{2}^{2} x_{4} x_{5}^{4} x_{7}^{5}+x_{1}^{8} x_{2}^{2} x_{4} x_{5}^{2} x_{6}^{2} x_{7}^{5} \\
& +x_{1}^{8} x_{2}^{2} x_{4} x_{6}^{4} x_{7}^{5}+x_{1}^{8} x_{2}^{2} x_{5}^{4} x_{6}^{2} x_{7}^{4}+x_{1}^{8} x_{2}^{2} x_{5}^{3} x_{6}^{3} x_{7}^{4}+x_{1}^{8} x_{2}^{2} x_{5}^{2} x_{6}^{4} x_{7}^{4}+x_{1}^{7} x_{2}^{3} x_{3} x_{5}^{6} x_{7}^{3}+x_{1}^{7} x_{2}^{3} x_{3} x_{5}^{3} x_{6}^{3} x_{7}^{3} \\
& +x_{1}^{7} x_{2}^{3} x_{3} x_{6}^{6} x_{7}^{3}+x_{1}^{7} x_{2}^{3} x_{4}^{3} x_{5}^{3} x_{7}^{4}+x_{1}^{7} x_{2}^{3} x_{4}^{3} x_{6}^{3} x_{7}^{4}+x_{1}^{7} x_{2}^{3} x_{4} x_{5}^{4} x_{6}^{3} x_{7}^{2}+x_{1}^{7} x_{2}^{3} x_{4} x_{5}^{3} x_{6}^{4} x_{7}^{2}+x_{1}^{6} x_{2}^{4} x_{3} x_{4}^{2} x_{5}^{5} x_{7}^{2} \\
& +x_{1}^{6} x_{2}^{4} x_{3} x_{4}^{2} x_{5}^{4} x_{6} x_{7}^{2}+x_{1}^{6} x_{2}^{4} x_{3} x_{4}^{2} x_{5} x_{6}^{4} x_{7}^{2}+x_{1}^{6} x_{2}^{4} x_{3} x_{4}^{2} x_{6}^{5} x_{7}^{2}+x_{1}^{6} x_{2}^{4} x_{3} x_{5}^{6} x_{6}^{3}+x_{1}^{6} x_{2}^{4} x_{3} x_{5}^{3} x_{6}^{6} \\
& +x_{1}^{6} x_{2}^{4} x_{4}^{6} x_{7}^{4}+x_{1}^{5} x_{2}^{5} x_{3}^{2} x_{4}^{2} x_{5}^{5} x_{7}+x_{1}^{5} x_{2}^{5} x_{3}^{2} x_{4}^{2} x_{6}^{5} x_{7}+x_{1}^{5} x_{2}^{5} x_{3} x_{4}^{5} x_{5}^{2} x_{7}^{2}+x_{1}^{5} x_{2}^{5} x_{3} x_{4}^{5} x_{5} x_{6} x_{7}^{2} \\
& +x_{1}^{5} x_{2}^{5} x_{3} x_{4}^{5} x_{6}^{2} x_{7}^{2}+x_{1}^{4} x_{2}^{6} x_{3}^{4} x_{5}^{6}+x_{1}^{4} x_{2}^{6} x_{3}^{4} x_{6}^{6}+x_{1}^{4} x_{2}^{6} x_{3}^{2} x_{4}^{5} x_{5}^{2} x_{7}+x_{1}^{4} x_{2}^{6} x_{3}^{2} x_{4}^{5} x_{6}^{2} x_{7}+x_{1}^{4} x_{2}^{6} x_{3}^{2} x_{4}^{4} x_{5}^{2} x_{6}^{2} \\
& +x_{1}^{3} x_{2}^{7} x_{3}^{4} x_{4}^{3} x_{5}^{3}+x_{1}^{3} x_{2}^{7} x_{3}^{4} x_{4}^{3} x_{6}^{3}+x_{1}^{3} x_{2}^{7} x_{3}^{3} x_{4}^{6} x_{7}+x_{1}^{2} x_{2}^{8} x_{3}^{5} x_{4}^{4} x_{5}+x_{1}^{2} x_{2}^{8} x_{3}^{5} x_{4}^{4} x_{6}+x_{1} x_{2}^{9} x_{3}^{7} x_{4}^{3}+x_{2}^{10} x_{3}^{10}
\end{aligned}
$$

## Track all patterns of length 2, 3 and 4 in $\mathcal{S}_{n}(132)$

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

## Motivation

Introduction
Counting
Patterns in $\mathcal{S}_{n}(132)$

Counting Patterns in $\mathcal{S}_{n}(123)$

Applications in Pattern
Popularity
Applications in Circular Permutations

Let $\Gamma_{4}=\mathcal{S}_{4}(132)$. We want to compute $Q_{n, 132}^{\Gamma_{2} \cup \Gamma_{3} \cup \Gamma_{4}}\left(x_{1}, \ldots, x_{21}\right)$. We shall do a refinement:

## Track all patterns of length 2, 3 and 4 in $\mathcal{S}_{n}(132)$

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

## Motivation

Introduction
Counting
Patterns in $\mathcal{S}_{n}(132)$

Counting Patterns in $\mathcal{S}_{n}(123)$

Applications in
Pattern
Popularity

Let $\Gamma_{4}=\mathcal{S}_{4}(132)$. We want to compute $Q_{n, 132}^{\Gamma_{2} \cup \Gamma_{3} \cup \Gamma_{4}}\left(x_{1}, \ldots, x_{21}\right)$. We shall do a refinement:

$$
Q_{n, i}\left(x_{1}, \ldots, x_{19}\right):=\left.Q_{n, 132}^{\Gamma_{2} \cup \Gamma_{3} \cup \Gamma_{4}}\left(x, 1, x_{1}, \ldots, x_{19}\right)\right|_{x^{i}},
$$

then

$$
Q_{n, 132}^{\Gamma_{2} \cup \Gamma_{3} \cup \Gamma_{4}}\left(x_{1}, \ldots, x_{21}\right)=\sum_{i=0}^{\binom{n}{2}} x_{1}^{i} x_{2}^{\binom{n}{2}-i} Q_{n, i}\left(x_{3}, \ldots, x_{21}\right) .
$$

## Track all patterns of length 2, 3 and 4 in $\mathcal{S}_{n}(132)$

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

## Motivation

Introduction
Counting
Patterns in $\mathcal{S}_{n}(132)$

Counting Patterns in $S_{n}(123)$

Applications in Pattern
Popularity
Applications in Circular Permutations

## Theorem

$$
\begin{aligned}
& Q_{0,0}\left(x_{1}, \ldots, x_{5}, y_{1}, \ldots, y_{14}\right)=1 \\
& Q_{n, i}\left(x_{1}, \ldots, x_{5}, y_{1}, \ldots, y_{14}\right)=0 \text { for } i<0 \text { or } i>\binom{n}{2}, \text { and }
\end{aligned}
$$

## Track all patterns of length 2, 3 and 4 in $\mathcal{S}_{n}(132)$

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation
Introduction
Counting
Patterns in $\mathcal{S}_{n}(132)$

Counting Patterns in $\mathcal{S}_{n}(123)$

Applications in
Pattern
Popularity
Applications in Circular Permutations

## Theorem

$$
\begin{aligned}
& Q_{0,0}\left(x_{1}, \ldots, x_{5}, y_{1}, \ldots, y_{14}\right)=1, \\
& Q_{n, i}\left(x_{1}, \ldots, x_{5}, y_{1}, \ldots, y_{14}\right)=0 \text { for } i<0 \text { or } i>\binom{n}{2} \text {, and } \\
& Q_{n, i}\left(x_{1}, \ldots, x_{5}, y_{1}, \ldots, y_{14}\right)=\sum_{k=1}^{n} \sum_{j=0}^{i+1-k} x_{1}^{j} x_{2}^{\binom{k-1}{2}-j} \\
& x_{3}^{(n-k)(k+j-1)} x_{4}^{k(i+1-k-j)} x_{5}^{(n-k)\left(\binom{k-1}{2}-j\right)+k\left(\binom{n-k}{2}+k+j-i-1\right)} \\
& y_{4}^{j(n-k)} y_{7}^{\left(\binom{k-1}{2}-j\right)(n-k)} y_{8}^{(j+k-1)(i+1-k-j)} y_{9}^{(j+k-1)\left(\binom{n-k}{2}+k+j-i-1\right)} \\
& y_{13}^{\left(\binom{k-1}{2}-j\right)(i+1-k-j)} y_{14}^{\left.\left(\left({ }_{2}^{k-1}\right)-j\right)\left(\binom{n-k}{2}+k+j-i-1\right)\right)} \cdot Q_{k-1, j}\left(x_{1} y_{1} y_{4}^{n-k}\right. \text {, } \\
& \left.x_{2} y_{2} y_{7}^{n-k}, x_{3} y_{3} y_{9}^{n-k}, x_{4} y_{5} y_{12}^{n-k}, x_{5} y_{6} y_{14}^{n-k}, y_{1}, \ldots, y_{14}\right) \\
& \text { - } Q_{n-k, i+1-k-j}\left(x_{1} y_{10}^{k}, x_{2} y_{11}^{k}, x_{3} y_{12}^{k}, x_{4} y_{13}^{k}, x_{5} y_{14}^{k}, y_{1}, \ldots, y_{14}\right) \text {. }
\end{aligned}
$$

## Special Case: $\gamma=1 \cdots m$ for $\mathcal{S}_{n}(132)$

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

## Dun Qiu

## Motivation

Introduction
Counting
Patterns in $\mathcal{S}_{n}(132)$
Counting Patterns in $\mathcal{S}_{n}(123)$

Applications in Pattern
Popularity
Applications in Circular Permutations

Given $m \geq 2$ and $n \geq 0$, we let

$$
Q_{n, 132}^{(m)}\left(x_{2}, x_{3}, \ldots, x_{m}\right):=\sum_{\sigma \in \mathcal{S}_{n}(132)} x_{2}^{\mathrm{occr}_{12}(\sigma)} x_{3}^{\mathrm{occr}_{123}(\sigma)} \cdots x_{m}^{\mathrm{occr}_{12 \cdots m}(\sigma)}
$$

$$
Q_{132}^{(m)}\left(t, x_{2}, x_{3}, \ldots, x_{m}\right):=\sum_{n \geq 0} t^{n} Q_{n, 132}^{(m)}\left(x_{2}, x_{3}, \ldots, x_{m}\right)
$$

## Special Case: $\gamma=1 \cdots m$ for $\mathcal{S}_{n}(132)$

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation
Introduction
Counting
Patterns in $\mathcal{S}_{n}(132)$

Counting
Patterns in $\mathcal{S}_{n}(123)$

Applications in Pattern
Popularity
Applications in Circular Permutations

## Theorem

$$
\begin{aligned}
& Q_{n, 132}^{(m)}\left(x_{2}, \ldots, x_{m}\right)=\sum_{k=1}^{n} x_{2}^{k-1} \\
& Q_{k-1,132}^{(m)}\left(x_{2} x_{3}, x_{3} x_{4}, \ldots, x_{m-1} x_{m}, x_{m}\right) Q_{n-k, 132}^{(m)}\left(x_{2}, \ldots, x_{m}\right) \\
& Q_{132}^{(m)}\left(t, x_{2}, \ldots, x_{m}\right)=1+t \\
& Q_{132}^{(m)}\left(t x_{2}, x_{2} x_{3}, x_{3} x_{4}, \ldots, x_{m-1} x_{m}, x_{m}\right) \cdot Q_{132}^{(m)}\left(t, x_{2}, \ldots, x_{m}\right)
\end{aligned}
$$

## Outline

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

## Motivation

Introduction
Counting
Patterns in $S_{n}(132)$

Counting Patterns in $\mathcal{S}_{n}(123)$

Applications in Pattern
Popularity
Applications in Circular Permutations

## 1 Motivation

## 2 Introduction

3 Counting Patterns in $\mathcal{S}_{n}(132)$

4 Counting Patterns in $\mathcal{S}_{n}(123)$

5 Applications in Pattern Popularity

6 Applications in Circular Permutations

## Counting Length 3 pattern in $\mathcal{S}_{n}(123)$

Pattern

## Motivation

Introduction
Counting
Patterns in $S_{n}(132)$

Counting
Patterns in
$\mathcal{S}_{n}(123)$
Applications in
Pattern
Popularity
Applications in Circular Permutations

We also get nice recursions for patterns 132 and 231 distributions in $\mathcal{S}_{n}(123)$.

Theorem (when $\gamma=132$ )
Let $Q_{n, 123}^{132}(s, q, x)=\sum_{\sigma \in \mathcal{S}_{n}(123)} s^{L R \min (\sigma)} q^{\operatorname{coinv}(\sigma)} x^{\mathrm{occr}_{132}(\sigma)}$, then we have the following recursions,
$Q_{0,123}^{132}(s, q, x)=1$,
$Q_{n, 123}^{132}(s, q, x)=s Q_{n-1}+\sum_{k=2}^{n} Q_{k-1}(s q, q x, x) Q_{n-k}(s, q, x)$.

## Counting Length 3 pattern in $\mathcal{S}_{n}(123)$

Pattern

## Motivation

Introduction
Counting
Patterns in $S_{n}(132)$

Counting
Patterns in
$\mathcal{S}_{n}(123)$
Applications in
Pattern
Popularity
Applications in Circular
Permutations

Given $\sigma \in \mathcal{S}_{n}(123)$, we let $\operatorname{linv}(\sigma)$ be the number of pairs $(i, j)$ such that $\sigma_{i}$ is a left-to-right minimum, $\sigma_{j}$ is not a left-to-right minimum and $\sigma_{i}>\sigma_{j}$.

## Counting Length 3 pattern in $\mathcal{S}_{n}(123)$

Pattern distribution in $\mathcal{S}_{n}(132)$ and
$\mathcal{S}_{n}(123)$
Dun Qiu

## Motivation

Introduction
Counting
Patterns in $S_{n}(132)$

Counting
Patterns in $\mathcal{S}_{n}(123)$

Applications in
Pattern
Popularity
Applications in Circular Permutations

Given $\sigma \in \mathcal{S}_{n}(123)$, we let $\operatorname{linv}(\sigma)$ be the number of pairs $(i, j)$ such that $\sigma_{i}$ is a left-to-right minimum, $\sigma_{j}$ is not a left-to-right minimum and $\sigma_{i}>\sigma_{j}$. We define

$$
\begin{aligned}
D_{n}(s, q, x, y) & :=\sum_{\sigma \in \mathcal{S}_{n}(123)} s^{\operatorname{LRmin}(\sigma)} q^{\operatorname{occr}_{12}(\sigma)} x^{\operatorname{linv}(\sigma)} y^{\operatorname{occr}_{231}(\sigma)}, \\
D_{n, k}(q, x, y) & :=\sum_{\sigma \in \mathcal{S}_{n}(123), \operatorname{LRmin}(\sigma)=k} q^{\operatorname{occr}_{12}(\sigma)} x^{\operatorname{linv}(\sigma)} y^{\operatorname{occc}_{231}(\sigma)} .
\end{aligned}
$$

## Counting Length 3 pattern in $\mathcal{S}_{n}(123)$

Pattern

## Theorem

$$
\begin{aligned}
& D_{0}(s, q, x, y)=D_{0,0}(q, x, y)=1 . \text { For any } n, k \geq 1 \\
& D_{n, 1}(q, x, y)=q^{n-1}, D_{n, n}(q, x, y)=1 \\
& D_{n, k}(q, x, y)=0 \text { for } k>n, \text { and }
\end{aligned}
$$

$$
\begin{array}{r}
D_{n, k}(q, x, y)=x^{n-k} D_{n-1, k-1}(q, x, y)+q^{k} D_{n-1, k}(q, x y, y) \\
+\sum_{i=2}^{n-1} \sum_{j=\max (1, k+i-n)}^{\min (i-1, k-1)} q^{j} x^{j(n-i-k+j)} y^{j(n-i)} \\
\cdot D_{i-1, j}\left(q y^{n-i}, x y, y\right) D_{n-i, k-j}(q, x, y) .
\end{array}
$$

## Special Case: $\gamma=1 \cdots m$ for $\mathcal{S}_{n}(123)$

Pattern
distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

## Motivation

Introduction
Counting
Patterns in $S_{n}(132)$

Counting
Patterns in $\mathcal{S}_{n}(123)$
Applications in Pattern
Popularity
Applications in Circular Permutations

We define

$$
\begin{aligned}
& Q_{n, 123}^{(m)}\left(s, x_{2}\right. \\
&\left., \ldots, x_{m}\right):=\sum_{\sigma \in \mathcal{S}_{n}(123)} s^{\operatorname{LRmin}(\sigma)} x_{2}^{\operatorname{occr}_{12}(\sigma)} \cdots x_{m}^{\operatorname{occr}_{1 m(m-1) \ldots 2}(\sigma)}, \\
& Q_{123}^{(m)}\left(t, s, x_{2}, \ldots, x_{m}\right):=\sum_{n \geq 0} t^{n} Q_{n, 123}\left(s, x_{2}, x_{3}, \ldots, x_{m}\right) .
\end{aligned}
$$

## Special Case: $\gamma=1 \cdots m$ for $\mathcal{S}_{n}(132)$

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation
Introduction
Counting
Patterns in
$\mathcal{S}_{n}(132)$
Counting
Patterns in $\mathcal{S}_{n}(123)$

Applications in

## Pattern

Popularity

## Theorem

$$
\begin{aligned}
& Q_{n, 123}^{(m)}\left(s, x_{2}, \ldots, x_{m}\right)=s Q_{n-1,123}^{(m)}\left(s, x_{2}, \ldots, x_{m}\right) \\
& +\sum_{k=2}^{n} Q_{k-1,123}^{(m)}\left(s x_{2}, x_{2} x_{3}, x_{3} x_{4}, \ldots, x_{m-1} x_{m}, x_{m}\right) \\
& \cdot Q_{n-k, 123}^{(m)}\left(s, x_{2}, \ldots, x_{m}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& Q_{123}^{(m)}\left(t, s, x_{2}, \ldots, x_{m}\right)=1+t(s-1) Q_{123}^{(m)}\left(t, s, x_{2}, \ldots, x_{m}\right) \\
&+t Q_{123}^{(m)}\left(t, s x_{2}, x_{2} x_{3}, x_{3} x_{4}, \ldots, x_{m-1} x_{m}, x_{m}\right) \\
& \cdot Q_{123}^{(m)}\left(t, s, x_{2}, \ldots, x_{m}\right)
\end{aligned}
$$

## An equality between $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Pattern
$\mathcal{S}_{n}(123)$
Dun Qiu

Motivation
Introduction
Counting
Patterns in
$\mathcal{S}_{n}(132)$
Counting
Patterns in
$\mathcal{S}_{n}(123)$
Applications in
Pattern
Popularity

By looking at the coefficients of the generating functions, we find a coincidence among $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$. We have the following theorem.

## Theorem

For any nonnegative integers $i<j$,

$$
\left[t^{n} x^{i}\right]_{Q_{132}^{11 \ldots j}(t, x)}=\left[t^{n} x^{i}\right]_{Q_{123}^{1 j}(\ldots 2}(t, x) .
$$

## Outline

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

## Motivation

Introduction
Counting
Patterns in $S_{n}(132)$

Counting
Patterns in
$S_{n}(123)$
Applications in Pattern
Popularity
Applications in Circular Permutations

## 1 Motivation

## 2 Introduction

## 3 Counting Patterns in $\mathcal{S}_{n}(132)$

4 Counting Patterns in $\mathcal{S}_{n}(123)$

6 Applications in Circular Permutations

## Applications in Pattern Popularity

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

## Motivation

Introduction
Counting
Patterns in $S_{n}(132)$

Counting Patterns in $S_{n}(123)$

Applications in Pattern
Popularity

Let $S$ be a set of permutations and $\gamma$ be a permutation pattern. The popularity of $\gamma$ in $S, f_{S}(\gamma)$, is defined by

$$
f_{S}(\gamma):=\sum_{\sigma \in S} \operatorname{occr}(\gamma)
$$

## Applications in Pattern Popularity

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

## Motivation

Introduction
Counting
Patterns in $S_{n}(132)$

Counting Patterns in $\mathcal{S}_{n}(123)$

Applications in Pattern
Popularity

$$
\begin{aligned}
F_{\gamma}(t) & :=\sum_{n \geq 0} f_{\mathcal{S}_{n}(132)}(\gamma) t^{n} \quad \text { and } \\
G_{\gamma}(t) & :=\sum_{n \geq 0} f_{\mathcal{S}_{n}(123)}(\gamma) t^{n},
\end{aligned}
$$

## Applications in Pattern Popularity

Pattern distribution in $\mathcal{S}_{n}(132)$ and
$\mathcal{S}_{n}(123)$
Dun Qiu

Motivation

Introduction
Counting
Patterns in
$S_{n}(132)$
Counting
Patterns in $S_{n}(123)$

Applications in Pattern
Popularity
Applications in Circular Permutations

Bóna and Homberger studied the popularity of length 2 or 3 patterns in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$.

## Theorem (Bóna and Homberger)

Let $C(t):=\sum_{n \geq 0} C_{n} t^{n}$ be the generating function of Catalan numbers. Then

$$
\begin{aligned}
F_{12}(t) & =\frac{t^{2} C^{3}(t)}{(1-2 t C(t))^{2}} \\
G_{12}(t) & =\frac{t C^{2}(t)}{1-2 t C(t)}
\end{aligned}
$$

## Applications in Pattern Popularity

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation
Introduction
Counting
Patterns in $\mathcal{S}_{n}(132)$

Counting
Patterns in $\mathcal{S}_{n}(123)$

Applications in Pattern Popularity

Our results implies the following.

## Theorem

Let $m>2$ be an integer. Then

$$
\begin{aligned}
& F_{12 \cdots m}(t)=\frac{t C(t) F_{12 \cdots(m-1)}(t)}{1-2 t C(t)}, \quad \text { and } \\
& G_{1 m \cdots 2}(t)=\frac{t C(t) G_{1(m-1) \cdots 2}(t)}{1-2 t C(t)} .
\end{aligned}
$$

## Outline

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

## Motivation

Introduction
Counting
Patterns in
$S_{n}(132)$
Counting
Patterns in
$S_{n}(123)$
Applications in Pattern
Popularity
Applications in Circular
Permutations

## 1 Motivation

## 2 Introduction

## 3 Counting Patterns in $\mathcal{S}_{n}(132)$

4 Counting Patterns in $\mathcal{S}_{n}(123)$

5 Applications in Pattern Popularity

6 Applications in Circular Permutations


## Circular Permutation Pattern Distribution

Pattern

Motivation
Introduction
Counting
Patterns in $S_{n}(132)$

Counting Patterns in $S_{n}(123)$

Applications in Pattern
Popularity
Applications in Circular Permutations

■ Circular permutations: permutations with one cycle. $\mathcal{C S}_{n}$ : the set of size $n$ circular permutations.

## Circular Permutation Pattern Distribution

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation
Introduction
Counting
Patterns in $\mathcal{S}_{n}(132)$

Counting Patterns in $S_{n}(123)$

Applications in Pattern
Popularity
Applications in Circular Permutations

■ Circular permutations: permutations with one cycle. $\mathcal{C S}_{n}$ : the set of size $n$ circular permutations.

- $\sigma=\left(\sigma_{1} \cdots \sigma_{n}\right) \in \mathcal{C} \mathcal{S}_{n}$ can also be expressed as $\left(\sigma_{i} \cdots \sigma_{n} \sigma_{1} \cdots \sigma_{i-1}\right)$ for any $i=1, \ldots, n$.


## Circular Permutation Pattern Distribution

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation
Introduction
Counting
Patterns in $\mathcal{S}_{n}(132)$

Counting
Patterns in $\mathcal{S}_{n}(123)$

Applications in Pattern Popularity

Applications in Circular Permutations

■ Circular permutations: permutations with one cycle. $\mathcal{C S}_{n}$ : the set of size $n$ circular permutations.

■ $\sigma=\left(\sigma_{1} \cdots \sigma_{n}\right) \in \mathcal{C} \mathcal{S}_{n}$ can also be expressed as $\left(\sigma_{i} \cdots \sigma_{n} \sigma_{1} \cdots \sigma_{i-1}\right)$ for any $i=1, \ldots, n$.

■ $\operatorname{coccr}_{\gamma}(\sigma)$ : total occurrence of $\gamma$ in all expressions $\sigma_{i} \cdots \sigma_{n} \sigma_{1} \cdots \sigma_{i-1}$ for any $i=1, \ldots, n$.

## Circular Permutation Pattern Distribution

Pattern distribution in $\mathcal{S}_{n}(132)$ and
$\mathcal{S}_{n}(123)$
Dun Qiu

Motivation
Introduction
Counting
Patterns in
$S_{n}(132)$
Counting
Patterns in $S_{n}(123)$

Applications in Pattern
Popularity
Applications in Circular
Permutations

■ Circular permutations: permutations with one cycle. $\mathcal{C S}_{n}$ : the set of size $n$ circular permutations.

■ $\sigma=\left(\sigma_{1} \cdots \sigma_{n}\right) \in \mathcal{C} \mathcal{S}_{n}$ can also be expressed as $\left(\sigma_{i} \cdots \sigma_{n} \sigma_{1} \cdots \sigma_{i-1}\right)$ for any $i=1, \ldots, n$.

- $\operatorname{coccr}_{\gamma}(\sigma)$ : total occurrence of $\gamma$ in all expressions $\sigma_{i} \cdots \sigma_{n} \sigma_{1} \cdots \sigma_{i-1}$ for any $i=1, \ldots, n$.
- $\mathcal{C} \mathcal{S}_{n}(\lambda)$ when $|\lambda|=1,2$ or 3 are trivial.

■ By symmetry, we only need to study circular pattern distribution in $\mathcal{C} \mathcal{S}_{n}$ (1234), $\mathcal{C} \mathcal{S}_{n}(1243)$ and $\mathcal{C} \mathcal{S}_{n}(1324)$ when $|\lambda|=4$.

## Circular Pattern Distribution in $\mathcal{C S}_{n}(1243)$

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation
Introduction
Counting
Patterns in $S_{n}(132)$

Counting Patterns in $S_{n}(123)$

Applications in Pattern Popularity

Applications in Circular Permutations

Let $P_{n, 1243}\left(y_{123}, y_{132}, y_{1234}, y_{1324}, y_{1342}, y_{1423}, y_{1432}\right):=$

$$
\begin{aligned}
& \sum_{\sigma \in \mathcal{C S}}^{n}(1243) \\
& y_{123}^{\operatorname{coccr}_{123}(\sigma)} y_{132}^{\operatorname{coccr}_{132}(\sigma)} y_{1234}^{\operatorname{coccr}_{1234}(\sigma)} y_{1324}^{\operatorname{coccr}_{1324}(\sigma)} \\
& y_{1342}^{\operatorname{coccr}_{1342}(\sigma)} y_{1423}^{\operatorname{coccr}_{1423}(\sigma)} y_{1432}^{\operatorname{coccr}_{1432}(\sigma)}
\end{aligned}
$$

## Circular Pattern Distribution in $\mathcal{C S}_{n}(1243)$

Pattern distribution in $\mathcal{S}_{n}(132)$ and
$\mathcal{S}_{n}(123)$
Dun Qiu

Motivation Introduction

Counting Patterns in $S_{n}(132)$

Counting Patterns in $S_{n}(123)$

Applications in Pattern Popularity

Applications in Circular
Permutations

Let $P_{n, 1243}\left(y_{123}, y_{132}, y_{1234}, y_{1324}, y_{1342}, y_{1423}, y_{1432}\right):=$

$$
\begin{aligned}
\sum_{\sigma \in \mathcal{C S}_{n}(1243)} y_{123}^{\operatorname{coccr}_{123}(\sigma)} & y_{132}^{\operatorname{coccr}_{132}(\sigma)} y_{1234}^{\operatorname{coccr}_{1234}(\sigma)} y_{1324}^{\operatorname{coccr}_{1324}(\sigma)} \\
\cdot & y_{1342}^{\operatorname{coccr}_{1342}(\sigma)} y_{1423}^{\operatorname{coccr}_{1423}(\sigma)} y_{1432}^{\operatorname{coccr}_{1432}(\sigma)}
\end{aligned}
$$

## Theorem

For any $n \geq 1$,
$P_{n, 1243}\left(y_{132}, y_{1234}, y_{1324}, y_{1342}, y_{1423}, y_{1432}\right)$
$=Q_{n-1,132}^{\Gamma_{2} \cup \Gamma_{3} \cup{ }_{4}}\left(y_{123}, y_{132}, y_{123} y_{1234}, y_{132} y_{1324}, y_{123} y_{1342}\right.$,
$y_{123} y_{1423}, y_{132} y_{1432}, y_{1234}, y_{1342}, y_{1423}, y_{1234}, 0, y_{1432}$,
$\left.y_{1324}, y_{1234}, y_{1342}, y_{1234}, y_{1342}, y_{1423}, 0, y_{1432}\right)$.

## Circular Pattern Distribution in $\mathcal{C S}_{n}(1324)$

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation
Introduction
Counting
Patterns in $S_{n}(132)$

Counting Patterns in $S_{n}(123)$

Applications in Pattern Popularity

Applications in Circular Permutations

Let $P_{n, 1324}\left(y_{123}, y_{132}, y_{1234}, y_{1243}, y_{1342}, y_{1423}, y_{1432}\right):=$

$$
\begin{aligned}
\sum_{\sigma \in \mathcal{C S}_{n}(1324)} y_{123}^{\operatorname{coccr}_{123}(\sigma)} & y_{132}^{\operatorname{coccr}_{132}(\sigma)} y_{1234}^{\operatorname{coccr}_{1234}(\sigma)} y_{1243}^{\operatorname{coccr}_{1243}(\sigma)} \\
& \cdot y_{1342}^{\operatorname{coccr}_{1342}(\sigma)} y_{1423}^{\operatorname{coccr}_{1423}(\sigma)} y_{1432}^{\operatorname{coccr}_{1432}(\sigma)}
\end{aligned}
$$

## Circular Pattern Distribution in $\mathcal{C S}_{n}(1324)$

Pattern distribution in $\mathcal{S}_{n}(132)$ and
$\mathcal{S}_{n}(123)$
Dun Qiu

Motivation Introduction

Counting Patterns in $S_{n}(132)$

Counting Patterns in $S_{n}(123)$

Applications in Pattern Popularity

Applications in Circular Permutations

Let $P_{n, 1324}\left(y_{123}, y_{132}, y_{1234}, y_{1243}, y_{1342}, y_{1423}, y_{1432}\right):=$

$$
\begin{aligned}
\sum_{\sigma \in \mathcal{C S}_{n}(1324)} y_{123}^{\operatorname{coccr}_{123}(\sigma)} & y_{132}^{\operatorname{coccr}_{132}(\sigma)} y_{1234}^{\operatorname{coccr}_{1234}(\sigma)} y_{1243}^{\operatorname{coccr}_{1243}(\sigma)} \\
\cdot & y_{1342}^{\operatorname{coccr}_{1342}(\sigma)} y_{1423}^{\operatorname{coccr}_{1423}(\sigma)} y_{1432}^{\operatorname{coccr}_{1432}(\sigma)}
\end{aligned}
$$

## Theorem

For any $n \geq 1$,
$P_{n, 1324}\left(y_{132}, y_{1234}, y_{1243}, y_{1342}, y_{1423}, y_{1432}\right)$
$=Q_{n-1,132}^{\Gamma_{2} \cup \Gamma_{3} \cup \Gamma_{4}}\left(y_{123}, y_{132}, y_{123} y_{1234}, y_{132} y_{1342}, y_{123} y_{1423}\right.$,
$y_{123} y_{1243}, y_{132} y_{1432}, y_{1234}, y_{1342}, y_{1423}, y_{1234}, y_{1243}, y_{1432}, 0$, $\left.y_{1234}, y_{1342}, y_{1234}, y_{1342}, y_{1423}, y_{1243}, y_{1432}\right)$.

## Open Problems

Pattern
distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation

Introduction
Counting
Patterns in $S_{n}(132)$

Counting Patterns in $\mathcal{S}_{n}(123)$

Applications in Pattern
Popularity
Applications in Circular
Permutations

■ Pattern 321 distribution in $\mathcal{S}_{n}(123)$ ? Longer patterns in $\mathcal{S}_{n}(123)$ ?

## Open Problems

Pattern distribution in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Dun Qiu

Motivation
Introduction
Counting
Patterns in $S_{n}(132)$

Counting Patterns in $S_{n}(123)$

Applications in Pattern
Popularity
Applications in Circular Permutations

■ Pattern 321 distribution in $\mathcal{S}_{n}(123)$ ? Longer patterns in $\mathcal{S}_{n}(123)$ ?

- Pattern distribution in $\mathcal{C} \mathcal{S}_{n}(1234)$ ?


## Open Problems

Pattern

■ Pattern 321 distribution in $\mathcal{S}_{n}(123)$ ? Longer patterns in $\mathcal{S}_{n}(123)$ ?

- Pattern distribution in $\mathcal{C} \mathcal{S}_{n}(1234)$ ?
- There are some equalities of coefficients of generating functions $Q_{132}^{\gamma}$ and $Q_{123}^{\gamma}$.


## Open Problems

Pattern

■ Pattern 321 distribution in $\mathcal{S}_{n}(123)$ ? Longer patterns in $\mathcal{S}_{n}(123)$ ?

- Pattern distribution in $\mathcal{C} \mathcal{S}_{n}(1234)$ ?
- There are some equalities of coefficients of generating functions $Q_{132}^{\gamma}$ and $Q_{123}^{\gamma}$.

■ Other applications in pattern popularities?

## Open Problems

Pattern

■ Pattern 321 distribution in $\mathcal{S}_{n}(123)$ ? Longer patterns in $\mathcal{S}_{n}(123)$ ?

- Pattern distribution in $\mathcal{C} \mathcal{S}_{n}(1234)$ ?
- There are some equalities of coefficients of generating functions $Q_{132}^{\gamma}$ and $Q_{123}^{\gamma}$.

■ Other applications in pattern popularities?

- $\mathcal{S}_{n}(\lambda)$ when $|\lambda| \geq 4$ ?

Pattern
distribution in
$\mathcal{S}_{n}(132)$ and
$\mathcal{S}_{n}(123)$
Dun Qiu

Motivation
Introduction
Counting
Patterns in
$S_{n}(132)$
Thank You!

Counting
Patterns in
$S_{n}(123)$
Applications in
Pattern
Popularity
Applications in Circular
Permutations

