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Preface

The book is intended for the mathematically literate reader
who wants to understand how to analyze data in a princi-
pled fashion. The language of mathematics allows for a
more concise, and arguably clearer exposition that can go
quite deep, quite quickly, and naturally accommodates an
axiomatic and inductive approach to data analysis, which
is the raison d’être of the book.
The compact treatment is indeed grounded in mathe-

matical theory and concepts, and is fairly rigorous, even
though measure theoretic matters are kept in the back-
ground, and most proofs are left as problems. In fact,
much of the learning is accomplished through embedded
problems. Some problems call for mathematical deriva-
tions, and assume a certain comfort with calculus, or even
real analysis. Other problems require some basic program-
ming on a computer. We can recommend R, although
some readers might prefer other languages such as Python.

Structure The book is divided into three parts, each
with multiple chapters. The introduction to probability,
in Part I, stands as the mathematical foundation for sta-
tistical inference. Indeed, without a solid foundation in
probability, and in particular a good understanding of
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how experiments are modeled, there is no clear distinction
between a descriptive and an inferential analysis. The
exposition is quite standard. It starts with Kolmogorov’s
axioms, moves on to define random variables, which in
turn allows for the introduction of some major distribu-
tions, and some basic concentration inequalities and limit
theorems are presented. A construction of the Lebesgue
integral is not included. The part ends with a brief dis-
cussion of some stochastic processes.

Some utilitarian aspects of probability and statistics are
discussed in Part II. These include probability sampling
and pseudo-random number generation — the practical
side of randomness; as well as survey sampling and exper-
imental design — the practical side of data collection.

Part III is the core of the book. It attempts to build a
theory of statistical inference from first principles. The
foundation is randomization, either controlled by design
or assumed to be natural. In either case, randomiza-
tion provides the essential randomness needed to justify
probabilistic modeling. It naturally leads to conditional
inference, and allows for causal inference. In this frame-
work, permutation tests play a special, almost canonical
role. Monte Carlo sampling, performed on a computer,
is presented as an alternative to complex mathematical
derivations, and the bootstrap is then introduced as an

accommodation when the sampling distribution is not
directly available and has to be estimated.

What is not here I do not find normal models to be
particularly compelling: Unless there is a central limit
theorem at play, there is no real reason to believe some
numerical data are normally distributed. Normal mod-
els are thus only mentioned in passing. More generally,
parametric models are not emphasized — except for those
that arise naturally in some experiments.
The usual emphasis on parametric inference is, I find,

misplaced, and also misleading, as it can be (and often is)
introduced independently of how the data were gathered,
thus creating a chasm that separates the design of exper-
iments and the analysis of the resulting data. Bayesian
modeling is, consequently, not covered beyond some ba-
sic definitions in the context of average risk optimality.
Linear models and time series are not discussed in any
detail. As is typically the case for an introductory book,
especially of this length and at this level, there is only a
hint of abstract decision theory, and multivariate analysis
is omitted entirely.

How to use this book The idea for this book arose
with a dissatisfaction with how statistical analysis is typ-
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ically taught at the undergraduate and master’s levels,
coupled with an inspiration for weaving a narrative which
I find more compelling.

This narrative was formed over years of teaching statis-
tics at the University of California, San Diego, and al-
though the book has not been used as a textbook for any
of the courses I have taught, it should be useful as such. It
would appear to contain enough material for a whole year,
in particular if starting with probability theory, and is
meant to provide a solid foundation in statistical inference.

The student is invited to read the book in the order in
which the material is presented, working on the problems
as they come, and saving those parts that seem harder for
later. The book is otherwise better suited for independent
study under the guidance of an experienced instructor.

The instructor is encouraged to give the students addi-
tional problems to work on beyond those given here, and
also reading assignments, such as research articles in the
sciences that make use of concepts and tools introduced
in the book.

Intention The book introduces some essential concepts
that I would want a student graduating with a bachelor’s
or master’s degree in statistics to have been exposed to,
even if only in passing.

My main hope in writing this book is that it seduces
mathematically minded people into learning more about
statistical analysis, at least for their personal enrichment,
particularly in this age of artificial intelligence, machine
learning, and more generally, data science.

Ery Arias-Castro
San Diego, Summer of 2019
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is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works.
© Ery Arias-Castro 2019

Probability theory is the branch of mathematics that mod-
els and studies random phenomena. Although randomness
has been the object of much interest over many centuries,
the theory only reached maturity with Kolmogorov’s ax-
ioms 1 in the 1930’s [240].

As a mathematical theory founded on Kolmogorov’s
axioms, Probability Theory is essentially uncontroversial
at this point. However, the notion of probability (i.e.,
chance) remains somewhat controversial. We will adopt
here the frequentist notion of probability [238], which
defines the chance that a particular experiment results in
a given outcome as the limiting frequency of this event as
the experiment is repeated an increasing number of times.
The problem of giving probability a proper definition as it
concerns real phenomena is discussed in [93] (with a good
dose of humor).

1 Named after Andrey Kolmogorov (1903 - 1987).

https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
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1.1 Elements of set theory

Kolmogorov’s formalization of probability relies on some
basic notions of Set Theory.

A set is simply an abstract collection of ‘objects’, some-
times called elements or items. Let Ω denote such a set.
A subset of Ω is a set made of elements that belong to Ω.
In what follow, a set will be a subset of Ω.

We write ω ∈ A when the element ω belongs to the set A.
And we write A ⊂ B when set A is a subset of set B. This
means that ω ∈ A ⇒ ω ∈ B. (Remember that ⇒ means
“implies”.) A set with only one element ω is denoted {ω}
and is called a singleton. Note that ω ∈ A ⇔ {ω} ⊂ A.
(Remember that ⇔ means “if and only if”.) The empty
set is defined as a set with no elements and is denoted ∅.
By convention, it is included in any other set.
Problem 1.1. Prove that ⊂ is transitive, meaning that
if A ⊂ B and B ⊂ C, then A ⊂ C.
The following are some basic set operations.
• Intersection and disjointness: The intersection of two

sets A and B is the set with all the elements belonging
to both A and B, and is denoted A∩B. A and B are
said to be disjoint if A ∩ B = ∅.

• Union: The union of two sets A and B is the set with

elements belonging to A or B, and is denoted A ∪B.
• Set difference and complement: The set difference of
B minus A is the set with elements those in B that
are not in A, and is denoted B ∖A. It is sometimes
called the complement of A in B. The complement
of A in the whole set Ω is often denoted Ac.

• Symmetric set difference: The symmetric set differ-
ence of A and B is defined as the set with elements
either in A or in B, but not in both, and is denoted
A△ B.

Sets and set operations can be visualized using a Venn
diagram. See Figure 1.1 for an example.
Problem 1.2. Prove that A ∩ ∅ = ∅, A ∪ ∅ = A, and
A ∖ ∅ = A. What is A△∅?
Problem 1.3. Prove that the complement is an involu-
tion, meaning (Ac)c = A.
Problem 1.4. Show that the set difference operation is
not symmetric in the sense that B ∖A ≠ A ∖ B in general.
In fact, prove that B ∖A = A ∖B if and only if A = B = ∅.

Proposition 1.5. The following are true:
(i) The intersection operation is commutative, meaning
A∩B = B∩A, and associative, meaning (A∩B)∩C =
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Figure 1.1: A Venn diagram helping visualize the
sets A = {1,2,4,5,6,7,8,9}, B = {2,3,4,5,7,9}, and
C = {3,4,5,9}. The numbers shown in the figure rep-
resent the size of each subset. For example, the inter-
section of these three sets contains 3 elements, since
A ∩ B ∩ C = {4,5,9}.

A∩(B∩C). The same is true for the union operation.
(ii) The intersection operation is distributive over the

union operation, meaning (A∪B)∩C = (A∩C)∪(B∩C).
(iii) It holds that (A ∩ B)c = Ac ∪ Bc. More generally,

C ∖ (A ∩ B) = (C ∖A) ∪ (C ∖ B).

We thus may writeA∩B∩C andA∪B∪C, that is, without
parentheses, as there is no ambiguity. More generally, for
a collection of sets {Ai ∶ i ∈ I}, where I is some index
set, we can therefore refer to their intersection and union,
denoted

(intersection) ⋂
i∈I

Ai, (union) ⋃
i∈I

Ai .

Remark 1.6. For the reader seeing these operations for
the first time, it can be useful to think of ∩ and ∪ in
analogy with the product × and sum + operations on the
integers. In that analogy, ∅ plays the role of 0.
Problem 1.7. Prove Proposition 1.5. In fact, prove the
following identities:

(⋃
i∈I

Ai) ∩ B =⋃
i∈I

(Ai ∩ B),

and

(⋃
i∈I

Ai)c =⋂
i∈I

Ac
i , as well as (⋂

i∈I

Ai)c =⋃
i∈I

Ac
i ,

for any collection of sets {Ai ∶ i ∈ I} and any set B.
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1.2 Outcomes and events

Having introduced some elements of Set Theory, we use
some of these concepts to define a probability experiment
and its possible outcomes.

1.2.1 Outcomes and the sample space

In the context of an experiment, all the possible outcomes
are gathered in a sample space, denoted Ω henceforth. In
mathematical terms, the sample space is a set and the
outcomes are elements of that set.
Example 1.8 (Flipping a coin). Suppose that we flip a
coin three times in sequence. Assuming the coin can only
land heads (h) or tails (t), the sample space Ω consists
of all possible ordered sequences of length 3, which in
lexicographic order can be written as

Ω = {hhh,hht,hth,htt,thh,tht,tth,ttt}.

Example 1.9 (Drawing from an urn). Suppose that we
draw two balls from an urn in sequence. Assume the urn
contains red (r), green (g), and (b) blue balls. If the
urn contains at least two balls of each color, or if at each
trial the ball is placed back in the urn, the sample space

Ω consists of all possible ordered sequences of length 2,
which in the RGB order can be written as

Ω = {rr,rg,rb,gr,gg,gb,br,bg,bb}. (1.1)

If the urn (only) contains one red ball, one green ball, and
two or more blue balls, and a ball drawn from the urn is
not returned to the urn, the number of possible outcomes
is reduced and the resulting sample space is now

Ω = {rg,rb,gr,gb,br,bg,bb}.

Problem 1.10. What is the sample space when we flip
a coin five times? More generally, can you describe the
sample space, in words and/or mathematical language,
corresponding to an experiment where the coin is flipped
n times? What is the size of that sample space?
Problem 1.11. Consider an experiment that consists in
drawing two balls from an urn that contains red, green,
blue, and yellow balls. However, yellow balls are ignored,
in the sense that if such a ball is drawn then it is discarded.
How does that change the sample space compared to
Example 1.9?
While in the previous examples the sample space is

finite, the following is an example where it is (countably)
infinite.
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Example 1.12 (Flipping a coin until the first heads).
Consider an experiment where we flip a coin repeatedly
until it lands heads. The sample space in this case is

Ω = {h,th,tth,ttth, . . .}.

Problem 1.13. Describe the sample space when the ex-
periment consists in drawing repeatedly without replace-
ment from an urn with red, green, and blue balls, three
of each color, until a blue ball is drawn.
Remark 1.14. A sample space is in fact only required
to contain all possible outcomes. For instance, in Exam-
ple 1.9 we may always take the sample space to be (1.1)
even though in the second situation that space contains
outcomes that will never arise.

1.2.2 Events

Events are subsets of Ω that are of particular interest.
Example 1.15. In the context of Example 1.8, consider
the event that the second toss results in heads. As a
subset of the sample space, this event is defined as

E = {hhh,hht,thh,tht}.

Example 1.16. In the context of Example 1.9, consider
the event that the two balls drawn from the urn are of
the same color. This event corresponds to the set

E = {rr,gg,bb}.

Example 1.17. In the context of Example 1.12, the event
that the number of total tosses is even corresponds to the
set

E = {th,ttth,ttttth, . . .}.

Problem 1.18. In the context of Example 1.8, consider
the event that at least two tosses result in heads. Describe
this event as a set of outcomes.

1.2.3 Collection of events

Recall that we are interested in particular subsets of the
sample space Ω and that we call these ‘events’. Let Σ
denote the collection of events. We assume throughout
that Σ satisfies the following conditions:

• The entire sample space is an event, meaning

Ω ∈ Σ. (1.2)

• The complement of an event is an event, meaning

A ∈ Σ ⇒ Ac ∈ Σ. (1.3)
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• A countable union of events is an event, meaning

A1,A2, ⋅ ⋅ ⋅ ∈ Σ ⇒ ⋃
i≥1
Ai ∈ Σ. (1.4)

A collection of subsets that satisfies these conditions is
called a σ-algebra. 2

Problem 1.19. Suppose that Σ is a σ-algebra. Show
that ∅ ∈ Σ and that a countable intersection of subsets of
Σ is also in Σ.

From now on, Σ will be assumed to be a σ-algebra over
Ω unless otherwise specified. When Σ is a σ-algebra of
subsets of a set Ω, the pair (Ω,Σ) is sometimes called a
measurable space.
Remark 1.20 (The power set). The power set of Ω, of-
ten denoted 2Ω, is the collection of all its subsets. (Prob-
lem 1.49 provides a motivation for this name and notation.)
The power set is trivially a σ-algebra. In the context of an
experiment with a discrete sample space, it is customary
to work with the power set as σ-algebra, because this can
always be done without loss of generality (Chapter 2).
When the sample space is not discrete, the situation is
more complex and the σ-algebra needs to be chosen with
care (Section 4.2).

2 This refers to the algebra of sets presented in Section 1.1.

1.3 Probability axioms

Before observing the result of an experiment, we speak
of the probability that an event will happen. The Kol-
mogorov axioms formalize this assignment of probabilities
to events. This has to be done carefully so that the re-
sulting theory is both coherent and useful for modeling
randomness.
A probability distribution (aka probability measure) on

(Ω,Σ) is any real-valued function P defined on Σ satisfying
the following properties (axioms): 3

• Non-negativity:

P(A) ≥ 0, ∀A ∈ Σ. (1.5)

• Unit measure:
P(Ω) = 1. (1.6)

• Additivity on disjoint events: For any discrete collec-
tion of disjoint events {Ai ∶ i ∈ I},

P(⋃
i∈I

Ai) =∑
i∈I

P(Ai). (1.7)

3 Throughout, we will often use ‘distribution’ or ‘measure’ as
shorthand for ‘probability distribution’.
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A triplet (Ω,Σ,P), with Ω a sample space (a set), Σ
a σ-algebra over Ω, and P a distribution on Σ, is called
a probability space. We consider such a triplet in what
follows.
Problem 1.21. Show that P(∅) = 0 and that

0 ≤ P(A) ≤ 1, A ∈ Σ.

Thus, although a probability distribution is said to have
values in R+, in fact it has values in [0,1].

Proposition 1.22 (Law of Total Probability). For any
two events A and B,

P(A) = P(A ∩ B) + P(A ∩ Bc). (1.8)

Problem 1.23. Prove Proposition 1.22 using the 3rd
axiom.

The 3rd axiom applies to events that are disjoint. The
following is a corollary that applies more generally. (In
turn, this result implies the 3rd axiom.)

Proposition 1.24 (Law of Addition). For any two events
A and B, not necessarily disjoint,

P(A ∪ B) = P(A) + P(B) − P(A ∩ B). (1.9)

In particular,
P(Ac) = 1 − P(A), (1.10)

and,

A ⊂ B ⇒ P(B ∖A) = P(B) − P(A). (1.11)

Proof. We first observe that we can get (1.11) from the
fact that B is the disjoint union of A and B ∖A and an
application of the 3rd axiom.
We now use this to prove (1.9). We start from the

disjoint union

A ∪ B = (A ∖ B) ∪ (B ∖A) ∪ (A ∩ B).

Applying the 3rd axiom yields

P(A ∪ B) = P(A ∖ B) + P(B ∖A) + P(A ∩ B).

Then A ∖ B = A ∖ (A ∩ B), and applying (1.11), we get

P(A ∖ B) = P(A) − P(A ∩ B),

and exchanging the roles of A and B,

P(B ∖A) = P(B) − P(A ∩ B).

After some cancellations, we obtain (1.9), which then
immediately implies (1.10).



1.4. Inclusion-exclusion formula 9

Problem 1.25 (Uniform distribution). Suppose that Ω
is finite. For A ⊂ Ω, define U(A) = ∣A∣/∣Ω∣, where ∣A∣
denotes the number of elements in A. Show that U is a
probability distribution on Ω (equipped with its power
set, as usual).

1.4 Inclusion-exclusion formula

The inclusion-exclusion formula is an expression for the
probability of a discrete union of events. We start with
some basic inequalities that are directly related to the
inclusion-exclusion formula and useful on their own.

Boole’s inequality Also know as the union bound,
this inequality 4 is arguably one of the simplest, yet also
one of the most useful, inequalities of Probability Theory.
Problem 1.26 (Boole’s inequality). Prove that for any
countable collection of events {Ai ∶ i ∈ I},

P(⋃
i∈I

Ai) ≤∑
i∈I

P(Ai). (1.12)

(Note that the right-hand side can be larger than 1 or
even infinite.) [One possibility is to use a recursion on

4 Named after George Boole (1815 - 1864).

the number of events, together with Proposition 1.24, to
prove the result for any finite number of events. Then
pass to the limit to obtain the result as stated.]

Bonferroni’s inequalities 5 These inequalities com-
prise Boole’s inequality. For two events, we saw the Law of
Addition (Proposition 1.24), which is an exact expression
for the probability of their union. Consider now three
events A,B,C. Boole’s inequality (1.12) gives

P(A ∪ B ∪ C) ≤ P(A) + P(B) + P(C).

The following provides an inequality in the other direction.
Problem 1.27. Show that

P(A ∪ B ∪ C) ≥ P(A) + P(B) + P(C)
− P(A ∩ B) − P(B ∩ C) − P(C ∩A).

[Drawing a Venn diagram will prove useful.]
In the proof, one typically proves first the identity

P(A ∪ B ∪ C) = P(A) + P(B) + P(C)
− P(A ∩ B) − P(B ∩ C) − P(C ∩A)
+ P(A ∩ B ∩ C),

which generalizes the Law of Addition to three events.
5 Named after Carlo Emilio Bonferroni (1892 - 1960).



1.5. Conditional probability and independence 10

Proposition 1.28 (Bonferroni’s inequalities). Consider
any collection of events A1, . . . ,An, and define

Sk ∶= ∑
1≤i1<⋯<ik≤n

P(Ai1 ∩⋯ ∩Aik).

Then

P(A1 ∪⋯ ∪An) ≤
k

∑
j=1

(−1)j−1Sj , k odd; (1.13)

P(A1 ∪⋯ ∪An) ≥
k

∑
j=1

(−1)j−1Sj , k even. (1.14)

Problem 1.29. Write down all of Bonferroni’s inequali-
ties for the case of four events A1,A2,A3,A4.

Inclusion-exclusion formula The last Bonferroni
inequality (at k = n) is in fact an equality, the so-called
inclusion-exclusion formula,

P(A1 ∪⋯ ∪An) =
n

∑
j=1

(−1)j−1Sj . (1.15)

(In particular, the last inequality in Problem 1.29 is an
equality.)

1.5 Conditional probability and
independence

1.5.1 Conditional probability

Conditioning on an event B restricts the sample space to
B. In other words, although the experiment might yield
other outcomes, conditioning on B focuses the attention
on the outcomes that made B happen. In what follows
we assume that P(B) > 0.
Problem 1.30. Show that Q, defined for A ∈ Σ as
Q(A) = P(A ∩ B), is a probability distribution if and
only if P(B) = 1.

To define a bona fide probability distribution we renor-
malize Q to have total mass equal to 1 (required by the
2nd axiom) as follows

P(A ∣B) = P(A ∩ B)
P(B) , for A ∈ Σ.

We call P(A ∣B) the conditional probability of A given B.
Problem 1.31. Show that P(⋅ ∣B) is indeed a probability
distribution on Ω.
Problem 1.32. In the context of Example 1.8, assume
that any outcome is equally likely. Then what is the
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probability that the last toss lands heads if the previous
tosses landed heads? Answer that same question when the
coin is tossed n ≥ 2 times, with n arbitrary and possibly
large. [Regardless of n, the answer is 1/2.]
The conclusions of Problem 1.32 may surprise some

readers. And indeed, conditional probabilities can be
rather unintuitive. We will come back to Problem 1.32,
which is an example of the Gambler’s Fallacy. Here is
another famous example.
Example 1.33 (Monty Hall Problem). This problem is
based on a television show in the US called Let’s Make a
Deal and named after its longtime presenter, Monty Hall.
The following description is taken from a New York Times
article [232]:

Suppose you’re on a game show, and you’re given
the choice of three doors: Behind one door is a
car; behind the others, goats. You pick a door,
say No. 1, and the host, who knows what’s behind
the other doors, opens another door, say No. 3,
which has a goat. He then says to you, “Do you
want to pick door No. 2?” Is it to your advantage
to take the switch?

Not many problems in probability are discussed in the New
York Times, to say the least. This problem is so simple to

state and the answer so counter-intuitive that it generated
quite a controversy (read the article). The problem can
mislead anyone, including professional mathematicians,
let alone the commoner appearing on television!

There is an entire book on the Monty Hall Problem [196].
The textbook [113] discusses this problem among other
paradoxes arising when dealing with conditional probabil-
ities.

1.5.2 Independence

Two events A and B are said to be independent if knowing
that B happens does not change the chances (i.e., the
probability) that A happens. This is formalized by saying
that the probability of A conditional on B is equal to its
(unconditional) probability, or in formula,

P(A ∣B) = P(A). (1.16)

The wording in English would imply a symmetric relation-
ship. That’s indeed the case because (1.16) is equivalent
to P(B ∣A) = P(B). The following equivalent definition of
independence makes the symmetry transparent.

Proposition 1.34. Two events A and B are independent
if and only if

P(A ∩ B) = P(A)P(B). (1.17)
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The identity (1.17) is often taken as a definition of
independence.
Problem 1.35. Show that any event that never happens
(i.e., having zero probability) is independent of any other
event. In particular, ∅ is independent of any event.
Problem 1.36. Show that any event that always happens
(i.e., having probability one) is independent of any other
event. In particular, Ω is independent of any event.

The identity (1.17) only applies to independent events.
However, it can be generalized as follows. (Notice the
parallel with the Law of Addition (1.9).)
Problem 1.37 (Law of Multiplication). Prove that, for
any events A and B,

P(A ∩ B) = P(A ∣B)P(B). (1.18)

Problem 1.38 (Independence and disjointness). The no-
tions of independence and disjointness are often confused
by the novice, even though they are very different. For
example, show that two disjoint events are independent
only when at least one of them either never happens or
always happens.
Problem 1.39. Combine the Law of Total Probability

(1.8) and the Law of Multiplication (1.18) to get

P(A) = P(A ∣B)P(B) + P(A ∣Bc)P(Bc) (1.19)

Problem 1.40. Suppose we draw without replacement
from an urn with r red balls and b blue balls. At each
stage, every ball remaining in the urn is equally likely to
be picked. Use (1.19) to derive the probability of drawing
a blue ball on the 3rd trial.

1.5.3 Mutual independence

One may be interested in several events at once. Some
events, Ai, i ∈ I, are said to be mutually independent (or
jointly independent) if

P(Ai1 ∩⋯ ∩Aik) = P(Ai1) ×⋯ × P(Aik),
for any k-tuple 1 ≤ i1 < ⋯ < ik ≤ r. (1.20)

They are said to be pairwise independent if

P(Ai ∩Aj) = P(Ai)P(Aj), for all i ≠ j.

Obviously, mutual independence implies pairwise inde-
pendence. The reverse implication is false, as the following
counter-example shows.
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Problem 1.41. Consider the uniform distribution on

{(0,0,0), (0,1,1), (1,0,1), (1,1,0)}.

Let Ai be the event that the ith coordinate is 1. Show that
these events are pairwise independent but not mutually
independent.
The following generalizes the Law of Multiplication

(1.18). It is sometimes referred to as the Chain Rule.

Proposition 1.42 (General Law of Multiplication). For
any mutually independent events, A1, . . . ,Ar,

P(A1 ∩⋯ ∩Ar) =
r

∏
k=1

P(Ak ∣A1 ∩⋯ ∩Ak−1). (1.21)

For example, for any events A,B,C,

P(A ∩ B ∩ C) = P(C ∣A ∩ B)P(B ∣A)P(A).

Problem 1.43. In the same setting as Problem 1.32,
show that the result of the tosses are mutually indepen-
dent. That is, define Ai as the event that the ith toss
results in heads and show that A1, . . . ,An are mutually
independent. In fact, show that the distribution is the
uniform distribution (Problem 1.25) if and only if the
tosses are fair and mutually independent.

1.5.4 Bayes formula

The Bayes formula 6 can be used to “turn around” a
conditional probability.

Proposition 1.44 (Bayes formula). For any two events
A and B,

P(A ∣B) = P(B ∣A)P(A)
P(B) . (1.22)

Proof. By (1.18),

P(A ∩ B) = P(A ∣B)P(B),

and also
P(A ∩ B) = P(B ∣A)P(A),

which yield the result when combined.

The denominator in (1.22) is sometimes expanded using
(1.19) to get

P(A ∣B) = P(B ∣A)P(A)
P(B ∣A)P(A) + P(B ∣Ac)P(Ac) . (1.23)

This form is particularly useful when P(B) is not directly
available.

6 Named after Thomas Bayes (1701 - 1761).
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Problem 1.45. Suppose we draw without replacement
from an urn with r red balls and b blue balls. What is the
probability of drawing a blue ball on the 1st trial when
drawing a blue ball on the 2nd trial?

Base Rate Fallacy Consider a medical test for the
detection of a rare disease. There are two types of mistakes
that the test can make:

• False positive when the test is positive even though
the subject does not have the disease;

• False negative when the test is negative even though
the subject has the disease.

Let α denote the probability of a false positive; 1 − α
is sometimes called the sensitivity. Let β denote the
probability of a false negative. 1 − β is sometimes called
the specificity. For example, the study reported in [183]
evaluates the sensitivity and specificity of several HIV
tests.
Suppose that the incidence of a certain disease is π,

meaning that the disease affects a proportion π of the
population of interest. A person is chosen at random from
the population and given the test, which turns out to be
positive. What are the chances that this person actually
has the disease? Ignoring the base rate (i.e., the disease’s

prevalence) would lead one to believe these chances to be
1 − β. This is an example of the Base Rate Fallacy.

Indeed, define the events

A = ‘the person has the disease’, (1.24)
B = ‘the test is positive’. (1.25)

Thus our goal is to compute P(A ∣B). Because the person
was chosen at random from the population, we know that
P(A) = π. We know the test’s sensitivity, P(Bc ∣Ac) = 1−α,
and its specificity, P(B ∣A) = 1 − β. Plugging this into
(1.23), we get

P(A ∣B) = (1 − β)π
(1 − β)π + α(1 − π) . (1.26)

Mathematically, the Base Rate Fallacy arises from con-
fusing P(A ∣B) (which is what we want) with P(B ∣A).
We saw that the former depends on the latter and on the
base rate P(A).
Problem 1.46. Show that P(A ∣B) = P(B ∣A) if and only
if P(A) = P(B).
Example 1.47 (Finding terrorists). In a totally different
setting, Sageman [202] makes the point that a system
for identifying terrorists, even if 99% accurate, cannot be
ethically deployed on an entire population.
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Fallacies in the courtroom Suppose that in a trial
for murder in the US, some blood of type O- was found
on the crime scene, matching the defendant’s blood type.
That blood type has a prevalence of about 1% in the US 7.
This leads the prosecutor to conclude that the suspect
is guilty with 99% chance. This is an example of the
Prosecutor’s Fallacy.

In terms of mathematics, the error is the same as in the
Base Rate Fallacy. In practice, the situation is even worse
here because it is not even clear how to define the base
rate. (Certainly, the base rate cannot be the unconditional
probability that the defendant is guilty.)
In the same hypothetical setting, the defense could ar-

gue that, assuming the crime took place in a city with a
population of about half a million, the defendant is only
one among five thousand people in the region with the
same blood type and that therefore the chances that he
is guilty are 1/5000 = 0.02%. The argument is actually
correct if there is no other evidence and it can be argued
that the suspect was chosen more or less uniformly at ran-
dom from the population. Otherwise, in particular if the
latter is doubtful, this is is an example of the Defendant’s
Fallacy.

7 redcrossblood.org/learn-about-blood/blood-types.html

Example 1.48. People vs. Collins is robbery case 8 that
took place in Los Angeles, California in 1968. A witness
had seen a Black male with a beard and mustache together
with White female with a blonde ponytail fleeing in a
yellow car. The Collins (a married couple) exhibited all
these attributes. The prosecutor argued that the chances
of another couple matching the description were 1 in
12,000,000. This lead to a conviction. However, the
California Supreme Court overturned the decision. This
was based on the questionable computations of the base
rate as well as the fact that the chances of another couple
in the Los Angeles area (with a population in the millions)
matching the description were much higher.
For more on the use of statistics in the courtroom,

see [230].

1.6 Additional problems

Problem 1.49. Show that if ∣Ω∣ = N , then the collection
of all subsets of Ω (including the empty set) has cardinality
2N . This motivates the notation 2Ω for this collection and
also its name, as it is often called the power set of Ω.

8 courtlistener.com/opinion/1207456/people-v-collins/

redcrossblood.org/learn-about-blood/blood-types.html
courtlistener.com/opinion/1207456/people-v-collins/
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Problem 1.50. Let {Σi, i ∈ I} denote a family of σ-
algebras over a set Ω. Prove that ⋂i∈I Σi is also a σ-algebra
over Ω.
Problem 1.51. Let {Ai, i ∈ I} denote a family of subsets
of a set Ω. Show that there is a unique smallest (in terms
of inclusion) σ-algebra over Ω that contains each of these
subsets. This σ-algebra is said to be generated by the
family {Ai, i ∈ I}.
Problem 1.52 (General Base Rate Fallacy). Assume
that the same diagnostic test is performed on m individu-
als to detect the presence of a certain pathogen. Due to
variation in characteristics, the test performed on Individ-
ual i has sensitivity 1 − αi and specificity 1 − βi. Assume
that a proportion π of these individuals have the pathogen.
Show that (1.26) remains valid as the probability that an
individual chosen uniformly at random has the pathogen
given that the test is positive, with 1−α defined as the av-
erage sensitivity and 1−β defined as the average specificity,
meaning α = 1

m ∑
m
i=1 αi and β = 1

m ∑
m
i=1 βi.
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We consider in this chapter the case of a probability space
(Ω,Σ,P) with discrete sample space Ω. As we noted in
Remark 1.20, it is customary to let Σ be the power set
of Ω. We do so anytime we are dealing with a discrete
probability space, as this can be done without loss of
generality.

2.1 Probability mass functions

Given a probability distribution P, define its mass function
as

f(ω) ∶= P({ω}), ω ∈ Ω. (2.1)

In general, we say that f is a mass function on Ω if
it is a real-valued function on Ω satisfying the following
conditions:

• Non-negativity:

f(ω) ≥ 0 for any ω ∈ Ω.

https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
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• Unit measure:
∑
ω∈Ω

f(ω) = 1. (2.2)

Note that, necessarily, such an f takes values in [0,1].
Problem 2.1. Show that (2.1) defines a probability mass
function on Ω. Conversely, show that a probability mass
function f on Ω defines a probability distribution on Ω as
follows:

P(A) ∶= ∑
ω∈A

f(ω), for A ⊂ Ω. (2.3)

Problem 2.2. Show that, if P has mass function f , and B
is an event with P(B) > 0, then the conditional distribution
given B, meaning P(⋅ ∣B), has mass function

f(ω ∣B) ∶= f(ω)
P(B) {ω ∈ B}, for ω ∈ Ω,

where {ω ∈ B} = 1 if ω ∈ B and = 0 otherwise.

2.2 Uniform distributions

Assume the sample space Ω is finite. For a setA, denote its
cardinality (meaning the number of elements it contains)
by ∣A∣. The uniform distribution!discrete on Ω is defined
as

P(A) = ∣A∣
∣Ω∣ , for A ⊂ Ω. (2.4)

We saw in Problem 1.25 that this is indeed a probability
distribution on Ω (equipped with its power set).
Equivalently, the uniform distribution on Ω is the dis-

tribution with constant mass function. Because of the
requirements a mass function satisfies by definition, this
necessarily means that the mass function is equal to 1/∣Ω∣
everywhere, meaning

f(ω) ∶= 1
∣Ω∣ , for ω ∈ Ω. (2.5)

Such a probability space thus models an experiment where
all outcomes are equally likely.
Example 2.3 (Rolling a die). Consider an experiment
where a die, with six faces numbered 1 through 6, is rolled
once and the result is recorded. The sample space is
Ω = {1,2,3,4,5,6}. The usual assumption that the die is
fair is modeled by taking the distribution to be the uniform
distribution, which puts mass 1/6 on each outcome.
Remark 2.4 (Combinatorics). The uniform distribution
is intimately related to Combinatorics, which is the branch
of Mathematics dedicated to counting. This is because
of its definition in (2.4), which implies that computing
the probability of an event A reduces to computing its
cardinality ∣A∣, meaning counting the number of outcomes
in A.
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2.3 Bernoulli trials

Consider an experiment where a coin is tossed repeatedly.
We speak of Bernoulli trials 9 when the probability of
heads remains the same at each toss regardless of the
previous tosses. We consider a biased coin with probability
of landing heads equal to p ∈ [0,1]. We will call this a
p-coin.
Problem 2.5 (The roulette). An American roulette has
38 slots: 18 are colored black (b), 18 are colored red (r),
2 slots colored green (g). A ball is rolled, and eventually
lands in one of the slots. One way a player can gamble is
to bet on a color, red or black. If the ball lands in a slot
with that color, the player doubles his bet. Otherwise,
the player loses his bet. Assuming the wheel is fair, show
that the probability of winning in a given trial is p = 18/38
regardless of the color the player bets on. (Note that
p < 1/2, and 1/2 − p = 1/38 is the casino’s margin.)
Remark 2.6 (Beating the roulette). In the game of
roulette, the odds are of course against the player. We
will see later in Section 9.3.1 that this guaranties any
gambler will lose his fortune if he keeps on playing. This
is so if the mathematics underlying this statement are an

9 Named after Jacob Bernoulli (1655 - 1705).

accurate description of how the game is played in real life.
But this is not necessarily the case. For one thing, the
equipment can be less than perfect. This was famously
exploited in the late 1940’s by Hibbs and Walford, and
lead the casinos to use much better made roulettes that
had no obvious defects. Still, Thorp and Shannon took
on the challenge of beating the roulette in the late 1950’s
and early 1960’s. For that purpose, they built one of the
first wearable computers to help them predict where the
ball would end based on an appraisal of the ball’s position
and speed at a certain time. Their system afforded them
advantageous odds against the casino. For more on this,
see [116].

2.3.1 Probability of a sequence of given
length

Assume we toss a p-coin n times (or simply focus on the
first n tosses if the coin is tossed an infinite number of
times). In this case, in contrast with the situation in
Problem 1.43, the distribution over the space of n-tuples
of heads and tails is not the uniform distribution, unless
p = 1/2. We derive the distribution in closed form for an
arbitrary p. We do this for the sequence hthht (so that
n = 5) to illustrate the main arguments. Let Ai be the
event that the ith trial results in heads. Then applying
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the Chain Rule (1.21), we have

P(hthht) = P(Ac
5 ∣ A1 ∩Ac

2 ∩A3 ∩A4)
× P(A4 ∣ A1 ∩Ac

2 ∩A3)
× P(A3 ∣ A1 ∩Ac

2)
× P(Ac

2 ∣ A1) × P(A1). (2.6)

By assumption, a toss results in heads with probability p
regardless of the previous tosses, so that

P(Ac
5 ∣ A1 ∩Ac

2 ∩A3 ∩A4) = P(Ac
5) = 1 − p, (2.7)

P(A4 ∣ A1 ∩Ac
2 ∩A3) = P(A4) = p, (2.8)

P(A3 ∣ A1 ∩Ac
2) = P(A3) = p, (2.9)

P(Ac
2 ∣ A1) = P(Ac

2) = 1 − p, (2.10)
P(A1) = p. (2.11)

Plugging this into (2.6), we obtain

P(hthht) = p(1 − p)pp(1 − p) = p3(1 − p)2, (2.12)

after rearranging factors.
Problem 2.7. In the same example, show that the as-
sumption that a toss results in heads with the same prob-
ability regardless of the previous tosses implies that the
events Ai are mutually independent.

Beyond this special case, the following holds.

Proposition 2.8. Consider n independent tosses of a
p-coin. Regardless of the order, if k denotes the number
of heads in a given sequence of n trials, the probability of
that sequence is

pk(1 − p)n−k. (2.13)

Problem 2.9. Prove Proposition 2.8 by induction on n
Remark 2.10. Although n Bernoulli trials do not nec-
essarily result in a uniform distribution, Proposition 2.8
implies that, conditional on the number of heads being k,
the distribution is uniform over the subset of sequences
with exactly k heads.
Remark 2.11 (Gambler’s Fallacy). Consider a casino
roulette (Problem 2.5). Assume that you have just ob-
served five spins that all resulted in red (i.e., rrrrr).
What color would you bet on? Many a gambler would bet
on b in this situation, believing that “it is time for the ball
to land black”. In fact, unless you have reasons to suspect
otherwise, the natural assumption is that each spin of the
wheel is fair and independent of the previous ones, and
with this assumption the probability of b remains the
same as the probability of r (that is, 18/38).
Example 2.12. The paper [39] (which received a good
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amount of media attention) studies how the sequence in
which unrelated cases are handled affects the decisions
that are made in “refugee asylum court decisions, loan
application reviews, and Major League Baseball umpire
pitch calls”, and finds evidence of the Gambler’s Fallacy
at play.

2.3.2 Number of heads in a sequence of given
length

Suppose again that we toss a p-coin n times independently.
We saw in Proposition 2.8 that the number of heads in
the sequence dictates the probability of observing that
sequence. Thus it is of interest to study that quantity.
In particular, we want to compute the probability of
observing exactly k heads, where k ∈ {0, . . . , n} is given.

Factorials For a positive integer n, define its factorial
to be

n! ∶=
n

∏
i=1
i = n × (n − 1) ×⋯ × 1.

For example, 5! = 5 × 4 × 3 × 2 × 1 = 120. By convention,
0! = 1.

Proposition 2.13. n! is the number of orderings of n
distinct items.

This can be generalized as follows. For two non-negative
integers k ≤ n, define the falling factorial

(n)k ∶= n(n − 1)⋯(n − k + 1). (2.14)

For example, (5)3 = 5×4×3 = 60. By convention, (n)0 = 1.
In particular, (n)n = n!.

Proposition 2.14. Given positive integers k ≤ n, (n)k
is the number of ordered subsets of size k of a set with n
distinct elements.

Proof. There are n choices for the 1st position, then n− 1
remaining choices for the 2nd position, etc, and n−(k−1) =
n − k + 1 remaining choices for the kth position. These
numbers of choices multiply to give the answer. (Why
they multiply and not add is crucial, and is explained at
length, for example, in [113].)

Binomial coefficients For two non-negative integers
k ≤ n, define the binomial coefficient

(n
k
) ∶= n!

k!(n − k)! =
(n)k
k!

. (2.15)

The binomial coefficient (2.15) is often read “n choose k”,
as it corresponds to the number of ways of choosing k
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distinct items out of a total of n, disregarding the order
in which they are chosen.

Proposition 2.15. Given positive integers k ≤ n, (n
k
) is

the number of (unordered) subsets of size k of a set with
n distinct elements.

Proof. Fix k and n, and let N denote the number of
(unordered) subsets of size k of a set with n distinct
elements. Each such subset can be ordered in k! ways by
Proposition 2.13, so that there are N × k! ordered subsets
of size k. Hence, Nk! = (n)k by Proposition 2.14, resulting
in N = (n)k/k! = (n

k
).

Problem 2.16 (Pascal’s triangle). Adopt the convention
that (n

k
) = 0 when k < 0 or when k > n. Then prove that,

for any integers k and n,

(n
k
) = (n − 1

k
) + (n − 1

k − 1
).

Do you see how this formula can be used to compute
binomial coefficients recursively?

Exactly k heads out of n trials Fix an integer
k ∈ {0, . . . , n}. By (2.3) and Proposition 2.8,

P(‘exactly k heads’) = Npk(1 − p)n−k,

where N is the number of sequences of length n with
exactly k heads. The trials are numbered 1 through n,
and such a sequence is identified by the k trials among
these where the coin landed heads. Thus N is equal to
the number of (unordered) subsets of size k of {1, . . . , n},
which by Proposition 2.15 corresponds to the binomial
coefficient (n

k
). Thus,

P(‘exactly k heads’) = (n
k
)pk(1 − p)n−k. (2.16)

2.4 Urn models

We already discussed an experiment involving an urn in
Example 1.9. We consider the more general case of an urn
that contains balls of only two colors, say, red and blue.
Let r denote the number of red balls and b the number of
blue balls. We will call this an (r, b)-urn. The experiment
consists in drawing n balls from such an urn. We saw
in Example 1.9 that this is enough information to define
the sample space. However, the sampling process is not
specific enough to define the sampling distribution. We
discuss here the two most basic variants: sampling with
replacement and sampling without replacement. We make
the crucial assumption that at every stage each ball in
the urn is equally likely to be drawn.
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2.4.1 Sampling with replacement

As the name indicates, this sampling scheme consists
in repeatedly drawing a ball from the urn, every time
returning the ball to the urn. Thus, the urn is the same
before each draw. Because of our assumptions, this means
that the probability of drawing a red ball remains constant,
equal to r/(r + b). Thus we conclude that sampling with
replacement from an urn with r red balls and b blue balls
is analogous to flipping a p-coin with p = r/(r + b). In
particular, based on (2.13), the probability of any sequence
of n draws containing exactly k red balls is

( r

r + b)
k
( b

r + b)
n−k

.

Remark 2.17 (From urn to coin). We note that, unlike
a general p-coin as described in Section 2.3, where p
is in principle arbitrary in [0,1], the parameter p that
results from sampling with replacement from a finite urn
is necessarily a rational number. However, because the
rationals are dense in [0,1], it is possible to use an urn
to approximate a p-coin. For that, it simply suffices to
choose (integers) r and b be such that r/(r+b) approaches
the desired p ∈ [0,1].

2.4.2 Sampling without replacement

This sampling scheme consists in repeatedly drawing a
ball from the urn, without ever returning the ball to the
urn. Thus the urn changes with each draw. For example,
consider an urn with r = 2 red balls and b = 3 blue balls,
and assume we draw a total of n = 2 balls from the urn
without replacement. On the first draw, the probability
of a red ball is 2/(2 + 3) = 2/5, while the probability of
drawing a blue ball is 3/5.

• After first drawing a red ball, the urn contains 1 red
ball and 3 blue balls, so the probability of a red ball
on the 2nd draw is 1/4.

• After first drawing a blue ball, the urn contains 2 red
ball and 2 blue balls, so the probability of a red ball
on the 2nd draw is 2/4.

Although the resulting distribution is different than
when the draws are executed with replacement, it is still
true that all sequences with the same number of red balls
have the same probability.

Proposition 2.18. Assume that n ≤ r + b, for otherwise
the sampling scheme is not feasible. Also, assume that k ≤
r. The probability of any sequence of n draws containing



2.4. Urn models 24

exactly k red balls is

r(r − 1)⋯(r − k + 1)b(b − 1)⋯(b − n + k + 1)
(r + b)(r + b − 1)⋯(r + b − n + 1) . (2.17)

Remark 2.19. The usual convention when writing a
product like r(r − 1)⋯(r − k + 1) is that it is equal to 1
when k = 0, equal to r when k = 1, equal to r(r − 1) when
k = 2, etc. A more formal way to write such products is
using factorials (Section 2.3.2).
We do not provide a formal proof of this result, but

rather examine an example with n = 5, k = 3, and r and
b arbitrary. We consider the outcome ω = rbrrb. Let
Ai be the event that the ith draw is red and note that ω
corresponds to A1 ∩Ac

2 ∩A3 ∩A4 ∩Ac
5. Then, applying

the Chain Rule (Proposition 1.42), we have

P(rbrrb) = P(Ac
5 ∣ A1 ∩Ac

2 ∩A3 ∩A4)
× P(A4 ∣ A1 ∩Ac

2 ∩A3)
× P(A3 ∣ A1 ∩Ac

2)
× P(Ac

2 ∣ A1) × P(A1). (2.18)

Then, for example, P(A3 ∣ A1 ∩Ac
2) is the probability of

drawing a red after having drawn a red and then a blue. At
that point there are r−1 reds and b−1 blues in the urn, so
that probability is (r−1)/(r−1+b−1) = (r−1)/(r+b−2).

Reasoning in the same way with the other factors, we
obtain

P(rbrrb) = ( b − 1
r + b − 4

) × ( r − 2
r + b − 3

)

× ( r − 1
r + b − 2

) × ( b

r + b − 1
) × ( r

r + b). (2.19)

Rearranging factors, we recover (2.17) specialized to the
present case.
Problem 2.20. Repeat the above with any other se-
quence of 5 draws with exactly 3 reds. Verify that all
these sequences have the same probability of occurring.
Problem 2.21 (Sampling without replacement from a
large urn). We already noted that sampling with replace-
ment from an (r, b)-urn amounts to tossing a p-coin with
p = r/(r + b). Assume now that we are sampling without
replacement, but that the urn is very large. This can be
considered in an asymptotic setting where r and b diverge
to infinity in such a way that r/(r + b) → p. Show that,
in the limit, sampling without replacement from the urn
also amounts to tossing a p-coin. Do so by proving that,
for any n and k fixed, (2.17) converges to (2.13).
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2.4.3 Number of heads in a sequence of given
length

As in Section 2.3.2, we derive the probability of observing
exactly k red balls in n draws without replacement. We
show that

P(‘exactly k heads’) =
(r
k
)( b
n−k

)
(r+b
n
)

. (2.20)

Indeed, since we assume that each ball is equally likely
to be drawn at each stage, it follows that any subset of
balls of size n is equally likely. We are thus in the uniform
case (Section 2.2), and therefore the probability is given
by the number of outcomes in the event divided by the
total number of outcomes.
The denominator in (2.20) is the number of possible

outcomes, namely, subsets of balls of size n taken from
the urn. 10

The numerator in (2.20) is the number of outcomes
with exactly k red balls. Indeed, any such outcome can
be uniquely obtained by first choosing k red balls out of

10 Although the balls could be indistinguishable except for their
colors, we use a standard trick in Combinatorics which consists in
making the balls identifiable. This is only needed as a thought
experiment. One could imagine, for example, numbering the balls 1
through r + b.

r in total — there are (r
k
) ways to do that — and then

choosing n − k blue balls out of b in total — there are
( b
n−k

) ways to do that.

2.4.4 Other urn models

There are many urn models as, despite their apparent
simplicity, their theoretical study is surprisingly rich. We
already presented the two most fundamental sampling
schemes above. We present a few more here. In each
case, we consider an urn with a finite number of balls of
different colors.

Pólya urn model 11 In this sampling scheme, after
each draw not only is the ball returned to the urn but
together with an additional ball of the same color.
Problem 2.22. Consider an urn with r red balls and b
blue balls. Show by example, as in Section 2.4.2, that
the probability of any outcome sequence of length n with
exactly k red balls is

r(r + 1)⋯(r + k − 1)b(b + 1)⋯(b + n − k − 1)
(r + b)(r + b + 1)⋯(r + b + n − 1) .

11 Named after George Pólya (1887 - 1985).
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(Recall Remark 2.19.) Thus, once again, the central quan-
tity is the number of red balls.

Moran urn model 12 In this sampling scheme, at each
stage two balls are drawn: the first ball is returned to the
urn together with an additional ball of the same color,
while the second ball is not returned to the urn.

Note that if at some stage all the balls in the urn are
of the same color, then the urn remains constant forever
after. This can be shown to happen eventually and a
question of interest is to compute the probability that the
urn becomes all red.
Problem 2.23. Argue that if r = b, then that probability
is 1/2. In fact, argue that, if τ(r, b) denotes the probability
that the process starting with r red and b blue balls ends
up with only red balls, then τ(r, b) = 1 − τ(b, r).
Problem 2.24. Derive the probabilities τ(1,2), τ(2,3),
and τ(3,4).

Wright–Fisher urn model 13 Assume that the urn
contains N balls in total. In this sampling scheme, at

12 Named after Patrick Moran (1917 - 1988).
13 Named after Sewall Wright (1889 - 1988) and Ronald Aylmer

Fisher (1890 - 1962).

each step the entire urn is reconstituted by sampling N
balls uniformly at random with replacement from the urn.
Problem 2.25. Start with an urn with r red balls and
b blue balls. Give the distribution of the number of red
balls does the urn contain after one step.
Remark 2.26. The Wright–Fisher and the Moran urn
models were proposed as models of genetic drift, which is
the change in the frequency of gene variants (i.e., alleles)
in a given population. In both models, the size of the
population remains constant.

2.5 Further topics

2.5.1 Stirling’s formula

The factorial, as a function on the integers, increases very
rapidly.
Problem 2.27. Prove that the factorial sequence (n!)
increases faster to infinity than any power sequence, mean-
ing that an/n! → 0 for any real number a > 0. Moreover,
show that n! ≤ nn for n ≥ 1.
In fact, the size of n! is known very precisely. The

following describes the first order asymptotics. More
refined results exist.
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Theorem 2.28 (Stirling’s formula 14). Letting e denote
the Euler number,

n! ∼
√

2πn (n/e)n, as n→∞. (2.21)

In fact,

1 ≤ n!√
2πn (n/e)n

≤ e1/(12n), for all n ≥ 1. (2.22)

2.5.2 More on binomial coefficients

Binomial coefficients appear in many important combina-
torial identities. Here are a few examples.
Problem 2.29. Show that there are (n+1

k
) binary se-

quences with exactly k ones and n zeros such that no
two 1’s are adjacent.
Problem 2.30 (The binomial identity). Prove that

(a + b)n =
n

∑
k=0

(n
k
)akbn−k, for a, b ∈ R.

[One way to do so uses the fact that the binomial distri-
bution needs to satisfy the 2nd axiom.]

14 Named after James Stirling (1692 - 1770).

Problem 2.31. Show that

2n =
n

∑
k=0

(n
k
).

This can be done by interpreting this identity in terms of
the number of subsets of {1, . . . , n}.

Partitions of an integer Consider the number of
ways of decomposing a non-negative integer m into a sum
of s ≥ 1 non-negative integers. Importantly, we count
different permutations of the same numbers as distinct
possibilities. For example, here are the possible decompo-
sitions of m = 4 into s = 3 non-negative integers

4 + 0 + 0 3 + 1 + 0 3 + 0 + 1 2 + 2 + 0 2 + 1 + 1
2 + 0 + 2 1 + 3 + 0 1 + 2 + 1 1 + 1 + 2 1 + 0 + 3
0 + 4 + 0 0 + 3 + 1 0 + 2 + 2 0 + 1 + 3 0 + 0 + 4

Problem 2.32. Show that this number is equal to
(m+s−1

s−1 ). How does this change when the integers in the
partition are required to be positive?

Catalan numbers Closely related to the binomial co-
efficients are the Catalan numbers. 15 The nth Catalan

15 Named after Eugène Catalan (1814 - 1894).
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number is defined as

Cn ∶=
1

n + 1
(2n
n

). (2.23)

These numbers have many different interpretations of
their own. One of them is that Cn is the number of
balanced bracket expressions of length 2n. Here are all
such expressions of length 6 (n = 3):

()()() ((())) ()(()) (())() (()())

Problem 2.33. Prove that

Cn = (2n
n

) − ( 2n
n + 1

).

Problem 2.34. Prove the recursive formula

C0 = 1, Cn+1 =
n

∑
i=0
CiCn−i, n ≥ 0. (2.24)

2.5.3 Two Envelopes Problem

Two envelopes containing money are placed in front of
you. You are told that one envelope contains double
the amount of the other. You are allowed to choose an
envelope and look inside, and based on what you see you
have to decide whether to keep the envelope that you just

opened or switch for the other envelope. See [173] for an
article-length discussion including different perspectives.
A flawed reasoning goes as follows.

If you see x in the envelope, then the amount in
the other envelope is either x/2 or 2x, each with
probability 1/2. The average gain if you switch
is therefore (1/2)(x/2) + (1/2)(2x) = (5/4)x, so
you should switch.

The issue is that there are no grounds for the “with prob-
ability 1/2” claim since the distribution that generated x
was not specified.

This illustrates the maxim (echoed in [113, Exa 4.28]).

Proverb. Computing probabilities requires a well-defined
probability model.

See Problem 7.104 and Problem 7.105 for two different
probability models for this situation that lead to different
conclusions.

2.6 Additional problems

Problem 2.35. A rule of thumb in Epidemiology is that,
in the context of examining the safety of a given drug, if
one hopes to identify a (severe) side effect affecting 1 out
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of every 1000 people taking the drug, then a trial needs
to include at least 3000 individuals. In that case, what
is the probability that in such a trial at least one person
will experience the side effect?
Problem 2.36 (With or without replacement). Suppose
that we are sampling n balls with replacement from an
urn containing N balls numbered 1, . . . ,N . Compute the
probability that all balls drawn are distinct. Now consider
an asymptotic setting where n = n(N) and N →∞, and
let qN denote that probability. Show that

lim
N→∞

qN =
⎧⎪⎪⎨⎪⎪⎩

0 if n/
√
N →∞,

1 if n/
√
N → 0.

Problem 2.37 (A stylized Birthday Problem). Compute
the minimum number of people, taken at random from
those born in the year 2000, needed so that at least two
share their birthday with probability at least 1/2. Model
the situation using Bernoulli trials and assume that the
a person is equally likely to be born any given day of a
365-day year.
Problem 2.38. Continuing with Problem 2.37, perform
simulations in R to confirm your answer.
Problem 2.39 (More on the Birthday Problem). The use
of Bernoulli trials to model the situation in Problem 2.37

amounts to assuming that 1) each person is equally likely
to be born any day of the year and 2) that the population
is very large. Both are approximations. Keeping 2) in
place, show that 1) only makes the number of required
people larger.
Problem 2.40. Consider two independent draws with
replacement from an urn containing N distinct items. Let
pi denote the probability of drawing item i. What is the
probability that the same item is drawn twice? Show
that this is minimized when the pi are all equal, meaning,
when drawing uniformly at random. [Use the method of
Lagrange multipliers.]
Problem 2.41. Suppose that you have access to a com-
puter routine that takes as input (n,N) and generates n
independent draws with replacement from an urn with
balls numbered {1, . . . ,N}.
(i) Explain how you would use that routine to generate

n draws from an urn with r red balls and b blue balls
with replacement.

(ii) Explain how you would use that routine to generate
n draws from an urn with r red balls and b blue balls
without replacement.

First answer these questions in writing. Then answer
them by writing an program in R for each situation, using
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the R function runid as the routine. (This is only meant
for pedagogical purposes since the function sample can be
directly used to fulfill the purpose in both cases.)
Problem 2.42 (Simpson’s reversal). Provide a simple
example of a finite probability space (Ω,P) and events
A,B,C such that

P(A ∣ B) < P(A ∣ Bc),

while
P(A ∣ B ∩ C) ≥ P(A ∣ Bc ∩ C)

and
P(A ∣ B ∩ Cc) ≥ P(A ∣ Bc ∩ Cc).

Show that this is not possible when B and C are indepen-
dent of each other.
Problem 2.43 (The Two Children). This is a classic
problem that appeared in [101]. You are on the airplane
and start a conversation with the person next to you.
In the course of the conversation, you learn that (I) the
person has two children; (II) one of them is a daughter;
(III) and she is the oldest. After (I), what is the probability
that the person has two daughters? How does that change
after (II)? How does that change after (III)? [Make some
necessary simplifying assumptions.]

Problem 2.44. Simulate 5 realizations of an experiment
consisting of sampling with replacement n = 10 times from
an urn containing r = 7 red balls and b = 13 blue balls.
Repeat, now without replacement.
Problem 2.45. Write an R function polya that takes in
a sequence length n, and the composition of the initial
urn in terms of numbers of red and blue balls, r and b,
and generates a sequence of that length from the Pólya
process starting from that urn. Call the function on
(n, r, b) = (200, 5, 3) a large number of times, sayM = 1000,
each time compute the number of red balls in the resulting
sequence, and tabulate the fraction of times that this
number is equal to k, for all k ∈ {0, . . . ,200}. Plot the
corresponding bar chart.
Problem 2.46. Write an R function moran that takes in
the composition of the urn in terms of numbers of red
and blue balls, r and b, and runs the Moran urn process
until the urn is of one color and returns that color and
the number of stages that it took to get there. (You
may want to bound the number of stages and then stop
the process after that, returning a symbol indicating non-
convergence.) Use that function to confirm your answers
to Problem 2.24 following the guidelines of Problem 2.45.
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Throughout the chapter, we consider a discrete probability
space (Ω,Σ,P), where Σ is taken to be the power set of
Ω, as usual.

3.1 Random variables

It is often the case that measurements are taken from the
experiment. Such a measurement is modeled as a function
on the sample space. More formally, a random variable
on Ω is a real-valued function

X ∶ Ω→ R. (3.1)

Remark 3.1. We will abbreviate {ω ∈ Ω ∶ X(ω) ∈ U}
as {X ∈ U}. In particular, {X = x} is shorthand for
{ω ∈ Ω ∶ X(ω) = x} and, similarly, {X ≤ x} is shorthand
for {ω ∈ Ω ∶X(ω) ≤ x}, etc.

https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
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3.2 Discrete distributions

A random variable X on a discrete probability space
(Ω,Σ,P) defines a distribution on R equipped with its
power set,

PX(U) ∶= P(X ∈ U), for U ⊂ R, (3.2)

with mass function

fX(x) ∶= P(X = x), for x ∈ R. (3.3)

Problem 3.2. Show that PX is a discrete distribution
in the sense that there is a discrete subset S ⊂ R such
that PX(U) = 0 whenever U ∩ S = ∅. In this case, S
corresponds to the support of PX .
Remark 3.3. For a random variableX and a distribution
P, we write X ∼ P when X has distribution P, meaning
that PX = P.

This chapter presents some classical examples of discrete
distributions on the real line. In fact, we already saw some
of them in Chapter 2.
Remark 3.4. Unless specified otherwise, a discrete ran-
dom variable will be assumed to take integer values. This
can be done without loss of generality, and it also covers
most cases of interest.

3.3 Binomial distributions

Consider the setting of Bernoulli trials as in Section 2.3
where a p-coin is tossed repeatedly n times. Unless other-
wise stated, we assume that the tosses are independent.
Letting ω = (ω1, . . . , ωn) denote an element of Ω ∶= {h,t}n,
for each i ∈ {1, . . . , n}, define

Xi(ω) =
⎧⎪⎪⎨⎪⎪⎩

1 if ωi = h,
0 if ωi = t.

(3.4)

(Note that Xi is the indicator of the event Ai defined in
Section 2.3.) In particular, the distribution of Xi is given
by

P(Xi = 1) = p, P(Xi = 0) = 1 − p. (3.5)
Xi has the so-called Bernoulli distribution with parameter
p. We will denote this distribution by Ber(p).

The Xi are independent (discrete) random variables in
the sense that

P(X1 ∈ V1, . . . ,Xr ∈ Vr) = P(X1 ∈ V1)⋯P(Xr ∈ Vr),
∀V1, . . . ,Vr ⊂ R,∀r ≥ 2,

or, equivalently,

P(X1 = x1, . . . ,Xr = xr) = P(X1 = x1)⋯P(Xr = xr),
∀x1, . . . , xr ∈ R,∀r ≥ 2.
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(In this particular case, the xi can be taken to be in
{0,1}.) We will discuss independent random variables in
more detail in Section 6.2.

Let Y denote the number of heads in the sequence of n
tosses, so that

Y =
n

∑
i=1
Xi. (3.6)

We note that Y is a random variable on the same sample
space Ω. Y has the so-called binomial distribution with
parameters (n, p). We will denote this distribution by
Bin(n, p).

We already saw in Proposition 2.8 that Y plays a central
role in this experiment. And in (2.16), we derived its
distribution.

Proposition 3.5 (Binomial distribution). The binomial
distribution with parameters (n, p) has mass function

f(k) = (n
k
)pk(1 − p)n−k, k ∈ {0, . . . , n}. (3.7)

Discrete mass functions are often drawn as bar plots.
See Figure 3.1 for an illustration.

Figure 3.1: A bar plot of the mass function of the
binomial distribution with parameters n = 10 and p = 0.3.
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3.4 Hypergeometric distributions

Consider an urn model as in Section 2.4. Suppose, as
before, that the urn has r red balls and b blue balls. We
sample from the urn n times and, as before, let Xi = 1 if
the ith draw is red, and Xi = 0 otherwise. (Note that Xi

is the indicator of the event Ai defined in Section 2.4.)
If we sample with replacement, we know that the ex-
periment corresponds to Bernoulli trials with parameter
p ∶= r/(r + b). We assume therefore that we are sam-
pling without replacement. To be able to sample n times
without replacement, we need to assume that n ≤ r + b.

Let Y denote the number of heads in a sequence of n
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draws, exactly as in (3.6). The difference is that here the
draws (the Xi) are not independent. The distribution of Y
is called the hypergeometric distribution 16 with parameters
(n, r, b). We will denote this distribution by Hyper(n, r, b).
We already computed its mass function in (2.20).

Proposition 3.6 (Hypergeometric distribution). The hy-
pergeometric distribution with parameters (n, r, b) has
mass function

f(k) =
(r
k
)( b
n−k

)
(r+b
n
)

, k ∈ {0, . . . ,min(n, r)}. (3.8)

3.5 Geometric distributions

Consider Bernoulli trials as in Section 3.3 but now assume
that we toss the p-coin until it lands heads. This exper-
iment was described in Example 1.12. Define the Xi as
before, and let Y denote the number of tails until the first
heads. For example, Y (ω) = 3 when ω = ttth. Note that
Y is a random variable on Ω.

16 There does not seem to be a broad agreement on how to
parameterize this family of distributions.

It is particularly straightforward to derive the distribu-
tion of Y . Indeed, for any integer k ≥ 0,

P(Y = k) = P(X1 = 0, . . . ,Xk = 0,Xk+1 = 1)
= P(X1 = 0) ×⋯ × P(Xk = 0) × P(Xk+1 = 1)
= (1 − p) ×⋯ × (1 − p)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k times

×p = (1 − p)kp,

using the independence of the Xi in the second line.
The distribution of Y is called the geometric distribu-

tion 17 with parameter p. We will denote this distribution
by Geom(p). It is supported on {0,1,2, . . .}.
Problem 3.7. Because of the Law of Total Probability,

∞

∑
k=0

(1 − p)kp = 1, for all p ∈ (0,1). (3.9)

Prove this directly.
Problem 3.8. Show that P(Y > k) = (1 − p)k+1 for k ≥ 0
integer.
Remark 3.9 (Law of truly large numbers). In [60], Diaco-
nis and Mosteller introduced this principle as one possible

17 This distribution is sometimes defined a bit differently, as the
number of trials, including the last one, until the first heads. This is
the case, for example, in [113].
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source for coincidences. In their own words, the ‘law’ says
that

When enormous numbers of events and people
and their interactions cumulate over time, almost
any outrageous event is bound to occur.

Related concepts include Murphy’s law, Littlewood’s law,
and the Infinite Monkey Theorem. Mathematically, the
principle can be formalized as the following theorem: If
a p-coin, with p > 0, is tossed repeatedly independently, it
will land heads eventually. This theorem is an immediate
consequence of (3.9).
Problem 3.10 (Memoryless property). Prove that a ge-
ometric random variable Y satisfies

P(Y > k + t ∣ Y > k) = P(Y > t),
for all t ≥ 0 and all k ≥ 0.

3.6 Other discrete distributions

We already saw the families of Bernoulli, of binomial, and
of hypergeometric distributions. We introduce a few more.

3.6.1 Discrete uniform distributions

A discrete uniform distribution (on the real line) is a
uniform on a finite set of points in R. Thus the family
is parameterized by finite sets of points: such a set, say
X ⊂ R, defines the distribution with mass function

f(x) = {x ∈ X}
∣X ∣ , x ∈ R.

The subfamily corresponding to sets of the form X =
{1, . . . ,N} plays a special role. This subfamily is obviously
much smaller and can be parameterized by the positive
integers.

3.6.2 Negative binomial distributions

Consider an experiment where we toss a p-coin repeatedly
until the mth heads, where m ≥ 1 is given. Let Y denote
the number of tails until we stop. For example, if m = 3,
then Y (ω) = 4 when ω = hthttth. Y is clearly a random
variable on the same sample space, and has the so-called
negative binomial distribution 18 with parameters (m,p).
We will denote this distribution by NegBin(m,p). It is

18 This distribution is sometimes defined a bit differently, as the
number of trials, including the last one, until the mth heads. This
is the case, for example, in [113].
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supported on k ∈ {0,1,2, . . .}. Clearly, NegBin(1, p) =
Geom(p), so the negative binomial family includes the
geometric family.

Proposition 3.11. The negative binomial distribution
with parameters (m,p) has mass function

f(k) = (m + k − 1
m − 1

)(1 − p)kpm, k ≥ 0.

Problem 3.12. Prove this last proposition. The argu-
ments are very similar to those leading to Proposition 3.5.

Proposition 3.13. The sum of m independent random
variables, each having the geometric distribution with pa-
rameter p, has the negative binomial distribution with
parameters (m,p).

Problem 3.14. Prove this last proposition.

3.6.3 Negative hypergeometric distributions

As the name indicates, this distribution arises when, in-
stead of flipping a coin, we draw without replacement
from an urn. Assume the urn contains r red balls and b
blue balls. Let Y denote the number of blue balls drawn
before drawing the mth red ball, where m ≤ r. Y is
a random variable on the same sample space, and has

the so-called negative hypergeometric distribution with
parameters (m,r, b).
Problem 3.15. Derive the mass function of the negative
hypergeometric distribution with parameters (m,r, b) =
(3,4,5).

3.6.4 Poisson distributions

The Poisson distribution 19 with parameter λ ≥ 0 is given
by the following mass function

f(k) ∶= e−λλ
k

k!
, k = 0,1,2, . . . .

By convention, 00 = 1, so that when λ = 0, the right-hand
side is 1 at k = 0 and 0 otherwise.
Problem 3.16. Show that this is indeed a mass function
on the non-negative integers. 20

Proposition 3.17 (Stability of the Poisson family). The
sum of a finite number of independent Poisson random
variables is Poisson.

The Poisson distribution arises when counting rare
events. This is partly justified by Theorem 3.18.

19 Named after Siméon Poisson (1781 - 1840).
20 Recall that ex = ∑j≥0 x

j/j! for all x.
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3.7 Law of Small Numbers

Suppose that we are counting the occurrence of a rare
phenomenon. For a historical example, Gosset 21 was
counting the number of yeast cells using an hemocytome-
ter [226]. This is a microscope slide subdivided into a
grid of identical units that can hold a solution. In his
experiments, Gosset prepared solutions containing the
cells. Each solution was well mixed and spread on the
hemocytometer. He then counted the number of cells in
each unit. He wanted to understand the distribution of
these counts. He performed a number of experiments.
One of them is shown in Table 3.1.
Mathematically, he reasoned as follows. Let N denote

the number of units and n the number of cells. When the
solution is well mixed and well spread out over the units,
each cell can be assumed to fall in any unit with equal
probability 1/N . Under this model, the number of cells
found in a given unit has the binomial distribution with
parameters (n,1/N). Gosset considered the limit where
n and N are both large and proved that this distribution

21 William Sealy Gosset (1876 - 1937) was working at the Guin-
ness brewery, which required that he publish his work anonymously
so as not to disclose the fact that he was working for Guinness and
that his work could be used in the beer brewing business. He chose
the pseudonym ‘Student’.

Table 3.1: The following is Table 2 in [226]. There were
103 units with 0 cells, 143 units with 1 cell, etc. See
Problem 12.30 for a comparison with what is expected
under a Poisson model.

Number of cells 0 1 2 3 4 5 6

Number of units 103 143 98 42 8 4 2

is ‘close’ to the Poisson distribution with parameter n/N
when that number is not too large. This approximation is
sometimes referred to as the Law of Small Numbers, and
is formalized below.

Theorem 3.18 (Poisson approximation to the binomial
distribution). Consider a sequence (pn) with pn ∈ [0,1]
and npn → λ as n → ∞. Then if Yn has distribution
Bin(n, pn) and k ≥ 0 is an integer,

P(Yn = k)→ e−λλ
k

k!
, as n→∞.

Problem 3.19. Prove Theorem 3.18 using Stirling’s for-
mula (2.21).

Bateman arrived at the same conclusion in the context
of experiments conducted by Rutherford and Geiger in the
early 1900’s to better understand the decay of radioactive
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particles. In one such experiment [201], they counted
the number of particles emitted by a film of polonium in
2608 time intervals of 7.5 seconds duration. The data is
reproduced here in Table 3.2.

3.8 Coupon Collector Problem

This problem arises from considering an individual collect-
ing coupons of a certain type, say of players in a certain
sports league in a certain sports season. The collector
progressively completes his collection by buying envelopes,
each containing an undisclosed coupon. With every pur-
chase, the collector hopes the enclosed coupon will be
new to his collection. (We assume here that the collector
does not trade with others.) If there are N players in the
league that season (and therefore that many coupons to
collect), how many envelopes would the collector need to
purchase in order to complete his collection?

In the simplest setting, an envelope is equally likely to
contain any one of the N distinct coupons. In that case,
the situation can be modeled as a probability experiment
where balls are drawn repeatedly with replacement from
an urn containing N balls, all distinct, until all the balls
in the urn have been drawn at least once. For example, if

N = 10, the sequence of draws might look like this

3 6 9 9 9 5 7 9 5 8 3 2 1 2 5 2 7 10 3 3 10 1 8 7 9 1 6 4

Let T denote the length of the resulting sequence (T = 28
in this particular realization of the experiment).
Problem 3.20. Write a function in R taking in N and
returning a realization of the experiment. [Use the func-
tion sample and a repeat statement.] Run your function on
N = 10 a few times to get a sense of how typical outcomes
look like.
Problem 3.21. Let T0 = 0, and for i ∈ {1, . . . ,N}, let
Ti denote the number of balls needed to secure i distinct
balls, so that T = TN , and defineWi = Ti−Ti−1. Show that
W1, . . . ,WN are independent. Then derive the distribution
of Wi.
Problem 3.22. Write a function in R taking in N and
returning a realization of the experiment, but this time
based on Problem 3.21. Compare this function and that
of Problem 3.20 in terms of computational speed. [The
function proc.time will prove useful.]
Problem 3.23. For i ∈ {1, . . . ,N}, let Xi denote the
number of trials it takes to draw ball i. Note that T =
max{Xi ∶ 1 ≤ i ≤ N}.
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Table 3.2: The following is part of the table on page 701 of [201]. The counting of particles was done over 2608 time
intervals of 7.5 seconds each. See Problem 12.31 for a comparison with what is expected under a Poisson model.

Number of particles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15+
Number of intervals 57 203 383 525 532 408 273 139 45 27 10 4 0 1 1 0

(i) Show that

T ≤ t ⇔ {Xi ≤ t, ∀i = 1, . . . ,N}.

(ii) What is the distribution of Xi?
(iii) For n ≥ 1, and for k ∈ {1, . . . ,N} and any 1 ≤ i1 < ⋯ <

ik ≤ N , compute

P(Xi1 ≥ n, . . . ,Xik ≥ n).

(iv) Use this and the inclusion-exclusion formula (1.15)
to derive the mass function of T in closed form.

3.9 Additional problems

Problem 3.24. Show that for any n ≥ 1 integer and any
p ∈ [0,1],

Bin(n,1 − p) coincides with n −Bin(n, p). (3.10)

Problem 3.25. Let Y be binomial with parameters
(n,1/2). Using the symmetry (3.10), show that

P(Y > n/2) = P(Y < n/2). (3.11)

This means that, when the coin is fair, the probability
of getting strictly more heads than tails is the same as
the probability of getting strictly more tails than heads.
When n is odd, show that (3.11) implies that

P(Y > n/2) = P(Y < n/2) = 1
2
.

When n is even, show that (3.11) implies that

P(Y > n/2) = 1
2
+ 1

2
P(Y = n/2).

Then using Stirling’s formula (2.21), show that

P(Y = n/2) ∼
√

2
πn

, as n→∞.
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This approximation is in fact very good. Verify this nu-
merically in R.
Problem 3.26. For y ∈ {0, . . . , n}, let Fn,θ(y) denote the
probability that the binomial distribution with parameters
(n, θ) puts on {0, . . . , y}. Fix y < n and show that

θ ↦ Fn,θ(y) is strictly decreasing, continuous,
and one-to-one as a map of [0,1] to itself. (3.12)

What happens when y = n?
Problem 3.27. Continuing with the setting of Prob-
lem 3.26, show that for any y ≥ 0 integer and any θ ∈ [0, 1],

n↦ Fn,θ(y) is non-increasing. (3.13)

In fact, if 0 < θ < 1, this function is decreasing once n ≥ y.
Problem 3.28. Suppose that you have access to a com-
puter routine that takes as input a vector of any length
k of numbers in [0,1], say (q1, . . . , qk), and generates
(B1, . . . ,Bk) independent Bernoulli with these parame-
ters (i.e., Bi ∼ Ber(qi)). The question is how to use this
routine to generate a random variable from a given mass
function f (with finite support). Assume that f is sup-
ported on x1, . . . , xN and that f(xj) = pj .
(i) Quickly argue that the case N = 2 is trivial.

(ii) Consider the case N = 3. Show that the following
works. Assume without loss of generality that p1 ≤
p2 ≤ p3. Apply the routine to q1 = p1 and q2 =
p2/(1 − p1) obtaining (B1,B2). If B1 = 1, return x1;
if B1 = 0 and B2 = 1, return x2; otherwise, return x3.

(iii) Extend this procedure to the general case.
Problem 3.29. Show that the sum of independent bino-
mial random variables with same probability parameter p
is also binomial with probability parameter p.
Problem 3.30. Prove Proposition 3.17.
Problem 3.31. Suppose that X and Y are two indepen-
dent Poisson random variables. Show that the distribution
of X conditional on X + Y = t is binomial and specify the
parameters.
Problem 3.32. For any p ∈ (0,1), show that there is
cp > 0 such that the following is a mass function on the
positive integers

f(k) = cp
pk

k
, k ≥ 1 integer.

Derive cp in closed form. 22

22 Recall that log(1 − x) = −∑k≥1 x
k/k for all x ∈ (0,1).
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Problem 3.33. For what values of α can one normalize
g(k) = k−α into a mass function on the positive integers?
Similarly, for what values of α and β can one normalize
g(k) = k−α(log(k + 1))−β into a mass function on the
positive integers?
Problem 3.34 (The binomial approximation to the hyper-
geometric distribution). Problem 2.21 asks you to prove
that sampling without replacement from an (r, b)-urn
amounts, in the limit where r/(r + b) → p, to tossing a
p-coin. Argue that, therefore, the hypergeometric distribu-
tion with parameters (n, r, b) must approach the binomial
distribution with parameters (n, p) when n is fixed and
r/(r + b)→ p. [Argue in terms of mass functions.]
Problem 3.35. Continuing with the same problem, an-
swer the same question analytically using Stirling’s for-
mula.
Problem 3.36 (Game of Googol). Martin Gardner posed
the following puzzle in his column in a 1960 edition of
Scientific American: “Ask someone to take as many slips
of paper as he pleases, and on each slip write a different
positive number. The numbers may range from small
fractions of 1 to a number the size of a googol 23 or even
larger. These slips are turned face down and shuffled over

23 A googol is defined as 10100.

the top of a table. One at a time you turn the slips face
up. The aim is to stop turning when you come to the
number that you guess to be the largest of the series. You
cannot go back and pick a previously turned slip. If you
turn over all the slips, then of course you must pick the
last one turned.”
Let n be the total number of slips. A natural strategy

is, for a given r ∈ {1, . . . , n}, to turn r slips, and then keep
turning slips until either reaching the last one (in which
case this is our final slip) or stop when the slip shows a
number that is at least as large as the largest number
among the first r slips.

(i) Compute the probability that this strategy is correct
as a function of n and r.

(ii) Let rn denote the optimal choice of r as a function
of n. (If there are several optimal choices, it is the
smallest.) Compute rn using R.

(iii) Formally derive rn to first order when n→∞.

(This problem has a long history [84].)
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In Chapter 3, which considered a discrete sample space
(equipped, as usual, with its power set as σ-algebra), and
random variables were simply defined as arbitrary real-
valued functions on that space. When the sample space
is not discrete, more care is needed. In fact, a proper
definition necessitates the introduction of a particular
σ-algebra other than the power set.
As before, we consider a probability space, (Ω,Σ,P),

modeling a certain experiment.

4.1 Random variables

Consider a measurement on the outcome of the experi-
ment. At the very minimum, we will want to compute
the probability that the measurement does not exceed a
certain amount. For this reason, we say that a real-valued
function X ∶ Ω→ R is a random variable on (Ω,Σ) if

{X ≤ x} ∈ Σ, for all x ∈ R. (4.1)

https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
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(Recall the notation introduced in Remark 3.1.) In par-
ticular, if X is a random variable on (Ω,Σ), and P is a
probability distribution on Σ, then we can ask for the
corresponding probability that X is bounded by x from
above, in other words, P(X ≤ x) is well-defined.

4.2 Borel σ-algebra

In Chapter 3 we saw that a discrete random variable
defines a (discrete) distribution on the real line equipped
with its power set. While this can be done without loss
of generality in that context, beyond it is better to equip
the real line with a smaller σ-algebra. (Equipping the
real line with its power set would effectively exclude most
distributions commonly used in practice.)

At the very minimum, because of (4.1), we require the
σ-algebra (over R) to include all sets of the form

(−∞, x], for x ∈ R. (4.2)

The Borel σ-algebra 24, denoted B henceforth, is the σ-
algebra generated by these intervals, meaning, the smallest
σ-algebra over R that contains all such intervals (Prob-
lem 1.51).

24 Named after Émile Borel (1871 - 1956).

Proposition 4.1. The Borel σ-algebra B contains all
intervals, as well as all open sets and all closed sets.

Proof. We only show that B contains all intervals. For
example, take a < b. Since B contains (−∞, a] and (−∞, b],
it must contain (−∞, a]c by (1.2) and also

(−∞, a]c ∩ (−∞, b],

by (1.3). But this is (a, b]. Therefore B contains all
intervals of the form (a, b], where a = −∞ and b =∞ are
allowed.
Take an interval of the form (−∞, x). Note that it

is open on the right. Define Un = (−∞, x − 1/n]. By
assumption, Un ∈ B for all n. Because of (1.4), B must
also contain their union, and we conclude with the fact
that

⋃
n≥1
Un = (−∞, x).

Now that we know that B contains all intervals of the
form (−∞, x), we can reason as before and show that it
must contain all intervals of the form [a, b), where a = −∞
and b =∞ are allowed.
Finally, for any −∞ ≤ a < b ≤∞,

[a, b] = [a, d) ∪ (c, b], and (a, b) = (a, c] ∪ [c, b),
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for any c, d such that a < c < d < b, so that B must also
include intervals of the form [a, b] and (a, b).

We will say that a function g ∶ R→ R is measurable if
g−1(V) ∈ B, for all V ∈ B. (4.3)

4.3 Distributions on the real line

When considering a probability distribution on the real
line, we will always assume that it is defined on the Borel
σ-algebra.

The support of a distribution P on (R,B) is the smallest
closed set A such that P(A) = 1.
Problem 4.2. Show that a distribution on (R,2R) with
discrete support is also a distribution on (R,B).
A random variable X on a probability space (Ω,Σ,P)

defines a distribution on (R,B),
PX(U) ∶= P(X ∈ U), for U ∈ B. (4.4)

Note that {X ∈ U} is sometimes denoted by X−1(U).
The range of a random variable X on (Ω,Σ) is defined

as
X(Ω) ∶= {X(ω) ∶ ω ∈ Ω}. (4.5)

Problem 4.3. Show that the support of PX is included
in the range of X. When is the inclusion strict?

4.4 Distribution function

The distribution function (aka cumulative distribution
function) of a distribution P on (R,B) is defined as

F(x) ∶= P((−∞, x]). (4.6)

See Figure 4.1 for an example.

Figure 4.1: A plot of the distribution function of the
binomial distribution with parameters n = 10 and p = 0.3.
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Proposition 4.4. A distribution is characterized by its
distribution function in the sense that two distributions
with identical distribution functions must coincide.

Problem 4.5. Let F be the distribution function of a
distribution P on (R,B).
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(i) Prove that

F is non-decreasing, (4.7)
lim
x→−∞

F(x) = 0, (4.8)

lim
x→+∞

F(x) = 1. (4.9)

(ii) Prove that F is continuous from the right, meaning

lim
t↘x

F(t) = F(x), for all x ∈ R. (4.10)

[Use the 3rd probability axiom (1.7).]
It so happens that these properties above define a distri-

bution function, in the sense that any function satisfying
these properties is the distribution function of some dis-
tribution on the real line.

Theorem 4.6. Let F ∶ R → [0,1] satisfy (4.7)-(4.10).
Then F defines a distribution 25 P on B via (4.6). In
particular,

P((a, b]) = F(b) − F(a), for −∞ ≤ a < b ≤∞. (4.11)

25 The distribution P is known as the Lebesgue–Stieltjes distribu-
tion generated by F.

Problem 4.7. In the context of the last theorem, for
x ∈ R, define the left limit of F at x as

F(x−) ∶= lim
t↗x

F(t). (4.12)

Show that this limit is well defined. Then prove that

F(x) − F(x−) = P({x}), for all x ∈ R. (4.13)

Problem 4.8. Show that a distribution on the real line is
discrete if and only if its distribution function is piecewise
constant (i.e., staircase) with the set of discontinuities (i.e.,
jumps) corresponding to the support of the distribution.
Problem 4.9. Show that the set of points where a mono-
tone function F ∶ R→ R is discontinuous is countable.
The distribution function of a random variable X is

simply the distribution function of its distribution PX . It
can be expressed as

FX(x) ∶= P(X ≤ x).

4.5 Survival function

Consider a distribution P on (R,B) with distribution
function F. The survival function of P is defined as

F̄(x) ∶= P((x,∞)). (4.14)
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Problem 4.10. Show that F̄ = 1 − F.
Problem 4.11. Show that a survival function F̄ is non-
increasing, continuous from the right, and lower semi-
continuous, meaning that

lim inf
x→x0

F̄(x) ≥ F̄(x0), for all x0 ∈ R. (4.15)

The survival function of a random variable X is simply
the survival function of its distribution PX . It can be
expressed as

F̄X(x) ∶= P(X > x).

4.6 Quantile function

Consider a distribution P on (R,B) with distribution
function F. We saw in Problem 4.8 that F may not be
strictly increasing or continuous, in which case it does
not admit an inverse in the usual sense. However, as a
non-decreasing function, F admits the following form of
pseudo-inverse 26

F−(u) ∶= min{x ∶ F(x) ≥ u}, (4.16)

sometimes referred the quantile function of P. See Fig-
ure 4.2 for an example.

26 That it is a minimum instead of an infimum is because of
(4.24).

Figure 4.2: A plot of the distribution function of the
binomial distribution with parameters n = 10 and p = 0.3.
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Note that F− is defined on (0,1), and if we allow it
to return −∞ and ∞ values, it can always be defined on
[0,1].
Problem 4.12. Show that F− is non-decreasing, contin-
uous from the right, and

F(x) ≥ u ⇔ x ≥ F−(u). (4.17)

Problem 4.13. Show that

F−(u) = sup{x ∶ F(x) < u}. (4.18)

Problem 4.14. Define the following variant of the sur-
vival function

F̃(x) = P([x,∞)). (4.19)
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Compare with (4.14), and note that the two definitions
coincide when F is continuous. Show that

F−(u) = inf{x ∶ F̃(x) ≤ 1 − u}.

Deduce that

F̃(x) ≤ 1 − u ⇔ x ≥ F−(u). (4.20)

Quantiles We say that x is a u-quantile of P if

F(x) ≥ u and F̃(x) ≥ 1 − u, (4.21)

or equivalently, if X denotes a random variable with dis-
tribution P,

P(X ≤ x) ≥ u and P(X ≥ x) ≥ 1 − u.

With this definition, x ∈ R is a u-quantile for any

1 − F̃(x) ≤ u ≤ F(x).

Remark 4.15 (Median and other quartiles). A 1/4-
quantile is called a 1st quartile, a 1/2-quantile is called 2nd
quartile or more commonly a median, and a 3/4-quantile
is called a 3rd quartile. The quartiles, together with other
features, can be visualized using a boxplot.

Problem 4.16. Show that for any u ∈ (0,1), the set of
u-quantiles is either a singleton or an interval of the form
[a, b) for some a < b that admit a simple characterization,
where by convention [a, a) = {a}.
Problem 4.17. The previous problem implies that there
always exists a u-quantile when u ∈ (0, 1). What happens
when u = 0 or u = 1?
Problem 4.18. Show that F−(u) is a u-quantile of F.
Thus (reassuringly) the quantile function returns bona
fide quantiles.
Remark 4.19. Other definitions of pseudo-inverse are
possible, each leading to a possibly different notion of
quantile. For example,

F⊟(x) ∶= sup{x ∶ F(x) ≤ u}, (4.22)

and
F⊖(u) ∶= 1

2
(F−(u) + F⊟(u)). (4.23)

Problem 4.20. Compare F−, F⊟, and F⊖. In particular,
find examples of distributions where they are different,
and also derive conditions under which they coincide.

4.7 Additional problems

Problem 4.21. Let F denote a distribution function.
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(i) Prove that F takes values in [0,1].
(ii) Prove that F is upper semi-continuous, meaning

lim sup
x→x0

F(x) ≤ F(x0), ∀x0 ∈ R. (4.24)



chapter 5

CONTINUOUS DISTRIBUTIONS

5.1 From the discrete to the continuous . . . . . 50
5.2 Continuous distributions . . . . . . . . . . . . 51
5.3 Absolutely continuous distributions . . . . . . 53
5.4 Continuous random variables . . . . . . . . . 54
5.5 Location/scale families of distributions . . . 55
5.6 Uniform distributions . . . . . . . . . . . . . . 55
5.7 Normal distributions . . . . . . . . . . . . . . 55
5.8 Exponential distributions . . . . . . . . . . . . 56
5.9 Other continuous distributions . . . . . . . . 57
5.10 Additional problems . . . . . . . . . . . . . . . 59

This book will be published by Cambridge University
Press in the Institute for Mathematical Statistics Text-
books series. The present pre-publication, ebook version
is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works.
© Ery Arias-Castro 2019

In some areas of mathematics, physics, and elsewhere,
continuous objects and structures are often motivated, or
even defined, as limits of discrete objects. For example,
in mathematics, the real numbers are defined as the limit
of sequences of rationals, and in physics, the laws of
thermodynamics arise as the number of particles in a
system tends to infinity (the so-called thermodynamic or
macroscopic limit).

In Chapter 3 we introduced and discussed discrete ran-
dom variables and the (discrete) distributions they gener-
ate on the real line. Taking these discrete distributions
to their continuous limits, which is done by letting their
support size increase to infinity in a controlled manner,
gives rise to continuous distributions on the real line.

In what follows, when we make probability statements,
we assume that we have in the background a probability
space, which by default will be denoted by (Ω,Σ,P). As
usual, when Ω is discrete, Σ will be taken to be its power
set. As in Chapter 4, we always equip R with its Borel
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σ-algebra, denoted B and defined in Section 4.2.

5.1 From the discrete to the continuous

Some of the discrete distributions introduced in Chapter 3
have a ‘natural’ continuous limit when we let the size of
their supports increase. We formalize this passage to the
continuum by working with distribution functions. (Recall
that a distribution on the real line is characterized by its
distribution function.)

5.1.1 From uniform to uniform

For a positive integer N , let PN denote the (discrete)
uniform distribution on {1, . . . ,N}, and let FN denote its
distribution function.
Problem 5.1. Show that, for any x ∈ R,

lim
N→∞

FN(Nx) = F(x) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if x ≤ 0,
x if 0 < x < 1,
1 if x ≥ 1.

The limit function F above is continuous and satisfies
the conditions of Theorem 4.6 and so defines a distribu-
tion, referred to as the uniform distribution on [0,1]; see
Section 5.6 for more details.

Remark 5.2. Note that FN(x)→ 0 for all x ∈ R, so that
scaling x by N is crucial to obtain the limit above.
Remark 5.3. The family of discrete uniform distribu-
tions on the real line is much larger. It turns out that it
is so large that it is in some sense dense among the class
of all distributions on (R,B). You are asked to prove this
in Problem 5.43.

5.1.2 From binomial to normal

The following limiting behavior of binomial distributions
is one of the pillars of Probability Theory.

Theorem 5.4 (De Moivre–Laplace Theorem 27). Fix p ∈
(0,1) and let Fn denote the distribution function of the
binomial distribution with parameters (n, p). Then, for
any x ∈ R,

lim
n→∞

Fn(np + x
√
np(1 − p)) = Φ(x), (5.1)

where

Φ(x) ∶= ∫
x

−∞

e−t2/2√
2π

dt. (5.2)

27 Named after Abraham de Moivre (1667 - 1754) and Pierre-
Simon, marquis de Laplace (1749 - 1827).
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Proposition 5.5. The function Φ in (5.2) satisfies the
conditions of Theorem 4.6, in particular because

∫
∞

−∞
e−t

2/2dt =
√

2π.

Thus the function Φ defined in (5.2) defines a distribu-
tion, referred to as the standard normal distribution; see
Section 5.7 for more details.
The theorem above is sometimes referred to as the

normal approximation to the binomial distribution. See
Figure 5.1 for an illustration.

As the proof of Theorem 5.4 can be relatively long, we
only provide some guidance. Let σ =

√
p(1 − p).

Problem 5.6. Let Gn(x) = Fn(np + xσ
√
n). Show that

it suffices to prove that Gn(b) −Gn(a)→ Φ(b) −Φ(a) for
all −∞ < a < b <∞.
Problem 5.7. Using (3.7), show that

Gn(b) −Gn(a)

= σ
√
n∫

b

a
( n

κn(t)
)pκn(t)(1 − p)n−κn(t)dt

+O(1/
√
n),

where κn(t) ∶= ⌊np + tσ√n⌋.

Problem 5.8. Show that

σ
√
n( n

κn(t)
)pκn(t)(1 − p)n−κn(t) → e−t2/2√

2π
, as n→∞,

uniformly in t ∈ [a, b]. The rather long, but elementary
calculations are based on Stirling’s formula in the form of
(2.22).

5.1.3 From geometric to exponential

Let FN denote the distribution function of the geometric
distribution with parameter (λ/N) ∧ 1, where λ > 0 is
fixed.
Problem 5.9. Show that, for any x ∈ R,

lim
N→∞

FN(Nx) = F(x) ∶= (1 − e−λx) {x > 0}.

The limit function F above satisfies the conditions of
Theorem 4.6 and so defines a distribution, referred to as
the exponential distribution with rate λ; see Section 5.8
for more details.

5.2 Continuous distributions

A distribution P on (R,B), with distribution function F, is
a continuous distribution if F is continuous as a function.
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Figure 5.1: An illustration of the normal approximation to the binomial distribution with parameters n ∈ {10,30,100}
(from left to right) and p = 0.1.
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Problem 5.10. Show that P is continuous if and only if
P({x}) = 0 for all x.
Problem 5.11. Show that F ∶ R→ R is the distribution
function of a continuous distribution if and only if it is
continuous, non-decreasing, and satisfies

lim
x→−∞

F(x) = 0, lim
x→∞

F(x) = 1.

We say that a distribution P is a mixture of distributions
P0 and P1 if there is b ∈ [0,1] such that

P = (1 − b)P0 + bP1. (5.3)

Theorem 5.12. Every distribution on the real line is
the mixture of a discrete distribution and a continuous
distribution.

Proof. Let P be a distribution on the real line, with dis-
tribution function denoted F. Assume that P is neither
discrete nor continuous, for otherwise there is nothing to
prove.

Let D denote the set of points where F is discontinuous.
By Problem 4.9 and the fact that F is non-decreasing (see
(4.7)), D is countable, and since we have assumed that P
is not continuous, b ∶= P(D) > 0. Define

F1(x) =
1
b
∑

t≤x,t∈D

P({t}). (5.4)

It is easy to see that F1 is a piecewise constant distribu-
tion function, which thus defines a discrete distribution,
denoted P1.
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Define
F0 =

1
1 − b(F − bF1). (5.5)

It is easy to see that F0 is a distribution function, which
therefore defines a distribution, denoted P0.

By construction, (5.3) holds, and so it remains to prove
that F0 is a continuous. Since F0 is continuous from the
right (see (4.10)), it suffices to show that it is continuous
from the left as well, or equivalently, that F0(x)−F0(x−) =
0 for all x ∈ R. (Recall the definition (4.12).) For x ∈ R,
by (4.13), it suffices to establish that P0({x}) = 0. We
have

P0({x}) =
1

1 − b(P({x}) − bP1({x})). (5.6)

If x ∉ D, then P({x}) = 0 and P1({x}) = 0, while if x ∈ D,
bP1({x}) = P({x}), so in any case P0({x}) = 0.

5.3 Absolutely continuous distributions

A distribution P on (R,B), with distribution function F,
is absolutely continuous if F is absolutely continuous as a
function, meaning that there is an integrable function f
such that

F(x) = ∫
x

−∞
f(t)dt. (5.7)

In that case, we say that f is a density of P.

Remark 5.13 (Integrable functions). There are a number
of notions of integral. The most natural one in the context
of Probability Theory is the Lebesgue integral. However,
the Riemann integral has a somewhat more elementary
definition. We will only consider functions for which the
two notions coincide and will call these functions integrable.
This includes piecewise continuous functions. 28

Remark 5.14 (Non-uniqueness of a density). The func-
tion f in (5.7) is not uniquely determined by F. For
example, if g coincides with f except on a finite number of
points, then g also satisfies (5.7). Even then, it is custom-
ary to speak of ‘the’ density of a distribution, and we will
do the same on occasion. This is particularly warranted
when there is a continuous function f satisfying (5.7). In
that case, it is the only one with that property and the
most natural choice for the density of F. More generally,
f is chosen as ‘simple’ possible.
Problem 5.15. Suppose that f and g both satisfy (5.7).
Show that if they are both continuous they must coincide.
Problem 5.16. Show that a function f satisfying (5.7)

28 A function f is piecewise constant if its discontinuity points
are nowhere dense, or equivalently, if there is a strictly increasing
sequence (ak ∶ k ∈ Z) with limk→−∞ ak = −∞ and limk→−∞ ak = ∞
such that f is continuous on (ak, ak+1).
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must be non-negative at all of its continuity points.
Problem 5.17. Show that if f satisfies (5.7), then so do
max(f,0) and ∣f ∣. Therefore, any absolutely continuous
distribution always admits a density function that is non-
negative everywhere, and henceforth, we always choose to
work with such a density.

Proposition 5.18. An integrable function f ∶ R→ [0,∞)
is a density of a distribution if and only if

∫
∞

−∞
f(x)dx = 1. (5.8)

In that case, it defines an absolutely continuous distribu-
tion via (5.7).

Remark 5.19. Density functions are to absolutely con-
tinuous distributions what mass functions are to discrete
distributions.

5.4 Continuous random variables

We say that X is a (resp. absolutely) continuous random
variable on a sample space if it is a random variable on
that space as defined in Chapter 4 and its distribution
PX is (resp. absolutely) continuous, meaning that FX is

(resp. absolutely) continuous as a function. We let fX
denote a density of PX when one exists.
Problem 5.20. For a continuous random variable X,
verify that, for all a < b,

P(X ∈ (a, b]) = P(X ∈ [a, b))
= P(X ∈ [a, b]) = P(X ∈ (a, b)),

and, assuming X is absolutely continuous,

P(X ∈ (a, b]) = PX((a, b])
= FX(b) − FX(a)

= ∫
b

a
fX(x)dx.

Problem 5.21. Show that X is a continuous random
variable if and only if

P(X = x) = 0, for all x ∈ R.

(This is a bit perplexing at first.) In particular, the mass
function of X is utterly useless.
Problem 5.22. Assume that X has a density fX . Show
that, for any x where fX is continuous,

P(X ∈ [x − h,x + h]) ∼ 2hfX(x), as h→ 0.
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5.5 Location/scale families of
distributions

Let X be a random variable. Then the family of distribu-
tions defined by the random variables {X + b ∶ b ∈ R}, is
the location family of distributions generated by X.
Similarly, the family of distributions defined by the

random variables {aX ∶ a > 0}, is the scale family of dis-
tributions generated by X, and the family of distributions
defined by the random variables {aX + b ∶ a > 0, b ∈ R}, is
the location-scale family of distributions generated by X.
Problem 5.23. Show that aX + b has distribution func-
tion FX((⋅ − b)/a) and density 1

afX((⋅ − b)/a).

5.6 Uniform distributions

The uniform distribution on an interval [a, b] is given by
the density

f(x) = 1
b − a{x ∈ [a, b]}.

We will denote this distribution by Unif(a, b).
We saw in Section 5.1.1 how this sort of distribution

arises as a limit of discrete uniform distributions; see also
Problem 5.43.

Problem 5.24. Compute the distribution function of
Unif(a, b).
Problem 5.25 (Location-scale family). Show that the
family of uniform of distributions, meaning

{Unif(a, b) ∶ a < b},

is a location-scale family by verifying that

Unif(a, b) ≡ (b − a)Unif(0,1) + a.

Proposition 5.26. Let U be uniform in [0,1] and let
F be any distribution function with quantile function F−.
Then F−(U) has distribution F.

Problem 5.27. Prove this result, at least in the case
where F is continuous and strictly increasing (in which
case F− is a true inverse).

5.7 Normal distributions

The normal distribution (aka Gaussian distribution 29)
with parameters µ and σ2 is given by the density

f(x) = 1√
2πσ2

exp ( − (x − µ)2

2σ2 ). (5.9)

29 Named after Carl Gauss (1777 - 1855).
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(That this is a density is due to Proposition 5.5.) We
will denote this distribution by N (µ,σ2). It so happens
that µ is the mean and σ2 the variance of N (µ,σ2). See
Chapter 7. See Figure 5.2 for an illustration.

Figure 5.2: A plot of the standard normal density func-
tion (top) and distribution function (bottom).
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We saw in Theorem 5.4 that a normal distribution
arises as the limit of binomial distributions, but in fact

this limiting behavior is much more general, in particular
because of Theorem 8.31, which partly explains why this
family is so important.
Problem 5.28 (Location-scale family). Show that the
family of normal distributions, meaning

{N (µ,σ2) ∶ µ ∈ R, σ2 > 0},

is a location-scale family by verifying that

N (µ,σ2) ≡ σN (0,1) + µ.

The distribution N (0,1) is often called the standard nor-
mal distribution.

Proposition 5.29 (Stability of the normal family). The
sum of a finite number of independent normal random
variables is normal.

5.8 Exponential distributions

The exponential distribution with rate λ is given by the
density

f(x) = λ exp(−λx) {x ≥ 0}.

We will denote this distribution by Exp(λ).
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We saw in Section 5.1.3 how this distribution arises
as a continuous limit of geometric distributions; see also
Problem 8.58.
Problem 5.30 (Scale family). Show that the family of
exponential distributions, meaning

{Exp(λ) ∶ λ > 0},

is a scale family by verifying that

Exp(λ) ≡ 1
λ
Exp(1).

Problem 5.31. Compute the distribution function of
Exp(λ).
Problem 5.32 (Memoryless property). Show that any
exponential distribution has the memoryless property of
Problem 3.10.

5.9 Other continuous distributions

There are many other continuous distributions and families
of such distributions. We introduce a few more below.

5.9.1 Gamma distributions

The gamma distribution with rate λ and shape parameter
κ is given by the density

f(x) = λκ

Γ(κ)x
κ−1 exp(−λx) {x ≥ 0},

where Γ is the so-called gamma function. We will denote
this distribution by Gamma(λ,κ).
Problem 5.33. Show that f above has finite integral if
and only if λ > 0 and κ > 0.
Problem 5.34. Express the gamma function as an inte-
gral. [Use the fact that f above is a density.]
Problem 5.35 (Scale family). Show that the family of
gamma distributions with same shape parameter κ, mean-
ing

{Gamma(λ,κ) ∶ λ > 0},
is a scale family.
It can be shown that a gamma distribution can arise

as the continuous limit of negative binomial distributions;
see Problem 5.45. The following is the analog of Proposi-
tion 3.13.

Proposition 5.36. Consider m independent random
variables having the exponential distribution with rate λ.
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Then their sum has the gamma distribution with parame-
ters (λ,m).

5.9.2 Beta distributions

The beta distribution with parameters (a, b) is given by
the density

f(x) = 1
B(α,β)x

α−1(1 − x)β−1{x ∈ [0,1]},

where B is the beta function. It can be shown that

B(α,β) = Γ(α)Γ(β)
Γ(α + β) .

Problem 5.37. Show that f above has finite integral if
and only if α > 0 and β > 0.
Problem 5.38. Express the beta function as an integral.
Problem 5.39. Prove that this is not a location and/or
scale family of distributions.

5.9.3 Families related to the normal family

A number of families are closely related to the normal
family. The following are the main ones.

Chi-squared distributions The chi-squared distribu-
tion with parameterm ∈ N is the distribution of Z2

1+⋯+Z2
m

when Z1, . . . , Zm are independent standard normal ran-
dom variables. This happens to be a subfamily of the
gamma family.

Proposition 5.40. The chi-squared distribution with pa-
rameter m coincides with the gamma distribution with
shape κ =m/2 and rate λ = 1/2.

Student distributions The Student distribution 30

(aka, t-distribution) with parameter m ∈ N is the distribu-
tion of Z/

√
W /m when Z and W are independent, with

Z being standard normal and W being chi-squared with
parameter m.
Remark 5.41. The Student distribution with parameter
m = 1 coincides with the Cauchy distribution 31, defined
by its density function

f(x) ∶= 1
π(1 + x2) . (5.10)

Fisher distributions 13 The Fisher distribution (aka
F-distribution) with parameters (m1,m2) is the distribu-

30 Named after ‘Student’, the pen name of Gosset 21.
31 Named after Augustin-Louis Cauchy (1789 - 1857).
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tion of (W1/m1)/(W2/m2) when W1 and W2 are indepen-
dent, with Wj being chi-squared with parameter mj .
Problem 5.42. Relate the Fisher distribution with pa-
rameters (1,m) and the Student distribution with param-
eter m.

5.10 Additional problems

Problem 5.43. Let F denote a continuous distribu-
tion function, with quantile function denoted F−. For
1 ≤ k ≤ N both integers, define xk∶N = F−(k/(N + 1)),
and let PN denote the (discrete) uniform distribution on
{x1∶N , . . . , xN ∶N}. If FN denotes the corresponding distri-
bution function, show that FN(x) → F(x) as N →∞ for
all x ∈ R.
Problem 5.44 (Bernoulli trials and the uniform distribu-
tion). Let that (Xi ∶ i ≥ 1) be independent with same dis-
tribution Ber(1/2). Show that Y ∶= ∑i≥1 2−iXi is uniform
in [0,1]. Conversely, let Y be uniform in [0,1], and let
∑i≥1 2−iXi be its binary expansion. Show that (Xi ∶ i ≥ 1)
are independent with same distribution Ber(1/2).
Problem 5.45. We saw how a sequence of geometric
distributions can have as limit an exponential distribution.
Show by extension how a sequence of negative binomial dis-

tributions can have as limit a gamma distribution. [There
is a simple argument based on the fact that a negative
binomial (resp. gamma) random variable can be expressed
as a sum of independent geometric (resp. exponential)
random variables. An analytic proof will resemble that of
Theorem 5.4.]
Problem 5.46. Verify Theorem 5.4 by simulation in R.
For each n ∈ {10,100,1000} and each p ∈ {0.05,0.2,0.5},
generate M = 500 realizations from Bin(n, p) using the
function rbinom and plot the corresponding histogram
(with 50 bins) using the function hist. Overlay the graph
of the standard normal density.
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Some experiments lead to considering not one, but several
random variables. For example, in the context of an exper-
iment that consists in flipping a coin n times, we defined
n random variables, one for each coin flip, according to
(3.4).

In what follows, all the random variables that we con-
sider are assumed to be defined on the same probability
space, 32 denoted (Ω,Σ,P).

6.1 Random vectors

Let X1, . . . ,Xr be r random variables on Ω, meaning
that each Xi satisfies (4.1). Then X ∶= (X1, . . . ,Xr) is a
random vector on Ω, which is thus a function on Ω with
values in Rr,

ω ∈ Ω z→ X(ω) = (X1(ω), . . . ,Xr(ω)) ∈ Rr.
32 This can be assumed without loss of generality (Section 8.2).
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Problem 6.1. Show that,

{X ∈ V} ∈ Σ, (6.1)

for any set V of the form

(−∞, x1] ×⋯ × (−∞, xr], (6.2)

where x1, . . . , xr ∈ R.
We define the Borel σ-algebra of Rr, denoted Br, as the

σ-algebra generated by all hyper-rectangles of the form
(6.2). We will always equip Rr with its Borel σ-algebra.
The following generalizes Proposition 4.1.

Proposition 6.2. The Borel σ-algebra of Rr contains all
hyper-rectangles, as well as all open sets and all closed
sets.

The support of a distribution P on (Rr,Br) is the small-
est closed set A such that P(A) = 1. The distribution
function of a distribution P on (Rr,Br) is defined as

F(x1, . . . , xr) ∶= P((−∞, x1] ×⋯ × (−∞, xr]). (6.3)

The distribution of X, also referred to as the joint
distribution of X1, . . . ,Xr, is defined on the Borel sets

PX(V) ∶= P(X ∈ V), for V ∈ Br.

Note that for product sets, meaning when V = V1 ×⋯×Vr,

P(X ∈ V) = P(X1 ∈ V1) ×⋯ × P(Xr ∈ Vr).

The distribution function of X is (of course) the distribu-
tion function of PX , and can be expressed as

FX(x1, . . . , xr) ∶= P(X1 ≤ x1, . . . ,Xr ≤ xr). (6.4)

The following generalizes Proposition 4.4.

Proposition 6.3. A distribution is characterized by its
distribution function.

The distribution of Xi, seen as the ith component of
a random vector X = (X1, . . . ,Xr), is often called the
marginal distribution of Xi, which is nothing else but its
distribution, disregarding the other variables.

6.1.1 Discrete distributions

We say that a distribution P on Rr is discrete if it has
countable support set. For such a distribution, it is useful
to consider its mass function, defined as

f(x) ∶= P({x}), (6.5)

or, equivalently,

f(x1, . . . , xr) = P({(x1, . . . , xr)}). (6.6)
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Problem 6.4. Show that a discrete distribution is char-
acterized by it mass function.
Problem 6.5. Show that when all r variables are discrete,
so is the random vector they form.
The mass function of a random vector X is the mass

function of its distribution. It can be expressed as

fX(x) ∶= P(X = x),

or, equivalently,

fX(x1, . . . , xr) = P(X1 = x1, . . . ,Xr = xr). (6.7)

Proposition 6.6. Let X = (X1, . . . ,Xr) be a discrete
random vector with support on Zr. Then the (marginal)
mass function of Xi can be computed as follows

fXi(xi) =∑
j≠i
∑
xj∈Z

fX(x1, . . . , xr), for xi ∈ Z.

For example, with two random variables, denoted X
and Y , both supported on Z,

P(X = x) = ∑
y∈Z

P(X = x,Y = y), for x ∈ Z. (6.8)

Problem 6.7. Prove (6.8).

Binary random vectors An r-dimensional binary
random vector is a random vector with values in {0,1}r
(sometimes {−1,1}r). Such random vectors are particu-
larly important as they are often used to represent out-
comes that are categorical in nature (as opposed to numer-
ical). For example, consider an experiment where we roll a
die with six faces. Assume without loss of generality that
they are numbered 1, . . . ,6. The fact that the face labels
are numbers is typically not be relevant, and representing
the result of rolling the die with a random variable (with
support {1, . . . ,6}) could be misleading. We may instead
use a binary random vector for that purpose, as follows

1 → (1,0,0,0,0,0)
2 → (0,1,0,0,0,0)
3 → (0,0,1,0,0,0)
4 → (0,0,0,1,0,0)
5 → (0,0,0,0,1,0)
6 → (0,0,0,0,0,1)

This allows for the use of vector algebra, which will be
done later on, in particular in Section 15.1.
Remark 6.8. In terms of coding, this is far from optimal,
as discussed in Section 23.6. But the intention here is com-
pletely different: it is to facilitate algebraic manipulations
of random variables tied to categorical outcomes.
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6.1.2 Continuous distributions

We say that a distribution P on Rr is continuous if its
distribution function F is continuous as a function on
Rr. We say that P is absolutely continuous if there is
f ∶ Rr → R integrable such that

P(V) = ∫
V
f(x)dx, for all V ∈ Br.

In that case, f is a density of P.
Remark 6.9. Just as for distributions on the real line,
a density is not unique and can be always taken to be
non-negative.
Problem 6.10. Show that a distribution is characterized
by any one of its density functions.
We say that the random vector X is (resp. absolutely)

continuous if its distribution is (resp. absolutely) continu-
ous, and will denote a density (when applicable) by fX ,
which in particular satisfies

P(X ∈ V) = ∫
V
f(x)dx, for all V ∈ Br.

Proposition 6.11. Let X = (X1, . . . ,Xr) be a random
vector with density f . Then Xi has a density fi given by

fi(xi) ∶= ∫
∞

−∞
⋯∫

∞

−∞
f(x1, . . . , xr)∏

j≠i

dxj ,

for xi ∈ R.

For example, with two random variables, denoted X
and Y for convenience, with joint density fX,Y ,

fX(x) = ∫
∞

−∞
fX,Y (x, y)dy, for x ∈ R.

Remark 6.12. Even when all the random variables are
continuous with a density, the random vector they define
may not have a density in the anticipated sense. This
happens, for example, when one variable is a function of
the others or, more generally, when the variables are tied
by an equation.
Example 6.13. Let T be uniform in [0,2π] and define
X = cos(T ) and Y = sin(T ). Then X2 + Y 2 = 1 by con-
struction. In fact, (X,Y ) is uniformly distributed on the
unit circle.

6.2 Independence

Two random variables, X and Y , are said to be indepen-
dent if

P(X ∈ U , Y ∈ V) = P(X ∈ U)P(Y ∈ V),
for all U ,V ∈ B.

This is sometimes denoted by X ⊥⊥ Y .
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Proposition 6.14. X and Y are independent if and only
if, for all x, y ∈ R,

P(X ≤ x,Y ≤ y) = P(X ≤ x)P(Y ≤ y),

or, equivalently, for all x, y ∈ R,

FX,Y (x, y) = FX(x)FY (y).

Problem 6.15. Show that, if they are both discrete, X
and Y are independent if and only if their joint mass
function factorizes as the product of their marginal mass
functions, or in formula,

fX,Y (x, y) = fX(x)fY (y), for all x, y ∈ R.

Problem 6.16. Show that, if (X,Y ) has a density, then
X and Y are independent if and only if the product of a
density for X and a density for Y is a density for (X,Y ).
Remark 6.17. Problem 6.16 has the following corollary.
Assume that (X,Y ) has a continuous density. Then X
and Y have continuous (marginal) densities, and are inde-
pendent if and only if, for all x, y ∈ R,

fX,Y (x, y) = fX(x)fY (y).

The random variablesX1, . . . ,Xr are said to bemutually
independent if, V1, . . . ,Vr ∈ B,

P(X1 ∈ V1, . . . ,Xr ∈ Vr) = P(X1 ∈ V1)⋯P(Xr ∈ Vr).

Proposition 6.18. X1, . . . ,Xr are mutually independent
if and only if, for all x1, . . . , xr ∈ R,

P(X1 ≤ x1, . . . ,Xr ≤ xr) = P(X1 ≤ x1)⋯P(Xr ≤ xr).

Problem 6.19. State and solve the analog to Prob-
lem 6.15.
Problem 6.20. State and solve the analog to Prob-
lem 6.16.

When some variables are said to be independent, what
is meant by default is mutual independence.
Problem 6.21. Let X1, . . . ,Xr be independent random
variables. Show that g1(X1), . . . , gr(Xr) are independent
random variables for any measurable functions, g1, . . . , gr.

6.3 Conditional distribution

6.3.1 Discrete case

Given two discrete random variables X and Y , the con-
ditional distribution of X given Y = y is defined as the
distribution of X conditional on the event {Y = y} follow-
ing the definition given in Section 1.5.1, namely

P(X ∈ U ∣ Y = y) = P(X ∈ U , Y = y)
P(Y = y) . (6.9)
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For any y ∈ R such that P(Y = y) > 0, this defines a
discrete distribution, with corresponding mass function

fX ∣Y (x ∣ y) ∶= P(X = x ∣ Y = y) = fX,Y (x, y)
fY (y) .

Problem 6.22 (Law of Total Probability revisited).
Show the following form of the Law of Total Probabil-
ity. For two discrete random variables X and Y , both
supported on Z,

fX(x) = ∑
y∈Z

fX ∣Y (x ∣ y)fY (y), for all x ∈ Z.

Problem 6.23 (Conditional distribution and indepen-
dence). Show that two discrete random variables X and
Y are independent if and only if the conditional distribu-
tion of X given Y = y is the same for all y in the support
of Y . (And vice versa, as the roles of X and Y can be
interchanged.)

6.3.2 Continuous case

When Y is discrete, the distribution of X given Y = y as
defined in (6.9) still makes sense, even when X is continu-
ous. This is no longer the case when Y is continuous, for
in that case P(Y = y) = 0 for all y ∈ R. It is nevertheless

possible to make sense of the distribution of X given Y = y.
We consider the special case where (X,Y ) has a density.
In that case, the distribution of X given Y = y is defined
as the distribution with density

fX ∣Y (x ∣ y) ∶= fX,Y (x, y)
fY (y) ,

with the convention that 0/0 = 0.
Problem 6.24. Show that fX ∣Y (⋅ ∣ y) is indeed a density
function for any y such that fY (y) > 0.
Problem 6.25. Show that, for any x ∈ R,

P(X ≤ x ∣ Y ∈ [y − h, y + h]) Ð→
h→0 ∫

x

−∞
fX ∣Y (t ∣ y)dt.

[For simplicity, assume that fX,Y is continuous and that
fY > 0 everywhere.]

6.4 Additional problems

Problem 6.26. Consider an experiment where two fair
dice are rolled. Let Xi denote the result of the ith die,
i ∈ {1,2}. Assume the variables are independent. Let
X =X1+X2. Show that X is a bona fide random variable
with support X = {0,1, . . . ,12}, and compute its mass
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function and its distribution function. (You can use R for
the computations. Present the solution in a table.)
Problem 6.27 (Uniform distributions). For a Borel set
V in Rd, its volume is defined as

∣V ∣ ∶= ∫ {x ∈ V}dx = ∫
V

dx. (6.10)

When 0 < ∣V ∣ <∞, we can define the uniform distribution
on V as the distribution with density

fV(x) ∶=
1
∣V ∣ {x ∈ V}.

Show that X = (X1, . . . ,Xd) is uniform on [0,1]d if and
only if X1, . . . ,Xd are independent and uniform in [0,1].
Problem 6.28 (Convolution). Suppose that X and Y
have densities and are independent. Show that the distri-
bution of Z ∶=X + Y has density

fZ(z) ∶= ∫
∞

−∞
fX(z − y)fY (y)dy. (6.11)

This is called the convolution of fX and fY , and often
denoted by fX ∗fY . State and prove a similar result when
X and Y are both supported on Z.
Problem 6.29. Assume that X and Y are independent
random variables, withX having a continuous distribution.
Show that P(X ≠ Y ) = 1.

Problem 6.30. Consider an m-by-m matrix with ele-
ments being independent continuous random variables.
Show that this random matrix is invertible with probabil-
ity 1.
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An expectation is simply an average and averages are at
the core of Probability Theory and Statistics. While it may
not have been clear why random variables were introduced
in previous chapters, we will see that they are quite useful
when computing expectations. Otherwise, everything we
do here can be done directly with distributions instead of
random variables.

7.1 Expectation

The definition and computation of an expectation are
based on sums when the underlying distribution is dis-
crete, and on integrals when the underlying distribution is
continuous. We will assume the reader is familiar with the
concepts of absolute summability and absolute integrability,
and the Fubini–Tonelli theorem.
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7.1.1 Discrete expectation

Let X be a discrete random variable with mass function
fX . Its expectation or mean is defined as

E(X) ∶= ∑
x∈Z

xfX(x), (7.1)

so long as the sum converges absolutely.
Example 7.1. When X has a uniform distribution, its
expectation is simply the average of the elements belonging
to its support. To be more specific, assume that X has
the uniform distribution on {x1, . . . , xN}. Then

E(X) = x1 +⋯ + xN
N

.

Example 7.2. We say that X is constant (as a random
variable) if there is x0 ∈ R such that P(X = x0) = 1. In
that case, X has an expectation, given by E(X) = x0.

Proposition 7.3 (Change of variables). Let X be a dis-
crete random variable and g ∶ Z→ R. Then, as long as the
sum converges absolutely,

E(g(X)) = ∑
x∈Z

g(x)P(X = x).

Problem 7.4. Prove this proposition.

Problem 7.5 (Summation by parts). Let X be a discrete
random variable with values in the non-negative integers
and with an expectation. Show that

E(X) = ∑
x≥0

P(X > x).

7.1.2 Continuous expectation

Let X be a continuous random variable with density fX .
Its expectation or mean is defined as

E(X) ∶= ∫
∞

−∞
xfX(x)dx, (7.2)

as long as the integrand is absolutely integrable.
Problem 7.6. Show that a random variable with the
uniform distribution on [a, b] has mean (a + b)/2, the
midpoint of the support interval.

Proposition 7.7 (Change of variables). Let X be a con-
tinuous random variable with density fX and g a mea-
surable function on R. Then, as long as the integrand is
absolutely integrable,

E(g(X)) = ∫
∞

−∞
g(x)fX(x)dx.

Problem 7.8. Prove this proposition.
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Problem 7.9 (Integration by parts). Let X be a non-
negative continuous random variable with an expectation.
Show that

E(X) = ∫
∞

0
P(X > x)dx.

7.1.3 Properties

Problem 7.10. Show that if X is non-negative and such
that E(X) = 0, then X is equal to 0 with probability 1,
meaning P(X = 0) = 1.
Problem 7.11. Prove that, for a random variableX with
well-defined expectation, and a ∈ R,

E(aX) = aE(X), and E(X + a) = E(X) + a. (7.3)

Problem 7.12. Show that the expectation is monotone
in the sense that, for random variables X and Y ,

X ≤ Y ⇒ E(X) ≤ E(Y ). (7.4)

(The left-hand side is short for P(X ≤ Y ) = 1.)
Recall that a convex function g on an interval I is a

function that satisfies

g(ax + (1 − a)y) ≤ ag(x) + (1 − a)g(y), (7.5)
for all x, y ∈ I and all a ∈ [0,1].

The function g is strictly convex if the inequality is strict
whenever x ≠ y and a ∈ (0,1).

Theorem 7.13 (Jensen’s inequality 33). Let X be a con-
tinuous random variable and g a convex function on an
interval containing the support of X such that both X and
g(X) have expectations. Then

g(E(X)) ≤ E(g(X)).

If g is strictly convex, the inequality is strict unless X is
constant.

For example, for a random variable X with an expecta-
tion,

∣E(X)∣ ≤ E(∣X ∣). (7.6)

Proof sketch. We sketch a proof for the case where
the variable has finite support. Let the support be
{x1, . . . , xN} and let pj = fX(xj). Then

g(E(X)) = g(
N

∑
j=1

pjxj),

and

E(g(X)) =
N

∑
j=1

pjg(xj).

33 Named after Johan Jensen (1859 - 1925).
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Thus we need to prove that

g(
N

∑
j=1

pjxj) ≤
N

∑
j=1

pjg(xj).

When N = 2, this is a direct consequence of (7.5): simply
take x = x1, y = x2, and a = p1, so that 1 − a = p2. The
general case is proved by induction on N (and is a well-
known property on convex functions).

Proposition 7.14. For two random variables X and Y
with expectations, X + Y has an expectation, which given
by

E(X + Y ) = E(X) +E(Y ).

Proof sketch. We prove the result when the variables are
discrete. Let g(x, y) = x+y. Then X+Y = g(X,Y ). Using
a the analog of Proposition 7.3 for random vectors, we
have

E(g(X,Y )) = ∑
x∈Z
∑
y∈Z

g(x, y)P(X = x,Y = y). (7.7)

Thus, using that as a starting point, and then interchang-
ing sums as needed (which is possible because of absolute

summability), we derive

E(X + Y )
= ∑
x∈Z
∑
y∈Z

(x + y)P(X = x,Y = y)

= ∑
x∈Z

x∑
y∈Z

P(X = x,Y = y) +∑
y∈Z

y∑
x∈Z

P(X = x,Y = y)

= ∑
x∈Z

xP(X = x) +∑
y∈Z

yP(Y = y)

= E(X) +E(Y ).

Equation (6.8) justifies the 3rd equality.

Problem 7.15. Prove the result when the variables are
continuous.
Problem 7.16. Prove by recursion that if X1, . . . ,Xr are
random variables with expectations, then X1 +⋯+Xr has
an expectation, which is given by

E(X1 +⋯ +Xr) = E(X1) +⋯ +E(Xr). (7.8)

Problem 7.17 (Binomial mean). Show that the binomial
distribution with parameters (n, p) has mean np. An easy
way to do so uses the definition of Bin(n, p) as the sum of
n independent random variables with distribution Ber(p),
as in (3.6), and then using (7.8). A harder way uses the
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expression for its mass function (3.7) and the definition
of expectation (7.1), which leads one to proving that

n

∑
k=0

k(n
k
)pk(1 − p)n−k = np.

Problem 7.18 (Hypergeometric mean). Show that the
hypergeometric distribution with parameter (n, r, b) has
mean np where p ∶= r/(r + b). The easier way, analogous
to that described in Problem 7.17, is recommended.

Proposition 7.19. For two independent random vari-
ables X and Y with expectations, XY has an expectation,
which is given by

E(XY ) = E(X)E(Y ).

Compare with Proposition 7.14, which does not require
independence.

Proof sketch. We prove the result when the variables are
discrete. Let g(x, y) = xy. Then XY = g(X,Y ). Using
the analog of Proposition 7.3 for random vectors, as before,
we have (7.7). Using that as a starting point, and then

the fact that multiplication distributes over summation,

E(XY ) = ∑
x∈Z
∑
y∈Z

xy P(X = x,Y = y)

= ∑
x∈Z
∑
y∈Z

xy P(X = x)P(Y = y)

= ∑
x∈Z

xP(X = x)∑
y∈Z

yP(Y = y)

= E(X)E(Y ).

We used the independence of X and Y in the 2nd line
and absolute convergence in the 3rd line.

Problem 7.20. Prove the result when the variables are
continuous.

7.2 Moments

For a random variable X and a non-negative integer k,
define the kth moment of X as the expectation of Xk,
if Xk has an expectation. The 1st moment of a random
variable is simply its mean.
Problem 7.21 (Binomial moments). Compute the first
four moments of the binomial distribution with parameters
(n, p).
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Problem 7.22 (Geometric moments). Compute the first
four moments of the geometric distribution with parameter
p. [Start by proving that, for any x ∈ (0,1), ∑j≥0 x

j =
(1 − x)−1. Then differentiate up to four times to derive
useful identities.]
Problem 7.23 (Uniform moments). Compute the kth
moment of the uniform distribution on [0,1]. [Use a
recursion on k and integration by parts.]
Problem 7.24 (Normal moments). Compute the first
four moments of the standard normal distribution. Ver-
ify that they are respectively equal to 0,1,0,3. Deduce
the first four moments of the normal distribution with
parameters (µ,σ2), which in particular has mean µ.
Problem 7.25. Show that if X has a kth moment for
some k ≥ 1, then it has a lth moment for any l ≤ k. [Use
Jensen’s inequality.]
Problem 7.26 (Symmetric distributions). Suppose that
X and −X have the same distribution. Show that if that
distribution has a kth moment and k is odd, then that
moment is 0.

The following is one of the most celebrated inequalities
in Probability Theory.

Theorem 7.27 (Cauchy–Schwarz inequality 34). For two
independent random variables X and Y with 2nd moments,

∣E(XY )∣ ≤
√
E(X2)

√
E(Y 2).

Moreover the inequality is strict unless there is a ∈ R such
that P(X = aY ) = 1 or P(Y = aX) = 1.

Proof. By Jensen’s inequality, in particular (7.6),

∣E(XY )∣ ≤ E(∣XY ∣) = E(∣X ∣ ∣Y ∣),

so that it suffices to prove the result when X and Y are
non-negative. The assumptions imply that for any real t,
X + tY has a 2nd moment, and we have

g(t) ∶= E ((X + tY )2)
= E(X2) + 2tE(XY ) + t2 E(Y 2).

Thus g is a polynomial of degree at most 2. Since it is non-
negative everywhere it must be non-negative at its mini-
mum. The minimum happening at t = −E(XY )/E(Y 2),
we thus have

E(X2) − 2(E(XY )/E(Y 2))E(XY )
+ (E(XY )/E(Y 2))2 E(Y 2) ≥ 0,

34 Named after Cauchy 31 and Hermann Schwarz (1843 - 1921).
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which leads to the stated inequality after simplification.
That the inequality is strict unless X and Y are pro-

portional is left as an exercise.

Problem 7.28. In the proof, we implicitly assumed that
E(Y 2) > 0. Show that the result holds (trivially) when
E(Y 2) = 0.

7.3 Variance and standard deviation

Assume that X has a 2nd moment. We can then define
its variance as

Var(X) ∶= E(X2) − (E(X))2
. (7.9)

The standard deviation of a random variable X is the
square-root of its variance.
Remark 7.29 (Central moments). Transforming X into
X−E(X) is sometimes referred to as “centering X”. Then,
if k is a non-negative integer, the kth central moment of X
is the kth moment of X−E(X), assuming it is well-defined.
We show below that the variance corresponds to the 2nd
central moment. (Note that the 1st central moment is 0.)

Proposition 7.30. For a random variable X with a 2nd
moment,

Var(X) = E [(X −E(X))2].

Proof. For the sake of clarity, set µ ∶= E(X). Then

(X −E(X))2 = (X − µ)2 =X2 − 2µX + µ2.

Hence,

Var(X) = E(X2 − 2µX + µ2)
= E(X2) +E(−2µX) +E(µ2)
= E(X2) − 2µE(X) + µ2

= E(X2) − µ2.

We used Proposition 7.14, then (7.3), and the fact that
the expectation of a constant is itself, and finally the fact
that E(X) = µ and some simplifying algebra.

Problem 7.31. Let X be random variable with a 2nd
moment. Show that Var(X) = 0 if and only if X is
constant.
Problem 7.32. Prove that for a random variable X with
a 2nd moment, and a ∈ R,

Var(aX) = a2 Var(X), Var(X + a) = Var(X). (7.10)

Problem 7.33 (Normal variance). Show that the normal
distribution with parameters (µ,σ2) has variance σ2.
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Proposition 7.34. For two independent random vari-
ables X and Y with 2nd moments,

Var(X + Y ) = Var(X) +Var(Y ). (7.11)

Compare with Proposition 7.14, which does not require
independence.
Problem 7.35. Prove Proposition 7.34 using Proposi-
tion 7.14.
Problem 7.36. Extend Proposition 7.34 to more than
two (independent) random variables. [There is a simple
argument by induction.]
Problem 7.37 (Binomial variance). Show that the bi-
nomial distribution with parameters (n, p) has variance
np(1 − p).

7.4 Covariance and correlation

In this section, all the random variables that we consider
are assumed to have a 2nd moment.

Covariance To generalize Proposition 7.34 to non-
independent random variables requires the covariance
of two random variables, which is defined by

Cov(X,Y ) ∶= E ((X −E(X))(Y −E(Y ))). (7.12)

Note that
Cov(X,X) = Var(X).

Problem 7.38. Prove that

Cov(X,Y ) = E(XY ) −E(X)E(Y ).

Problem 7.39. Prove that

X ⊥⊥ Y ⇒ Cov(X,Y ) = 0.

Problem 7.40. For random variables X,Y,Z, and reals
a, b, show that

Cov(aX, bY ) = abCov(X,Y ),

and

Cov(X + Y,Z) = Cov(X,Z) +Cov(Y,Z).

We are now ready to generalize Proposition 7.34.

Proposition 7.41. For random variables X and Y with
2nd moment,

Var(X + Y ) = Var(X) +Var(Y ) + 2 Cov(X,Y ).
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Problem 7.42. More generally, prove (by induction) that
for random variables X1, . . . ,Xr,

Var (
r

∑
i=1
Xi) =

r

∑
i=1

r

∑
j=1

Cov(Xi,Xj)

=
r

∑
i=1

Var(Xi) + 2 ∑∑
1≤i<j≤r

Cov(Xi,Xj).

Problem 7.43 (Hypergeometric variance). Show that
the hypergeometric distribution with parameters (n, r, b)
has variance np(1− p) r+b−nr+b−1 where p ∶= r/(r + b). The easy
way described in Problem 7.17 is recommended.

Correlation The correlation of X and Y is defined as

Corr(X,Y ) ∶= Cov(X,Y )√
Var(X)Var(Y )

. (7.13)

Problem 7.44. Show that the correlation has no unit in
the (usual) sense that it is invariant with respect to affine
transformations, or in formula, that

Corr(aX + b, cY + d) = Corr(X,Y ),
for all a, c > 0 and all b, d ∈ R.

Problem 7.45. Show that

Corr(X,Y ) ∈ [−1,1], (7.14)

and equal to ±1 if and only if there are a, b ∈ R such that
P(X = aY + b) = 1 or P(Y = aX + b) = 1.

7.5 Conditional expectation

Consider two random variables X and Y , with X having
an expectation. Then conditionally on Y = y, X also has
an expectation.
Problem 7.46. Prove this when both variables are dis-
crete.
When the variables are both discrete, the conditional

expectation of X given Y = y can be expressed as follows

E(X ∣Y = y) = ∑
x∈Z

xfX ∣Y (x ∣ y).

When the variables are both continuous, it can be ex-
pressed as

E(X ∣Y = y) = ∫
∞

−∞
xfX ∣Y (x ∣ y)dx.

Note that E(X ∣Y ) is a random variable. In fact,
E(X ∣Y ) = g(Y ) with g(y) ∶= E(X ∣Y = y), which hap-
pens to be measurable.
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Problem 7.47 (Law of Total Expectation). Show that

E(E(X ∣Y )) = E(X). (7.15)

Conditional variance If X has a second moment,
then this is also the case of X ∣Y = y, which therefore
has a variance, called the conditional variance of X given
Y = y and denoted by Var(X ∣Y = y).

Note that Var(X ∣Y ) is a random variable.
Problem 7.48 (Law of Total Variance). Show that

Var(X) = E(Var(X ∣Y )) +Var(E(X ∣Y )). (7.16)

7.6 Moment generating function

The moment generating function of a random variable X
is defined as

ζX(t) ∶= E(exp(tX)), for t ∈ R. (7.17)

As a function taking values in [0,∞], it is indeed well-
defined everywhere.
Problem 7.49. Show that {t ∶ ζX(t) <∞} is an interval
(possibly a singleton). [Use Jensen’s inequality.]

In the special case where X is supported on the non-
negative integers,

ζX(t) = ∑
k≥0

fX(k) etk.

The moment generating function derives its name from
the following.

Proposition 7.50. Assume that ζX is finite in an open
interval containing 0. Then ζX is infinitely differentiable
(in fact, analytic) in that interval and

ζ
(k)
X (0) = E(Xk), for all k ≥ 0.

Theorem 7.51. Two distributions whose moment gener-
ating functions are finite and coincide on an open interval
containing zero must be equal.

Remark 7.52 (Laplace transform). When X has a den-
sity, its moment generating function may be expressed
as

ζX(t) = ∫
∞

−∞
fX(x)etxdx.

This coincides with the Laplace transform of fX evaluated
at −t, and a standard proof of Theorem 7.51 relies on the
fact that the Laplace transform is invertible under the
stated conditions.



7.7. Probability generating function 77

7.7 Probability generating function

The probability generating function of a non-negative ran-
dom variable X is defined as

γX(z) ∶= E(zX), for z ∈ [−1,1]. (7.18)

Note that

ζX(t) = γX(et), for all t ≤ 0.

In the special case where X is supported on the non-
negative integers,

γX(z) = ∑
k≥0

fX(k)zk.

The probability generating function derives its name
from the following.

Proposition 7.53. Assume X is non-negative. Then
γX is well-defined and finite on [−1,1], and infinitely
differentiable (in fact, analytic) in (−1,1). Moreover, if
X is supported on the non-negative integers,

γ
(k)
X (0) = k! fX(k), for all k ≥ 0. (7.19)

Problem 7.54. Show that any distribution that is sup-
ported on the non-negative integers is characterized by its
probability generating function.

7.8 Characteristic function

The characteristic function of a random variable X is
defined as

ϕX(t) ∶= E(exp(ıtX)), for t ∈ R, (7.20)
where ı2 = −1. Compare with the definition of the mo-
ment generating function in (7.17). While the moment
generating function may be infinite at any t ≠ 0, the char-
acteristic function is always well-defined for all t ∈ R as a
complex-valued function.
Problem 7.55. Show that if X and Y are independent
random variables then

ϕX+Y (t) = ϕX(t)ϕY (t), for all t ∈ R. (7.21)
The converse is not true, meaning that there are situa-
tions where (7.21) holds even though X and Y are not
independent. Find an example of that.

The characteristic function owes its name to the follow-
ing.

Theorem 7.56. A distribution is characterized by it char-
acteristic function. Furthermore, if X is supported on the
non-negative integers, then

fX(x) = 1
2π ∫

2π

0
exp(−ıtx)ϕX(t)dt. (7.22)
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If instead X is absolutely continuous, and its characteristic
function is absolutely integrable, then

fX(x) = 1
2π ∫

∞

−∞
exp(−ıtx)ϕX(t)dt. (7.23)

Problem 7.57. Prove (7.22).
Remark 7.58 (Fourier transform). When X has a den-
sity,

ϕX(t) = ∫
∞

−∞
exp(ıtx)fX(x)dx. (7.24)

This coincides with the Fourier transform of fX evaluated
at −t/2π and a standard proof of Theorem 7.56 relies on
the fact that the Fourier transform is invertible.
Remark 7.59. It is possible to define the characteristic
function of a random vector X. If X is r-dimensional, it
is defined as

ϕX(t) ∶= E(exp(ı⟨t,X⟩)), for t ∈ Rr, (7.25)

where ⟨u,v⟩ denotes the inner product of u,v ∈ Rr. We
note that an analog of Theorem 7.56 holds for random
vectors.

7.9 Concentration inequalities

An important question when examining a random variable
is to know how far it strays away from its mean (which

we assume is well-defined whenever needed). This is a
probability statement, and we present some inequalities
that bound the corresponding probability.

Proposition 7.60 (Markov’s inequality 35). For a non-
negative random variable X with expectation µ,

P(X ≥ tµ) ≤ 1/t, for all t > 0. (7.26)

For example, if X is non-negative with mean µ, then
X ≥ 2µ with at most 50% chance, while X ≥ 10µ with at
most 10% chance. (This is so regardless of the distribution
of X.)

Proof. We have

{X ≥ t} = {X/t ≥ 1} ≤X/t.

and we conclude by taking the expectation and using its
monotonicity property (Problem 7.12).

Proposition 7.61 (Chebyshev’s inequality 36). For a
random variable X with expectation µ and standard devi-
ation σ,

P(∣X − µ∣ ≥ tσ) ≤ 1/t2, for all t > 0. (7.27)
35 Named after Andrey Markov (1856 - 1922).
36 Named after Pafnuty Chebyshev (1821 - 1894).
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Moreover,
P(X ≥ µ + tσ) ≤ 1/(1 + t2), for all t ≥ 0, (7.28)

and
P(X ≤ µ − tσ) ≤ 1/(1 + t2), for all t ≥ 0. (7.29)

Problem 7.62. Prove these inequalities by applying
Markov’s inequality to carefully chosen random variables.

For example, if X has mean µ and standard deviation σ,
then ∣X−µ∣ ≥ 2σ with at most 25% chance and ∣X−µ∣ ≥ 5σ
with at most 4% chance. (This is so regardless of the
distribution of X.)

Markov’s and Chebyshev’s inequalities are examples
of concentration inequalities. These are inequalities that
bound the probability that a random variable is away from
its mean (or sometimes median) by a certain amount.
Markov’s inequality gives a concentration bound with

a linear decay, while Chebyshev’s inequality gives a con-
centration bound with a quadratic decay. Even stronger
concentration is possible.
Problem 7.63. Consider a random variable Y with mean
µ and such that αs ∶= E(∣Y − µ∣s) <∞ for some s > 1 (not
necessarily integer). Show that

P(∣Y − µ∣ ≥ y) ≤ αsy−s, for all y > 0.

Proposition 7.64 (Chernoff’s bound 37). Consider a ran-
dom variable Y such that as ζ(λ) ∶= E(exp(λY )) <∞ for
some λ > 0. Then

P(Y ≥ y) ≤ ζ(λ) exp(−λy), for all y > 0.

Proof. For any λ ≥ 0,

Y ≥ y ⇒ λY − λy ≥ 0 ⇒ exp(λY − λy) ≥ 1.

Thus,

P(Y ≥ y) ≤ P(exp(λY − λy) ≥ 1)
≤ E(exp(λY − λy))
= exp(−λy)ζ(λ)
= exp(−λy + log ζ(λ)),

using Markov’s inequality.

Chernoff’s bound is particularly useful when Y is the
sum of independent random variables. This is in large
part because of the following.
Problem 7.65. Suppose that Y = X1 + ⋯ +Xn, where
X1, . . . ,Xn are independent. Let ζi denote the moment

37 Named after Herman Chernoff (1923 - ), who attributes the
result to a colleague of his, Herman Rubin.
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generating function of Xi, and ζ that of Y . Show that if
ζi(λ) <∞ for all i, then ζ(λ) <∞ and

ζ(λ) =
n

∏
i=1
ζi(λ).

Binomial distribution Let Y =X1+⋯+Xn, where the
Xi are independent, each being Bernoulli with parameter
p, so that Y is binomial with parameters (n, p).
Problem 7.66. Show that

ζ(λ) = (1 − p + peλ)n, for all λ ∈ R.

By Chernoff’s bound, for any λ ≥ 0,

logP(Y ≥ y) ≤ −λy + log ζ(λ).

Since the left-hand side does not depend on λ, to sharpen
the bound we minimize the right-hand side with respect
to λ ≥ 0, yielding

logP(Y ≥ y) ≤ inf
λ≥0

[ − λy + log ζ(λ)] (7.30)

= − sup
λ≥0

[λy − log ζ(λ)]. (7.31)

We turn to maximizing g(λ) ∶= λy − log ζ(λ) over λ ≥ 0.
Let b = y/n, so that b ∈ [0,1] in principle; however, since

we are interested in deviations from the mean np, and
because the case b = 1 requires a special (but trivial)
treatment, we assume that p < b < 1.
Problem 7.67. Verify that g is infinitely differentiable
and that it has a unique maximizer at

λ∗ = log((1 − p)b
p(1 − b)),

and that g(λ∗) = nHp(b), where

Hp(b) ∶= b log ( b
p
) + (1 − b) log (1 − b

1 − p).

We thus arrived at the following.

Proposition 7.68 (Chernoff’s bound for the binomial
distribution). For Y ∼ Bin(n, p), with 0 < p < 1,

P(Y ≥ nb) ≤ exp ( − nHp(b)), for all b ∈ [p,1]. (7.32)

Problem 7.69. Verify that the bound indeed applies to
the cases we left off, namely, when b = p and when b = 1.
Remark 7.70. A bound on P(Y ≤ nb) when b ∈ [0, p]
can be derived in a similar fashion, or using Property
(3.10).
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We end this section with a general exponential con-
centration inequality whose roots are also in Chernoff’s
inequality.

Theorem 7.71 (Bernstein’s inequality). Suppose that
X1, . . . ,Xn are independent with zero mean and such that
maxi ∣Xi∣ ≤ c. Define σ2

i = Var(Xi) = E(X2
i ). Then, for

all y ≥ 0,

P(
n

∑
i=1
Xi ≥ y) ≤ exp( − y2/2

∑ni=1 σ
2
i +

1
3cy

).

Problem 7.72. Apply Bernstein’s inequality to get a
concentration inequality for the binomial distribution.
Compare the resulting bound with the one obtained from
Chernoff’s inequality in (7.32).

7.10 Further topics

7.10.1 Random sums of random variables

Suppose that {Xi ∶ i ≥ 1} are independent with the same
distribution, and independent of a random variable N
supported on the non-negative integers. Together, these
define the following compound sum

Y =
N

∑
i=1
Xi.

By convention, the sum is zero if N = 0. Put differently,
the distribution of Y given N = n is that of ∑ni=1Xi.
Problem 7.73. Assume that the Xi have a 2nd moment.
Derive the mean and variance of Y (showing in the process
that Y has a 2nd moment).
Problem 7.74. Assume that the Xi are non-negative.
Compute the probability generating function of Y .
When N has a Poisson distribution, the resulting dis-

tribution is called a compound Poisson distribution.
The negative binomial distribution is known to have a

compound Poisson representation. In detail, first define
the logarithmic distribution via its mass function

fp(k) ∶=
1

log( 1
1−p)

pk

k
, k ≥ 1.

Problem 7.75. Show that, for p ∈ (0,1), this defines a
probability distribution on the positive integers. [Use the
expression of the logarithm as a power series.]

Proposition 7.76. Let (Xi ∶ i ≥ 1) be independent with
the logarithmic distribution with parameter p, and let N
be Poisson with parameter m log( 1

1−p). Then ∑Ni=1Xi is
negative binomial with parameters (m,p).
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Problem 7.77. Prove this result using Problem 7.74 and
Theorem 7.51.

7.10.2 Estimation from finite samples

Consider a urn containing coins. Without additional
information, to compute the average value of these coins,
one would have to go through all coins and sum their
values. But what if an approximation is sufficient — is
it possible to do that without looking at all the coins?
It turns out that the answer is yes, at least under some
sampling schemes, because of concentration.
More generally, suppose that a urn contains N tickets

numbered c1, . . . , cN ∈ R, and the goal is to approximate
their average, µ ∶= 1

N (c1+⋯+cN). We assume we have the
ability to sample uniformly at random with replacement
from the urn n times. We do so and let X1, . . . ,Xn denote
the resulting a sample, with corresponding average X̄n =
1
n(X1 +⋯ +Xn).
Problem 7.78. Based on Chebyshev’s inequality, show
that, for any t > 0,

∣X̄n − µ∣ ≤ tσ/
√
n (7.33)

with probability at least 1 − 1/t2, where we have denoted
σ2 ∶= 1

N (c2
1 +⋯ + c2

N) − µ2.

The surprising fact in the approximation bound (7.33)
is that it depends on the ticket values only through µ and
σ, so that N could be infinite in principle.
The fact that we can “learn” about the contents of a

possibly infinite urn based a finite sample from it is at
the core of Statistics. It also explains why a carefully
designed and conducted poll of a few thousand individuals
can yield reliable information on a population of hundreds
of millions (Section 11.1).
Problem 7.79. Obtain an approximation bound based
Chernoff’s bound instead. Compare this bound with that
obtained in (7.33) via Chebyshev’s inequality.
Remark 7.80 (Estimation). This sort of approximation
based on a sample is often referred to as estimation, and
will be developed in later chapters. In particular, Sec-
tion 23.1 will consider the same estimation problem but
under different sampling schemes.

7.10.3 Saint Petersburg Paradox

Suppose a casino offers a gambler the opportunity to
play the following fictitious game, attributed to Nicolas
Bernoulli (1687 - 1759). The game starts with $2 on the
table. At each round a fair coin is flipped: if it lands heads,
the amount is doubled and the game continues; if it lands
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tails, the game ends and the player pockets whatever is on
the table. The question is: how much should the gambler
be willing to pay to play the game?

A paradox arises when the gambler aims at optimizing
his expected return, defined as X − c, where X is the gain
(the amount on the table at the end of the game) and c is
the entry cost (the amount the gambler pays the casino
to enter the game).
Problem 7.81. Show that the expected return is infinite
regardless of the cost.

Thus, in principle, a rational gambler would be willing
to pay any amount to enter the game. However, a gambler
with common sense would only be willing to pay very little
to enter the game, hence, the paradox. Indeed, although
the expected return is infinite, the probability of a positive
return can be quite small.
Problem 7.82. Suppose the gambler pays c dollars to
enter the game. Compute his chances of ending with a
positive return as a function of c.

This, and other similar considerations, have lead some
commentators to argue that the expected return is not
what the gambler should be optimizing. Daniel Bernoulli
(1700 - 1782) proposed as a solution in [17] (translated
from Latin to English in [18]) to optimize the expected

log return, i.e., E(log(X/c)), which he argued was more
natural. (Daniel and Nicolas were brothers.)
Problem 7.83. Find in closed form or numerically (in
R) the amount the gambler should be willing to pay to
enter the game if his goal is to optimize the expected log
return.
Another possibility is to optimize the median instead

of the mean.
Problem 7.84. Find in closed form or numerically (in R)
the amount the gambler should be willing to pay to enter
the game if his goal is to optimize the median return.
Remark 7.85. The specific form of the game provides a
colorful context and may have been motivated, at least in
part, by the work of (uncle) Jacob Bernoulli (1655 - 1705)
on what would later be called Bernoulli trials. However,
the details are clearly unimportant and all that matters
is that the gain has infinite expectation.
Remark 7.86 (Pascal’s wager). The essential component
of the paradox arises from the extremely unlikely possi-
bility of an enormous gain. This was considered by the
philosopher Pascal in questions of faith in the existence
of God (in the context of his Catholic faith). As he saw
it, a person had to decide whether to believe in God or
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not. From his book Pensées (1670): “Let us weigh the
gain and the loss in wagering that God is. Let us estimate
these two chances. If you gain, you gain all; if you lose,
you lose nothing.” 38

7.11 Additional problems

Problem 7.87. In the context of Problem 6.26, compute
the expectation of X. First, do so directly using the
definition of expectation (7.1) based on the distribution
of X found in that problem. (You may use R for that
purpose.) Then do this using Proposition 7.14.
Problem 7.88. Using R, compute the first ten moments
of the random variable X defined in Problem 6.26. [Do
this efficiently using vector/matrix manipulations.]
Problem 7.89 (Location/scale families). Consider a lo-
cation scale family as in Section 5.5, therefore, of the
form

Fa,b ∶= F((x − b)/a), for a > 0, b ∈ R,

where F is some given distribution function. Assume that
F has finite second moment and is not constant. Show that
there is exactly one distribution in this family with mean

38 Translation by F. Trotter

0 and variance 1. Assuming F itself is that distribution,
compute the mean and variance of Fa,b in terms of (a, b).
Problem 7.90 (Coupon Collector Problem). Recall the
Coupon Collector Problem of Section 3.8. Compute the
mean and variance of T .
Problem 7.91. Let X be a random variable with a 2nd
moment. Show that a ↦ E((X − a)2) is uniquely mini-
mized at the mean of X.
Problem 7.92. Let X be a random variable with a 1st
moment. Show that a ↦ E(∣X − a∣) is minimized at any
median of X and that any minimizer is a median of X.
Problem 7.93. Compute the mean and variance of the
distribution of Problem 3.32.
Problem 7.94. Compute the characteristic function of
(i) the uniform distribution on {1, . . . ,N};
(ii) the Poisson distribution with mean λ;
(iii) the geometric distribution with parameter p.
Repeat with the moment generating function, specifying
where it is finite.
Problem 7.95. Compute the characteristic function of
(i) the binomial distribution with parameters n and p;
(ii) the negative binomial distribution with parameters

m and p.
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Repeat with the moment generating function, specifying
where it is finite.
Problem 7.96. Compute the characteristic function of
(i) the uniform distribution on [a, b];
(ii) the exponential distribution with rate λ;
(iii) the normal distribution parameters (µ,σ2).
Repeat with the moment generating function, specifying
where it is finite.
Problem 7.97. Compute the characteristic function of
the normal distribution with mean µ and variance σ2.
Then combine Problem 7.55 and Theorem 7.56 to prove
Proposition 5.29.
Problem 7.98. Compute the characteristic function of
the Poisson distribution with mean λ. Then combine
Problem 7.55 and Theorem 7.56 to prove Proposition 3.17.
Problem 7.99. Suppose that X is supported on the non-
negative integers. Show that

FX(x) = 1
2π ∫

2π

0

sin(t(x + 1)/2)
sin(t/2) e−ıtx/2ϕX(t)dt. (7.34)

Problem 7.100 (Markov vs Chebyshev). Evaluate the
accuracy of these two inequalities for the exponential dis-
tribution with rate λ = 1. One way to do so is to draw
the survival function, the bound given by the Markov

inequality, and the bound given by the Chebyshev inequal-
ity (7.28). Do so in R, and start at x = 1 (which is the
mean in this case). Put all the graphs in the same plot,
in different colors identified by a legend.
Problem 7.101. Write an R function that generates k
independent numbers from the compound Poisson distri-
bution obtained when N is Poisson with parameter λ and
the Xi are Bernoulli with parameter p. Perform some sim-
ulations to better understand this distribution for various
choices of parameter values.
Problem 7.102 (Passphrases). The article [146] advo-
cates choosing a strong password by selecting seven words
at random from a list of 7776 English words. It claims
that an adversary able to try one trillion guesses per sec-
ond would have to keep trying for about 27 million years
before discovering the correct passphrase. (This is so even
if the adversary knows how the passphrase was generated.)
Perform some calculations to corroborate this claim.
Problem 7.103 (Two envelopes - randomized strategy).
In the Two Envelopes Problem (Section 2.5.3), it turns
out that it is possible to do better than random guessing.
This is possible with even less information, in a setting
were we are not told anything about the amounts inside
the envelopes. Cover [45] offered the following strategy,
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which relies on the ability to draw a random number.
Having chosen a distribution with support the positive
real line, we draw a number from this distribution and, if
the amount in the envelope we opened is less than that
number, we switch, otherwise we keep the envelope we
opened. Show that this strategy beats random guessing.
Problem 7.104 (Two envelopes - model 1). A first model
for the Two Envelopes Problem is the following. Suppose
X is supported on the positive integers. Given X = x,
put x in Envelope A and either x/2 or 2x in Envelope B,
each with probability 1/2. We are shown the contents of
Envelope A and we need to decide whether to keep the
amount found there or switch for the (unknown) amount in
Envelope B. Consider three strategies: (i) always keep A;
(ii) always switch to B; (iii) random switch (50% chance of
keeping A, regardless of the amount it contains). For each
strategy, compute the expected gain. Then describe an
optimal strategy assuming the distribution of X is known.
[Consider the discrete case first, and then the absolutely
continuous case.]
Problem 7.105 (Two envelopes - model 2). Another
model for the Two Envelopes Problem is the following.
Here, given X = x, let the contents of the envelopes (A,
B) be (x,2x), (2x,x), (x,x/2), (x/2, x), each with prob-

ability 1/4. We are shown the contents of Envelope A
(although it does not matter in this model). For each strat-
egy described in Problem 7.104, compute the expected
gain. Then derive an optimal strategy.
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The convergence of random variables (or, equivalently, dis-
tributions) plays an important role in Probability Theory.
This is particularly true of the Law of Large Numbers,
which underpins the frequentist notion of probability. An-
other famous convergence result is a refinement known as
the Central Limit Theorem, which underpins much of the
large-sample statistical theory.

8.1 Product spaces

We might want to consider an experiment where a coin
is repeatedly tossed, without end, and consider how the
number of heads in the first n trials behaves as n increases.
The resulting sample space is the space of all infinite
sequences of elements in {h,t}, meaning Ω ∶= {h,t}N.
The question is how to define a distribution on Ω that
models the described experiment, where we assume the
tosses to be independent.
For any integer n ≥ 1, the mass function for the first n
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tosses is given in (2.13). If we define a distribution on Ω,
we want it to be compatible with that. It turns out that
there is such a distribution and it is uniquely defined with
that property.

8.1.1 Product of measurable spaces

More generally, for each integer i ≥ 1, let (Ωi,Σi) denote
a measurable space. Their product, denoted (Ω,Σ), is
defined as follows:

• Ω is simply the Cartesian product of Ωi, i ≥ 1, mean-
ing

Ω ∶= Ω1 ×Ω2 ×⋯ =⨉
i≥1

Ωi. (8.1)

• Σ is the σ-algebra generated by sets of Ω of the form 39

⨉
i≤m−1

Ωi ×Am × ⨉
i≥m+1

Ωi,

for some m ≥ 1 and with Am ∈ Σm.
Problem 8.1. Show that the Cartesian product of σ-
algebras is in general not a σ-algebra by producing a
simple counter-example.

39 Sets of this form are sometimes called cylinder sets.

8.1.2 Kolmogorov’s extension theorem

This theorem allows one to (uniquely) define a distribution
on (Ω,Σ) based on its restriction to events of the form

A1 ×⋯ ×Am × ⨉
i≥m+1

Ωi, (8.2)

which we identify with A1 ×⋯ ×Am.
Below, (Ω(m),Σ(m)) will denote the product of the

measurable spaces (Ωi,Σi),1 ≤ i ≤ m, and Ai will be
generic for an event in Σi.

Theorem 8.2 (Extension theorem). A distribution P on
(Ω,Σ) is uniquely determined by its values on events of
the form A1 ×⋯×An. Conversely, any sequence of distri-
butions (P(m) ∶m ≥ 1), with P(m) being a distribution on
(Ω(m),Σ(m)), which is compatible in the sense that

P(m)(A1 ×⋯ ×Am−1 ×Ωm) = P(m−1)(A1 ×⋯ ×Am−1),

for all m ≥ 2, defines a distribution P on (Ω,Σ) via

P(A1 ×⋯ ×Am) = P(m)(A1 ×⋯ ×Am),

for all m ≥ 1.
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8.1.3 Product distributions

Let Pi be a distribution on (Ωi,Σi). The (tensor) product
distribution is the unique distribution P on (Ω,Σ) such
that, for any events Ai ∈ Σi,

P(A1 ×A2 ×⋯) = P1(A1)P2(A2)⋯ ,

meaning
P(⨉

i≥1
Ai) =∏

i≥1
Pi(Ai).

In particular,

P(A1 ×⋯ ×Am) = P1(A1) ×⋯ × Pm(Am),

for all m ≥ 1. This distribution is well-defined by Theo-
rem 8.2 and is sometimes denoted

P = P1 ⊗ P2 ⊗⋯ =⊗
i≥1

Pi. (8.3)

Problem 8.3. Show that any set of events A1, . . . ,Ak
with Ai ∈ Σi are mutually independent under the product
distribution (as events in Σ).
Thus the probability space (Ω,Σ,P) models an exper-

iment consisting of infinitely many trials, with the ith
trial corresponding to (Ωi,Σi,Pi) and independent of all
others.

8.2 Sequences of random variables

Suppose that we are given two random variables, X1 on a
sample space Ω1 and X2 on a sample space Ω2. We might
want to take their sum or product or manipulate them
in any other way. However, strictly speaking, if Ω1 ≠ Ω2,
this is not possible, simply because X1 is a function on
Ω1 and X2 a function on Ω2.
The situation can be remedied by considering a meta

sample space and identifying each of the variables with
ones defined on that space. In detail, consider the product
space Ω1 ×Ω2, and define

X̃i ∶ (ω1, ω2) ∈ Ω1 ×Ω2 z→Xi(ωi).

Now that X̃1 and X̃2 are random variables on the same
space, we can manipulate them in any way that we can ma-
nipulate real-valued functions defined on the same space,
which definitely includes taking their sum or product.

This device generalizes to infinite sequences. Suppose
that Xi is a random variable on a sample space Ωi. Let
Ω denote the product sample space defined in (8.1), and
define

X̃i ∶ ω = (ω1, ω2, . . . ) ∈ Ωz→Xi(ωi).
The common practice is to redefine Xi as X̃i, and we do
so henceforth without warning.
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The moral is that we can always consider a discrete set
of random variables as being defined on a common sample
space.

What about probability distributions? Suppose that
each Ωi comes equipped with a σ-algebra Σi and a distri-
bution Pi.
Problem 8.4. Show that under the product distribution
introduced in Section 8.1, the random variables Xi are
independent.
Example 8.5 (Tossing a p-coin). Consider an experiment
that consists in tossing a p-coin repeatedly without end.
Let Xi = 1 if the ith trial results in heads, and Xi = 0
otherwise, so that, as in (3.5),

P(Xi = 1) = 1 − P(Xi = 0) = p. (8.4)

At this point, the setting is not properly defined. We
do so now (although much of what follows is typically
left implicit). For each i ≥ 1, Ωi = {h,t} and Pi is the
distribution on Ωi given by Pi(h) = p. The product sample
space is Ω = {h,t}N and for ω = (ω1, ω2, . . . ) ∈ Ω, let
Xi(ω) = 1 if ωi = h and Xi(ω) = 0 if ωi = t.

It remains to define P. We know that the distribution P
in (8.4) is the product distribution if and only if the tosses
are independent. However, there are other distributions

on Ω that satisfy (8.4). For a simple example, define P on
Ω by

P(h,h,h, . . . ) = p, P(t,t,t, . . . ) = 1 − p.

We can see that (8.4) holds even though the Xi are (very)
dependent.
Problem 8.6. For a more interesting example, given
h, t ∈ [0, 1], define the following function on {h,t}×{h,t}

g(h ∣h) = h, (8.5)
g(t ∣h) = 1 − h, (8.6)
g(t ∣t) = t, (8.7)
g(h ∣t) = 1 − t. (8.8)

Define f(n) on {h,t}n as

f(n)(ω1, . . . , ωn) = f(ω1)
n

∏
i=2
g(ωi ∣ωi−1),

where f(h) = 1− f(t) = p is the mass function of a p-coin.
Verify that f(n) is a mass function on {h,t}n. Let P(n)

be the distribution with mass function f(n). Show that
(P(n) ∶ n ≥ 1) are compatible in the sense of Theorem 8.2
and let P denote the distribution on Ω they define. Then
find the values of (h, t) that make P satisfy (8.4).
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Remark 8.7. In the previous problem, P models an ex-
periment using three coins, a p-coin, an h-coin, and a
t-coin. We first toss the p-coin, then in the sequence, if
the previous toss landed heads, we use the h-coin, other-
wise the t-coin.

8.3 Zero-one laws

We start with the Borel–Cantelli lemmas 40, which will
lead to an example of a zero-one law. These lemmas have
to do with an infinite sequence of events and whether
infinitely many events among these will happen or not.

To formalize our discussion, consider a probability space
(Ω,Σ,P) and a sequence of events A1,A2, . . . . The event
that infinitely many such events happen is the so-called
limit supremum of these events, defined as

Ā ∶=
∞

⋂
m≥1

∞

⋃
n≥m
An.

Problem 8.8 (1st Borel–Cantelli lemma). Prove that

∑
n≥1

P(An) <∞ ⇒ P(Ā) = 0.

40 Named after Émile Borel (1871 - 1956) and Francesco Paolo
Cantelli (1875 - 1966).

The following converse requires independence.
Problem 8.9 (2nd Borel–Cantelli lemma). Assuming in
addition that the events are independent, prove that

∑
n≥1

P(An) =∞ ⇒ P(Ā) = 1.

Combining these two lemmas, we arrive at the following.

Proposition 8.10 (Borel–Cantelli’s zero-one law). In the
present context, and assuming in addition that the events
are independent, we have P(Ā) = 0 or 1 according the
whether ∑n≥1 P(An) <∞ or =∞.

Thus, in the context of this proposition, the situation is
black or white: the limit supremum event has probability
equal to 0 or 1. This is an example of a zero-one law.
Another famous example is the following.

Theorem 8.11 (Kolmogorov’s zero-one law). Consider
an infinite sequence of independent random variables. Any
event determined by this sequence, but independent of any
finite subsequence, has probability zero or one.

For example, consider a sequence (Xn) of independent
random variables. The event “Xn has a finite limit”, which
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can also be expressed as

{ −∞ < lim inf
n

Xn = lim sup
n

Xn <∞},

is obviously determined by (Xn), and yet it is independent
of (X1, . . . ,Xk) for any k ≥ 1, and thus independent of
any finite subsequence. Applying Kolmogorov’s zero-one
law, this event has therefore probability zero or one.
Problem 8.12. Provide some other examples of such
events.
Problem 8.13. Show that the assumption of indepen-
dence is crucial for the result to hold in this generality, by
providing a simple counter-example.

8.4 Convergence of random variables

Random variables are functions on the sample space, there-
fore, defining notions of convergence for random variables
relies on similar notions for sequences of functions. We
present the two main notions here.

8.4.1 Convergence in probability

We say that a sequence of random variables (Xn ∶ n ≥ 1)
converges in probability towards a random variable X if,

for any fixed ε > 0,

P(∣Xn −X ∣ ≥ ε) Ð→ 0, as n→∞.

We will denote this convergence by Xn →P X.
Example 8.14. For a simple example, let Y be a random
variable, and let g ∶ R2 → R be continuous in the second
variable, and define Xn = g(Y,1/n). Then

Xn
PÐ→ X ∶= g(Y,0).

This example encompasses instances like Xn = anY + bn,
where (an) and (bn) are convergent deterministic se-
quences.
Problem 8.15. Show that

Xn
PÐ→ X ⇔ Xn −X

PÐ→ 0. (8.9)

Problem 8.16. Show that if Xn ≥ 0 for all n and
E(Xn)→ 0, then Xn →P 0.
Problem 8.17. Show that if E(Xn) = 0 for all n and
Var(Xn)→ 0, then Xn →P 0.

Proposition 8.18 (Dominated convergence). Suppose
that Xn →P X and that ∣Xn∣ ≤ Y for all n, where Y has
finite expectation. Then Xn, for all n, and X have an
expectation, and E(Xn)→ E(X) as n→∞.



8.4. Convergence of random variables 93

Problem 8.19. Prove this proposition, at least when Y
is constant.

8.4.2 Convergence in distribution

We say that a sequence of distribution functions (Fn ∶ n ≥
1) converges weakly to a distribution function F if, for any
point x ∈ R where F is continuous,

Fn(x) Ð→ F(x), as n→∞.

We will denote this by Fn →L F. A sequence of random
variables (Xn ∶ n ≥ 1) converges in distribution to a ran-
dom variable X if FXn →L FX . We will denote this by
Xn →L X.
Remark 8.20. Unlike convergence in probability, conver-
gence in distribution does not require that the variables
be defined on the same probability space.
Remark 8.21. The consideration of continuity points is
important. As an illustration, take the simple example
of constant variables, Xn ≡ 1/n. We anticipate that (Xn)
converges weakly to X ≡ 0. Indeed, the distribution
function of Xn is Fn(x) ∶= {x ≤ 1/n}, while that of X is
F(x) ∶= {x ≤ 0}. Clearly, Fn(x) → F(x) for all x ≠ 0, but
not at 0 since Fn(0) = 0 and F(0) = 1. Fortunately, weak

convergence only requires a pointwise convergence at the
continuity points of F, which is the case here.
Problem 8.22. Prove that convergence in probability
implies convergence in distribution, meaning that ifXn →P
X then Xn →L X. The converse is not true in general
(and in fact may not be applicable in view of Remark 8.20).
Indeed, let X ∼ Ber(1/2) and define

Xn =
⎧⎪⎪⎨⎪⎪⎩

X if n is odd,
1 −X if n is even.

Show that Xn converges weakly to X but not in probabil-
ity.
Problem 8.23. Show that convergence in distribution
to a constant implies convergence in probability to that
constant.

More generally, we have the following, which is a corol-
lary of Skorokhod’s representation theorem. 41

Theorem 8.24 (Representation theorem). Suppose that
(Fn) converges weakly to F. Then there exist (Xn) and X,
random variables defined on the same probability space,
with Xn having distribution Fn and X having distribution
F, and such that Xn →P X.

41 Named after Anatoliy Skorokhod (1930 - 2011).
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8.5 Law of Large Numbers

Consider Bernoulli trials where a fair coin (i.e., a p-coin
with p = 1/2) is tossed repeatedly. Common sense (based
real-world experience) would lead one to anticipate that,
after a large number of tosses, the proportion of heads
would be close to 1/2. Thankfully, this is also the case
within the theoretical framework built on Kolmogorov’s
axioms.
Remark 8.25 (iid sequences). Random variables that
are independent and have the same marginal distribution
are said to be independent and identically distributed (iid).

Theorem 8.26 (Law of Large Numbers). Let (Xn) be a
sequence of iid random variables with expectation µ. Then

1
n

n

∑
i=1
Xi

PÐ→ µ, as n→∞.

See Figure 8.1 for an illustration.
If the variables have a 2nd moment, then the result is

easy to prove using Chebyshev’s inequality.
Problem 8.27. LetX1, . . . ,Xn be random variables with
the same mean µ and variances all bounded by σ2, and
assume their pairwise covariances are non-positive. Let

Figure 8.1: An illustration of the Law of Large Num-
ber in the context of Bernoulli trials. The horizontal
axis represents the sample size n. The vertical segment
corresponding to a sample size n is defined by the 0.005
and 0.995 quantiles of the distribution of the mean of n
Bernoulli trials with parameter p = 1/2.
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Yn = ∑ni=1Xi. Show that

P(∣Yn/n − µ∣ ≥ ε) ≤
σ2

nε2 , for all ε > 0. (8.10)

Problem 8.28. Apply Problem 8.27 to the number of
heads in a sequence of n tosses of a p-coin. In particular,
find ε such that the probability bound is 5%. Turn this
into a statement about the “typical” number of heads in
100 tosses of a fair coin.
Problem 8.29. Repeat with the number of red balls
drawn without replacement n times from an urn with r
red balls and b blue balls. [The pairwise covariances were
computed as part of Problem 7.43.] Make the statement
about the “typical” number of red balls in 100 draws from
an urn with 100 red and 100 blue balls. How does your
statement change when there are 1000 red and 1000 blue
balls instead?
Remark 8.30. Theorem 8.26 is in fact known as the
Weak Law of Large Numbers. There is indeed a Strong
Law of Large Numbers, and it says that, under the same
conditions, with probability one,

1
n

n

∑
i=1
Xi Ð→ µ, as n→∞.

8.6 Central Limit Theorem

The bound (8.10) can be rewritten as

P(∣Yn − nµ∣
σ
√
n

≥ t) ≤ 1
t2
,

for all t > 0 and all n ≥ 1 integer. In fact, under some
additional conditions, it is possible to obtain the exact
limit as n→∞.

8.6.1 Central Limit Theorem

Theorem 8.31 (Central Limit Theorem). Let (Xn) be a
sequence of iid random variables with mean µ and variance
σ2. Let Yn = ∑ni=1Xi. Then (Yn − nµ)/σ

√
n converges

in distribution to the standard normal distribution, or
equivalently, for all t ∈ R,

P(Yn − nµ
σ
√
n

≤ t) Ð→ Φ(t), as n→∞, (8.11)

where Φ is the distribution function of the standard normal
distribution defined in (5.2).

Importantly, nµ is the mean of Yn and σ
√
n is its stan-

dard deviation. So the Central Limit Theorem says that
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the standardized sum of iid random variables (with 2nd
moment) converges to the standard normal distribution.
Problem 8.32. Show that the Central Limit Theorem en-
compasses the De Moivre–Laplace theorem (Theorem 5.4)
as a special case. In particular, if (Xi ∶ i ≥ 1) is a sequence
of iid Bernoulli random variables with parameter p ∈ (0, 1),
then

∑ni=1Xi − np√
np(1 − p)

LÐ→ N (0,1), as n→∞.

A standard proof of Theorem 8.31 relies on the Fourier
transform, and for that reason is rather sophisticated. So
we only provide some pointers. We assume, without loss
of generality, that µ = 0 and σ = 1.

We focus on the case where the Xi have density f and
characteristic function ϕ that is integrable. In that case,
we have the Fourier inversion formula (7.23).

Let fn denote the density of Yn. Based on (6.11), we
know that fn exists and furthermore that it is the nth
convolution power of f . Let Zn = Yn/

√
n, which has

density gn(z) ∶=
√
nfn(

√
nz). We want to show, or at

least argue, that gn converges to the standard normal
density, denoted

φ(z) ∶= e−z2/2
√

2π
, for z ∈ R.

Because of (7.21), Yn has characteristic function ϕn.
Problem 8.33. Show that, for any positive integer n ≥ 1,
ϕn is integrable when ϕ is integrable.
We may therefore apply (7.23) to derive

gn(z) =
√
n

2π ∫
∞

−∞
e−ıt

√
nzϕ(t)ndt

= 1
2π ∫

∞

−∞
e−ıszϕ(s/

√
n)nds,

using a simple change of variables in the 2nd line.
Problem 8.34. Recall that we assumed that f has zero
mean and unit variance. Based on that, show that ϕ is
twice continuously differentiable, with ϕ(0) = 1, ϕ′(0) = 0,
and ϕ′′(0) = 1. Deduce that

ϕ(s/
√
n)n = (1 − s2/2n + o(1/n))n

→ e−s
2/2, as n→∞.

Thus, if passing to the limit under the integral is justified
(C), we obtain

gn(z) Ð→
1

2π ∫
∞

−∞
e−ısze−s

2/2ds, as n→∞.

Problem 8.35. Prove that the limit is φ(z), either di-
rectly, or using a combination of (7.23) and the fact that



8.7. Extreme value theory 97

the standard normal characteristic function is e−s2/2 (Prob-
lem 7.96).

This completes the proof that gn → φ pointwise, modulo
(C) above. Even then, this does not prove Theorem 8.31,
which is a result on the distribution functions rather than
the densities.

8.6.2 Lindeberg’s Central Limit Theorem

This well-known variant generalizes the classical version
presented in Theorem 8.31. While it still requires indepen-
dence, it does not require the variables to be identically
distributed.

Theorem 8.36 (Lindeberg’s Central Limit Theorem 42).
Let (Xi ∶ i ≥ 1) be independent random variables, with Xi

having mean µi and variance σ2
i . Define s2

n = ∑ni=1 σ
2
i and

assume that, for any fixed ε > 0,

lim
n→∞

1
s2
n

n

∑
i=1

E ((Xi − µi)2 {∣Xi − µi∣ > εsn}) = 0. (8.12)

Then s−1
n ∑ni=1(Xi − µi) converges in distribution to the

standard normal distribution.
42 Named after Jarl Lindeberg (1876 - 1932).

Problem 8.37. Verify that Theorem 8.36 implies Theo-
rem 8.31.
Problem 8.38. Consider independent Bernoulli vari-
ables, Xi ∼ Ber(pi). Assume that pi ≤ 1/2 for all i. Show
that (8.12) holds if and only if ∑ni=1 pi →∞ as n→∞.
Problem 8.39 (Lyapunov’s Central Limit Theorem 43).
Show that (8.12) holds when there is δ > 0 such that

lim
n→∞

1
s2+δ
n

n

∑
i=1

E (∣Xi − µi∣2+δ) = 0. (8.13)

[Use Jensen’s inequality.]

8.7 Extreme value theory

Extreme Value Theory is the branch of Probability that
studies such things as the extrema of iid random variables.
Its main results are ‘universal’ convergence results, the
most famous of which is the following.

Theorem 8.40 (Extreme Value Theorem). Let (Xn) be
iid random variables. Let Yn = maxi≤nXi. Suppose that
there are sequences (an) and (bn) such that anYn+bn →L Z

43 Named after Aleksandr Lyapunov (1857 - 1918).
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where Z is not constant. Then Z has either a Weibull, a
Gumbel, or a Fréchet distribution.

The Weibull family 44 with shape parameter κ > 0 is the
location-scale family generated by

Gκ(z) ∶= 1 − exp(−zκ), z > 0. (8.14)

(Thus the entire Weibull family has three parameters.)
The Gumbel family 45, is location-scale family generated

by
G(z) ∶= 1 − exp(− exp(−z)), z ∈ R. (8.15)

(Thus the entire Gumbel family has two parameters.)
The Fréchet family 46 with shape parameter κ > 0 is the

location-scale family generated by

Gκ(z) ∶= exp(−z−κ), z > 0. (8.16)

(Thus the entire Fréchet family has three parameters.)
Problem 8.41. Verify that (8.14), (8.15), and (8.16) are
bona fide distribution functions.

44 Named after Waloddi Weibull (1887 - 1979).
45 Named after Emil Julius Gumbel (1891 - 1966).
46 Named after Maurice René Fréchet (1878 - 1973).

Problem 8.42 (Distributions with finite support). Sup-
pose that the distribution generating the iid sequence has
finite support, say c1 < ⋯ < cN . Note that N is fixed.
Show that

P(Yn = cN) Ð→ 1, as n→∞.

Deduce that the Extreme Value Theorem does not apply
to this case.
Rather than proving the theorem, we provide some

examples, one for each case. We place ourselves in the
context of the theorem.
Problem 8.43. Let F denote the distribution function of
the Xi. Show that the distribution function of Yn is Fn.
Problem 8.44 (Maximum of a uniform sample). Let
X1, . . . ,Xn be iid uniform in [0,1]. Show that, for any
z > 0,

P(n(1 − Yn) ≤ z) Ð→ 1 − exp(−z), as n→∞.

Thus the limiting distribution is in the Weibull family.
Problem 8.45 (Maximum of a normal sample). Let
X1, . . . ,Xn be iid standard normal. Show that, for any
z ∈ R,

P(anYn + bn ≤ z) Ð→ exp(− exp(−z)), as n→∞,
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where

an ∶=
√

2 logn, bn = −2 logn + 1
2

log logn + 1
2

log(4π).

Thus the limiting distribution is in the Gumbel family.
[To prove the result, use the fact that, Φ denoting the
standard normal distribution function,

1 −Φ(x) ∼ 1√
2πx

exp(−x2/2), as x→∞,

which can be obtained via integration by parts.]
Problem 8.46 (Maximum of a Cauchy sample). Let
X1, . . . ,Xn be iid from the Cauchy distribution. We saw
the density in (5.10), and the corresponding distribution
function is given by

F(x) ∶= 1
π

tan−1(x) + 1
2
.

Show that, for any z > 0,

P(π
n
Yn ≤ z) Ð→ 1 − exp(−1/z), as n→∞.

Thus the limiting distribution is in the Fréchet family.
[To prove the result, use the fact that 1 − F(x) ∼ 1/πx as
x→∞.]

8.8 Further topics

8.8.1 Continuous mapping theorem, Slutsky’s
theorem, and the delta method

The following result says that applying a continuous func-
tion to a convergent sequence of random variables results
in a convergent sequence of random variables, where the
type of convergence remains the same. (The theorem
applies to random vectors as well.)
Problem 8.47 (Continuous Mapping Theorem). Let
(Xn) be a sequence of random variables and let g ∶ R→ R
be continuous. Prove that, if (Xn) converges in probabil-
ity (resp. in distribution) to X, then (g(Xn)) converges
in probability (resp. in distribution) to g(X).
The following is a simple corollary.

Theorem 8.48 (Slutky’s theorem). If Xn →L X while
An →P a and Bn →P b, where a and b are constants, then
AnXn +Bn →L aX + b.

Problem 8.49. Prove Theorem 8.48.
The following is a refinement of the Continuous Mapping

Theorem.
Problem 8.50 (Delta Method). Let (Yn) be a sequence
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of random variables and (an) a sequence of real numbers
such that an → ∞ and anYn →L Z, where Z is some
random variable. Also, let g be any function on the real
line with a derivative at 0 and such that g(0) = 0. Prove
that ang(Yn)→L g′(0)Z.

8.8.2 Exchangeable random variables

The random variables X1, . . . ,Xn are said to be ex-
changeable if their joint distribution is invariant with
respect to permutations. This means that for any per-
mutation (π1, . . . , πn) of (1, . . . , n), the random vectors
(X1, . . . ,Xn) and (Xπ1 , . . . ,Xπn) have the same distribu-
tion.
Problem 8.51. Show that X1, . . . ,Xn are exchangeable
if and only if their joint distribution function is invariant
with respect to permutations. Show that the same is true
of the mass function (if discrete) or density (if absolutely
continuous).
Problem 8.52. Show that if X1, . . . ,Xn are exchange-
able then they necessarily have the same marginal distri-
bution.
Problem 8.53. Show that independent and identically
distributed random variables are exchangeable. Show that
the converse is not true.

Problem 8.54. Consider drawing from an urn with red
and blue balls. Let Xi = 1 if the ith draw is red and Xi = 0
if it is blue. Show that, whether the sampling is without or
with replacement (Section 2.4), or follows Pólya’s scheme
(Section 2.4.4), X1, . . . ,Xn are exchangeable.
Problem 8.55. Let X1, . . . ,Xn and Y be random vari-
ables such that, conditionally on Y the Xi are independent
and identically distributed. Show that X1, . . . ,Xn are ex-
changeable.
The following provides a converse for a sequence of

Bernoulli random variables.

Theorem 8.56 (de Finetti’s theorem). Suppose that
(Xn) is an exchangeable sequence of Bernoulli random
variables with same parameter. Then there is a random
variable Y on [0, 1] such that, given Y = y, the Xi are iid
Bernoulli with parameter y.

8.9 Additional problems

Problem 8.57 (From discrete to continuous uniform).
Let XN be uniform on { 1

N+1 ,
2

N+1 , . . . ,
N
N+1}. Show that

(XN) converges in distribution to the uniform distribution
on [0,1].
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Problem 8.58 (From geometric to exponential). Let XN

be geometric with parameter pN , where NpN → λ > 0.
Show that (XN/N) converges in distribution to the expo-
nential distribution with rate λ.
Problem 8.59. Consider a sequence of distribution func-
tions (Fn) that converges weakly to some distribution
function F. Recall the definition of pseudo-inverse defined
in (4.16) and show that F−n(u)→ F−(u) at any u where F
is continuous and strictly increasing.
Problem 8.60 (Coupon Collector Problem). Recall the
setting of Section 3.8. Show that the Xi are exchangeable
but not independent.
Problem 8.61 (Coupon Collector Problem). Recall the
setting of Section 3.8. We denote T by TN and let N →∞.
It is known [76] that, for any a ∈ R,

P(TN ≤ N logN + aN)→ exp(− exp(−a)), N →∞.

Re-express this statement as a convergence in distribution.
Note that the limiting distribution is Gumbel. Using
the function implemented in Problem 3.22, perform some
simulations to confirm this mathematical result.
Problem 8.62 (Coupon Collector Problem). Continuing
with the setting of the previous problem, for q ∈ [0,1],
T⌈qN⌉ is the number of trials needed to sample a fraction

of at least q of the entire collection of N coupons. Show
that, when q ∈ (0,1) is fixed while N → ∞, the limiting
distribution of T⌈qN⌉ is normal. [First, express T⌈qN⌉ as
the sum of certain Wi as in Problem 3.21. Then apply
Lyapunov’s CLT (Problem 8.39).]
Problem 8.63. Suppose that X1, . . . ,Xn are exchange-
able with continuous marginal distribution. Define Y =
#{i ∶Xi ≥X1} and show that Y has the uniform distribu-
tion on {1,2, . . . , n}. In any case, show that

P(Y ≤ y) ≤ y/n, for all y ≥ 1.

Problem 8.64. Suppose the distribution of the random
vector (X1, . . . ,Xn) is invariant with respect to some set of
permutations S, and that S is such that, for every pair of
distinct i, j ∈ {1, . . . , n}, there is σ = (σ1, . . . , σn) ∈ S such
that σi = j. Show that the conclusions of Problem 8.63
apply to this more general situation.
Problem 8.65. Let X1, . . . ,Xn be exchangeable non-
negative random variables. For any k ≤ n, compute

E(∑
k
i=1Xi

∑ni=1Xi
).

Problem 8.66. Suppose that a box contains m balls.
The goal is to estimate m given the ability to sample
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uniformly at random with replacement from the urn. We
consider a protocol which consists in repeatedly sampling
from the urn and marking the resulting ball with a unique
symbol. The process stops when the ball we draw has
been previously marked. 47 LetK denote the total number
of draws in this process. Show that K/√m →

√
π/2 in

probability as m→∞.
Problem 8.67 (Tracy–Widom distribution). Let Λm,n

denote the the square of the largest singular value of an m-
by-n matrix with iid standard normal coefficients. Then
there are deterministic sequences, am,n and bm,n such
that, as m/n → γ ∈ [0,∞], (Λm,n − am,n)/bm,n converges
in distribution to the so-called Tracy–Widom distribution
of order 1. In R, perform some numerical simulations to
probe into this phenomenon. [Note that the amount of
computation is nontrivial.]

47 This can be seen as a form of capture-recapture sampling
scheme (Section 23.5.1).
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Stochastic processes model experiments whose outcomes
are collections of variables organized in some fashion. We
present some classical examples and cover some basic
properties to give the reader a glimpse of how much more
sophisticated probability models can be.

9.1 Poisson processes

Poisson processes are point processes that are routinely
used to model temporal and spatial data.

9.1.1 Poisson process on a bounded interval

The Poisson process with constant intensity λ on the
interval [0, 1) can be constructed as follows. Let N denote
a Poisson random variable with parameter λ. When N =
n ≥ 1, draw n points X1, . . . ,Xn iid from the uniform
distribution on [0,1); when N = 0, return the empty
set. The result is the random set of points {X1, . . . ,XN}
(empty when N = 0).

https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
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Define Nt = #{i ∶ Xi ∈ [0, t)}. Note that N = N1 and,
for 0 ≤ s < t ≤ 1,

Nt −Ns = #{i ∶Xi ∈ [s, t)}.

For a subset A ⊂ [0,1), define

N(A) ∶= #{i ∶Xi ∈ A}.

Remark 9.1. Clearly, Nt − Ns = N([s, t)) for any 0 ≤
s < t ≤ 1, and in particular, Nt = N([0, t)) for all t. In
fact, specifying (Nt ∶ t ∈ [0,1]) is equivalent to specifying
(N(A) ∶ A Borel set in [0,1]). They are both referred to
the Poisson process with intensity λ on [0, 1]. The former
is a representation as a (step) function, while the latter
is a representation as a so-called counting measure. N is
often referred to as a counting process.

Proposition 9.2. For any Borel set A ⊂ [0,1],

N(A) ∼ Poisson(∣A∣), (9.1)

where ∣A∣ denotes the Lebesgue measure of A.

Problem 9.3. Prove this proposition. Start by showing
that, given N = n, N(A) has the Bin(n, t− s) distribution.
Then use the Law of Total Probability to conclude.

Proposition 9.4. For any pairwise disjoint Borel sets
A1, . . . ,Am in [0, 1), N(A1), . . . ,N(Am) are independent.

Problem 9.5. Prove this proposition, starting with the
case m = 2. First show that

N(A1) +N(A2) ∼ Poisson(λ(v1 + v2)), (9.2)

using (9.1), where vi ∶= ∣Ai∣. Then reason by conditioning
on N(A1) + N(A2), using the Law of Total Probability,
and the fact that, given N(A1)+N(A2) = `, N(A1) has the
Bin(`, v1/(v1 + v2)) distribution, as seen in Problem 3.31.
More generally, the Poisson process with constant in-

tensity λ on the interval [a, b) results from drawing
N ∼ Poisson(λ(b − a)) and, given N = n ≥ 1, drawing
X1, . . . ,Xn iid from the uniform distribution on [a, b).
Problem 9.6. Generalize Proposition 9.2 and Proposi-
tion 9.4 to the case of an arbitrary interval [a, b).
Remark 9.7. λ is the density of points per unit length,
here meaning that λr is the mean number of points in an
interval of length r (inside the interval where the process
is defined).
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9.1.2 Poisson process on a bounded domain

The Poisson process with intensity λ on [0, 1)d can be con-
structed by drawing N ∼ Poisson(λ) and, given N = n ≥ 1,
drawing X1, . . . ,Xn iid from the uniform distribution on
[0, 1)d. More generally, the Poisson process with intensity
λ on [a1, b1) ×⋯× [ad, bd) can be constructed by drawing
N ∼ Poisson(λ∏j(bj −aj)) and, given N = n ≥ 1, drawing
X1, . . . ,Xn iid uniform on that hyperrectangle.
Problem 9.8. Consider a Poisson process with intensity
λ on [a1, b1) ×⋯ × [ad, bd). Show that its projection onto
the jth coordinate is a Poisson process on [aj , bj). What
is its intensity?

More generally, for a compact set D ⊂ Rd with positive
volume (∣D∣ > 0), the Poisson process with intensity λ on
D is defined by drawing N from the Poisson distribution
with mean λ∣D∣ and, given N = n ≥ 1, drawingX1, . . . ,Xn

iid uniform on D.
Problem 9.9. Generalize Proposition 9.2 and Proposi-
tion 9.4 to the Poisson process with intensity λ on D.

9.1.3 Poisson process on [0,∞)

The Poisson process with intensity λ on [0,∞) can be
constructed by independently generating a Poisson process

with intensity λ on each interval [k − 1, k), k ≥ 1 integer.
Problem 9.10. Show that the restriction of such a pro-
cess to any interval is a Poisson process on that interval
with same intensity.
Problem 9.11. Show that, in the construction of the pro-
cess, the partition [0,1), [1,2), [2,3), . . . can be replaced
by any other partition into intervals.

Proposition 9.12. The Poisson process with intensity λ
on [0,∞) can also be constructed by generating (Wi ∶ i ≥ 1)
iid from the exponential distribution with rate λ and then
defining Xi =W1 +⋯ +Wi.

In this construction, the Xi are ordered in the sense that
X1 ≤X2 ≤ ⋯. In a number of settings, Xi denotes the time
of the ith event, in which case Wi =Xi −Xi−1 represents
the time between the (i − 1)th and ith events. For that
reason, the Wi are often called inter-arrival times.

9.1.4 General Poisson process

The Poisson processes seen thus far are said to be ho-
mogenous. This is because the intensity is constant. In
contrast, a general Poisson process may be inhomogeneous
in that its intensity may vary over the space over which
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the process is defined.
Formally, given a function λ ∶ Rd → R+ assumed to have

well-defined and finite integral over any compact set, the
Poisson process with intensity function λ is a point process
over Rd which, when defined via its counting process N,
satisfies the following two properties:
(i) For every compact set A, N(A) has the Poisson dis-

tribution with mean ∫A λ(x)dx.
(ii) For any pairwise disjoint compact sets A1, . . . ,Am,

N(A1), . . . ,N(Am) are independent.
That such a process exists is a theorem whose proof is
not straightforward and will be omitted. Of course, if λ
is a constant function, then we recover an homogeneous
Poisson process as defined previously.

9.2 Markov chains

Some situations are poorly modeled by sequences of in-
dependent random variables. Think, for example, of the
daily closing price of a stock, or the maximum daily tem-
perature on successive days. Markov chains are some of
the most natural stochastic processes for modeling depen-
dencies. We provide a very brief introduction, focusing
on the case where the observations are in a discrete space.

The topic is more extensively treated in the textbook [113].
See also the lectures notes available here. 48

9.2.1 Definition

Let X be a discrete space and let f(⋅ ∣ ⋅) denote a condi-
tional mass function on X ×X , namely, for each x0 ∈ X ,
x↦ f(x ∣x0) is a mass function on X . The corresponding
chain, starting at x0 ∈ X , proceeds as follows:
(i) X1 is drawn from f(⋅ ∣x0) resulting in x1;
(ii) for t ≥ 1, given Xt = xt, Xt+1 is drawn from f(⋅ ∣xt)

resulting in xt+1.
The result is the outcome (x1, x2, . . . ), or left unspecified
as a sequence of random variables, it is (X1,X2, . . . ).
Remark 9.13. If in actuality f(x ∣x0) does not depend
on x0, in which case we write it as f(x), the process
generates an iid sequence from f . Hence, an iid sequence
is a Markov chain.

If the chain is at state x ∈ X , that state is referred to as
the present state. The next state, generated using f(⋅ ∣x),
is the state one (time) step into the future. That future
state is generated without any reference to previous states

48 Lectures notes by Richard Weber at Cambridge University
(statslab.cam.ac.uk/~rrw1/markov)

statslab.cam.ac.uk/~rrw1/markov
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except for the present state. In that sense, a Markov chain
only ‘remembers’ the present state. See Section 9.2.6 for
an extension.

9.2.2 Two-state Markov chains

Let us consider the simple setting of a state space X with
two elements. In fact, we already examined this situation
in Problem 8.6. Here we take X = {1,2} without loss of
generality. Because f(⋅ ∣ ⋅) is a conditional mass function
it needs to satisfy

a ∶= f(1 ∣1) = 1 − f(2 ∣1), (9.3)
b ∶= f(2 ∣2) = 1 − f(1 ∣2). (9.4)

The parameters a, b ∈ [0, 1] are free and define the Markov
chain. The conditional probabilities above may be orga-
nized in a so-called transition matrix, which here takes
the form

present state{( a 1 − a
1 − b b

)

next state
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

(9.5)

Problem 9.14. Starting at x0 = 1, compute the proba-
bility of observing (x1, x2, x3) = (1,2,1) as a function of
(a, b).

Problem 9.15. In R, write a function taking as input
the parameters of the chain (a, b), the starting state x0 ∈
{1, 2}, and the number of steps t, and returning a random
sequence (x1, . . . , xt) from the corresponding process.

9.2.3 General Markov chains

Since we assume the state space X to be discrete, we may
take it to be the positive integers, X = {1, 2, . . .}, without
loss of generality. For i, j ∈ X , let θij = f(j ∣ i), which is
the probability of transitioning from i to j. These are
organized in a transition matrix

present state

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

θ11 θ12 θ13 ⋯
θ21 θ22 θ33 ⋯
θ31 θ32 θ33 ⋯
⋮ ⋮ ⋮ ⋮

⎞
⎟⎟⎟
⎠

next state
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

(9.6)

Note that the matrix can be infinite in principle. This
general case includes the case where the state space is
finite. Denote the transition matrix by

Θ ∶= (θij ∶ i, j ≥ 1).
The transition matrix defines the chain, and together

with the initial state, defines the distribution of the ran-
dom process.
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Problem 9.16. Show that, for any t ≥ 1,

P(Xt = j ∣X0 = i) = θ(t)ij , (9.7)

where Θt = (θ(t)ij ∶ i, j ≥ 1).

9.2.4 Long-term behavior

In the study of a Markov chain, quantities of interest
include the long-term behavior of the chain, the average
time (number of steps) it takes to visit a given state (or
set of states) starting from a given state (or set of states),
the average number of such visits, and more. We focus on
the limiting marginal distribution.

We say that a mass function on X , q ∶= (q1, q2, . . . ), is a
stationary distribution of the chain with transition matrix
Θ ∶= (θij ∶ i, j ≥ 1) if X0 ∼ q and X ∣ X0 ∼ f(⋅ ∣ X0) yields
X ∼ q.
Problem 9.17. Show that q is a stationary distribution
of Θ if and only if qΘ = q, when interpreting q as a row
vector. (Note that the multiplication is on the left.)

The chain Θ is said to be irreducible if for any i, j ≥ 1
there is t = t(i, j) such that θ(t)ij > 0. This means that,
starting at any state, the chain can eventually reach any
other state with positive probability.

The state i is said to be aperiodic if

gcd(t ≥ 1 ∶ θ(t)ii > 0) = 1,

where gcd is short for ‘greatest common divisor’. To
understand this, suppose that state i is such that

gcd(t ≥ 1 ∶ θ(t)ii > 0) = 2.

Then this would imply that the chain starting at i cannot
be at i after an odd number of steps.
A chain is aperiodic if all its states are aperiodic.

Proposition 9.18. Suppose that the chain is irreducible.
If one state is aperiodic then all states are aperiodic.

State i is positive recurrent if, starting at i, the expected
time it takes the chain to return to i is finite. A chain is
positive recurrent if all its states are positive recurrent.

Proposition 9.19. A finite irreducible chain is positive
recurrent.

(A finite chain is a chain over a finite state space.)

Theorem 9.20. An irreducible, aperiodic, and positively
recurrent chain has a unique stationary distribution. More-
over, the chain converges weakly to the stationary distri-
bution regardless of the initial state, meaning that, if
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Xt denotes the state the chain is at at time t, and if
q = (q1, q2, . . . ) denotes the stationary distribution, then

lim
t→∞

P(Xt = j ∣X0 = i) = qj , for any states i and j.

Problem 9.21. Verify that a finite chain whose transition
probabilities are all positive satisfies the requirements of
the theorem.
Problem 9.22. Provide necessary and sufficient condi-
tions for a two-state Markov chain to satisfy the require-
ments of the theorem. When these are satisfied, derive
the limiting distribution.

9.2.5 Reversible Markov chains

Running a chain backward Consider a chain with
transition probabilities (θij) with unique stationary dis-
tribution q = (qi). Assuming the state is i at time t = 0, a
step forward is taken according to

P(X1 = j ∣X0 = i) = θij , for all i, j.

In contrast, a step backward is taken according to

P(X−1 = j ∣X0 = i) =
θijqj

qi
, for all i, j. (9.8)

Reversible chains In essence, a chain is reversible if
running it forward is equivalent (in terms of distribution)
to running it backward. More generally, a chain with
transition probabilities (θij) is said to be reversible if
there is a probability mass function q = (qi) such that

qiθij = qjθji, for all i, j. (9.9)

This means that, if we draw a state from q and then run
the chain for one step, the probability of obtaining (i, j)
is the same as that of obtaining (j, i).
Problem 9.23. Show that a distribution q satisfying
(9.9) is stationary for the chain.
Problem 9.24. Show that if X0 is sampled according to
q and we run the chain for t steps resulting in X1, . . . ,Xt,
the distribution of (X0, . . . ,Xt) is the same as that of
(Xt, . . . ,X0). [Note that this does not imply that these
variables are exchangeable, only that we can reverse the
order. See Problem 9.57.]
Example 9.25 (Simple random walk on a graph). A
graph is a set of nodes and edges between some pairs
of nodes. Two nodes that form an edge are said to be
neighbors. Assume that each node has a finite number
of neighbors. Consider the following process: starting
at some node, at each step choose a node uniformly at
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random among the neighbors of the present node. Then
the resulting chain is reversible.

9.2.6 Extensions

We have discussed the simplest variant of Markov chain: it
is called a discrete time, discrete space, time homogeneous
Markov process. The definition of a continuous time
Markov process requires technicalities that we will avoid.
But we can elaborate on the other aspects.

General state space The state space X does not
need to be discrete. Indeed, suppose the state space
is equipped with a σ-algebra Γ. What are needed are
transition probabilities, {P(⋅ ∣x) ∶ x ∈ X}, on Γ. Then,
given a present state x ∈ X , the next state is drawn from
P(⋅ ∣x).
Problem 9.26. Suppose that (Wt ∶ t ≥ 1) are iid with
distribution P on (R,B). Starting at X0 = x0 ∈ R, suc-
cessively define Xt = Xt−1 + Wt. (Equivalently, Xt =
x0 +W1 + ⋯ +Wt.) What are the transition probabili-
ties in this case?

Time-varying transitions The transition probabili-
ties may depend on time, meaning

P(Xt+1 = j ∣Xt = i) = θij(t), for all i, j,

where now a sequence of transition matrices, Θ(t) ∶=
(θij(t)), defines the chain.

More memory A Markov chain only remembers the
present. However, with little effort, it is possible to have
it remember some of its past as well.
The number of states it remembers is the order of the

chain. A Markov chain of order m is such that

P(Xt = it ∣Xt−m = it−m, . . . ,Xt−1 = it−1)
= θ(it−m, . . . , it), for all it−m, . . . , it,

where the (m + 1)-dimensional array

(θ(i0, i1, . . . , im) ∶ i0, i1, . . . , im ≥ 1)

now defines the chain.
In fact, a finite order chain can be seen as an order 1

chain in an enlarged state space. Indeed, consider a chain
of order m on X , and let Xt denote its state at time t.
Based on this, define

Yt ∶= (Xt−m+1, . . . ,Xt−1,Xt).
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Then (Ym, Ym+1, . . . ) forms a Markov chain of order 1 on
Xm, with transition probabilities

P(Yt = (it−m+1, . . . , it) ∣ Yt−1 = (it−m, . . . , it−1))
= θ(it−m, . . . , it), for all it−m, . . . , it,

and all other possible transitions given the probability 0.

9.3 Simple random walk

Let (Xi ∶ i ≥ 1) be iid with

P(Xi = 1) = p, P(Xi = −1) = 1 − p,

and define Sn = ∑ni=1Xi. Note that (Xi + 1)/2 ∼ Ber(p).
Then (Sn ∶ n ≥ 0), with S0 = 0 by default, is a simple
random walk. 49 See Figure 9.1 for an illustration.

This is a special case of Example 9.25, where the graph
is the one-dimensional lattice. Indeed, at any stage, if the
process is at k ∈ Z, it moves to either k + 1 or k − 1, with
probabilities p and 1 − p, respectively. When p = 1/2, the
walk is said to be symmetric (for obvious reasons).

49 The simple random walk is one of the most well-studied stochas-
tic processes. We refer the reader to Feller’s classic textbook [83] for
a more thorough yet accessible exposition.

Figure 9.1: A realization of a symmetric (p = 1/2) simple
random walk, specifically, a plot of a linear interpolation
of a realization of {(n,Sn) ∶ n = 0, . . . ,100}.
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Problem 9.27. Show that a simple random walk is a
Markov chain with state space Z. Display the transition
matrix. Show that the chain is irreducible and periodic.
(What is the period?)

Proposition 9.28. The simple random walk is positive
recurrent if and only if it is symmetric.

9.3.1 Gambler’s Ruin

Consider a gambler than bets one dollar at every trial and
doubles or looses that dollar, each with probability 1/2
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independently of the other trials. Suppose the gambler
starts with s dollars and that he stops gambling if that
amount reaches 0 (loss) or some prescribed amount w > s
(win).
Problem 9.29. Leaving w implicit, let γs denote the
probability that the gambler loses. Show that

γs = pγs+1 + (1 − p)γs−1, for all s ∈ {1, . . . ,w − 1}.

Deduce that

γs = 1 − s/w, if p = 1/2,

while

γs =
1 − ( p

1−p)
w−s

1 − ( p
1−p)w

, if p ≠ 1/2.

The result applies to w = ∞, meaning to the setting
where the gambler keeps on playing as long as he has
money. In that case, we see that the gambler loses with
probability 1 if p ≤ 1/2 and with probability (1/p − 1)s
if p > 1/2. In particular, if p > 1/2, with probability
1 − (1/p − 1)s, the gambler’s fortune increases without
bound.

9.3.2 Fluctuations

A realization of a simple random walk can be surprising.
Indeed, if asked to guess at such a realization, most (un-
trained) people would have the tendency to make the walk
fluctuate much more than it typically does.
Problem 9.30. In R write a function which plots
{(k,Sk) ∶ k = 0, . . . , n}, where S0, S1, . . . , Sn is a realiza-
tion of a simple random walk with parameter p. Try your
function on a variety of combinations of (n, p).

We say that a sign change occurs at step n if Sn−1Sn+1 <
0. Note that this implies that Sn = 0.

Proposition 9.31 (Sign changes). The number of sign
changes in the first 2n + 1 steps of a symmetric simple
random walk equals k with probability 2−2n(2n+1

2k+1).

9.3.3 Maximum

There is a beautifully simple argument, called the reflec-
tion principle, which leads to the following clear descrip-
tion of how the maximum of the random walk up to step
n behaves

Proposition 9.32. For a symmetric simple random walk,
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for all n ≥ 1 and all r ≥ 0,

P(max
k≤n

Sk = r) = P(Sn = r) + P(Sn = r + 1).

Assume the walk is symmetric. Since Sn has mean 0
and standard deviation

√
n, it is natural to study the

normalized random walk given by (Sn/
√
n ∶ n ≥ 1).

Theorem 9.33 (Erdös and Rényi [51]). Suppose that
(Xi ∶ i ≥ 1) are iid with mean 0 and variance 1. De-
fine Sn = ∑i≤kXi, as well as an =

√
2 log logn and

bn = 1
2 log log logn. Then for any t ∈ R,

lim
n→∞

P(max
k≤n

Sk√
k
≤ an +

bn
an

+ t

an
) = exp ( − e−t/2

√
π).

Thus, the maximum of a simple random walk, properly
normalized, converges to a Gumbel distribution.
Problem 9.34. In the context of this theorem, show that

√
2 log logn ≤ max

k≤n

Sk√
k
≤
√

2 log logn + 1,

with probability tending to 1 as n increases.

9.4 Galton–Watson processes

Francis Galton (1822 - 1911) and Henry William Watson
(1827 - 1903) were interested in the extinction of family

names. Their model assumes that the family name is
passed from father to son and that each male has a number
of male descendants, with the number of descendants being
independent and identically distributed.

More formally, suppose that we start with one male with
a certain family name. Let X0 = 1. The male has ξ0,1 male
descendants. If ξ0,1 = 0, the family name dies. Otherwise,
the first male descendant has ξ1,1 male descendants, the
second has ξ1,2 male descendants, etc. In general, let ξn,j
be the number of male descendants of the jth male in
the nth generation. The order within each generation is
arbitrary and only used for identification purposes. The
central assumption is that the ξ are iid. Let f denote
their common mass function.
The number of male individuals in the nth generation

is thus

Xn =
Xn−1

∑
j=1

ξn−1,j .

(This is an example of a compound sum as seen in Sec-
tion 7.10.1.)
Problem 9.35. Show that (X1,X2, . . . ) forms a Markov
chain and give the transition probabilities in terms of f .
Problem 9.36. Provide sufficient conditions on f under
which, as a Markov chain, the process is irreducible and
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aperiodic.
Note that if Xn = 0, then the family name dies and in

particular Xm = 0 for all m ≥ n. Of interest, therefore, is

dn ∶= P(Xn = 0).

Clearly, (dn) is increasing, and being in [0,1], converges
to a limit d∞, which is the probability that the male line
dies out eventually. A basic problem is to determine d∞.
Remark 9.37. In Markov chain parlance, the state 0 is
absorbing in the sense that, once reached, the chain stays
there forever after.
Problem 9.38. Show that d∞ > 0 if and only if f(0) > 0.
Problem 9.39. Show that an irreducible chain with an
absorbing state cannot be (positive) recurrent. [You can
start with a two-state chain, with one state being absorb-
ing, and then generalize from there.]
Problem 9.40 (Trivial setting). The setting is trivial
when f has support in {0,1}. Compute dn in that case
and show that d∞ = 1 when f(0) > 0.
We assume henceforth that we are not in the trivial

setting, meaning that f(0) + f(1) < 1.
Problem 9.41. Show that in that case the state space
cannot be taken to be finite.

9.4.1 First-step analysis

A first-step analysis consists in conditioning on the value of
X1. Suppose that X1 = k, thus out of the first generation
are born k lines. The whole line dies by the nth generation
if and only if all these k lines die by the nth generation.
But the nth generation in the whole line corresponds to
the (n−1)th generation for these lines because they started
at generation 1 instead of generation 0. By the Markov
property, each of these lines has the same distribution
as the whole line, and therefore dies by its (n − 1)th
generation with probability dn−1. Thus, by independence,
they all die by their (n − 1)th generation with probability
dkn−1. Thus we proved that

P(Xn = 0 ∣X1 = k) = dkn−1.

By the Law of Total Probability, this yields

dn = P(Xn = 0 ∣X0 = 1)
= ∑
k≥0

P(Xn = 0 ∣X1 = k)P(X1 = k ∣X0 = 1)

= ∑
k≥0

dkn−1f(k).

Thus, letting γ denote the probability generating function
of f , we showed that

dn = γ(dn−1), for all n ≥ 1.
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Note that d0 = 0 since X0 = 1. Thus, by the continuity of
γ on [0,1], d∞ is necessarily a fixed point of γ, meaning
that γ(d∞) = d∞. There are some standard ways of
dealing with this situation and we refer the reader to
the textbook [113] for details.
Let µ be the (possibly infinite) mean of f . This is the

mean number of male descendants of a given male. The
mean plays a special role, in particular because γ′(1) = µ.

Theorem 9.42 (Probability of extinction). The line be-
comes extinct with probability one (meaning d∞ = 1) if
and only if µ ≤ 1. If µ > 1, d∞ is the unique fixed point of
γ in (0,1).

Many more things are known about this process, such
as the average growth of the population and features of
the population tree.

9.4.2 Extensions

The model has many variants grouped under the umbrella
of branching process. These processes are used to model a
much wider variety of situations, particularly in genetics.
While the basic model can be considered asexual (only
males carry the family name), some models are bi-sexual in
the sense that there are male and female individuals, and

in each generation couples are formed in some prescribed
(typically random) fashion and offsprings are born out of
each union.

9.5 Random graph models

A graph is a set equipped with a relationship between
pairs of its elements, and is most typically defined as
G = (V,E), where V denotes a subset of elements often
called vertices (aka nodes) and E is a subset of V × V
indicating which pairs of elements of V are related. The
fact that u, v ∈ V are related is expressed as (u, v) ∈ E , and
(u, v) is then called an edge in the graph, and u and v are
said to be neighbors. A graph is said to be undirected if its
relationship is symmetric, or said differently, if the edges
are not oriented, or formally, if (u, v) ∈ E ⇔ (v, u) ∈ E .
For an undirected graph, the degree of vertex is the number
of neighbors it has.
A graph is often represented by an adjacency matrix.

For a graph G = (V,E), with a finite node set V taken
to be {1, . . . , n} without loss of generality, its adjacency
matrix is A = (Aij) where Aij = 1 if (i, j) ∈ E and Aij = 0
otherwise. Note that an adjacency matrix is binary, with
coefficients in {0,1}.
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9.5.1 Erdős-Rényi and Gilbert models

Arguably the simplest models of random graphs are those
introduced concurrently by Paul Erdős (1913 - 1996) and
Alfréd Rényi (1921 - 1970) [75] and Edgar Nelson Gilbert
(1923 - 2013) [104].

• Erdős-Rényi model This model is parameterized by
positive integers n and m, and corresponds to the
uniform distribution on undirected graphs with n
vertices and m edges.

• Gilbert model This model is parameterized by a
positive integer n and a real numbers p ∈ [0,1]. A
realization from the corresponding distribution is an
undirected graph with n vertices where each pair of
nodes forms an edge with probability p independently
of the other pairs.

Problem 9.43. Describe the Erdős-Rényi model with
parameters n and m as a distribution on binary matrices.
Problem 9.44. Describe the Gilbert model with param-
eters n and p as a distribution on binary matrices.
Problem 9.45. Show that a Gilbert random graph with
parameters n and 0 < p < 1 conditioned on having m
vertices is an Erdős-Rényi random graph with parameters
n and m.

This starts to explain why the two models are so closely
related, and it goes beyond that. Henceforth, we consider
the Gilbert model, which is somewhat easier to handle
because the edges are present independently of each other.

Very many properties are known of this model [27]. We
focus on two properties that are very well-known, both
having to do with the connectivity of the graph. A path
in a graph is a sequence of vertices (v1, v2, . . . ) such that
(vt, vt+1) ∈ E for all t ≥ 1. For an undirected graph, we
say that two vertices, u and v, are connected if there is a
path in the graph (w1, . . . ,wT ) with w1 = u and wT = v.
A subset of vertices is said to be connected if any of
its two nodes are connected. A connected component is
a connected subset of vertices which are otherwise not
connected to vertices outside that subset.
Problem 9.46. Show that a graph (in fact, its vertex
set) is partitioned into its connected components.

Largest connected component Consider a Gilbert
random graph G with parameters n and p = λ/n, where
λ > 0 is fixed while n → ∞. Let Cn denote the size of a
largest connected component of G. It turns out that there
is phase transition at λ = 1. Indeed, Cn behaves very
differently (as n increases) when λ < 1 as compared to
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when λ > 1. The setting where λ = 1 is called the critical
regime.

In the subcritical regime where λ < 1, it turns out that
connected components are at most logarithmic in size.

Theorem 9.47. Assume λ < 1 and define Iλ = λ−1−logλ.
As n→∞, Cn/ logn converges in probability to 1/Iλ.

In contrast, in the supercritical regime where λ > 1,
there is a unique largest connected of size of order n,
and the remaining connected components are at most
logarithmic in size.

Theorem 9.48. Assume λ > 1 and define ζλ as the sur-
vival probability of a Galton–Watson process based on the
Poisson distribution with parameter λ. As n→∞, Cn/n
converges in probability to ζλ, and moreover, with prob-
ability tending to 1, there is a unique largest connected
component. In addition, if C(2)

n denotes the size of a
2nd largest connected component, as n → ∞, C(2)

n / logn
converges in probability to 1/Iα where α = λ(1 − ζλ).

The critical regime where λ = 1 is also well-understood.
In particular, Cn is of size of order n2/3.

Connectivity There is also a phase transition in terms
of the whole graph being connected or not. Note that the
graph is connected exactly when the largest connected
component occupies the entire graph (i.e., Cn = n).
Problem 9.49. Prove that ζλ < 1 for any λ > 0 and
use this to argue that the graph with parameters n and
p = λ/n is disconnected with probability tending to 1 when
λ is fixed.

Theorem 9.50. Assume that λ = t + logn where t ∈ R is
fixed. As n→∞, the probability that the graph is connected
converges to exp(−e−t).

Problem 9.51. Show that, as n → ∞, the probability
that the graph is connected converges to 1 if λ− logn→∞
and converges to 0 if λ − logn→ −∞.

This implies that if p = a log(n)/n, then the probability
that the graph is connected converges to 1 if a > 1 and
converges to 0 if a < 0.

9.5.2 Preferential attachment models

Roughly speaking, a preferential attachment model is a
dynamic random graph model where one node is added
to the graph and connected to one or more existing nodes
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with preference to nodes with larger degrees. This type
of model has a long history [5].
For simplicity, we restrict ourselves here to the case

where each new node connects to only one existing node.
In that case, the model is of the following form. Let G0
denote a finite graph, possibly the graph with only one
vextex, and let h be a function on the non-negative integer
taking non-negative values. At stage t + 1, a new node is
added to Gt and connected to only one node in Gt. That
node is chosen to be u with probability proportional to
h(d(t)u ), where d(t)u denotes the degree of node u in Gt.
The case where h(d) = d is of particular interest, and goes
back to modelization of citation networks 50 in [186].

9.5.3 Percolation models

A simple model for percolation in porous materials is that
of a set of sites representing holes in the material that may
or may not be connected by bonds representing pathways
that would allow a liquid to move from site to site. The
simplest (but not simple) model is that of the square
lattice in dimension 2, where the sites are represented by

50 A citation network is a graph where each node represents an
article and (u, v) forms an edge if the article u cites the article v.
The resulting graph is thus directed.

elements of Z2, thus pairs of integers of the form (i, j),
and possible bonds between (i, j) and (k, l) only when
∣i − k∣ + ∣j − l∣ = 1.
In this context, the bond percolation model with pa-

rameter p ∈ [0,1] is the one where bonds are ‘open’ in-
dependently with probability p. The model dates back
to Broadbent and Hammersley [31]. See Figure 9.2 for
an illustration. Note that, unlike the previous random
graph models introduced earlier, percolation models have
a spatial interpretation.

Figure 9.2: Realizations of a bond percolation model
with p = 0.2 (left), p = 0.5 (center) and p = 0.8 (right) on
a 10-by-10 portion of the square lattice.
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Although the bond percolation model is much harder
to analyze than the Gilbert model, there are parallels.
In particular, there is a phase transition in terms of the
largest connected component in the graph where the nodes
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are the sites and the bonds are the edges. A connected
component is also called an open cluster. If we are consid-
ering the entire lattice Z2, the main question of interest
is whether there is an open cluster of infinite size.
Problem 9.52. Argue based on Kolmogorov’s 0-1 Law
that this probability is either 0 or 1. Deduce the existence
of a ‘critical’ probability pc such that, with probability 1,
if p < pc, all open clusters are finite, while if p > pc, there
is an infinite open cluster.
Problem 9.53. Assuming that 0 < p < 1, show that, with
probability 1, for each non-negative integer k there is an
open cluster of size exactly k.

Theorem 9.54 (Kesten [141]). For the two-dimesionnal
lattice, pc = 1/2.

Much more is known. It turns out that, when p < 1/2,
there is a unique closed cluster 51 of infinite size, and all
open clusters are finite, while when p > 1/2, the opposite
is true meaning that there is a unique open cluster of
infinite size, and all closed clusters are finite.

51 A closed cluster is a connected component in the graph where
the edges are between sites where the bond is closed.

9.5.4 Random geometric graphs

A realization of the random geometric graph with distri-
bution P (on Rd), number of nodes n, and connectivity
radius r > 0, is generated by sampling n points iid from P
and then creating an edge between any two points that
are within distance r of each other. These models have
a spatial aspect to them, and are used to model sensor
positioning systems, for example.

Figure 9.3: Realizations of the random geometric graph
model with P being the uniform distribution on [0,1]2,
n = 100 and r = 0.10 (left), r = 0.15 (center) and r = 0.20
(right).
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Gilbert was also interested in such models [105]. Al-
though the two models are seemingly different, there is
an interesting parallel. In particular, the same questions
related to the size of the largest connected component and
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that of connectivity of the graph can also be considered
here, and surprisingly enough, the behaviors are compa-
rable. Consider the special case where P is the uniform
distribution on the unit square [0,1]2 as in Figure 9.3.
Let X1, . . . ,Xn be sampled iid from P and, given these
points, let Rn denote the smallest r such that the graph
with connectivity radius r is connected.

Theorem 9.55. As n→∞, nπR2
n/ logn→ 1 in probabil-

ity.

Problem 9.56. Use this result to prove the following.
Consider the random geometric graph based on n points
uniformly distributed in the unit square with connectivity
radius rn = (a log(n)/n)1/2 with a > 0 fixed. Then, as n→
∞, the probability that the graph is connected converges
to 1 (resp. 0) if a > 1/π (resp. a < 1/π).
Compared with a Gilbert random graph model, the

result is essentially the same. To see this, note that the
probability that two points are connected is almost equal
to p ∶= πr2 when r is small.

Continuum percolation Random geometric graphs
are also closely related to percolation models. The main
difference here is that the nodes are not on a regular grid.

Specifically, consider a Poisson process on the entire plane
with constant intensity equal to λ, and then connect every
two points that are within distance r = 1. This defines a
random geometric graph on the entire plane. As before,
one of the main questions is whether there is a connected
component of infinite size. It turns out that there is a
critical λc > 0 such that, if λ < λc, all the connected
components are finite, while if λ > λc, there is a unique
infinite component.

9.6 Additional problems

Problem 9.57. Consider a Markov chain and a distri-
bution q on the state space such that, if the chain is
started at X0 drawn from q, then (X0,X1,X2, . . . ) are
exchangeable. Show that, necessarily, the sequence is iid
with distribution q.
Problem 9.58 (Three-state Markov chains). Repeat
Problem 9.22 with a three-state Markov chain.
Problem 9.59. Consider a Markov chain with a symmet-
ric transition matrix. Show that the chain is reversible
and that the uniform distribution is stationary.
Problem 9.60 (Random walks). A sequence of iid ran-
dom variables, (Xi), defines a random walk by taking the
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partial sums, Sn ∶= X1 + ⋯ +Xn for n ≥ 1 integer. The
Xi are called the increments. It turns out that random
walks with increments having zero mean and finite sec-
ond moment behave similarly. Perform some numerical
experiments to ascertain this claim.
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Practical Considerations
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In this chapter we introduce some tools for sampling from
a distribution. We also explain how to use computer
simulations to approximate probabilities and, more gen-
erally, expectations, which can allow one to circumvent
complicated mathematical derivations.

10.1 Monte Carlo simulation

Consider a probability space (Ω,Σ,P) and suppose that
we want to compute P(A) for a given event A ∈ Σ. There
are several avenues for that.

Analytic calculations In some situations, it might
be possible to compute this probability (or at least ap-
proximate it) directly by calculations ‘with pen and paper’
(or use a computer to perform symbolic calculations), and
possibly a simple calculator to numerically evaluate the
final expression. In the pre-computer age, researchers
with sophisticated mathematical skills spent a lot of effort

https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
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on such problems and, almost universally, had to rely on
some form of approximation to arrive at a useful result.
(We will see some example of that in later chapters.)

Numerical simulations In some situations, it might
be possible to generate independent realizations from
P. By the Law of Large Numbers (Theorem 8.26), if
ω1, ω2, . . . are sampled iid from P,

Qm ∶= 1
m

m

∑
i=1

{ωi ∈ A} PÐ→ P(A), as m→∞.

The idea, then, is to choose a large integer m, gener-
ate ω1, . . . , ωm iid from P, and then output Qm as an
approximation to P(A). The larger m, the better the
approximation, and a priori the only reason to settle for
a particular m are the available computational resources.
This approach is often called Monte Carlo simulation. 52

Applying Chebyshev’s inequality (7.27), we derive

∣Qm − P(A)∣ ≤ t

2
√
m
, (10.1)

with probability at least 1 − 1/t2. For example, choosing
t = 10 we have that ∣Qm − P(A)∣ ≤ 5/√m with probability

52 See [71] for an account of early developments at Los Alamos
National Laboratory in the context research in nuclear fission.

at least 99%. Therefore, an approximation based on m
Monte Carlo draws is accurate to within order 1/√m.
Problem 10.1. Verify the assertions made here.
Problem 10.2. Apply Chernoff’s bound for the bino-
mial distribution (7.32) to obtain a sharper bound on the
probability of (10.1).
Problem 10.3. Consider the following problem. 53 A
gardener plants three maple trees, four oaks, and five birch
trees in a row. He plants them in random order, each
arrangement being equally likely. What is the probability
that no two birch trees are next to one another? Compute
this probability analytically. Then, using R, approximate
this probability by Monte Carlo simulation.
Problem 10.4 (Monty Hall by simulation). In [237], An-
drew Vazsonyi tells us that even Paul Erdös, a promi-
nent figure in Probability Theory and Combinatorics, was
challenged by the Monty Hall problem (Example 1.33).
Vazsonyi performed some computer simulations to demon-
strate to Erdös that the solution was indeed 1/3 (no switch)
and 2/3 (switch). Do the same in R. First, simulate the
process when there is no switch. Do that many times (say
m = 106) and record the fraction of successes. Repeat,

53 This problem appeared in the AIME, 1984 edition.
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this time when there is a switch.

10.2 Monte Carlo integration

Monte Carlo integration applies the principle underlying
Monte Carlo simulation to the computation of expecta-
tions.
Suppose we want to integrate a function h on [0,1]d.

Typical numerical integration methods work by evaluating
h on a grid of points and approximating the integral with
a linear combination of these values. The simplest scheme
of this sort is based on the definition of the Riemann
integral. For example, in dimension d = 1,

∫
1

0
h(x)dx ≈ 1

m

m

∑
i=1
h(xi),

where xi ∶= i/m. This is based on a piecewise constant
approximation to h. If h is smoother, a higher-order
approximation would yield a better approximation for the
same value of m.
R corner. The function integrate in R uses a quadratic
approximation on an adaptive grid.

Such methods work well in any dimension, but only in
theory. Indeed, in practice, a grid in dimension d, even

for moderately large d, is too large, even for modern com-
puters. For instance, suppose that we want to sample the
function every 1/10 along each coordinate. In dimension
d, this requires a grid of size 10d, meaning there are that
many xi. If d ≥ 10, this number is quite large already, and
if d ≥ 100, it is beyond hope for any computer.

Monte Carlo integration provides a way to approximate
the integral of h at a rate of order 1/√m regardless of
the dimension d. The simplest scheme uses randomness
and is motivated as before by the Law of Large Numbers.
Indeed, let X1, . . . ,Xm be iid uniform in [0,1]d. Then
h(X1), . . . , h(Xm) are iid with mean

Ih ∶= ∫
[0,1]d

h(x)dx,

which is the quantity of interest.
Problem 10.5. Show that h(X1), . . . , h(Xm) have fi-
nite second moment if and only if h is square-integrable
(meaning that h2 is integrable) over [0, 1]d. Then compute
their variance (denoted σ2

h in what follows).
Applying Chebyshev’s inequality to

Im ∶= 1
m

m

∑
i=1
h(Xi),
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we derive
∣Im − Ih∣ ≤

tσh√
m
,

with probability at least 1 − 1/t2.
Although computing σh is likely as hard, or harder,

than computing Ih itself, it can be easily bounded when
an upper bound on h is known. Indeed, if it is known that
∣h∣ ≤ b over [0,1]d, then σh ≤ b. (Note that numerically
verifying that ∣h∣ ≤ b over [0, 1]d can be a challenge in high
dimensions.)
Problem 10.6. Verify the assertions made here
Problem 10.7. Compute ∫ 1

0
√

1 − x2 dx in three ways:
(i) Analytically. [Change variables x→ sin(u).]
(ii) Numerically, using the function integrate in R.
(iii) By Monte Carlo integration, also in R.

10.3 Rejection sampling

Suppose we want to sample from the uniform distribution
with support A, a compact set in Rd. Translating and scal-
ing A as needed, we may assume without loss of generality
that A ⊂ [0,1]d. Then consider the following procedure:
repeatedly sample a point from Unif([0,1]d) until the
point belongs to A, and return that last point. It turns

out that the resulting point has the uniform distribution
on A. This comes from the following fact.
Problem 10.8. Let A ⊂ B, where both A and B are
compact subsets of Rd. Let X ∼ Unif(B). Show that,
conditional on X ∈ A, X is uniform in A.
Problem 10.9. In R, implement this procedure for
sampling from the lozenge in the plane with vertices
(1,0), (0,1), (−1,0), (0,−1).
This is arguably the most basic example of rejection

sampling. The name comes from the fact that draws are
repeatedly rejected unless a prescribed condition is met.
Problem 10.10. In R, implement a rejection sampling
algorithm for ‘estimating’ the number π based on the fact
that the unit disc (centered at the origin and of radius one)
has surface area equal to π. How many samples should
be generated to estimate π with this method to within
precision ε with probability at least 1 − δ? Here ε > 0 and
δ > 0 are given.
In general, suppose that we want to sample from a

distribution with density f on Rd. Let f0 be another
density on Rd such that

f(x) ≤ cf0(x), for all x in the support of f, (10.2)
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for some constant c. The density f0 plays the role of pro-
posal distribution. Besides (10.2), the other requirement
is that we need to be able to sample from f0. Assuming
this is the case, consider Algorithm 1.

Algorithm 1 Basic rejection sampling
Input: target density f , proposal density f0, constant
c satisfying (10.2).
Output: one realization from f

Repeat: generate y from f0 and u from Unif([0,1]),
independently
Until u ≤ f(y)/cf0(y)
Return the last y

To see that Algorithm 1 outputs a realization from f ,
let Y ∼ f0 and U ∼ Unif(0,1) be independent, and define
the event V ∶= {U ≤ f(Y )/cf0(Y )}. If X denotes the
output of Algorithm 1, then X has the distribution of
Y ∣V. Thus, for any Borel set A,

P(X ∈ A) = P(Y ∈ A ∣ V)

= P(Y ∈ A and V)
P(V) ,

with

P(Y ∈ A and V) = ∫
A
P(V ∣ Y = y)f0(y)dy (10.3)

= ∫
A

f(y)
cf0(y)

f0(y)dy (10.4)

= 1
c
∫
A
f(y)dy, (10.5)

where in the 2nd line we used the fact that

P(V ∣ Y = y) = P(U ≤ f(y)/cf0(y) ∣ Y = y) (10.6)
= P(U ≤ f(y)/cf0(y)) (10.7)
= f(y)/cf0(y), (10.8)

since U is independent of Y and uniform in [0,1]. By
taking A = Rd, this gives

P(V) = P(Y ∈ Rd and V) = 1
c
∫
R
f(y)dy = 1

c
.

Hence,
P(X ∈ A) = ∫

A
f(y)dy,

and this being valid for any Borel set A, we have estab-
lished that X has density f , as desired.
Problem 10.11. Let S be the number of samples gener-
ated by Algorithm 1. Show that E(S) = c. What is the
distribution of S?



10.4. Markov chain Monte Carlo (MCMC) 128

Problem 10.12. From the previous problem, we see that
the algorithm is more efficient the smaller c is. Show that
c ≥ 1 with equality if and only if f and f0 are densities for
the same distribution.
The ratio of uniforms is another rejection sampling

method proposed by Kinderman and Monahan [142]. It
is based on the following.
Problem 10.13. Suppose that g is non-negative and
integrable over the real line with integral b, and define
A ∶= {(u, v) ∶ 0 < v <

√
g(u/v)}. Assuming that A has

finite area (i.e., Lebesgue measure), show that if (U,V ) is
uniform in A, then X ∶= U/V has distribution f ∶= g/b.
Problem 10.14. Implement the method in R for the
special case where g is supported on [0,1].

10.4 Markov chain Monte Carlo (MCMC)

Markov chains can be used to sample from a distribution
when doing so ‘directly’ is not available. In discrete set-
tings, this may be the case because the space is too large
and there is no simple way of enumerating the elements
in the space. We consider such a setting in what follows,
in particular since we only discussed Markov chains over
discrete state spaces. Let q = (qi) be a mass function on a

discrete space from which we want to sample. The idea is
to construct a chain, meaning devise a transition matrix
Θ = (θij), such that the reversibility condition (9.9) holds.
If in addition the chain satisfies the requirements of The-
orem 9.20, then the chain converges in distribution to q.
Thus a possible method for generating an observation from
q, at least approximately, is as in Algorithm 2. Obviously,
we need to be able to sample from the distribution q0.

Algorithm 2 Basic MCMC sampling
Input: chain Θ, initial distribution q0, total number
of steps t
Output: one state

Initialize: draw a state according to q0
Run the chain Θ for t steps
Return the last state

Remark 10.15. If q0 coincides with q, then the method
is exact since q is stationary. (In the present context,
choosing q0 equal to q is of course not an option.) More
generally, the closer q0 is to q, the more accurate the
method is (for a given number of steps t).



10.4. Markov chain Monte Carlo (MCMC) 129

10.4.1 Binary matrices with given row and
column sums

We are tasked with sampling uniformly at random from the
set of m×n matrices with entries in {0, 1} with given row
sums, r1, . . . , rm, and given column sums, c1, . . . , cn. Let
that set be denoted byM(r,c), where r ∶= (r1, . . . , rm)
and c = (c1, . . . , cn). Importantly, we assume that we
already have in our possession one such matrix, which has
the added benefit of guarantying that this set is non-empty.
This setting is motivated by applications in Psychometry
and Ecology (Section 22.1).
The space M(r,c) is typically gigantic and there is

no known way to enumerate it to enable drawing from
the uniform distribution directly. 54 However, an MCMC
approach is viable. The following is based on the work of
Besag and Clifford [20].
The chain is defined as follows. At each step, choose

two rows and two columns uniformly at random. If the
resulting submatrix is of the form

(1 0
0 1) or (0 1

1 0)

54 In fact, merely computing the cardinality ofM(r,c) is difficult
enough [59].

then switch one for the other. If the resulting submatrix
is not of this form, then stay put.
Problem 10.16. Show that this chain is indeed a re-
versible chain onM(r,c) and that the uniform distribu-
tion is stationary. To complete the picture, show that the
chain satisfies the requirements of Theorem 9.20. [The
only real difficulty is proving irreducibility.]
Problem 10.17. Staying put may seem like a waste of
time (i.e., computational resources). Show that skipping
that compromises the algorithm in that the uniform dis-
tribution may not be stationary anymore. [For example,
examine the case of 3-by-3 binary matrices with row and
column sums equal to (2,1,1).]

10.4.2 Generating a sample

Typically it is desired to generate not one but several
independent samples from a given distribution q. Do-
ing so (approximately) using MCMC is possible if we
already have a Markov chain with q as limiting distribu-
tion. An obvious procedure is to repeat the process, say
Algorithm 2, the desired number of times n to obtain an
iid sample of size n from a distribution that approximates
the target distribution q.
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This process is deemed wasteful in situations where
the chain converges slowly to its stationary distribution.
Indeed, in such circumstances, the number of steps t in
Algorithm 2 to generate a single draw can be quite large,
and if (x0, . . . , xt) represents a realization of the chain,
then x0, . . . , xt−1 are discarded and only xt is returned
by the algorithm. This would be repeated n times, thus
generating n(t + 1) states to only keep n of them.
Various methods and heuristics exist to attempt to

make better use of the states computed along the way.
The main issue is that states generated in sequence by a
single run of the chain are dependent. Nevertheless, the
following generalization of the Law of Large Numbers is
true. 55

Theorem 10.18 (Ergodic theorem). Consider a Markov
chain on a discrete state space X . Assume the chain
is irreducible and positive recurrent, and with stationary
distribution q. Let X0 have any distribution on X and
start the chain at that state, resulting in X1,X2, . . . . Then
for any bounded function h,

1
t

t

∑
s=1

h(Xs)
PÐ→ ∑

x∈X

q(x)h(x), as t→∞.

55 A Central Limit Theorem also holds under some additional
conditions.

10.5 Metropolis–Hastings algorithm

This algorithm offers a method for constructing a re-
versible Markov chain for MCMC sampling. It is closely
related to rejection sampling, as we shall see. We consider
the discrete case, although the same procedure applies
more generally almost verbatim.
Suppose we want to sample from a distribution with

mass function q. The algorithm seeks to express the
transition probability p(⋅ ∣ ⋅) as follows

p(x ∣x0) = p0(x ∣x0)a(x ∣x0), (10.9)

where p0(⋅ ∣ ⋅) is the proposal conditional mass function
and a(⋅ ∣ ⋅) is the acceptance probability function. The
transition probability p(⋅ ∣ ⋅) is reversible with stationary
distribution q if

p(x ∣x0)q(x0) = p(x0 ∣x)q(x), for all x,x0.

When p is as in (10.9), this condition is equivalent to

a(x ∣x0)
a(x0 ∣x)

= p0(x0 ∣x)q(x)
p0(x ∣x0)q(x0)

, for all x,x0.

Problem 10.19. Prove that

a(x ∣x0) ∶= 1 ∧ p0(x0 ∣x)q(x)
p0(x ∣x0)q(x0)

(10.10)
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satisfies this condition.
The Metropolis–Hastings algorithm 56 is an MCMC al-

gorithm with Markov chain of the form (10.9), with p0
chosen by the user and a as in (10.10). A detailed descrip-
tion is given in Algorithm 3.

Algorithm 3 Metropolis–Hastings sampling
Input: target q, proposal p0, initial distribution q0,
number of steps t
Output: one state

Initialize: draw x0 from q0
For s = 1, . . . , t
draw x from p0(⋅ ∣xs−1)
draw u from Unif(0, 1) and set xs = x if u ≤ a(x ∣xt−1)

and xs = xs−1 otherwise
Return the last state xt

Remark 10.20. Importantly, we only need to be able
to compute q(x)/q(x0) for two states x0, x. This makes
the method applicable in settings where q = c q̃ with c a
normalizing constant that is hard to compute while q̃ a
function that is relatively easy to evaluate.

56 Named after Nicholas Metropolis (1915 - 1999) and Wilfred
Keith Hastings (1930 - 2016).

Example 10.21 (Ising model 57). The Ising model is
a model of ferromagnetism where the (iron) atoms are
organized in a regular lattice and each atom has a spin
which is either − or +. We consider such a model in
dimension two. Let xij ∈ {−1,+1} denote the spin of
the atom at position (i, j) in the m-by-n rectangular
lattice {1, . . . ,m} × {1, . . . , n}. In its simplest form, the
Ising model presumes that the set of random variables
X = (Xij) has a distribution of the form

P(X = x) = C(u, v) exp(uξ(x) + vζ(x)), (10.11)

where u, v ∈ R are parameters, x = (xij) with xij ∈
{−1,+1}, and

ξ(x) ∶= ∑
(i,j)

xij ,

and
ζ(x) ∶= 1

2 ∑∑
(i,j)↔(k,l)

xijxkl,

with (i, j) ↔ (k, l) if and only if i = k and ∣j − l∣ = 1 or
∣i − k∣ = 1 and j = l.
The normalization constant C(u,v) may be difficult to

compute in general, as in principle it involves summing
57 Named after Ernst Ising (1900 - 1998).
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over the whole state space, which is of size 2mn. How-
ever, the functions ξ and ζ are rather easy to evaluate,
which makes a Metropolis–Hastings approach particularly
attractive. We present a simple variant. We say that x
and x′ are neighbors, denoted x ↔ x′, if they differ in
exactly one node of the lattice. We choose as p0(⋅ ∣x′) the
uniform distribution over the neighbors of x′. Then the
acceptance probability takes the following simple form

a(x ∣x′) = 1 ∧ q(x)
q(x′)

= 1 ∧ exp [u(ξ(x) − ξ(x′)) + v(ζ(x) − ζ(x′))].

Note that, if x and x′ differ at (i, j), then

ξ(x) − ξ(x′) = xij − x′ij ,

while

ζ(x) − ζ(x′) = ∑
(k,l)↔(i,j)

(xijxkl − x′ijx′kl),

where the last sum is only over the neighbors of (i, j) (and
there are at most 4 of them).
Problem 10.22. In R, simulate realizations of such an
Ising model using the Metropolis–Hastings algorithm just
described. Do so for m = 100 and n = 200, and various

choices of parameters a and b, chosen carefully to exhibit
different regimes. [The realizations can be visualized using
the function image.]

10.6 Pseudo-random numbers

We have assumed in several places that we have the ability
to generate random numbers, at least from simple distri-
butions, such as the uniform distribution on [0, 1]. Doing
so, in fact, presents quite a conundrum since the computer
is a deterministic machine. The conundrum is solved by
the use of a pseudo-random number generator, which is a
program that outputs a sequence of numbers that are not
random but designed to behave as if they were random.

10.6.1 Number π

To take a familiar example, the digits in the representation
of π come close to achieving this. Here 58 are the first 100
digits of π (in base 10)

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4
6 2 6 4 3 3 8 3 2 7 9 5 0 2 8 8 4 1 9 7
1 6 9 3 9 9 3 7 5 1 0 5 8 2 0 9 7 4 9 4

58 Taken from the On-Line Encyclopedia of Integer Sequences
(oeis.org/A000796/b000796.txt).

oeis.org/A000796/b000796.txt
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4 5 9 2 3 0 7 8 1 6 4 0 6 2 8 6 2 0 8 9
9 8 6 2 8 0 3 4 8 2 5 3 4 2 1 1 7 0 6 7

Although obviously deterministic, the sequence of digits
defining π behaves very much like a sequence of iid random
variables from the uniform distribution on {0, . . . ,9}.
Problem 10.23. Suppose that you have access to Rou-
tine A, which provides the ability to generate an iid se-
quence of random variables from the uniform distribution
on {0, . . . ,9} of any prescribed length n. Explain how
you would use Routine A to implement Routine B, the
one described in Problem 2.41. With Remark 2.17 and
Problem 3.28, explain how you would use Routine B to
approximately sample from any prescribed distribution
with finite support.

However, it turns out that π is not as ‘random’ as one
would want, and besides that, it is not clear how one
would use it to draw digits.

10.6.2 Linear congruential generators

These generators produce sequences (xn) of the form

xn = (axn−1 + c) mod m,

where a, c,m are given integers chosen appropriately. The
starting value x0 needs to be provided and is called the
seed.

The sequence (xn) is in {0, . . . ,m − 1} and designed to
behave like an iid sequence from the uniform distribution
on that set.
R corner. The default generator in R is the Mersenne–
Twister algorithm [164]. We refer the reader to [69] for
more details, as well as a comprehensive discussion of
pseudo-random number generators in R.
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Statistics is the science of data collection and data analysis.
We only provide, in this chapter, a brief introduction to
principles and techniques for data collection, traditionally
divided into survey sampling and experimental design.
While most of this book is on mathematical theory,

covering aspects of Probability Theory and Statistics, the
collection of data is, by nature, much more practical, and
often requires domain-specific knowledge.
Example 11.1 (Collection of data in ESP experiments).
In [191], magician and paranormal investigator James
‘The Amazing’ Randi relates the story of how scientists at
the Stanford Research Institute (SRI) were investigating
a person claiming to have psychic abilities. The scientists
were apparently fooled by relatively standard magic tricks
into believing that this person was indeed psychic. This
has led Randi, and others such as Diaconis [58], to strongly
recommend that a person competent in magic or deception
be present during an ESP experiment or be consulted
during the planning phase of the experiment.

https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
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Even though we will spend much more time on data
analysis (Part C), careful data collection is of paramount
importance. Indeed, data that were improperly collected
can be completely useless and unsalvageable by any tech-
nique of analysis. And it is worth keeping in mind that
the collection phase is typically much more expensive that
the analysis phase that ensues (e.g., clinical trials, car
crash tests, etc). Thus the collection of data should be
carefully planned according to well-established protocols
or with expert advice.

11.1 Survey sampling

Survey Sampling is the process of sampling a population to
determine characteristics of that population. The popula-
tion is most often modeled as an urn, sometimes idealized
to be infinite. The type of surveys that we will consider
are those that involve sampling only a (usually small)
fraction of the population.
Remark 11.2 (Census). A census aims for an exhaustive
survey of the population. Any statistical analysis of census
data is necessarily descriptive since (at least in principle)
the entire population is revealed. Some adjustments, based
on complex statistical modeling, may be performed to
attempt to palliate some deficiencies having to do with

the undercounting of some subpopulations. See [97] for
a relatively nontechnical introduction to the census as
conducted by the US Census Bureau and a critique of
such adjustments.

We present in this section some essentials and refer the
reader to Chapter 19 in [92] or Chapter 4 in [236] for more
comprehensive, yet gentle introductions.

11.1.1 Survey sampling as an urn model

Consider polling a given population. Suppose the poll
consists in one multiple-choice question with s possible
choices. Let’s say that n people are polled and asked
to answer the question (with a single choice). Then the
survey can be modeled as sampling from an urn (the
population) made of balls with s possible colors.
Note that the possible choices usually include one or

several options like “I do not know”, “I am not aware of
the issue”, etc, for individuals that do not have an opinion
on the topic, or are unaware of the issue, or are undecided
in other ways. See Table 11.1 for an example. Special
care may be warranted to deal with nonrespondents and
people that did not properly fill the questionnaire.
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Table 11.1: New York Times - CBS News poll of 1022
adults in the US (March 11-15, 2016). “Do you think
re-establishing relations between the US and Cuba will
be mostly good for the US or mostly bad for the US?”

mostly good mostly bad unsure/no answer

62% 24% 15%

11.1.2 Simple random sampling

It is often desirable to sample uniformly at random from
the population. If this is achieved, the experiment can
be modeled as sampling from an urn where at each stage
each ball has the same probability of being drawn. The
sampling is typically done without replacement. (This is
the case in standard polls, where a person is only inter-
viewed once.) We studied the resulting probability model
in Section 2.4.2.

It turns out that sampling uniformly at random from a
population of interest is rather difficult to do in practice.
Modern sampling of human populations is often done by
phone based on a method for sampling phone numbers
that has been designed with great care.

11.1.3 Bias in survey sampling

When simple random sampling is desired but the actual
survey results in a different sampling distribution, it is
said that the sampling is biased. Such a sample may be
said to not representative of the underlying population.
There are a number of factors that could lead to a

biased sample, including the following:
• Self-selection bias This may occur when people can

volunteer to take the poll.
• Non-response bias This occurs when the nonrespon-

dents differ in opinion on the question of interest from
the respondents.

• Response bias This may occur, for example, when
the way the question is presented has an unintended
(and often unanticipated) influence on the response.

Self-selection bias and non-response bias are closely
related. See Section 11.1.4 for an example where they
may have played out. The following provides an example
where response bias might have influence the outcome of
a US presidential election.
Example 11.3 (2000 US presidential election). In 2000,
George W. Bush won the presidential election by an ex-
tremely small margin against his main opponent, Al Gore.
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Indeed, Bush won the deciding state, Florida, by a mere
537 votes. 59 It has been argued that this very slim advan-
tage might have been reversed if not for some difficulties
with some ballot designs used in the state, in particular,
the “butterfly ballot” used in the county of Palm Beach,
which may have lead some voters to vote for another
candidate, Pat Buchanan, instead of Gore [2, 215, 245].

The following types of sampling are generally known to
generate biased samples:

• Quota sampling In this scheme, each interviewer is
required to interview a certain number of people with
certain characteristics (e.g., socio-economic). Within
these quotas, the interviewer is left to decide which
persons to interview. The natural inclination (typi-
cally unconscious) is to reach out to people that are
more accessible and seem more likely to agree to be
interviewed. This generates a bias.

• Sampling volunteers This is when individuals are
given the opportunity to volunteer to take the poll. A
prototypical example is a television poll where viewers

59 This margin was in fact so small that it required a recount (by
state law). However, in a controversial (and 5-4 split) decision, the
US Supreme Court halted the recount, in the process overruling the
Florida Supreme Court.

are asked a question and are given the opportunity
to answer that question by calling or texting a given
phone number. This sampling scheme leads, almost
by definition, to self-selection bias.

• Convenience sampling The last two schemes above
are examples of convenience sampling. A prototypical
example is an individual asking his friends who they
will vote for in an upcoming election. Almost by
construction, there is no hope that this will result in
a sample that is representative of the population of
interest (presumably, all eligible voters).

Remark 11.4 (Coverage error). Bias typically leads to
some members of the population being sampled with a
higher probability than other members of the population.
This is problematic if the intent is to sample the population
uniformly at random. On the other hand, this is fine if the
resulting sampling distribution is known, as there are ways
to deal with non-uniform distributions. See Remark 11.6
and Section 23.1.2.

11.1.4 A large biased sample is still biased

A simple random sample is typically much smaller than
the entire population it is generated from. Even then, as
long as the sample size is sufficiently large, the sample
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is representative of the population. As we shall see, this
happens rather quickly, even if the underlying population
is very large or even infinite. By contrast, a biased sample
cannot be guarantied to be representative of the popula-
tion, even if the sample size is comparable to the size of
the entire population. We can thus state the following
(echoed in [92, Ch 19, Sec 10]).

Proverb. Large samples offer no protection against bias.

Literary Digest Poll An emblematic example of
this is a Literary Digest poll of the 1936 US presidential
election. The main contenders that year were Franklin
Roosevelt (D) and Alf Landon (R). The Digest (a US
magazine at the time) mailed 10 million questionnaires
resulting in 2.3 million returned. The poll predicted an
overwhelming victory for Landon, with about 57% of
the respondents in his favor. On election day, however,
Roosevelt won by a landslide with 62% of the vote. 60

Problem 11.5. That year, about 44.5 million people
voted. Suppose for a moment that the sample collected by
the Digest was unbiased. If so, as in Problem 8.29, derive

60 The numbers are taken from [92]. They are a little bit different
in [221].

a typical range for the proportion favoring Roosevelt in
such a poll.
What happened? For one thing, the response rate

(about 23%) was rather small, so that any non-response
bias could be substantial. Also, and perhaps more impor-
tantly, the sampling favored more affluent people. Indeed,
the list of recipients was compiled from a variety of sources,
including car and telephone owners, club memberships,
and their own readers, and in the 1930’s, a person on
that list would likely be more affluent (and therefore more
supportive of the Republican candidate) than the typical
voter.

By comparison, George Gallup — who went on to found
the renown Gallup polling company — accurately pre-
dicted the result of the election with a sample of size
50,000. In fact, modern polls are typically even smaller,
based on samples of size in the few thousands.

The moral of this story is that a smaller, but less biased
sample may be preferable to a larger, but more biased
sample. (This statement assumes that there is no possi-
bility of correcting for the bias.) The story itself is worth
reading in more detail, for example, in [92, 221, 236].
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11.1.5 Examples of sampling plans

We briefly describe (mostly by example) a number of
sampling plans that are in use in various settings.
The following sampling designs are typically used for

reasons of efficiency, cost, or (limited) resources.

• Systematic sampling An example of such a sam-
pling plan would be, in the context of an election
poll conducted in a residential suburb, to interview
every tenth household. Here one relies implicitly on
the assumption that the residents are (already) dis-
tributed in a way that is independent of the question
of interest.

• Cluster sampling An example of such a sampling
plan would be, in the same context, to interview every
household on several blocks chosen in some random
fashion among all blocks in the suburb. For a two-
stage variant, households could be sampled at random
within each selected block. (This is an example of
multi-stage sampling.)

• Network sampling An example of that would be, in
the context of surveying a population of drug addicts,
to ask a person all the addicts he knows, which are
then interviewed in turn, or otherwise observed or
counted. This type of sampling is indeed popular

when surveying hard-to-reach populations. There
are many variants, known under various names such
as chain-referral sampling, respondent-driven sam-
pling, or snowball sampling. These are related to web
crawls performed in the World Wide Web. Some of
these designs may be considered to be of convenience,
particularly when they do not involve randomization.

The following sampling designs are meant to improve
on simple random sampling.

• Stratified sampling An example would be, in the con-
text of estimating the average household income in a
city, to divide the city into socio-economic neighbor-
hoods (which play the role of strata here and would
have to be known in advance) and then sample at
random housing units in each neighborhood. In gen-
eral, stratified sampling improves on simple random
sampling when the strata are more homogeneous in
terms of the quantity or characteristic of interest.

Remark 11.6 (Post-stratification). A stratification is
sometimes done after collecting the sample. This can be
used, in some circumstances, to correct a possible bias in
the sample.
Example 11.7 (Polling gamers). For an example of
post-stratification, consider the polling scheme described
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in [246]. Quoting from the text, this was “an opt-in poll
which was available continuously on the Xbox gaming plat-
form during the 45 days preceding the 2012 US presidential
election. Each day, three to five questions were posted,
one of which gauged voter intention. [...] The respondents
were allowed to answer at most once per day. The first
time they participated in an Xbox poll, respondents were
also asked to provide basic demographic information about
themselves, including their sex, race, age, education, state
[of residence], party [affiliation], political ideology, and
who they voted for in the 2008 presidential election”.

The survey resulted in a very large sample. However,
as the authors warn, “the pool of Xbox respondents is far
from being representative of the voting population”.
An (apparently successful) attempt to correct for the

obvious bias was made using post-stratification based on
the side information collected on each respondent. In the
authors’ own words, “the central idea is to partition the
data into thousands of demographic cells, estimate voter
intent at the cell level [...], and finally aggregate the cell-
level estimates in accordance with the target population’s
demographic composition”.

11.2 Experimental design

To consult the statistician after an experiment
is finished is often merely to ask him to conduct
a post mortem examination. He can perhaps say
what the experiment died of.

Ronald A. Fisher

An experiment is designed with a particular purpose in
mind. An example is that of comparing treatments for
a certain medical condition. Another example is that of
comparing NPK fertilizer mixtures to optimize the yield
of a certain crop.
In this section we present some essential elements of

experimental design and then describe some classical de-
signs. For a book-length exposition, we recommend the
book by Oehlert [178].

A good design follows some fundamental principles
proven to lead to correct analyses (avoiding systematic
bias) with good power (due to increased precision). Some
of these principles include

• Randomization To avoid systematic bias.
• Replication To increase power.
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• Blocking To better control variation.
Importantly, the design needs to be chosen with care

before the collection of data starts.

11.2.1 Setting

The setting of an experiment consists of experimental
units, a set of treatments assigned to the experimental
units, and the response(s) measured on the experimental
units. For example, in a medical experiment comparing
two or more treatments for a certain disease, the experi-
mental units are the human subjects and the response is a
measure of the severity of the symptoms associated with
the disease. (Such an experiment is often referred to as a
clinical trial.) In an agricultural experiment where several
fertilizer mixtures are compared in terms of yield for a
certain crop, the experimental units may be the plots of
land, the treatments are the fertilizer mixtures, and the
response is the yield. (The plants may be referred to as
measurement units.)

The way the experimental units are chosen, the way the
treatments are assigned to the experimental units, and the
way the response is measured, are all part of the design.

There may be several (real-valued) response measure-
ments that are collected in a single experiment. Even

then, there is typically one primary response, the other
responses being secondary. We will focus on the primary
response (henceforth simply called ‘response’).
Remark 11.8. Although not strictly part of the design,
the method of analysis should be decided beforehand.
Some of the dangers of not doing so are discussed in
Section 23.8.3.

11.2.2 Enrollment (Sampling)

The inference drawn from the experiment (e.g., ‘treatment
A shows a statistically significant improvement over treat-
ment B’) applies, strictly speaking, to the experimental
units themselves. For the inference to apply more broadly
— which is typically desired — additional conditions on the
design need to be fulfilled in addition to randomization
(Section 11.2.4).

For example, in medicine, a clinical trial is typically set
up to compare the efficacy of two or more treatments for
a particular disease or set of symptoms. Human subjects
are enrolled in the trial and their response to one (or
several) of the treatment(s) is recorded. Based on this
limited information, the goal is often to draw conclusions
on the relative effectiveness of the treatments when given
to members of a certain population. (This is invariably
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true of clinical trials for drug development.) For this to
be possible, as we have already saw in Section 11.1, the
sample of subjects in the trial needs to be representative
of the population.
Example 11.9 (Psychology experiments on campuses).
Psychology experiments carried out on academic campuses
have been criticized on that basis, that the experiments
are often conducted on students while the conclusions that
are reached are, at least implicitly, supposed to general-
ize to a much larger population [123, 205]. Undeniably,
such samples are of convenience and generalization to a
larger population, although potentially valid, is far from
automatic.

11.2.3 Power calculations

In addition to a protocol for enrolling subjects that will
(hopefully) yield a sample that is representative of the
population of interest, the sample size needs to be large
enough that the experiment, properly conducted and an-
alyzed, would lead to detecting an effect (typically the
difference in efficacy between treatments) of a certain
prescribed size if such an effect is present. The target
effect size is typically chosen based on scientific, societal,
or commercial importance. For instance, for an experi-

ment comparing treatments A and B, the investigators
might want to calculate a minimum sample size n that
would enable them to detect a potential 10% difference in
response between the two treatments.

Such power calculations are important and we will come
back to them in Section 23.8. Indeed, simply put, if the
sample size is too small to detect what would be considered
an interesting or important effect, then what is the point
of conducting the experiment? The issue is exacerbated by
the fact that conducting an experiment typically requires
a substantial amount of resources.

11.2.4 Randomization

Randomization consists in assigning treatments to experi-
mental units following a pre-specified random mechanism.
This process is typically performed on a computer. We
already saw the central role that randomness plays in
survey sampling. The same is true in experimental design,
where randomization helps avoid systematic bias.

Confounding Systematic bias may be due to confound-
ing, which happens when the effect of a factor (i.e., a
characteristic of the experimental units) is related both
to the received treatment and to the measured response.
Importantly, a factor may go unaccounted for.
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Example 11.10 (Prostate cancer). Staging in surgical
patients with prostate cancer includes the dissection of
lymph nodes. If the nodes are found to be cancerous,
it is accepted that the disease has spread over the body
and a prostatectomy (the removal of the prostate) is not
performed. Such staging is not part of other approaches
to prostate cancer such as radiotherapy and, as argued
in [155], can lead to a comparison that unfairly favors
surgery. In such comparisons, the survival time is often the
response, and in the context of comparing the effectiveness
surgery with (say) radiotherapy in prostate cancer, the
grade (i.e., severity) of the cancer is a likely confounder.
Problem 11.11. Name a potential confounder identified
by the meta-analysis described in Example 20.39.

Randomization offers some protection against confound-
ing, and an experiment where randomization is employed
may enable causal inference (Section 22.2).

Blinding Just as in survey sampling where little or no
freedom of decision is given to the surveyor, randomiza-
tion is done using a computer to prevent an experimenter
(a human administering the treatments) from introducing
bias. However, an experimenter has been known to bias
the results in other, sometimes quite subtle ways. To min-

imize bias of any kind, the experimenter is often blinded
to the treatment he is administering to a given unit.
In addition to that, in particular in experiments in-

volving human subjects, the subjects are blinded to the
treatment they are receiving. This is done, for example,
to minimize non-compliance.
A clinical trial where both the experimenter and the

subjects are blind to the administered treatment is said
to be double-blind. This is the gold standard and has
motivated the routine use of a placebo when no other
control is available. 61 See [54] for a historical perspective.
Example 11.12 (Placebo effect). As a treatment is often
costly and may induce undesirable side effects, it is im-
portant that it perform better than a placebo. As defined
in [139], “placebo effects are improvements in patients’
symptoms that are attributable to their participation in
the therapeutic encounter, with its rituals, symbols, and

61 In fact, placebos are often the only control even when another
competing treatment is available. Indeed, according to [222]: “The
FDA requires developers of new treatments to demonstrate that they
are safe and effective in order to receive approval for market entry,
but the agency demands proof of superiority to existing products
only when it is patently unethical to withhold treatment from study
patients, as in the cases of therapies for AIDS and cancer. Many
new drugs are approved on the basis of demonstrated superiority to
placebo. Even less is required for many new medical devices.”
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interactions”. These effects can be substantial. For ex-
ample, as argued in [244], “for psychological disorders,
particularly depression, it has been shown that pill place-
bos are nearly as effective as active medications”.
Example 11.13 (Sham surgery). A double-blind design
is not always possible. This is particularly true in surgery
as, almost invariably, the operating surgeon knows whether
he is performing a real or a sham procedure. For exam-
ple, in [210], arthroscopic partial meniscectomy (which
amounts to trimming the meniscus) is compared with
sham surgery (which serves as placebo) to relieve symp-
toms attributed to meniscal tear. (Incidentally, this is
another example where the placebo is shown to be as
effective as the active procedure.)

To further avoid bias, this time at the level of the analy-
sis, it is sometimes recommended that the analyst(s) also
be blinded to the detailed results of the experiments, for
example, by anonymizing the treatments. This blinding is,
in principle, unnecessary if the analysis is decided before
the experiment starts.
Remark 11.14 (Keeping a trial blind). Humans are cu-
rious creatures, and in a long clinical trial, with some
lasting a decade or more, it becomes tempting to guess
what treatment is given to whom and which treatment is

most effective. It turns out that keeping a clinical trial
blind is a nontrivial aspect of its design, and for which
some techniques have been specifically developed (see,
e.g., [99, Ch 7]).

Inference based on randomization Although the
main purpose of randomization is to offer some protection
against confounding, it also allows for a rather natural
form of inference (Section 22.1.1). In a nutshell, assume
the goal is to compare treatments. If in reality there
is no difference between treatments, then the responses
that result from the experiment, understood as random
variables, are exchangeable (Section 8.8.2) with respect
to the randomization. This invariance can be utilized for
inferential purposes.

11.2.5 Some classical designs

Completely randomized designs A completely ran-
domized design simply assigns the treatments at random
with the only constraint being on the treatment group
sizes, which are chosen beforehand. In detail, assume
there are n experimental units and g treatments. Suppose
we decide that Treatment j is to be assigned to a total of
nj units, where n1 +⋯+ng = n. Then n1 units are chosen
uniformly at random and given Treatment 1; n2 units are
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chosen uniformly at random and given Treatment 2; etc.
(The sampling is without replacement.)
Example 11.15 (Back pain). In [3], the efficacy of a
device for managing back pain is examined. In this ran-
domized, double-blind trial, the treatment consisted of
six sessions of transcutaneous electrical nerve stimulation
(TENS) combined with mechanical pressure, while the
placebo excluded the electrical stimulation.
Remark 11.16 (Balanced designs). To optimize the
power of the subsequent analysis, it is usually preferable
that the design be balanced as much as possible, meaning
that the treatment group sizes be as close to equal as
possible. In a perfectly balanced design, r ∶= n/g is an
integer representing the number of units per treatment
group.
Remark 11.17 (Sequential designs). This is perhaps the
simplest of all designs for comparing several treatments.
Some sequential variants are often employed in clinical
trials where subjects enter the trial over time. The simplest
consists in assigning Treatment j with probability pj to
a subject entering the trial, where p1, . . . , pg are chosen
beforehand. A/B testing is the term most often used
in the tech industry. For example, the administrators
of a website may want to try different configurations to

maximize revenue (add, sales, etc). 62

Complete block designs Blocking is used to reduce
the variance. Blocks are defined with the goal of forming
more homogeneous groups of units. In its simplest variant,
called a randomized complete block design, each block is
randomized as in a completely randomized design, and the
randomization is independent from block to block. When
there is at least one unit for each treatment within each
block, the design is complete.

In a balanced design, if there is exactly one unit within
each block assigned to each treatment, we have n = gb,
where b denotes the number of blocks. Further replication
can be realized when, for example, each experimental unit
contains several measurement units.

Blocking is often done based on one or several character-
istics (aka factors) of the units. In clinical trials, common
blocking variables include gender and age group.
Example 11.18 (Carbon sequestration). A randomized
complete block design is used in [159] to study the effects
of different cultural practices on carbon sequestration in
soil planted with switchgrass.

62 For example, the company VWO (vwo.com) offers to run such
experiments for websites and other entities.

vwo.com
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Incomplete block designs These are designs that
involve blocking but in which the blocks have fewer units
than treatments. The simplest variant is the balanced
incomplete block design. Suppose, as before, that there are
g treatments and that n experimental units are available
for the experiments, and let b denote the number of blocks.
Such a design is structured so that each block has the same
number of units (say k) and each treatment is assigned
to the same number of units (say r). This is referred
to as the first-order balance and requires n = kb = gr.
The second-order balance refers to each pair of treatments
appearing together in the same number of blocks (say λ)
and requires that λ ∶= r(k − 1)/(g − 1). See Table 11.2 for
an illustration.

Split plots As the name indicates, this design comes
from agricultural experiments and is useful in situations
where a factor is ‘hard to vary’. To paraphrase an example
given in [178], suppose that some land is available for
an experiment meant to compare the productivity of 3
varieties of rice (A, B, C). We want to control the effect
of irrigation and consider 2 levels of irrigation, say high
and low. Irrigation may be hard and/or costly to control
spatially. An option is to consider plots (called whole plots)
that are sufficiently separated so that their irrigation can

Table 11.2: Example of a balanced incomplete block
design with g = 5 treatments (labeled A, B, C, D, E),
b = 5 blocks each with k = 4 units, r = 4 replicates per
treatment, resulting in each pair of treatments appearing
together in λ = 3 blocks.

Block 1 C A D B
Block 2 A E B C
Block 3 B D E C
Block 4 E C A D
Block 5 B D E A

be done independently of one another. These plots are
then subdivided into plots (called split plots), each planted
with one of the varieties of rice under consideration. In
such a design, irrigation is randomized at the whole plot
level, while seed variety is randomized at the split plot
level within each whole plot.

Group testing Robert Dorfman [65] proposed an ex-
perimental design during World War II to minimize the
number of blood tests required to test for syphilis in sol-
diers. His idea was to test blood samples from a number
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of soldiers simultaneously, repeating the process a few
times. Group testing has been used in many other set-
tings including quality control in product manufacturing
and cDNA library screening.

More generally, consider a setting where we are testing
n individuals for a disease based on blood samples. We
consider the case where the design is set beforehand, as
opposed to sequential. In that case, the design can be
represented by an n-by-t binary matrix X = (xi,j) where
xi,j = 1 if blood from the ith individual is in the jth testing
pool, and xi,j = 0 otherwise. In particular, t denotes the
total number of testing pools. The result of each test is
either positive ⊕ or negative ⊖. We assume for simplicity
that the test is perfectly accurate in that it comes up
positive when applied to a testing pool if and only if the
pool includes the blood sample of at least one affected
individual.

The design is d-disjunct if the sum of any of its d rows
does not contain any other row [67], where in the present
context we say that a row vector u = (uj) contains a row
vector v = (vj) if uj ≥ vj for all j.
Problem 11.19. If the design is d-disjunct, and there
are at most d diseased individuals in total, then each
non-diseased individual will appear in at least one pool
with no diseased individual. Deduce from this property a

simple procedure for identifying the diseased individuals.
Thus a design that is d-disjunct allows the experimenter

to identify the diseased individuals as long as there are at
most d of them. Note that this property is sufficient for
that, but not necessary, although it offers the advantage
of a particularly simple identification procedure.

A number of ways have been proposed for constructing
disjunct designs, the goal being to achieve a d-disjunct de-
sign with a minimum number of testing pools t for a given
number of subjects n. In particular, there is a parallel
with the construction of codes in the area of Information
Theory (Section 23.6). We content ourselves with con-
structions that rely on randomness. In the simplest such
construction, the elements of the design matrix, meaning
the xi,j , are iid Bernoulli with parameter p.

Proposition 11.20. The probability that a random n-by-
t design with Bernoulli parameter p is d-disjunct is at
least

1 − (d + 1)( n

d + 1
)[1 − p(1 − p)d]t.

The proof is in fact elementary and relies on the union
bound. For details, see the proof of [67, Thm 8.1.3].
Problem 11.21. For which value of p is the design most
likely to be d-disjunct? For that value of p, deduce that
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there is a numeric constant C0 such that this random
group design is d-disjunct with probability at least 1 − δ
when

t ≥ C0[d2 log(n/d) + d log(d/δ)].

Repeated measures This is a type of design that is
commonly used in longitudinal studies. For example,
some human subjects are ‘followed’ over time to better
understand how a certain condition evolves depending on
a number of factors.
Example 11.22 (Neck pain). In [32], 191 patients with
chronic neck pain were randomized to one of 3 treatments:
(A) spinal manipulation combined with rehabilitative neck
exercise, (B) MedX rehabilitative neck exercise, or (C)
spinal manipulation alone. After 20 sessions, the patients
were assessed 3, 6, and 12 months afterward for self-rated
neck pain, neck disability, functional health status, global
improvement, satisfaction with care, and medication use,
as well as range of motion, muscle strength, and muscle
endurance.

Such a design looks like a split plot design, with subjects
as whole plots and the successive evaluations as split plots.
The main difference is that there is no randomization at
the split plot level.

Crossover design In a clinical trial with a crossover
design, each subject is given each one of the treatments
that are being compared and the relevant response(s)
to each treatment is(are) measured. There is generally
a washout period between treatments in an attempt to
isolate the effect of each treatment or, said differently, to
minimize the residual effect (aka carryover effect) of the
preceding treatment. In addition, the order in which a
subject receives the treatments needs to be randomized
to avoid any systematic bias. First-order balance further
imposes that the number of subjects that receive treatment
X as their jth treatment not depend on X or j. When
this is the case, the design is called a Latin square design.
See Table 11.3 for an illustration.

Table 11.3: Example of a crossover design with 4 sub-
jects, each receiving 4 treatments in sequence based on a
Latin square design, with each treatment order appearing
only once.

Subject 1 A B C D
Subject 2 C D A B
Subject 3 B D E C
Subject 4 D C B A
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Example 11.23 (Medical cannabis). The study [74] eval-
uates the potential of cannabis for pain management in
34 HIV patients suffering from neuropathic pain in a
crossover trial where the treatments being compared are
placebo (without THC) and active (with THC) cannabis
cigarettes.
Example 11.24 (Gluten intolerance). The study [57]
is on gluten intolerance. It involves 61 adult subjects
without celiac disease or any other (formally diagnosed)
wheat allergy, who nevertheless believe that ingesting
gluten causes them some digestive problems. The design
is a crossover design comparing rice starch (which serves
as placebo) and actual gluten.
Second-order balance further imposes that each treat-

ment follow every other treatment an equal number of
times.
Problem 11.25. Determine whether the design in Ta-
ble 11.3 is second-order balanced. If not, find such a
design.

Matched-pairs design In a study that adopts this de-
sign to compare two treatments, subjects that are similar
in key attributes (i.e., possible confounders) are matched
and the randomization to treatment happens within each

pair. (Thus this is a special case of a complete block
design where each pair forms a block.)
Example 11.26 (Cognitive therapy for PTSD). In [160],
which took place in Dresden, Germany, 42 motor vehicle
accident survivors with post-traumatic syndrome were
recruited to be enrolled in a study designed to examine the
efficacy of cognitive behavioral treatment (CBT) protocols
and methods. Subjects were matched after an initial
assessment and then randomized to either CBT or control
(which consisted of no treatment).

11.3 Observational studies

Let us start with an example.
Example 11.27 (Role of anxiety in postoperative pain).
In [138], 53 women who underwent an hysterectomy where
assessed for anxiety, coping style, and perceived stress two
weeks prior to the intervention. This was repeated several
times during the recovery period. Analgesic consumption
and level of perceived pain were also measured.

This study shares some of the attributes of a repeated
measures design or a crossover design, yet there was no
randomization involved. Broadly speaking, the ability
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to implement randomization is what distinguishes experi-
mental designs and observational studies.

11.3.1 Why observational studies?

There is wide agreement that randomization should be a
central part of a study whenever possible, because it offers
some protection against confounding. As discussed in [185,
214, 255], there are quite a few examples of observational
studies that were later refuted by randomized trials.
However, there are situations where researchers resort

to an observational study. We follow Nick Black [23], who
argues that experiments and observational studies are
complementary. Although conceding that clinical trials
are the gold standard, he says that “observational meth-
ods are needed [when] experimentation [is] unnecessary,
inappropriate, impossible, or inadequate”.

• Experimentation may be unnecessary when the effect
size is very large. (Black cites the obvious effective-
ness of penicillin for treating bacterial infections.)

• Experimentation may be inappropriate in situations
where the sample size needed to detect a rare side
effect of a drug, for example, far exceeds the size
of a feasible clinical trial. Another example is the
detection of long-term adverse effects, as this would

require a study that exceeds in length that of most
typical clinical trials.

• Experimentation may be impossible for a number of
reasons. One reason could be ethics. For example,
randomizing pregnant women to smoking and non-
smoking groups is not ethical in large part because
we know that smoking carries substantial negative
effects for both the mother and the fetus/baby. An-
other reason could be lack of control. For example,
randomizing US cities to a minimum wage of (say)
$15 per hour versus no minimum wage is difficult; 63

similarly, setting the temperature in large geographi-
cal regions to better understand the effects of climate
change is not an option.

• Experimentation may be inadequate when it comes to
generalizing the findings to a broader population and
to how medicine is practiced in that population on a
day-to-day basis. While observational studies, almost
by definition, take stock of how medicine is practiced
in real life, clinical trials occur in more controlled
settings, often take place in university hospitals or
clinics, and may attract particular types of subjects.

63 An example of large-scale experimentation with policy includes
Finland’s Design for Government project, and an experiment with
the universal income in Canada (Mincome) [35].

https://www.demoshelsinki.fi/en/julkaisut/design-for-government-humancentric-governance-through-experiments/
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Example 11.28 (Effects of smoking). In the study of
how smoking affects lung cancer and other ailments, for
ethical reasons, researchers have had to rely on observa-
tional studies and experiments on animals. These have
provided very strong circumstantial evidence that tobacco
consumption is associated with the onset and development
of various pulmonary and cardiovascular diseases. In the
meantime, the tobacco industry has insisted that these
are only associations and that no causation has been es-
tablished [167]. (The story might be repeating itself with
the consumption of sugar [158].)
Example 11.29 (Human role in climate change). There
is a parallel in the question of climate change, which is
another area where experimentation is hardly possible. To
determine the role of human activity in climate change,
scientists have had to rely on indirect evidence such as
the known warming effects of carbon dioxide, methane,
and other ‘greenhouse’ gases, combined with the fact that
the increased presence of these gases in the atmosphere is
due to human activity. Scientists have also been able to
rely computer models. Here too, the sum total evidence
is overwhelming, and scientific consensus is essentially
unanimous, yet the fossil fuel industry and others still
claim all this does not prove that human activity is a
substantial contributor to climate change [179].

11.3.2 Types of observational studies

Problem 11.30. In the examples given below, identify
as many obstacles to randomization as you can among
the ones listed above, and possibly others.

Cohort study A cohort in this context is a group
of individuals sharing one or several characteristics of
interest. For example, a birth cohort is made of subjects
that were born at about the same time.
Example 11.31 (Obesity in children). In context of a
large longitudinal study, the Avon Longitudinal Study of
Parents and Children, the goal of researchers in [193] was
to “identify risk factors in early life (up to 3 years of age)
for obesity in children (by age 7) in the United Kingdom”.

Another example would be people that smoke, that are
then followed to understand the implications of smoking,
in which case another cohort of non-smokers may be used
to serve as control. In general, such a study follows sub-
jects with a certain condition with the goal of drawing
associations with particular outcomes.
Example 11.32 (Head injuries). The study [231] fol-
lowed almost 3000 individuals that were admitted to one
of a number of hospitals in the Glasgow area, Scotland,
after a head injury. The stated goal was to “determine
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the frequency of disability in young people and adults
admitted to hospital with a head injury and to estimate
the annual incidence in the community”.
A matched-pairs cohort study 64 is a variant where

subjects are matched and then followed as a cohort. This
leads to analyzing the data using methods for paired data.
Example 11.33 (Helmet use and death in motorcycle
crashes). The study [176] is based on the “Fatality Anal-
ysis Reporting System data, from 1980 through 1998, for
motorcycles that crashed with two riders and either the
driver or the passenger, or both, died”. Matching was
(obviously) by motorcycle. To quote the authors of the
study, “by estimating effects among naturally matched-
pairs on the same motorcycle, one can account for po-
tential confounding by motorcycle characteristics, crash
characteristics, and other factors that may influence the
outcome”.

Case-control study In a case-control study, subjects
with a certain condition (typically a disease) of interest are
identified and included in the study to serve as cases. At
the same time, subjects not experiencing that condition
(without the disease or with the disease but of lower

64 Compare with the randomized matched-pairs design.

severity) are identified and included in the study to serve
as controls.
Example 11.34 (Lipoprotein(a) and coronary heart dis-
ease). The study [195] involves a sample of men aged
50 at the start of the study (therefore, a birth cohort)
from Gothenburg, Sweden. At baseline, a blood sam-
ple was taken from each subject and frozen. After six
years, the concentration of lipoprotein(a) was measured
in men having suffered a myocardial infarction or died of
coronary heart disease. For each of these men — which
represent the cases in this study — four men were sampled
at random among the remaining ones to serve as controls
and their blood concentration of lipoprotein(a) was mea-
sured. The goal was to “examine the association between
the serum lipoprotein(a) concentration and subsequent
coronary heart disease”.
Example 11.35 (Venous thromboembolism and hormone
replacement therapy). Based on the General Practice Re-
search Database (United Kingdom), in [115], “a cohort
of 347,253 women aged 50 to 79 without major risk fac-
tors for venous thromboembolism was identified. Cases
were 292 women admitted to hospital for a first episode of
pulmonary embolism or deep venous thrombosis; 10,000
controls were randomly selected from the source cohort.”
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(The cohort here is a birth cohort and not based on a
particular risk factor.) The goal was to “evaluate the
association between use of hormone replacement therapy
and the risk of idiopathic venous thromboembolism”.
Remark 11.36 (Cohort vs case-control). A cohort study
starts with a possible risk factor (e.g., smoking) and aims
at discovering the diseases it is associated with. A case-
control study, on the other hand, starts with the disease
and aims at discovering risk factors associated with it. 65

Problem 11.37 (Rare diseases). A case-control study is
often more suitable when studying a rare disease, which
would otherwise require following a very large cohort.
Consider a disease affecting one out of 100,000 people in
a certain large population (many millions). How large
would a sample need to be in order to include 10 cases
with probability at least 99%?

Cross-sectional study While a cohort study and
case-control study both follow a certain sample of subjects
over time, a cross-sectional study examines a sample of
individuals at a specific point in time. In particular,
associations are comparatively harder to interpret in cross-
sectional studies. The main advantage is simply cost, as

65 For an illustration, compare Figures 3.5 and 3.6 in [28].

such studies can be based on data collected for other
purposes.
Example 11.38 (Green tea and heart disease). In [130],
“1,371 men aged over 40 years residing in Yoshimi [were]
surveyed on their living habits including daily consump-
tion of green tea. Their peripheral blood samples were
subjected to several biochemical assays.” The goal was to
“investigate the association between consumption of green
tea and various serum markers in a Japanese population,
with special reference to preventive effects of green tea
against cardiovascular disease and disorders of the liver.”

11.3.3 Matching

While in an observational study randomization cannot
be purposely implemented, a number of techniques have
been proposed to at least minimize the influence of other
factors [42].

Matching is an umbrella name for a variety of techniques
that aim at matching cases with controls in order to have
a treatment group and a control group that look alike
in important aspects. These important attributes are
typically chosen for their potential to affect the response
under consideration, that is, they are believed to be risk
factors.
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Example 11.39 (Effects of coaching on SAT). The
study [184] attempted to measure the effect of attend-
ing an SAT coaching program on the resulting test score.
(The paper focused on SAT I: Reasoning Test Scores.)
These programs are offered by commercial test prepara-
tion companies that claim a certain level of success. The
data were based on a survey of about 4,000 SAT takers in
1995-96, out of which about 12% had attended a coaching
program. Besides the response (the SAT score itself), some
27 variables were measured on each test taker, including
coaching status (the main factor of interest), racial and
socioeconomic indicators (e.g., father’s education), various
measures of academic preparation (e.g., math grade), etc.
The idea, of course, is to isolate the effect of coaching
from these other factors, some of which are undoubtedly
important. The authors applied a number of techniques in-
cluding a variant of matching. Other variants are applied
to the same data in [117].
The intention behind matching is to control for con-

founding by balancing possible confounding factors with
the intention of canceling out their confounding effect.
We formalize this in Section 22.2.3, where we show that
matching works under some conditions, the most impor-
tant one being that there are no unmeasured variables
that confound the effect. The beauty (and usefulness)

of randomization is that it achieves this balancing au-
tomatically (although only on average) without a priori
knowledge of any confounding variable. This is shown
formally in Section 22.2.2.

11.3.4 Natural experiments

As we mentioned above, and as will be detailed in Sec-
tion 22.2, a proper use of randomization allows for causal
inference. However, randomization is only possible in con-
trolled experiments. In observational studies, matching
can allow for causal inference, but only if one can guaranty
that there are no confounders.
In general, the issue of drawing causal inferences from

observational studies is complex, and in fact remains con-
troversial, so we will keep the discussion simple. Essen-
tially, in the context of an observational study, causal
inference is possible if one can successfully argue that the
treatment assignment (which was done by Nature) was
done independently of the response to treatment. Doing
this successfully often requires domain-specific expertise.
Freedman speaks of a shoe leather approach to data anal-
ysis [94]. In these circumstances, the observational study
is often qualified as being a natural experiment [47, 148].
Example 11.40 (Snow’s discovery of cholera). A clas-
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sical example of a natural experiment is that of John
Snow in mid-1800 London, who in the process discovered
that cholera could be transmitted by the consumption of
contaminated water [217]. The account is worth reading
in more detail, but in a nutshell, Snow suspected that the
consumption of water had something to do with the spread
of cholera, and to confirm his hypothesis, he examined the
houses in London served by one of two water companies,
Southwark & Vauxhall and Lambeth, and found that the
death rate in the houses served by the former was several
times higher. He then explained this by the fact that,
although both companies sourced their water from the
Thames River, Lambeth was taping the river upstream
of the main sewage discharge points, while Southwark &
Vauxhall was getting its water downstream. Although
this is an observational study, a case for ‘natural’ random-
ization can be argued, as Snow did, on the basis that the
companies served the same neighborhoods. In his own
words: “Each company supplies both rich and poor, both
large houses and small; there is no difference either in the
condition or occupation of the persons receiving the water
of the different Companies."
Example 11.41 (The Oregon Experiment on Medicaid).
In 2008, the state of Oregon in the US decided to expand a
joint federal and state health insurance program for people

with low-income known as Medicaid. As described in [30]:
“Correctly anticipating excess demand for the available
new enrollment slots, the state conducted a lottery, ran-
domly selecting individuals from a list of those who signed
up in early 2008. Lottery winners and members of their
households were able to apply for Medicaid. Applicants
who met the eligibility requirements were then enrolled in
[the] Oregon Health Plan Standard.” In the end, 29,834
individuals won the lottery out of 74,922 individuals who
participated. Both groups have nevertheless been fol-
lowed and compared on various metrics (e.g., health care
utilization). Note that this is an ongoing study.

Natural experiments are relatively rare, but some situa-
tions have been identified where they arise routinely. For
example, in Genetics, pairs of twins 66 are sought after
and examined to better understand how much a particular
behavior is due to “nature” versus “nurture”.

Regression discontinuity design This is an area of
statistics specializing in situations where an intervention
is applied or not based on some sort of score being above
or below some threshold. If the threshold is arbitrary to
some degree, it may justifiable to compare, in terms of

66 There is an entire journal dedicated to the study of twin pairs:
Twin Research and Human Genetics.

https://www.nber.org/oregon/
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outcome, cases with a score right above the threshold with
cases with a score right below the threshold.
Example 11.42 (Medicare). In the US, most people be-
come eligible at age 65 to enroll in a federal health insur-
ance program called Medicare. This has lead researchers,
as in [37], to examine the effects of access to this program
on various health outcomes.
Example 11.43 (Elite secondary schools in Kenya). Stu-
dents from elite schools tend to perform better, but is this
due to elite schools being truly superior to other schools,
or simply a result of attracting the best and brightest stu-
dents? This question is examined in [156] in the context
of secondary schools in Kenya, employing a regression
discontinuity design approach that takes advantage of
“the random variation generated by the centralized school
admissions process”.
Remark 11.44. In a highly cited paper [125], Bradford
Hill proposes nine aspects to pay attention to when at-
tempting to draw causal inferences from observational
studies. One of the main aspects is specificity, which is
akin to identifying a natural experiment. Another impor-
tant aspect, when present, is that of experimental evidence,
which is akin to identifying a discontinuity.
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A prototypical (although somewhat idealized) workflow
in any scientific investigation starts with the design of the
experiment to probe a question or hypothesis of interest.
The experiment is modeled using several plausible mech-
anisms. The experiment is conducted and the data are
collected. These data are finally analyzed to identify the
most adequate mechanism, meaning the one among those
considered that best explains the data.
Although an experiment is supposed to be repeatable,

this is not always possible, particularly if the system under
study is chaotic or random in nature. When this is the
case, the mechanisms above are expressed as probability
distributions. We then talk about probabilistic modeling,
albeit here there are several probability distributions under
consideration. It is as if we contemplate several probability
experiments (in the sense of Chapter 1), and the goal of
statistical inference is to decide on the most plausible in
view of the collected data.

https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
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To illustrate the various concepts that introduced in
this chapter, we use Bernoulli trials as our running exam-
ple of an experiment, which includes as special case the
model where we sample with replacement from an urn
(Remark 2.17). Although basic, this model is relevant in
a number of important real-life situations (e.g., election
polls, clinical trials, etc). We will study Bernoulli trials
in more detail in Section 14.1.

12.1 Statistical models

A statistical model for a given experiment is of the form
(Ω,Σ,P) where Ω is the sample space containing all pos-
sible outcomes, Σ is the class of events of interest, and P
is a family of distributions on Σ. 67 Modeling the experi-
ment with (Ω,Σ,P) postulates that the outcome of the
experiment ω ∈ Ω was generated from a distribution P ∈ P .
The goal, then, is to determine which P best explains the
data ω.
We follow the tradition of parameterizing the family
P. This is natural in some contexts and can always be

67 Compare with a probability space, which only includes one
distribution. A statistical model includes several distributions to
model situations where the mechanism driving the experimental
results is not perfectly known.

done without loss of generality (since any set can be
parameterized by itself). By default, the parameter will
be denoted by θ and the parameter space (where θ belongs)
by Θ, so that

P = {Pθ ∶ θ ∈ Θ}. (12.1)
Remark 12.1 (Identifiability). Unless otherwise speci-
fied, we will assume that the model (12.1) is identifiable,
meaning that the parameterization is one-to-one, or in
formula, Pθ ≠ Pθ′ when θ ≠ θ′.
Example 12.2 (Binomial experiment). Suppose we
model an experiment as a sequence of Bernoulli trials
with probability parameter θ and predetermined length n.
This assumes that each trial results in one of two possible
values. Labeling these values as h and t, which we can
always do at least formally, the sample space is the set
of all sequences of length n with values in {h,t}, or in
formula

Ω = {h,t}n.
(We already saw this in Example 1.8.) The statistical
model also assumes that the observed sequence was gen-
erated by one of the Bernoulli distributions, namely

Pθ({ω}) = θY (ω)(1 − θ)n−Y (ω), (12.2)

where Y (ω) is the number of heads in ω. (We already
saw that in (2.13).) Therefore, the family of distributions
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under consideration is

P = {Pθ ∶ θ ∈ Θ}, where Θ ∶= [0,1].

Note that the dependency in n is left implicit as n is
given and not a parameter of the family. We call this a
binomial experiment because of the central role that Y
plays and we know that Y has the binomial distribution
with parameters (n, θ).
Remark 12.3 (Correctness of the model). As is the cus-
tom, we will proceed assuming that the model is correct,
that indeed one of the distributions in the family P gen-
erated the data. This depends, in large part, on how the
data were generated or collected (Chapter 11). For exam-
ple, a (binary) poll that successfully implements simple
random sampling from a very large population can be
accurately modeled as a binomial experiment. When the
model is correct, we will sometimes use θ∗ to denote the
true value of the parameter. In practice, a model is rarely
strictly correct. When the model is only approximate, the
resulting inference will necessarily be approximate also.

12.2 Statistics and estimators

A statistic is a random variable on the sample space Ω. It
is meant to summarize the data in a way that is useful for

the purpose of drawing inferences from the data.
Let ϕ be a function defined on the parameter space Θ

representing a feature of interest (e.g., the mean). Note
that ϕ is often used to denote ϕ(θ) (a clear abuse of
notation) when confusion is unlikely. We will adopt this
common practice. It is often the case that θ itself is the
feature of interest, in which case ϕ(θ) = θ.
An estimator for ϕ(θ) is a statistic, say S, chosen for

the purpose of approximating it. Note that while ϕ is
defined on the parameter space (Θ), S is defined on the
sample space (Ω).
Remark 12.4. The problem of estimating ϕ(θ) is well-
defined if Pθ = Pθ′ implies that ϕ(θ) = ϕ(θ′), which is
always the case if the model is identifiable.
Remark 12.5 (Estimators and estimates). An estimator
is thus a statistic. The value that an estimator takes in a
given experiment is often called an estimate. For example,
if S is an estimator, and ω denotes the data, then S(ω)
is an estimate.
Desiderata. A good estimator is one which returns an
estimate that is ‘close’ to the true value of the quantity
of interest.
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12.2.1 Measures of performance

Quantifying closeness is not completely trivial as we are
talking about estimators, whose output is random by
definition. (An estimator is a function of the data and the
data are assumed to be random.) We detail the situation
in the context of a parametric model (12.1) where Θ ⊂ R
and consider estimating θ itself.

Mean squared error A popular measure of perfor-
mance for an estimator S is the mean squared error (MSE),
defined as

mseθ(S) ∶= Eθ [(S − θ)2], (12.3)
where Eθ denotes the expectation with respect to Pθ.
Problem 12.6 (Squared bias + variance). Assume that
an estimator S for θ has a 2nd moment. Show that

mseθ(S) = (Eθ(S) − θ)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
squared bias

+Varθ(S)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
variance

. (12.4)

(Varθ denotes the variance under Pθ.)

Mean absolute error Another popular measure of
performance for an estimator S is the mean absolute error
(MAE), defined as

maeθ(S) ∶= Eθ [∣S − θ∣]. (12.5)

Other loss functions In general, let L(θ′, θ) be a
function measuring the discrepancy between θ′ and θ.
This is called a loss function as it is meant to quantify
the loss incurred when the true parameter is θ and our
estimate is θ′. A popular choice is

L(θ′, θ) = ∣θ′ − θ∣γ ,
for some pre-specified γ > 0. This includes the MSE and
the MAE as special cases.
Having chosen a loss function we define the risk of an

estimator as its expected loss, which for a loss function L
and an estimator S may be expressed as

Rθ(S) ∶= Eθ [L(S, θ)]. (12.6)

Remark 12.7 (Frequentist interpretation). Let θ denote
the true value of the parameter and let S denote an esti-
mator. Suppose the experiment is repeated independently
m times and let ωj denote the outcome of the jth experi-
ment. Compute the average loss over thesem experiments,
meaning

Lm ∶= 1
m

m

∑
j=1

L(S(ωj), θ).

By the Law of Large Numbers (which, as we saw, is at
the core of the frequentist interpretation of probability),

Lm
PÐ→ Rθ(S), as m→∞.
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12.2.2 Maximum likelihood estimator

As the name indicates, this estimator returns a distri-
bution that maximizes, among those in the family, the
chances that the experiment would result in the observed
data. Assume that the statistical model is discrete in the
sense that the sample space is discrete. See Section 12.5.1
for other situations.
Denoting the data by ω ∈ Ω as before, the likelihood

function is defined as

lik(θ) = Pθ({ω}). (12.7)

(Note that this function also depends on the data, but
this dependency is traditionally left implicit.) Assuming
that, for all possible outcomes, this function has a unique
maximizer, the maximum likelihood estimator (MLE) is
defined as that maximizer.
Remark 12.8. When the likelihood admits several max-
imizers, one of them can be chosen according to some
criterion.
Example 12.9 (Binomial experiment). In the setting
of Example 12.2, the MLE is found by maximizing the
likelihood (12.2) with respect to θ ∈ [0, 1]. To simplify the
expression a little bit, let y = Y (ω), which is the number
of heads in the sequence ω. We then have the following

expression for the likelihood

lik(θ) ∶= θy(1 − θ)n−y.

This is a polynomial in θ and therefore differentiable. To
maximize the likelihood we thus look for critical points.
First assume that 1 ≤ y ≤ n − 1. In that case, setting the
derivative to 0, we obtain the equation

θy(1 − θ)n−y(y(1 − θ) − (n − y)θ) = 0.

The solutions are θ = 0, θ = 1, and θ = y/n. Since the
likelihood is zero at θ = 0 or θ = 1, and strictly positive
at θ = y/n, we conclude that the maximizer is unique and
equal to y/n. If y = 0, the likelihood is easily seen to have
a unique maximizer at θ = 0. If y = 1, the likelihood is
easily seen to have a unique maximizer at θ = 1. Thus, in
any case, the maximizer is unique and given by y/n. We
conclude that the MLE is well-defined and equal to Y /n,
that is, the proportion of heads in the data.

12.3 Confidence intervals

An estimator, as presented above, provides a way to obtain
an informed guess (the estimate) for the true value of the
parameter. In addition to that, it is often quite useful to
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know how far we can expect the estimate to be from the
true value of the parameter.
When the parameter is real-valued (as we assume it

to be by default), this is typically done via an interval
whose bounds are random variables. We say that such
an interval, denoted I(ω), is a (1 − α)-level confidence
interval for θ if

Pθ(θ ∈ I) ≥ 1 − α, for all θ ∈ Θ. (12.8)

For example, α = 0.10 gives a 90% confidence interval. See
Figure 12.1 for an illustration.
Desiderata. A good confidence interval is one that has
the prescribed level of confidence and is relatively short
(compared to other confidence intervals having the same
level of confidence).

12.3.1 Using Chebyshev’s inequality to
construct a confidence interval

Confidence intervals are often constructed based on an es-
timator, here denoted S. Suppose first that the estimator
is unbiased, meaning

Eθ(S) = θ, for all θ ∈ Θ. (12.9)

Figure 12.1: An illustration of the concept of confidence
interval. We consider a binomial experiment with pa-
rameters n = 10 and θ = 0.3. We repeat the experiment
100 times, each time computing the Clopper–Pearson two-
sided 90% confidence interval for θ specified in (14.6). The
vertical line is at the true value of θ.
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Assume furthermore that S as a finite 2nd moment under
any θ ∈ Θ, with uniformly bounded variance in the sense
that

σ2
θ ∶= Varθ(S) ≤ σ2, (12.10)

for some positive constant σ. Importantly, we assume
that such a constant is available (meaning known to the
analyst).
Chebyshev’s inequality (7.27) can then be applied to

construct a confidence interval. Indeed, the inequality
gives

Pθ(∣S − θ∣ < cσθ) ≥ 1 − 1/c2, for all θ ∈ Θ,

for any c > 0. We then have

∣S − θ∣ < cσθ ⇒ ∣S − θ∣ < cσ (12.11)
⇔ S − σc < θ < S + σc. (12.12)

Thus, if we define Ic ∶= (S − σc,S + σc), we have that

Pθ(θ ∈ Ic) ≥ 1 − 1/c2.

Given α, we choose c such that 1/c2 = α, that is, c =
1/√α. Then the resulting interval Ic is a (1−α)-confidence
interval for θ.

Problem 12.10 (Binomial experiment). In the setting
of Example 12.2, apply the procedure above to derive a
(1 − α)-confidence interval for θ. (The upper bound on
the standard deviation, σ above, should be explicit.)

We note that a refinement is possible when σθ is known
in closed-form. See Problem 14.4.

12.4 Testing statistical hypotheses

Suppose we do not need to estimate a function of the
parameter, but rather only need to know whether the pa-
rameter value satisfies a given property. In what follows,
we take the default hypothesis, called the null hypothesis
and often denoted H0, to be that the parameter value sat-
isfies the property. Deciding whether the data is congruent
with this hypothesis is called testing the hypothesis.

Let Θ0 ⊂ Θ denote the subset of parameter values that
satisfy the property. We will call Θ0 the null set. The
null hypothesis can be expressed as

H0 ∶ θ∗ ∈ Θ0.

(Recall that θ∗ denotes the true value of the parameter, as-
suming the statistical model is correct.) The complement
of Θ0 in Θ,

Θ1 ∶= Θ ∖Θ0, (12.13)
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is often called the alternative set, and

H1 ∶ θ∗ ∈ Θ1

is often called the alternative hypothesis.
Example (Binomial experiment). In the setting of Ex-
ample 12.2, we may want to know whether the parameter
value is below some given θ0. This corresponds to testing
the null hypothesis

H0 ∶ θ∗ ≤ θ0, (12.14)

which corresponds to the following null set

Θ0 = {θ ∈ [0,1] ∶ θ ≤ θ0} = [0, θ0].

12.4.1 Test statistics

A test statistic is used to decide whether the null hypoth-
esis is reasonable. If, based on a chosen test statistic, the
hypothesis is found to be ‘substantially incompatible’ with
the data, it is rejected.

Although the goal may not be that of estimation, good
estimators typically make good test statistics. Indeed,
given an estimator S, one could think of rejecting H0
when S(ω) ∉ Θ0. Tempting as it is, this is typically too
harsh, as it does not properly account for the randomness

in the estimator. Instead, it is generally better to reject
H0 if S(ω) is ‘far enough’ from Θ0.
Desiderata. A good test statistic is one that behaves
differently according to whether the null hypothesis is true
or not.
Example (Binomial experiment). Consider the problem
of testing the hypothesis H0 of (12.14). As a test statistic,
let us use the maximum likelihood estimator, S ∶= Y /n.
In that case, it is tempting to reject H0 when S > θ0.
However, doing so would lead us to reject by mistake quite
often if θ∗ is in the null set yet close to the alternative set:
in the most extreme case where θ∗ = θ0, the probability of
rejection approaches 1/2 as the sample size n increases.
Problem 12.11. Prove the last claim using the Central
Limit Theorem. Then examine the situation where θ∗ < θ0.
Remark 12.12 (Equivalent test statistics). We say that
two test statistics, S and T , are equivalent if there is a
strictly monotone function g such that T = g(S). Clearly,
equivalent statistics provide the same amount of evidence
against the null hypothesis, since we can recover one from
the other.
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12.4.2 Likelihood ratio

The likelihood ratio (LR) is to hypothesis testing what the
maximum likelihood estimator is to parameter estimation.
It presents a general procedure for deriving a test statistic.
In the setting of Section 12.2.2, having observed ω, the
likelihood ratio is defined as 68

maxθ∈Θ1 lik(θ)
maxθ∈Θ0 lik(θ) . (12.15)

By construction, a large value of that statistic provides
evidence against the null hypothesis.
Remark 12.13 (Variants). The LR is sometimes defined
differently, for example,

maxθ∈Θ lik(θ)
maxθ∈Θ0 lik(θ) . (12.16)

or its inverse (in which case small values of the statistic
weigh against the null hypothesis). However, all these vari-
ants are strictly monotonic functions of each other and are
therefore equivalent for testing purposes (Remark 12.12).
Example 12.14 (Binomial experiment). Consider the
problem of testing the hypothesis H0 of (12.14). Recall

68 This statistic is sometimes referred to as the generalized likeli-
hood ratio.

the MLE is S ∶= Y /n. With y = Y (ω) and θ̂ ∶= y/n (which
is the estimate), we compute

max
θ≤θ0

lik(θ) = max
θ≤θ0

θy(1 − θ)n−y

= min(θ̂, θ0)y(1 −min(θ̂, θ0))n−y,

and

max
θ∈[0,1]

lik(θ) = max
θ∈[0,1]

θy(1 − θ)n−y

= θ̂y(1 − θ̂)n−y.

Hence, the variant (12.16) of the LR is equal to 1 (the
minimum possible value) if θ̂ ≤ θ0, and

( θ̂
θ0

)
y

( 1 − θ̂
1 − θ0

)
n−y

,

otherwise. Taking the logarithm and multiplying by 1/n
yields an equivalent statistic equal to 0 if θ̂ ≤ θ0, and

θ̂ log( θ̂
θ0

) + (1 − θ̂) log( 1 − θ̂
1 − θ0

),

otherwise. Thus the LR is a function of the MLE. However,
the monotonicity is not strict, and therefore the MLE
and the LR are not equivalent test statistics. That said,
they yield the same inference in most cases of interest
(Problem 12.19).
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12.4.3 p-values

Given a test statistic, we need to decide what values of the
statistic provide evidence against the null hypothesis. In
other words, we need to decide what values of the statistic
are ‘unusual’ or ‘extreme’ under the null, in the sense of
being unlikely if the null (hypothesis) were true.
Suppose we decide that large values of a test statistic

S are evidence that the null is not true. Let ω denote the
observed data and let s = S(ω) denote the observed value
of the statistic. In this context, we define the p-value as

pvS(s) ∶= sup
θ∈Θ0

Pθ(S ≥ s). (12.17)

To be sure,

Pθ(S ≥ s) is shorthand for Pθ({ω′ ∶ S(ω′) ≥ S(ω)}).

In words, this is the supremum probability under any
null distribution of observing a value of the (chosen) test
statistic as extreme as the one that was observed. A small
p-value is evidence that the null hypothesis is false.

Note that a p-value is associated with a particular test
statistic: different test statistics lead to different p-values,
in general.
Remark 12.15 (Replication interpretation of the p–
value). The definition itself lends us to believe that replica-

tions are needed to compute the p-value. Such replications
may be out of the question, however. In many cases, the
experiment has been performed and the data have been
collected, and inference needs to be performed based on
these data alone. This is where assuming a model is cru-
cial. Indeed, if we are able to derive (or approximate)
the distribution of the test statistic under any null dis-
tribution, then we can compute (or approximate) the
p-value, at least in principle, without having to repeat the
experiment.

Proposition 12.16 (Semi-continuity of the p-value).
The function defined in (12.17) is lower semi-continuous,
meaning

lim inf
s→s0

pvS(s) ≥ pvS(s0), for all s0. (12.18)

Proof sketch. For any random variable S on any proba-
bility space, s↦ P(S ≥ s) is lower semi-continuous. This
comes from the fact that P(S ≤ s) is upper semi-continuous
(Problem 4.5). We then use the fact that the supremum of
any collection of lower semi-continuous functions is lower
semi-continuous.

Proposition 12.17 (Monotone transformation). Con-
sider a test statistic S and that large values of S provide
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evidence against the null hypothesis. Let g be strictly
increasing (resp. decreasing). Then large (resp. small)
values of g(S) provide evidence against the null hypothesis
and the resulting p-value is equal to that based on S.

Proof. Suppose, for instance, that g is strictly increasing
and let T = g(S). Suppose that the experiment resulted in
ω. Then S is observed to be s ∶= S(ω) and T is observed
to be t ∶= T (ω). Noting that t = g(s), for any possible
outcome ω′, we have

T (ω′) ≥ t ⇔ g(S(ω′)) ≥ g(s) ⇔ S(ω′) ≥ s.

From this, pvT (t) = pvS(s) follows, which is what we
needed to prove.

Problem 12.18. Show that the different variants of like-
lihood ratio test statistic, (12.15) and (12.16), lead to the
same p-value.
Example (Binomial experiment). Consider the problem
of testing the hypothesis H0 of (12.14). As a test statistic,
let us use the maximum likelihood estimator, S ∶= Y /n.
Here large values of S weigh against the null hypothesis.
If the data are ω, s ∶= S(ω) is the observed value of the
test statistic, and the resulting p-value is given by

sup
θ≤θ0

Pθ(S ≥ s).

By a monotonicity argument (Problem 3.26), it turns out
that the supremum is always achieved at θ = θ0, right at
the boundary of the null and alternative sets. In terms of
the number of heads Y , the p-value is thus equal to

Pθ0(Y ≥ y),

where y ∶= Y (ω). Under θ = θ0, Y has distribution
Bin(n, θ0), and therefore this p-value can be computed by
reference to that distribution.
Problem 12.19 (Near equivalence of the MLE and LR).
We saw in Example 12.14 that the MLE and the LR were
not, strictly speaking, equivalent. Although they may
yield different p-values, show that these coincide when
they are smaller than Pθ0(S ≥ θ0) (which is close to 0.5).

12.4.4 Tests

A test statistic yields a p-value that is used to quantify
the amount of evidence in the data against the postulated
null hypothesis. Sometimes, though, the end goal is ac-
tual decision: reject or not reject is the question. Tests
formalize such decisions.
Formally, a test is a statistic with values in {0,1}, re-

turning 1 if the null hypothesis is to be rejected and 0
otherwise. If large values of a test statistic S provide
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evidence against the null, then a test based on S will be
of the form

φ(ω) = {S(ω) ≥ c}. (12.19)
The subset {S ≥ c} ≡ {ω ∶ S(ω) ≥ c} is called the rejection
region of the test. The threshold c is typically referred to
as the critical value.

Test errors When applying a test to data, two types
of error are possible:

• A Type I error or false positive happens when the
test rejects even though the null hypothesis is true.

• A Type II error or false negative happens when the
test does not reject even though the null hypothesis
is false.

Table 12.1 illustrates the situation.

Table 12.1: Types of error that a test can make.

null is true null is false

rejection type I correct
no rejection correct type II

For a test that rejects for large values of a statistic, the
choice of critical value drives the probabilities of Type

I and Type II errors. Qualitatively speaking, increasing
the critical value makes the test reject less often, which
decreases the probability of Type I error and increases
the probability of Type II error. Of course, decreasing the
critical value has the reverse effect.

12.4.5 Level

The size of a test φ is the maximum probability of Type I
error,

size(φ) ∶= sup
θ∈Θ0

Pθ(φ = 1). (12.20)

Let α ∈ [0, 1] denote the desired control on the probability
of Type I error, called the significance level. A test φ is
said to have level α if its size is bounded by α,

size(φ) ≤ α.
Given a test statistic S whose large values weigh against

the null hypothesis, the corresponding test has level α if
the critical value c satisfies

pvS(c) ≤ α.
In order to minimize the probability of Type II error, we
want to choose the smallest c that satisfies this require-
ment. Let cα denote that value, or in formula

cα ∶= min {c ∶ pvS(c) ≤ α}. (12.21)
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(The minimum is attained because of Proposition 12.16.)
The resulting test has rejection region {S ≥ cα}.
Remark 12.20. The rejection region can also be ex-
pressed directly in terms of the p-value as {pvS(S) ≤ α},
so that the test rejects at level α if the associated p-value
is less than or equal to α.
The following shows that this test controls the proba-

bility of Type I error at the desired level α.

Proposition 12.21. For any α ∈ [0,1],

sup
θ∈Θ0

Pθ(pvS(S) ≤ α) ≤ α. (12.22)

Proof. Let pv be shorthand for pvS . As in Problem 4.14,
define F̃θ(s) = Pθ(S ≥ s), so that

pv(s) = sup
θ∈Θ0

F̃θ(s).

In particular, for any θ ∈ Θ0,

pv(s) ≤ α ⇒ F̃θ(s) ≤ α. (12.23)

Fix such a θ. Let F−θ denote the quantile function of S

under θ as defined in Section 4.6. Then

Pθ(pv(S) ≤ α) ≤ Pθ(F̃θ(S) ≤ α) (12.24)
= Pθ(S ≥ F−θ (1 − α)) (12.25)
= F̃θ(F−θ (1 − α)) (12.26)
≤ α. (12.27)

In the 1st line we used (12.23), in the 2nd we used (4.20),
in the 3rd we used the definition of F̃θ, and in the 4th we
used (4.20) again. Since θ ∈ Θ0 is arbitrary, the proof is
complete.

Example (Binomial experiment). Continuing with the
same setting, and recalling that we use as test statistic
the MLE, S = Y /n, and that we reject for large values of
that statistic, the critical value for the level α is given by

cα = min {c ∶ supθ≤θ0 Pθ(S ≥ c) ≤ α} (12.28)
= min {c ∶ Pθ0(S ≥ c) ≤ α}, (12.29)

where we used (3.12) in the second line. Equivalently,
cα = bα/n where bα is the (1 − α)-quantile of Bin(n, θ0).
Controlling the level is equivalent to controlling the

number of false alarms, which is crucial in applications. 69

69 The way an alarm system is designed plays an important role
too, as briefly discussed here.

https://99percentinvisible.org/episode/mini-stories-volume-4/2/
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Example 12.22 (Security at Y-12). We learn in [203]
that, in 2012, three activists (including an eighty two year
old nun) broke into the Y-12 National Security Complex
in Oak Ridge, Tennessee. “Y-12 is the only industrial
complex in the United States devoted to the fabrication
and storage of weapons-grade uranium. Every nuclear
warhead and bomb in the American arsenal contains ura-
nium from Y-12.” This is a highly guarded complex and
the activists did set up an alarm, but there were several
hundred false alarms per month. ([257] claims there were
upward of 2,000 alarms per day.) This reminds one of the
allegory of the boy who cried wolf...

12.4.6 Power

The power of a test φ at θ ∈ Θ is

pwrφ(θ) ∶= Pθ(φ = 1).

If the test is of the form φ = {S ≥ c}, then

pwrφ(θ) = Pθ(S ≥ c).

Remark 12.23. The test φ has level α if and only if

pwrφ(θ) ≤ α, for all θ ∈ Θ0.

Problem 12.24 (Binomial experiment). Consider the
problem of testing the hypothesis H0 of (12.14) and con-
tinue to use the test derived from the MLE. Set the level
at α = 0.01 and, in R, plot the power as a function of
θ ∈ [0,1]. Do this for n ∈ {10,20,50,100,200,500,1000}.
Repeat, now setting the level at α = 0.10 instead.
Desiderata. A good test has large power against alter-
natives of interest when compared to other tests at the
same significance level.
From confidence intervals to tests and back There is

an equivalence between confidence intervals and tests of
hypotheses.

12.4.7 A confidence interval gives a test

Suppose that I is a (1−α)-confidence interval for θ. Define
φ = {Θ0 ∩ I = ∅}, which is clearly a test. Moreover, it has
level α. To see this, take θ ∈ Θ0 and derive

φ = 1 ⇔ Θ0 ∩ I = ∅ ⇒ θ ∉ I,

so that
Pθ(φ = 1) ≤ Pθ(θ ∉ I) ≤ α,

where the last inequality is due to the fact that I is a
(1 − α)-confidence interval for θ.

https://etc.usf.edu/lit2go/35/aesops-fables/375/the-boy-who-cried-wolf/
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12.4.8 A family of confidence intervals gives a
p-value

Assume a family of confidence intervals for θ, denoted
{Iγ ∶ γ ∈ [0,1]}, such that Iγ has confidence level γ and
Iγ ⊂ Iγ′ when γ ≤ γ′. Then define

P ∶= sup{α ∶ Θ0 ∩ I1−α ≠ ∅}.

This is the random variable (with values in [0,1]) when
seen the intervals as random.

Proposition 12.25. This quantity is a valid p-value in
the sense that it satisfies (12.22), meaning

sup
θ∈Θ0

Pθ(P ≤ α) ≤ α, for all α ∈ [0,1].

Proof. Take any θ ∈ Θ0 and any α ∈ [0,1]. We need to
prove that

Pθ(P ≤ α) ≤ α. (12.30)
By definition of P , we have Θ0 ∩ I1−u = ∅ for any u > P .
In particular, for any u > α,

Pθ(P ≤ α) ≤ Pθ(Θ0 ∩ I1−u = ∅)
≤ Pθ(θ ∉ I1−u)
≤ 1 − (1 − u) = u.

This being true for all u > α, we obtain (12.30).

12.4.9 A family of tests gives a confidence
interval

For each θ ∈ Θ, suppose we have available a level α test
denoted φθ, for the null hypothesis that θ∗ = θ. Thus φθ
is testing the null hypothesis that the true value of the
parameter is θ. Define

I(ω) = {θ ∶ φθ(ω) = 0}, (12.31)

which is the set of θ whose associated test does not reject.
This is an interval in many classical situations where Θ ⊂ R.
We assume this is the case, although what follows does not
rely on that assumption. Then I is level (1−α)-confidence
interval for θ, meaning it satisfies (12.8). To see that, take
any θ ∈ Θ. By definition of I and the fact that each φθ
has level α, we get

Pθ(θ ∉ I) = Pθ(φθ = 1) ≤ α.

Example. Consider the setting of Example 12.2. Sup-
pose we use the MLE (still denoted S = Y /n) as test
statistic. In line with how we tested (12.14), let φθ denote
the level α test based on S for θ∗ ≤ θ. The test φθ can be
used for testing θ∗ = θ since this implies θ∗ ≤ θ. Let Fθ
and F−θ denote the distribution and quantile functions of
Bin(n, θ). Following the same steps that lead to (12.28),
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and working directly with the number of heads Y , we
derive φθ = {Y ≥ cα,θ}, where cα,θ ∶= F−θ (1 − α). Then

φθ = 0 ⇔ Y < cα,θ ⇔ Fθ(Y ) < 1 − α, (12.32)

where the 2nd equivalence is due to (4.17). Hence,

I = {θ ∶ Fθ(Y ) < 1 − α}.

Define
S ∶= inf{θ ∶ Fθ(Y ) < 1 − α},

with the convention that S = 1 if this set is empty (which
only happens when Y = n). Then, by (3.12),

I = (S,1]. (12.33)

Problem 12.26 (Binomial one-sided confidence interval).
Write an R function that computes this interval. A simple
grid search works: at each θ in a grid of values, one checks
whether

Fθ(y) < 1 − α. (12.34)

However, taking advantage of the monotonicity (3.12), a
bisection search is applicable, which is much more efficient.

12.5 Further topics

12.5.1 Likelihood methods when the model is
continuous

In our exposition of likelihood methods — maximum
likelihood estimation and likelihood ratio testing — we
have assumed that the statistical model was discrete in
the sense that the sample space Ω was discrete.
Consider the common situation where the experiment

results in a d-dimensional random vector X(ω) and that
our inference is based on that random vector. Assume
that X has a continuous distribution and let fθ denote
its density under Pθ.
The likelihood methods are defined as before with the

density replacing the mass function. This is (at least
morally) justified by the fact that, in a continuous setting,
a density plays the role of mass function. In more detail,
letting x =X(ω), the likelihood function is now defined
as

lik(θ) ∶= fθ(x).

Based on this new definition of the likelihood, the max-
imum likelihood estimator and the likelihood ratio are
defined as they were before.
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12.5.2 Two-sided p-value

It is sometimes the case that large and small values of a
test statistic provide evidence against the null hypothesis.
For example, in the binomial experiment of Example 12.2,
consider testing

H0 ∶ θ∗ = θ0.

Problem 12.27. Show that the LR is an increasing func-
tion of

θ̂ log( θ̂
θ0

) + (1 − θ̂) log( 1 − θ̂
1 − θ0

),

where θ̂ denotes the maximum likelihood estimate as in
Example 12.14.
Thus the application of the likelihood ratio procedure

is as straightforward as it was in the one-sided situation
considered earlier.
However, let’s look directly at the MLE. If θ̂ is quite

large, or if it is quite small, compared to θ0, this is evidence
against the null. In such a situation, the p-value can be
defined in a number of ways. A popular way is based on
the minimum of the two one-sided p-values, namely

2 min{Pθ0(Y ≥ y),Pθ0(Y ≤ y)},

where Y is the total number of heads in the sequence and
y = Y (ω) is the observed value of Y , as before.

Problem 12.28. Compare this p-value with the p-value
resulting from using the LR.

12.6 Additional problems

Problem 12.29 (German Tank Problem 70). Suppose
we have an iid sample from the uniform distribution on
{1, . . . , θ}, where θ ∈ N is unknown. Derive the maximum
likelihood estimator for θ.
Problem 12.30 (Gosset’s experiment). Fit a Poisson
model to the data of Table 3.1 by maximum likelihood.
Add a row to the table to display the corresponding ex-
pected counts so as to easily compare them with the actual
counts. In R, do this visually by drawing side-by-side bar
plots with different colors and a legend.
Problem 12.31 (Rutherford’s experiment). Same as in
Problem 12.30, but with the data of Table 3.2.

70 The name of the problem comes from World War II, where
the Western Allies wanted to estimate the total number of German
tanks in operation (θ above) based on the serial numbers of captured
or destroyed German tanks. In such a setting, is the assumption of
iid-ness reasonable?
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In this chapter we introduce and briefly discuss some
properties of estimators and tests.

13.1 Sufficiency

We have referred to the setting of Example 12.2 as a bi-
nomial experiment. The main reason is that the binomial
distribution is at the very center of the resulting statistical
inference. In what we did, this was a consequence of us
relying on the number of heads, Y , which has the binomial
distribution with parameters (n, θ). Surely, we could have
based our inference on a different statistic. However, there
is a fundamental reason that inference should be based on
Y : because Y contains all the information about θ that
we can extract from the data. This is rather intuitive
because in going from the sequence of tosses ω to the
number of heads Y (ω), all that is lost is the position of
the heads in the sequence, that is, the order. But because
the tosses are assumed iid, the order cannot provide any

https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
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information on the parameter θ.
More formally, assume a statistical model {Pθ ∶ θ ∈ Θ}.

We say that a k-dimensional vector-valued statistic Y is
sufficient for this family if

For any event A and any y ∈ Rk,
Pθ(A ∣ Y = y) does not depend on θ.

If Y = (Y1, . . . , Yk), we say that the statistics Y1, . . . , Yk
are jointly sufficient.
Thus, intuitively, a statistic Y is sufficient if the ran-

domness left after conditioning on Y does not depend on
the value of θ, so that this leftover randomness cannot be
used to improve the inference.

Theorem 13.1 (Factorization criterion). Consider a fam-
ily of either mass functions or densities, {fθ ∶ θ ∈ Θ}, over
a sample space Ω. Then a statistic Y is sufficient for this
model if and only if there are functions {gθ ∶ θ ∈ Θ} and h
such that, for all θ ∈ Θ,

fθ(ω) = gθ(Y (ω))h(ω), for all ω ∈ Ω.

Problem 13.2. In the binomial experiment (Exam-
ple 12.2), show that the number of heads is sufficient.
Problem 13.3. In the German tank problem (Prob-
lem 12.29), show that the maximum of the observed (serial)
numbers is sufficient.

13.2 Consistency

The notion of consistency is best understood in an asymp-
totic model where the sample size becomes large. This
can be confusing, as in a given experiment, we only have
access to a finite sample, which is fixed. We adopt here a
rather formal stance for the sake of clarity.

Consider a sequence of statistical models, (Ωn,Σn,Pn),
where Pn = {Pn,θ ∶ θ ∈ Θ}. Note that the parameter
space does not vary with n. An important special case
is that of product spaces where Ωn = Ωn

☆ for some set Ω☆,
meaning that ω ∈ Ωn can be written as ω = (ω1, . . . , ωn)
with ωi ∈ Ω☆. In that case, n typically represents the
sample size.

A statistical procedure is a sequence of statistics, there-
fore of the form S = (Sn) with Sn being a statistic defined
on Ωn. An example of procedure in the context of estima-
tion is the maximum likelihood method. An example of
procedure in the context of testing is the likelihood ratio
method.
Remark 13.4. Asymptotic results, meaning those that
describe a situation as n→∞, can be difficult to interpret.
Indeed, in most real-life situations, a sample is collected
and the subsequent analysis is necessarily based on that
sample alone, as no additional observations are collected.
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That being said, such results do provide some theoretical
foundation for Statistics not unlike the Law of Large
Numbers does for Probability Theory.

13.2.1 Consistent estimators

We say that an procedure S = (Sn) is consistent for esti-
mating ϕ(θ) if, for any ε > 0,

Pn,θ(∣Sn − ϕ(θ)∣ ≥ ε)→ 0, as n→∞.

Problem 13.5 (Binomial experiment). In Example 12.2,
consider the task of estimating the parameter θ. Show
that the maximum likelihood method yields an estimation
procedure that is consistent. [This is a simple consequence
of the Law of Large Numbers.]
In fact, the MLE is consistent under fairly broad as-

sumptions. If there are multiple values of the parameter
that maximize the likelihood, we assume that one such
value is chosen to define the MLE.

Proposition 13.6 (Consistency of the MLE). Consider
an identifiable family of densities or mass functions {fθ ∶
θ ∈ Θ} having same support X . Assume that Θ is a
compact subset of some Euclidean space; that fθ(x) > 0
and that θ ↦ fθ(x) is continuous, for all x ∈ X ; and

that supθ∈Θ ∣fθ(x)∣ is integrable with respect to fθ∗, where
θ∗ denotes the true value of the parameter. Then, as a
procedure, the MLE is well defined and consistent.

Problem 13.7. Prove this proposition when Θ is a com-
pact interval of the real line. [The main ingredients are
Jensen’s inequality and the uniform law of large numbers
as stated in Problem 16.101.]

13.2.2 Consistent tests

We say that a procedure S = (Sn) is consistent for testing
H0 ∶ θ ∈ Θ0, if there is a sequence of critical values (cn)
such that

lim
n→∞

Pn,θ(Sn ≥ cn) = 0, for all θ ∈ Θ0, (13.1)

lim
n→∞

Pn,θ(Sn ≥ cn) = 1, for all θ ∉ Θ0. (13.2)

(We have implicitly assumed that large values of Sn weigh
against the null hypothesis.)
Problem 13.8 (Binomial experiment). In Example 12.2,
consider the task of testing H0 ∶ θ∗ ≤ θ0. Show that likeli-
hood ratio method yields a procedure that is consistent
for H0.
The LR test is consistent under fairly broad assump-

tions.
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Problem 13.9. State and prove a consistency result for
the LR test under conditions similar to those in Proposi-
tion 13.6.

13.3 Notions of optimality for estimators

Given a loss function L, the risk of an estimator S for θ
is defined in (12.6). Obviously, the smaller the risk the
better the estimator. However, this presents a difficulty
since the risk is a function of θ rather than just a number.

13.3.1 Maximum risk and average risk

We present two ways of reducing the risk function to a
number.

Maximum risk The first avenue is to consider the max-
imum risk, namely the maximum of the risk function,

Rmax(S) ∶= sup
θ∈Θ

Rθ(S).

An estimator that minimizes the maximum risk, if one
exists, is said to be minimax, and its risk is called the
minimax risk, denoted R∗

max.

Average risk The second avenue is to consider the
average risk (aka Bayes risk). To do so, we need to choose
a distribution on the parameter space. (A distribution on
the parameter space is often called a prior.) Assuming
that Θ is a subset of some Euclidean space, let λ be a
density supported on Θ. We can then consider the average
risk with respect to λ,

Rλ(S) ∶= ∫Θ
Rθ(S)λ(θ)dθ.

An estimator that minimizes this average risk is called
a Bayes estimator (with respect to λ) and the minimum
average risk, denoted R∗

λ.
A Bayes estimator is often derived as follows. For

simplicity, assume a family of densities {fθ ∶ θ ∈ Θ} on
some Euclidean sample space Ω and that we are estimating
θ itself. Applying the Fubini–Tonelli Theorem, we have

Rλ(S) = ∫Θ∫Ω
L(S(ω), θ)fθ(ω)dωλ(θ)dθ

= ∫Ω∫Θ
L(S(ω), θ)fθ(ω)λ(θ)dθdω.

Thus, if the following is well-defined,

Sλ(ω) ∶= arg min
s∈Θ

∫Θ
L(s, θ)fθ(ω)λ(θ)dθ,

it is readily seen to minimize the λ-average risk.
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Problem 13.10 (Binomial experiment). Consider a bi-
nomial experiment as in Example 12.9 and the estimation
of θ under squared error loss. For the MLE:
(i) Compute its maximum risk.
(ii) Compute its average risk with respect to the uniform

distribution on [0,1].

Maximum risk optimality and average risk optimality
are intricately connected. For example, for any prior λ,

Rλ(S) ≤ Rmax(S), for all S,

and this immediately implies that

R∗
λ ≤ R∗

max.

Problem 13.11. Show that an estimator S is mini-
max when there is a sequence of priors (λk) such that
lim infk→∞R∗

λk
≥ Rmax(S).

Problem 13.12. Use the previous problem to show that
a Bayes estimator with constant risk function is necessarily
minimax.
Problem 13.13. In a binomial experiment, derive a min-
imax estimator. To do so, find a prior in the Beta family
such that the resulting Bayes estimator has constant risk
function. Using R, produce a graph comparing the risk

functions of this estimator and that of the MLE. Do so
for various values of n.

13.3.2 Admissibility

We say that an estimator S is inadmissible if there is an
estimator T such that

Rθ(T ) ≤ Rθ(S), for all θ ∈ Θ,

and the inequality is strict for at least one θ ∈ Θ. Otherwise
we say that the estimator S is admissible.

At least in theory, if an estimator is inadmissible, it
can be replaced by another estimator that is uniformly
better in terms of risk. However, even then, there might
be other reasons for using an inadmissible estimator, such
as simplicity or ease of computation.
Admissibility is interrelated with maximum risk and

average risk optimality.
Problem 13.14. Show that an estimator that is unique
Bayes for some prior is necessarily admissible.
Problem 13.15. Show that an estimator that is unique
minimax is necessarily admissible.
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13.3.3 Risk unbiasedness

We say here that an estimator S is risk unbiased if

Eθ[L(S, θ)] ≤ Eθ[L(S, θ′)]. (13.3)

In words, this means that S is on average as close (as
measured by the loss function) to the true value of the
parameter as any other value.
We assume that the feature of interest, ϕ(θ), is real.

Mean unbiased estimators Suppose that L is the
squared error loss, meaning L(s, θ) = (s − ϕ(θ))2.
Problem 13.16. Show that S is risk unbiased if and only
if it is unbiased in the sense of (12.9).

Such estimators are said to be mean-unbiased, or more
commonly, simply unbiased.
From the bias-variance decomposition (12.4), an esti-

mator with small MSE has necessarily small bias (and
also small variance). Therefore, a small bias is desirable.
However, strict unbiasedness is not necessarily desirable,
for a small MSE does not imply unbiasedness. In fact,
unbiased estimators may not even exist.
Problem 13.17. Consider a binomial experiment as in
Example 12.9. Show that there is an unbiased estimator

of ϕ(θ) if and only if ϕ is a polynomial of degree at most
n.

Median unbiased estimators Suppose that L is the
absolute loss, meaning L(s, θ) = ∣s − ϕ(θ)∣.
Problem 13.18. Show that S is risk unbiased if and only
if, for all θ ∈ Θ, ϕ(θ) is a median of S under Pθ.
Such estimators are said to be median-unbiased.

Problem 13.19. Show that if S is median-unbiased for
ϕ(θ), then for any strictly monotone function g ∶ R→ R,
g(S) is median-unbiased for g(ϕ(θ)). Show by exhibiting
a counter-example that this is no longer true if ‘median’
is replaced with ‘mean’.

13.4 Notions of optimality for tests

Our discussion of optimality for estimators has parallels
for tests. Indeed, once the level is under control, the
larger the power (i.e., the more the test rejects) the better.
However, this is quantified by a power function and not a
simple number.

We consider a statistical model as in (12.1) and consider
testing H0 ∶ θ ∈ Θ0. Unless otherwise specified, Θ1 is the
complement of Θ0 in Θ, as in (12.13).
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Remark 13.20 (Level requirement). We assume that all
tests that appear below have level α. It is crucial that
the test being evaluated satisfy the prescribed level, for
otherwise the evaluation is not accurate and a comparison
with other tests that do satisfy the level requirement is
not fair.

13.4.1 Minimum power and average power

There are various ways of reducing the power function to
a single number.

Minimum power A first avenue is to consider the min-
imum power,

inf
θ∈Θ1

Pθ(φ = 1).

In a number of classical models, Θ is a domain of a Eu-
clidean space and the power function of any test is contin-
uous over Θ. In such a setting, if there is no ‘separation’
between Θ0 and Θ1, then any test has minimum power
bounded from above by its size, which is not very inter-
esting. The consideration of minimum power is thus only
relevant when there is a ‘separation’ between the null and
alternative sets.

Average power A second avenue is to consider the
average power. Let λ be a density on Θ1 (assuming Θ is
a subset of a Euclidean space). We can then average the
power with respect to λ,

∫Θ1
Pθ(φ = 1)λ(θ)dθ.

Problem 13.21 (Binomial experiment). Consider a bi-
nomial experiment as in Example 12.14 and the testing of
Θ0 ∶= [0, θ0], where θ0 is given. For the level α test based
on rejecting for large values of Y :
(i) Compute the minimum power when Θ = Θ0 ∪ Θ1

where Θ1 ∶= [θ1,1] for θ1 > θ0 given.
(ii) Compute the average power with respect to the uni-

form distribution on Θ1.
Answer these questions analytically and also numerically,
using R.

13.4.2 Admissibility

We say that a test φ is inadmissible if there is a test ψ
such that

Pθ(φ = 1) ≤ Pθ(ψ = 1), for all θ ∈ Θ1,

and the inequality is strict for at least one θ ∈ Θ1.
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At least in theory, if a test is inadmissible, it can be
replaced by another test that is uniformly better in terms
of power. However, even then, there might be other
reasons for using an inadmissible test, such as simplicity
or ease of computation.

13.4.3 Uniformly most powerful tests

Consider testing θ ∈ Θ0. A test φ is said to be uniformly
most powerful (UMP) among level α tests if φ itself has
level α and is at least as powerful as any other level α
test, meaning that for any other test ψ with level α,

Pθ(φ = 1) ≥ Pθ(ψ = 1), for all θ ∈ Θ1.

This is clearly the best one can hope for. However, a UMP
test seldom exists.

Simple vs simple A very particular case where a UMP
test exists is when both the null set and alternative set
are singletons. We say that a hypothesis is simple if the
corresponding parameter subset is a singleton; it is said to
be composite otherwise. Suppose therefore that Θ0 = {θ0}
and Θ1 = {θ1}, and let Qj be short for Pθj .

The following is a consequence of the Neyman–Pearson
Lemma 71, one of the most celebrated results in the theory
of tests. Recall that a likelihood ratio test is any test that
rejects for large values of the likelihood ratio.

Theorem 13.22. In the present context, any LR test is
UMP at level α equal to its size.

To understand where the result comes from, suppose we
want to test at a prescribed level α in a situation where
the sample space is discrete. In that case, we want to
solve the following optimization problem

maximize ∑
ω∈R

Q1(ω)

subject to ∑
ω∈R

Q0(ω) ≤ α.

The optimization is over subsets R ⊂ Ω, which represent
candidate rejection regions. In that case, it makes sense to
rank ω ∈ Ω according to its likelihood ratio value L(ω) ∶=
Q1(ω)/Q0(ω). If we denote by ω1, ω2, . . . the elements of
Ω in decreasing order, meaning that L(ω1) ≥ L(ω2) ≥ ⋯,
and define the regions Rk = {ω1, . . . , ωk}, then it makes

71 Named after Jerzy Neyman (1894 - 1981) and Egon Pearson
(1895 - 1980).
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intuitive sense to choose Rkα , where

kα ∶= max{k ∶ Q0(ω1) +⋯ +Q0(ωk) ≤ α}.

This is correct when the level can be exactly achieved in
this fashion. Otherwise, the optimization is more complex,
leading to a linear program.

In a different setting where the sample space is a subset
of some Euclidean space, suppose that Q1 has density
f1 and that Q0 has density f0. In that case, the likeli-
hood ratio is defined as L ∶= f1/f0. If L has continuous
distribution under Q0, by choosing the critical value c
appropriately, any prescribed level α can be attained. As
a consequence, if c is chosen such that Q0(L ≥ c) = α, then
the test with rejection region {L ≥ c} is UMP at level α.
The same cannot always be done if L does not have a
continuous distribution under the null.

Monotone likelihood ratio property As in Sec-
tion 12.2.2, assume a discrete model for concreteness,
although what follows applies more broadly. We consider
a situation where Θ is an interval of R.
The family of distributions {Pθ ∶ θ ∈ Θ} is said to have

the monotone likelihood ratio (MLR) property in T if the
model is identifiable and, for any θ < θ′, Pθ′/Pθ is monotone

increasing in T , meaning there is a non-decreasing function
gθ,θ′ ∶ R→ R satisfying

Pθ′(ω)
Pθ(ω)

= gθ,θ′(T (ω)), for all ω ∈ Ω.

Theorem 13.23. Assume that the family {Pθ ∶ θ ∈ Θ}
has the MLR property in T and that the null hypothesis
is of the form Θ0 = {θ ∈ Θ ∶ θ ≤ θ0}. Then any test of the
form {T ≥ t} has size Pθ0(T ≥ t), and is UMP at level α
equal to its size.

Problem 13.24. Show that in the context of Theo-
rem 13.23, the LR is a non-decreasing function of T and
that, therefore, an LR test is UMP at level α equal to its
size.
Problem 13.25 (Binomial experiment). Show that the
MLR property holds in a binomial experiment, and that
in particular, for testing H0 ∶ θ∗ ≤ θ0, a LR test is UMP
at its size. Show that the same is true of a test based on
the maximum likelihood estimator.

13.4.4 Unbiased tests

As we said above, a UMP test rarely exists. In particular,
it does not exist in the most popular two-sided situations,
including if the MLR property holds.
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Consider a setting where Θ is an interval of the real
line and the null hypothesis to be tested is H0 ∶ θ∗ = θ0
for some given θ0 in the interior of Θ. (If θ0 is one of the
boundary points, the situation is one-sided.) In such a
situation, a UMP test would have to be at least as good as
a UMP test for the one-sided null H≤

0 ∶ θ∗ ≤ θ0 and at least
as good as a UMP test for the one-sided null H≥

0 ∶ θ∗ ≥ θ0.
In most cases, this proves impossible.

In some sense this competition is unfair, because a test
for the one-sided null such as H≤

0 is ill-suited for the two-
sided null H0. Indeed, if a test for H≤

0 has level α, then
the probability that it rejects when θ∗ ≤ θ0 is bounded
from above by α.

To prevent one-sided tests from competing in two-sided
testing problems, one may restrict attention to so-called
unbiased tests. A test is said to be unbiased at level α
if it has level α, and the probability of rejecting at any
θ ∈ Θ1 is bounded from below by α.

While the number of situations where a UMP test exists
is rather limited, there are many more situations where
there exists a test that is UMP among unbiased tests.
Such a test is said to be UMPU.
An important class of situations where this occurs in-

cludes the case of general exponential families, where we

work with a family of densities {fθ ∶ θ ∈ Θ} of the form

fθ(ω) = A(θ) exp(ϕ(θ)T (ω))h(ω),

where, in addition, ϕ is strictly increasing on Θ, assumed
to be an open interval. Suppose in this setting that the null
set Θ0 is a closed subinterval of Θ, possibly a singleton.

Theorem 13.26. In the present setting, any test of the
form {T ≤ t1} ∪ {T ≥ t2}, with t1 < t2, is UMPU at its
size.

Problem 13.27 (Binomial experiment). Show that a
binomial experiment leads to a general exponential family.
Remark 13.28. In a binomial experiment, an equal-
tailed two-sided LR test is approximately UMPU for
θ∗ = θ0 as long as θ0 is not too close to 0 or 1. (The
larger the number of trials n, the closer θ0 can be to these
extremes.)

13.5 Additional problems

Problem 13.29. Consider a binomial experiment as be-
fore and the estimation of θ. Is the MLE median-unbiased?
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Estimating a proportion is one of the most basic problems
in statistics. Although basic, it arises in a number of
important real-life situations, for example:

• Election polls are conducted to estimate the propor-
tion of people that will vote for a particular candidate.

• In quality control, the proportion of defective items
manufactured at a particular plant or assembly line
needs to be monitored, and one may resort to statis-
tical inference to avoid having to check every single
item.

• Clinical trials are conducted in part to estimate the
proportion of people that would benefit (or suffer
serious side effects) from receiving a particular treat-
ment.

The situation is commonly modeled as sampling from
an urn. The resulting distribution, as we know, depends
on the contents of the urn and on how the sampling is
done. This, of course, changes how statistical inference is
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performed.

14.1 Binomial experiments

We start with the binomial experiment of Example 12.2,
which has served us as our running example in the last
two chapters. Remember that this is an experiment where
a θ-coin is tossed a predetermined number of times n, and
the goal is to infer the value of θ based on the outcome of
the experiment (the data).
To summarize what we have learned about this model

so far, in Chapter 12 we derived the maximum likelihood
estimator, which is the sample proportion of heads, that
is, S = Y /n. We then focused on testing null hypotheses of
the form θ∗ ≤ θ0 for a given θ0. We considered tests which
reject for large values of the MLE, meaning with rejection
regions of the form {S ≥ c}. Using the correspondence
between tests and confidence intervals, we derived the
(one-sided) confidence interval (12.33).
Problem 14.1. Adapt the arguments to testing null hy-
potheses of the form θ∗ ≥ θ0 for a given θ0 and derive
the corresponding confidence interval at level 1 − α. The
interval will be of the form

I = [0, S̄). (14.1)

14.1.1 Two-sided tests and confidence
intervals

We now consider the two-sided situation. In brief, we
study the problem of testing null hypotheses of the form
H0 ∶ θ∗ = θ0 for a given θ0 ∈ (0,1) and then derive a
confidence interval as in Section 12.4.9. (If θ0 = 0 or = 1,
the problem is one-sided.) We still use the MLE as test
statistic.

Tests For the null θ∗ = θ0, both large and small values
of Y (the number of heads) are evidence against the null
hypothesis. This leads us to consider tests of the form

φ = {Y ≤ a or Y ≥ b}. (14.2)

The critical values, a and b, are chosen to control the level
at some prescribed α, meaning

Pθ0(φ = 1) ≤ α.

Equivalently,

Pθ0(Y ≤ a) + Pθ0(Y ≥ b) ≤ α. (14.3)

Note that a number of choices are possible. Two natural
ones are
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• Equal tail. This choice corresponds to choosing

a = max{a′ ∶ Pθ0(Y ≤ a′) ≤ α/2}, (14.4)
b = min{b′ ∶ Pθ0(Y ≥ b′) ≤ α/2}, (14.5)

where the maximization and minimization are over
integers.

• Minimum length. This choice corresponds to mini-
mizing b − a subject to (14.3).

Problem 14.2. Derive the LR test in the present context.
You will find it is of the form (14.2) for particular critical
values a and b (to be derived explicitly). How does the
LR test compare with the equal-tail and minimum-length
tests above?

Confidence intervals Let φθ be a test for θ∗ = θ as
constructed above, meaning with rejection region of the
form {Y ≤ aθ} ∪ {Y ≥ bθ}, where

Pθ(Y ≤ aθ) + Pθ(Y ≥ bθ) ≤ α.
As in Section 12.4.9, based on this family of tests we can
obtain a (1 − α)-confidence interval of the form

I = (S, S̄). (14.6)

For building a confidence interval, the minimum-length
choice for aθ and bθ is particularly appealing.

Problem 14.3. Derive this confidence interval.
The one-sided intervals (12.33) and (14.1), and the two-

sided interval (14.6) with the equal-tail construction, are
due to Clopper and Pearson [41]. The construction yields
an exact interval in the sense that the desired confidence
level is achieved.
R corner. The Clopper–Pearson interval (one-sided or
two-sided), and the related test, can be computed in R
using the function binom.test.

We describe below other traditional ways of constructing
confidence intervals. 72 Compared to the Clopper–Pearson
construction, they are less labor intensive although they
are not as precise. They were particularly useful in the
pre-computer age, and some of them are still in use.

14.1.2 Chebyshev’s confidence interval

We saw in Problem 12.10 how to compute a confidence
interval using Chebyshev’s inequality. Since, for all θ,

Varθ(S) = Varθ(Y /n) = nθ(1 − θ)
n2 ≤ 1

4n
,

72 We focus here on confidence intervals, from which we know
tests can be derived as in Section 12.4.7.
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(Problem 7.37), the resulting interval, at confidence level
1 − α, is

(S ± 1√
4αn

). (14.7)

This interval is rather simple to derive and does not require
heavy computations that would necessitate the use of a
computer. However, it is very conservative, meaning quite
wide compared to the Clopper–Pearson interval.

As a possible refinement, one can avoid using an upper
bound on the variance. Indeed, Chebyshev’s inequality
tells us that

∣S − θ∣√
θ(1 − θ)/n

< z, (14.8)

with probability at least 1 − 1/z2.
Problem 14.4. Prove that (14.8) is equivalent to

θ ∈ Iz ∶= (Sz ± z
σz√
n
), (14.9)

where

Sz ∶=
S + z2/2n
1 + z2/n , σ2

z ∶=
S(1 − S) + z2/4

(1 + z2/n)2 .

In particular Iz defined in (14.9) is a (1 − 1/z2)-
confidence interval for θ.

14.1.3 Confidence intervals based on the
normal approximation

The Chebyshev’s confidence interval is commonly believed
to be too conservative, and practitioners have instead
relied on the normal approximation to the binomial distri-
bution instead of Chebyshev’s inequality, which is deemed
too crude. Let Φ denote the distribution function of the
standard normal distribution (which we saw in (5.2)).
Then, using the Central Limit Theorem,

Pθ(
∣S − θ∣√
θ(1 − θ)/n

< z) ≈ 2Φ(z) − 1, (14.10)

for all z > 0 as long as the sample size n is large enough.
(More formally, the left-hand side converges to the right-
hand side as n→∞.)

Wilson’s normal interval The construction of this
interval, proposed by Wilson [254], is based on the large-
sample approximation (14.10) and the derivations of Prob-
lem 14.4, which together imply that the interval defined
in (14.9) has approximate confidence level 2Φ(z) − 1.
R corner. Wilson’s interval (one-sided or two-sided) and
the related test, can be computed in R using the function
prop.test.
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The simpler variants that follow are also based on the
approximation (14.10). However, they offer no advantage
compared to Wilson’s interval, except for simplicity if
calculations must be done by hand. These constructions
start by noticing that (14.10) implies

Pθ(θ ∈ Jθ) ≈ 1 − α, (14.11)

where
Jθ ∶= (Sn ± z1−α/2

σθ√
n
), (14.12)

where zu ∶= Φ−1(u) and σ2
θ ∶= θ(1− θ). At this point, Jθ is

not a confidence interval as its computation depends on
θ, which is unknown.

Conservative normal interval In our derivation
of the interval (14.7), we used the fact that θ ∈ [0,1] ↦
θ(1 − θ) is maximized at θ = 1/2. Therefore,

Jθ ⊂ J1/2 = (S ±
z1−α/2

2
√
n

).

J1/2 can be computed without knowledge of θ and, because
of (14.11), it achieves a confidence level of at least 1−α in
the large-sample limit. Unless the true value of θ happens
to be equal to 1/2, this interval will be conservative in
large samples.

Plug-in normal interval It is very tempting to re-
place θ in (14.12) with S. After all, S is a consistent
estimator of θ. The resulting interval is

JS = (S ± z1−α/2 σS).

JS is a bona fide confidence interval. Moreover, (14.11),
coupled with Slutsky’s theorem (Theorem 8.48), implies
that JS achieves a confidence level of 1 − α in the large-
sample limit. Note that this construction relies on two
approximations.
Problem 14.5. Verify the claims made here.

14.2 Hypergeometric experiments

Consider an experiment where balls are repeatedly drawn
from an urn containing r red balls and b blue balls a
predetermined number of times n. The total number of
balls in the urn, v ∶= r + b, is assumed known. The goal
is to infer the proportion of red balls in the urn, namely,
r/v. If the draws are with replacement, this is a binomial
experiment with probability parameter θ = r/v, a case
that was treated in Section 14.1. We assume here that
the draws are without replacement.
Let Y denote the number of red balls that are drawn.

Assume that n < v, for otherwise the experiment reveals
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the contents of the urn and there is no inference left to
do. We call the resulting experiment a hypergeometric
experiment because Y is hypergeometric and sufficient for
this experiment.
Problem 14.6 (Sufficiency). Prove that Y is indeed suf-
ficient in this model.

14.2.1 Maximum likelihood estimator

Let y denote the realization of Y , meaning y = Y (ω)
with ω denoting the observed outcome of the experiment.
Recalling the definition of falling factorials (2.14), the
likelihood is given by (see (2.17))

lik(r) = (r)y (v − r)n−y
(v)n

,

where we used the fact that b = v − r. (As we saw be-
fore, although the likelihood is a function of y also, this
dependency is left implicit to focus on the parameter r.)

Although it may look intimidating, this is a tame func-
tion. It suffices to consider r in the range y ≤ r ≤ v −n+ y,
for otherwise the likelihood is zero. (This is congruent
with the fact that, having drawn y red balls and n−y blue
balls, we know that there were that many red and blue

balls in the urn to start with.) For r < v − n + y, we have

lik(r + 1)
lik(r) = (r + 1)(v − r − n + y)

(r − y + 1)(v − r) ,

so that

lik(r + 1) ≤ lik(r) ⇔ r ≥ yv − n + y
n

.

Similarly, for r > y, we have

lik(r − 1) ≤ lik(r) ⇔ r ≤ yv + y
n

.

We conclude that any r that maximizes the likelihood
satisfies

− n − y
nv

≤ r
v
− y
n
≤ y

nv
. (14.13)

More than necessary, this is also sufficient for r to maxi-
mize the likelihood.
Problem 14.7. Verify that r (integer) satisfies this con-
dition if and only if r/v is closest to y/n. Show that there
is only one such r, except when y/n = k/(v + 1) for some
integer k, in which case there are two such r. Conclude
that, in any case, any r satisfying (14.13) maximizes the
likelihood.
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In the situation where there are two maximizers of the
likelihood, we let the MLE be their average. Note that
r/v is the proportion of red balls in the urn, and thus the
MLE is in essence the same as in a binomial experiment
with θ = r/v as parameter, except that the proportion of
reds is here an integer multiple of 1/v.

14.2.2 Confidence intervals

The various constructions of a confidence interval that we
presented in the context of a binomial experiment apply
almost verbatim in the context of a hypergeometric exper-
iment. This is because the same normal approximation
that applies to the binomial distribution with parameters
(n, θ) also applies to the hypergeometric distribution with
parameters (n, r, v − r), with r/v in place of θ, if

v →∞, r →∞, n→∞, (14.14)
with r/v → θ ∈ (0,1), n/r → 0. (14.15)

Problem 14.8. Prove this under the more stringent con-
dition that n/√r → 0. [Use Problem 2.36 and the normal
approximation to the binomial.]
Problem 14.9. Derive the exact (Clopper–Pearson) one-
sided and then two-sided confidence intervals for a hyper-

geometric experiment. Then implement this as a function
in R.

14.2.3 Comparison with a binomial experiment

We already argued that a hypergeometric experiment
with parameters (n, r, v − r) is very similar to a binomial
experiment with parameters (n, θ) with θ = r/v. In fact,
the two are essentially equivalent when the size of the urn
increases and (14.14) holds.

In finer detail, however, it would seem that the former,
where sampling is without replacement, allows for more
precise inference compared to the latter, where sampling
is with replacement and therefore seemingly wasteful to a
certain degree. Indeed, if the balls are numbered (which
we can always assume, at least as a thought experiment)
and we have already drawn ball number i, then drawing
it again does not provide any additional information on
the contents of the urn.

Sampling without replacement is indeed preferable, be-
cause the resulting confidence intervals are narrower.
Problem 14.10. Verify numerically that the Clopper–
Pearson two-sided interval is narrower in a hypergeomet-
ric experiment compared to the corresponding binomial
experiment.
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14.3 Negative binomial and negative
hypergeometric experiments

Negative binomial experiments Consider an experi-
ment that consists in tossing a θ-coin until a predetermined
number of heads, m, has been observed. Thus the number
of trials is not set in advance, in contrast with a binomial
experiment. The goal, as before, is to infer the value of
θ based on the result of such an experiment. In practice,
such a design might be appropriate in situations where θ
is believed to be small.
Thus let (Xi ∶ i ≥ 1) denote the Bernoulli trials with

parameter θ and let N denote the number of tails until
m heads are observed. We call the resulting experiment
a negative binomial experiment because N is negative
binomial with parameters (m,θ) and sufficient for this
experiment.
Problem 14.11 (Sufficiency). Prove that N is indeed
sufficient.
Problem 14.12 (Maximum likelihood). Prove that the
MLE for θ is m/(m + N). Note that this is still the
observed proportion of heads in the sequence, just as in a
binomial experiment.
Problem 14.13. Derive the exact (Clopper–Pearson)

one-sided and then two-sided confidence intervals for a
negative binomial experiment. (These intervals have a
simple closed form when m = 1, which could be called a
geometric experiment.) Then implement this as a function
in R.

Negative hypergeometric experiments When the
experiment consists in repeatedly sampling without re-
placement from an urn, with r red and b blue balls, untilm
red balls are collected, we talk of a negative hypergeometric
experiment, in particular because the key distribution in
this case is the negative hypergeometric distribution.
Problem 14.14. Consider and solve the previous three
problems in the present context.

14.4 Sequential experiments

We present here another classical experimental design
where the number of trials is not set in advance of con-
ducting the experiment, that may be appropriate in surveil-
lance applications (e.g., epidemiological monitoring, qual-
ity control, etc). The setting is again that of a θ-coin being
repeatedly tossed, resulting in Bernoulli trials (Xi ∶ i ≥ 1).
As before, we let Yn = ∑ni=1Xi and Sn = Yn/n, which are
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the number of heads and the proportion of heads in the
first n tosses, respectively.

14.4.1 Sequential probability ratio test

Suppose we want to decide between two hypotheses

H≤
0 ∶ θ∗ ≤ θ0, versus H≥

1 ∶ θ∗ ≥ θ1, (14.16)

where 0 ≤ θ0 < θ1 ≤ 1 are given.
Example 14.15 (Multistage testing). Such designs are
used in mastery tests where a human subject’s knowledge
and command of some material or topic is tested on a
computer. In such a context, Xi = 1 if the ith question is
answered correctly, and = 0 otherwise, and θ1 and θ0 are
the thresholds for Pass/Fail, respectively.
The sequential probability ratio test (SPRT) (aka se-

quential likelihood ratio test) was proposed by Abraham
Wald (1902 - 1950) for this situation [242], except that he
originally considered testing

H=
0 ∶ θ∗ = θ0, versus H=

1 ∶ θ∗ = θ1, (14.17)

However, the same test can be applied verbatim to (14.16),
which is more general. The procedure is based on the
sequence of likelihood ratio test statistics (as the number

of trials increases). The method is general and is here
specialized to the case of Bernoulli trials.
The likelihood ratio statistic for H=

0 versus H=
1 is

Ln ∶= (θ1
θ0

)
Yn

(1 − θ1
1 − θ0

)
n−Yn

.

The test makes a decision in favor of H=
0 (resp. H=

1) if
Ln ≤ c0 (resp. Ln ≥ c1), where the thresholds c0 < c1
are predetermined based on the desired level and power.
(These depend in principle on n, but this is left implicit in
what follows.) This testing procedure amounts to stopping
the trials when there is enough evidence against either
H=

0 or against H=
1 .

More specifically, given α0, α1 ∈ (0,1), c0 and c1 are
chosen so that

s0 ∶= Pθ0(Ln ≥ c1) ≤ α0, (14.18)
s1 ∶= Pθ1(Ln ≤ c0) ≤ α1. (14.19)

These thresholds can be determined numerically in an
efficient manner using a bisection search.
Problem 14.16. In R, write a function taking as input
(θ0, θ1, α0, α1) and returning (approximate) values for c0
and c1. Try your function on simulated data.
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Proposition 14.17. With c0 = α1/(1−α0) and c1 = (1−
α1)/α0, it holds that s0 + s1 ≤ α0 + α1.

The choice of (c0, c1) considered in this proposition is
known to be very accurate in most practical situations. It
allows to control s0 + s1, which is the probability that the
test makes a mistake.
Problem 14.18. Show that, although the procedure is
designed for testing H=

0 versus H=
1 , it applies to testing

H≤
0 versus H≥

1 above, meaning that if s0 ≤ α0 and s1 ≤ α1,
then it also holds that

Pθ(Ln ≥ c1) ≤ α0, for all θ ≤ θ0,

Pθ(Ln ≤ c0) ≤ α1, for all θ ≥ θ1.

14.4.2 Experiments with optional stopping

In [190], Randi debunks a number of experiments claimed
to exhibit paranormal effects. He recounts experiments
where a self-proclaimed psychic tries to influence the out-
come of a computer-generated sequence of coin tosses.
Randi questions the validity of these experiments because
the subject had the option of stopping or continuing the
experiment at will.
Much more disturbing is the fact that such strategies

are commonly employed by scientists. Indeed, in [137,

256], we learn that psychologists doing academic research
routinely stop or continue to collect data based on the
data collected up to that point. (It is reasonable to assume
that psychologists are not unique in this habit and that
this issue concerns all sciences, as we discuss further in
Section 23.8.)

Below we argue that if optional stopping is allowed and
not taken into account in the inference, then the resulting
inference can be grossly incorrect. Thus, although lack-
ing any formal training in statistics, Randi shows good
statistical sense.
This is not the end of the story, however. If we know

that optional stopping was allowed, it is still possible
to make sensible use of the data. We discuss below a
principled way to account for optional stopping. 73

Experiment We place ourselves in the context of
Bernoulli trials, although the same qualitative conclu-
sions hold in general. Let (Xi ∶ i ≥ 1) be iid Bernoulli with
parameter θ. Suppose we want to test

H0 ∶ θ∗ ≤ θ0.

73 The setting is definitely non-standard, and therefore not typi-
cally discussed in textbooks. The solution expounded here may not
be optimal in any way, but it is at least based on sound principles.
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As opposed to a binomial experiment where the sample
size is set beforehand, here we allow the stopping of the
trials based on the trials observed so far. It is helpful
here to imagine an experimenter who wants to provide
the most evidence against the null hypothesis.

We say that the experiment includes optional stopping
when the experimenter can stop the experiment at any
moment and make that decision based on the result of
previous tosses. The experimenter’s strategy is modeled
by a collection of functions

Sn ∶ {0,1}n → {stop, continue}.

After observing the first n tosses, x1, . . . , xn, the experi-
menter decides to stop if Sn(x1, . . . , xn) = stop, and other-
wise continues. Let N denote the number of tosses until
the trials are stopped,

N(x) ∶= inf {n ∶ Sn(x1, . . . , xn) = stop},

where x ∶= (xi ∶ i ≥ 1).

When optional stopping is ignored We say that
optional stopping has not been taken into account in
the statistical analysis if, when N = n, the statistical
analysis is performed based on the binomial experiment

with sample size n. In effect, this means that the inference
is performed as if the sample size had been predetermined.
Assume that the same test statistic considered earlier

is used, meaning the total number of heads, Yn ∶= ∑ni=1Xi.
When N = n, based on x1, . . . , xn and yn ∶= ∑ni=1 xi, and
optional stopping is not taken into account, the reported
‘p-value’ is

gn(yn) ∶= Pθ0(Yn ≥ yn). (14.20)

Although this would be referred to as a ‘p-value’ in a
report describing the experiment, it is not a bona fide
p-value in general, in the sense that it does not satisfy
(12.22), as we argue below.

Remember that we have in mind an experimenter that
wants to provide strong evidence against the null hypothe-
sis. If a p-value below some predetermined α > 0 is deemed
sufficiently small for that purpose, the experimenter can
simply stop when this happens. Formally, this corresponds
to using the strategy

Sn(x1, . . . , xn) =
⎧⎪⎪⎨⎪⎪⎩

stop if gn(x1 +⋯ + xn) ≤ α,
continue otherwise.

With this strategy, ‘significance’ can be achieved at
any prescribed α, and so regardless of whether the null
hypothesis is true or not. Indeed, suppose that θ∗ = θ0, so
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the null hypothesis is true and (Xi ∶ i ≥ 1) are iid Bernoulli
with parameter θ0. Then

min
k≤n

gk(Yk)
PÐ→ 0, as n→∞. (14.21)

Problem 14.19. Show that (14.21) holds when, in prob-
ability,

lim sup
n→∞

Yn − nθ0√
n

=∞. (14.22)

[Apply Chebyshev’s inequality.] In turn, show that (14.22)
holds using Problem 9.34.
We conclude that, with a proper choice of optional

stopping strategy, the experimenter can make the ‘p-value’
(14.20) as small as desired, regardless of whether the null
hypothesis is true or not, as long as he can continue the
experiment at will. (This is clearly problematic.)

Taking optional stopping into account Suppose
we are not willing to assume anything about the optional
stopping strategy. We construct a test statistic that yields
a valid p-value regardless of the strategy being used. Cru-
cially, we assume that the data have not been tampered
with, so that the sequence is a genuinely realization of
Bernoulli trials. We can then ask the question: if the null

hypothesis were true, how surprising would it be if a sig-
nificance of αn ∶= gn(yn) were achieved after N = n trials,
given that the experimenter had the option of stopping
the process at any point before that?
Suppose that we know the significance level, α ∈ (0,1),

that the experimenter wants to achieve. The idea, then,
is to consider the following test statistic

T (x) ∶= inf {k ∶ gk(x1 +⋯ + xk) ≤ α}.

Noting that small values of T weigh against the null, and
assuming that n trials were performed before stopping,
the resulting p-value is

Pθ0(T ≤ n). (14.23)

Problem 14.20. Show that this is indeed a valid p-value
(in the sense of (12.22)) regardless of what optional stop-
ping strategy was employed.
Problem 14.21. Suppose that α was set at 1%. How
small would n have to be in order for the p-value (14.23) to
be below 2%? (Assume θ0 = 1/2.) Perform some numerical
experiments in R to answer the question.
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14.5 Additional problems

Problem 14.22 (Proportion test). In the context of the
binomial experiment of Example 12.2, a proportion test can
be defined based on the fact that the sample proportion
is approximately normal (Theorem 5.4). Based on this,
obtain a p-value for testing θ∗ ≤ θ0. (Note that the p-value
will only be valid in the large-sample limit.) [In R, this
test is implemented in the prop.test function.]
Problem 14.23 (A comparison of confidence intervals).
A numerical comparison of various confidence intervals for
a proportion is presented in [175]. Perform simulations
to reproduce Table I, rows 1, 3, and 5, in the article. [Of
course, due to randomness, the numbers resulting from
your numerical simulations will be a little different.]
Problem 14.24 (ESP experiments). Suppose that a per-
son claiming to have psychic abilities is studied by some
scientist. The person claims to be able to make a coin
land heads more often than it would under normal cir-
cumstances without even touching it. The scientist builds
a machine that can toss a coin any number of times. The
mechanical system has been properly tested beforehand
to ascertain that the coin lands heads with probability
sufficiently close to 1/2. This system is kept out of reach
of the subject at all times.

Suppose that it is agreed beforehand that the coin would
be tossed 200 times. It is usually much safer to stick to
the design that was chosen before the experiment begins.
That said, it is still possible to perform a valid statistical
analysis even if the design is changed in the course of the
experiment. 74

Below are a few situations. For each situation, explain
how the scientist could accommodate the subject’s request
and still perform a sensible statistical analysis.
(i) In the course of the experiment, the subject insists

on stopping after 130 tosses, claiming to be tired and
unable to continue.

(ii) In the course of the experiment, the subject insists
on continuing past 200 tosses, claiming that the first
few dozen tosses only served as warm up.

(iii) In the course of the experiment, multiple times, the
subject insists on not counting a particular trial claim-
ing that he was not ‘feeling it’.

[The first two situations can be handled as in Sec-
tion 14.4.2. The last situation is somewhat different,
but the same kind of reasoning will prove fruitful.]
Problem 14.25 (More on ESP experiments). Detail the

74 Doing so is sometimes necessary, for example, in clinical tri-
als, although a well-designed trial will include a protocol for early
termination.
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calculations (implicitly) done in the “Feedback Experi-
ments” section of the paper [58].
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When a die with m faces is rolled, the result of each trial
can take one of m possible values. The same is true in
the context of an urn experiment, when the balls in the
urn are of m different colors. Such models are broadly
applicable. Indeed, even ‘yes/no’ polls almost always
include at least one other option like ‘not sure’ or ‘no
opinion’. See Table 15.1 for an example. These data can
be plotted, for instance, as a bar chart or a pie chart, as
shown in Figure 15.1.

Table 15.1: Washington Post - ABC News poll of 1003
adults in the US (March 7-10, 2012). “Do you think a
political leader should or should not rely on his or her
religious beliefs in making policy decisions?”

Should Should Not Depends No Opinion
31% 63% 3% 3%

Another situation where discrete variables arise is when
two or more coins are compared in terms of their chances

https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
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Figure 15.1: A bar chart and a pie chart of the data
appearing in Table 15.1.
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of landing heads, or more generally, when two or more
(otherwise identical) dice are compared in terms of their
chances of landing on a particular face. In terms of urn
experiments, the analog is a situation where balls are
drawn from multiple urns. This sort of experiments can be
used to model clinical trials where several treatments are
compared and the outcome is dichotomous. See Table 15.2
for an example. These data can be plotted, for instance,
as a segmented bar chart, as shown in Figure 15.2.

Table 15.2: The study [189] examined the impact of
supplementing newborn infants with vitamin A on early
infant mortality. This was a randomized, double-blind
trial, performed in two rural districts of Tamil Nadu,
India, where newborn infants (11619 in total) received
either vitamin A or a placebo. The primary response was
mortality at 6 months.

Death No Death

Placebo 188 5645
Vitamin A 146 5640

When the coins are tossed together, or when the dice
are rolled together, we might want to test for indepen-
dence. Although not immediately apparent, we will see
that, depending on the design of an experiment, the same
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question can be modeled as an experiment comparing
several dice or testing for their independence.

15.1 Multinomial distributions

In this entire chapter we will talk about an experiment
where one or several dice are rolled. We consider that a die
can have any number m ≥ 2 of faces, thus generalizing a
coin. Just like a binomial distribution arises when a coin is
tossed a predetermined number of times, the multinomial
distribution arises when a die is rolled a predetermined
number of times, say n. We assume that the die has faces
with distinct labels, say 1, . . . ,m, and for s ∈ {1, . . . ,m},
we let θs denote the probability that in a given trial the
die lands on s. The outcome of the experiment is of the
form ω = (ω1, . . . , ωn), where ωi = s if the ith roll resulted
in face s. We assume that the rolls are independent.
Let Y1, . . . , Ym denote the counts

Ys(ω) ∶= #{i ∈ {1, . . . , n} ∶ ωi = s}. (15.1)

Note that Ys ∼ Bin(n, θs). Under the stated circum-
stances, the random vector of counts (Y1, . . . , Ym) is said
to have the multinomial distribution with parameters
(n, θ1, . . . , θm).

Remark 15.1. There is some redundancy in the vector
of counts, since Y1+⋯+Ym = n, and also in the parameter-
ization, since θ1 +⋯+ θm = 1. Except for that redundancy,
the multinomial distribution with parameters (n, θ1, θ2)
(where necessarily θ2 = 1− θ1) corresponds to the binomial
distribution with parameters (n, θ1).

Proposition 15.2. The multinomial distribution with
parameters (n,θ), where θ ∶= (θ1, . . . , θm), has probability
mass function

fθ(y1, . . . , ym) ∶= n!
y1!⋯ ym!

θy1
1 ⋯ θymm , (15.2)

supported on the m-tuples of integers y1, . . . , ym ≥ 0 satis-
fying y1 +⋯ + ym = n.

Problem 15.3. Suppose that there are n balls, with ys
balls of color s, and that except for their color the balls
are indistinguishable. The balls are to be placed in bins
numbered 1, . . . , n. Show that there are

(y1 +⋯ + ym)!
y1!⋯ ym!

different ways of doing so. Then use this combinatorial
result to prove Proposition 15.2.
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Problem 15.4. Show that (Y1, . . . , Ym) is sufficient for
(θ1, . . . , θm). Note that, when focusing the counts rather
than the trials themselves, all that is lost is the order
of the trials, which at least intuitively is not informative
since the trials are assumed to be iid.
Problem 15.5. Show that (Y1/n, . . . , Ym/n) is the max-
imum likelihood estimator for (θ1, . . . , θm).
In what follows, we will let ys = Ys(ω), and θ̂s ∶= ys/n,

which are the observed counts and observed averages,
respectively.

15.2 One-sample goodness-of-fit testing

Various questions may arise regarding the parameter vec-
tor θ. These can be recast in the context of multiple test-
ing (Chapter 20). We present here a more classical treat-
ment focusing on goodness-of-fit testing, where the central
question is whether the underlying distribution is a given
distribution or, said differently, how well a given distribu-
tion fits the data. In detail, given θ0 = (θ0,1, . . . , θ0,m), we
are interested in testing

H0 ∶ θ∗ = θ0,

where, as before, θ∗ = (θ∗1 , . . . , θ∗m) denotes the true value
of the parameter.

We first try a likelihood approach. In the variant
(12.16), the likelihood ratio is here given by

θ̂y1
1 ⋯ θ̂ymm

θy1
0,1⋯ θ

ym
0,m

,

and taking the logarithm, this becomes
m

∑
s=1

ys log( ys
nθ0,s

) , (15.3)

and dividing by n, this becomes

m

∑
s=1

θ̂s log( θ̂s
θ0,s

) . (15.4)

Remark 15.6 (Observed and expected counts). While
y1, . . . , ym are the observed counts, nθ0,1, . . . , nθ0,m are
often referred to as the expected counts. This is because
Eθ0(Ys) = nθ0,s.

15.2.1 Monte Carlo p-value

In general, if T denotes a test statistic whose large values
weigh against the null hypothesis, after observing a value t
of this statistic, the p-value is Pθ0(T ≥ t). This p-value can
be estimated by Monte Carlo simulation on a computer
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(as seen in Section 10.1). The general procedure is detailed
in Algorithm 4. (A variant of the algorithm consists in
directly generating values of the test statistic under its
null distribution.)

Algorithm 4 Monte Carlo p-value
Input: data ω, test statistic T , null distribution P0,
number of Monte Carlo samples B
Output: an estimate of the p-value

Compute t = T (ω)
For b = 1, . . . ,B
generate ωb from P0
compute tb = T (ωb)

Return
p̂vmc ∶=

#{b ∶ tb ≥ t} + 1
B + 1

. (15.5)

Proposition 15.7. The Monte Carlo p-value (15.5) is
itself a valid p-value in the sense of (12.22).

Problem 15.8. Prove this result using the conclusions
of Problem 8.63.
Problem 15.9. In R write a function that takes as input
the vector of observed counts, the null parameter vector,

and a number of Monte Carlo replicates, and returns an
estimate of the p-value above. [Use the function rmultinom
to generate Monte Carlo counts under the null.] Compare
your function with the built-in chisq.test function.

15.3 Multi-sample goodness-of-fit testing

In Section 15.2 we assumed that we were provided with
a null distribution and tasked with determining how well
that distribution fits the data.

In some other situations, a null distribution is not avail-
able, as in clinical trials where the efficacy of a treatment is
compared to an existing treatment or a placebo, such as in
the example of Table 15.2. In other situations, more than
two groups are to be compared. A basic question then
is whether these groups of observations were generated
by the same distribution. The difference here with the
setting of Section 15.2 is that this hypothesized common
distribution is not given.
An abstract model for this setting is that of an exper-

iment involving g dice, with the jth die rolled nj times,
all rolls being independent. As before, each die has m
faces labeled 1, . . . ,m. Let θj denote the probability vec-
tor of the jth die. Our goal is to test the following null
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hypothesis:
H0 ∶ θ1 = ⋯ = θg .

This is sometimes referred to as testing for homogeneity.
Let ωij = s if the ith roll of the jth die results in s, so

that ω = (ωij) are the data, and define the (per group)
counts

Ysj(ω) = #{i ∶ ωij = s}.

Problem 15.10. Show that these counts are jointly suf-
ficient.
Problem 15.11. Show that (Ysj/nj) is the maximum
likelihood estimator for (θsj).
The total sample size (meaning the total number of

rolls) is n ∶= ∑sj=1 nj , and the total counts are defined as

Ys ∶=
g

∑
j=1

Ysj . (15.6)

In what follows, we will let ysj ∶= Ysj(ω) and θ̂sj ∶=
ysj/nj , as well as ys ∶= Ys(ω) = ∑j ysj and θ̂s ∶= ys/n, and
θ̂j ∶= (θ̂1j , . . . , θ̂mj) and θ̂ ∶= (θ̂1, . . . , θ̂m).

15.3.1 Likelihood ratio

Because of independence, the likelihood of all the observa-
tions combined is just the product of the likelihoods, one
for each die (see (15.2)).
Problem 15.12.
(i) Prove that, without any constraints on the parame-

ters, the likelihood is maximized at (θ̂1, . . . , θ̂g).
(ii) Prove that, under the constraint that θ1 = ⋯ = θg,

this is maximized at (θ̂, . . . , θ̂).
(iii) Deduce that the likelihood ratio is given by (after

some simplifications)

∏g
j=1∏

m
s=1 θ̂

ysj
sj

∏m
s=1 θ̂

ys
s

=
g

∏
j=1

m

∏
s=1

( θ̂sj
θ̂s

)
ysj

.

Taking the logarithm, this becomes
g

∑
j=1

m

∑
s=1

ysj log( ysj

njys/n
) , (15.7)

and dividing by n, this becomes

g

∑
j=1

m

∑
s=1

θ̂sj log( θ̂sj
θ̂s

) . (15.8)
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Remark 15.13 (Estimated expected counts). The (ysj)
are the observed counts. Expected counts are not available
since the common null distribution is not given. Nonethe-
less, it can be estimated. Indeed, under the null hypothe-
sis,

Eθ(Ysj) = njθs,
and we can estimate this by plugging in θ̂s in place of θs,
leading to the following estimated expected counts

Eθ(Ysj) ≈ nj θ̂s.

15.3.2 Bootstrap p-value

Now that we have derived the LR, we need to compute or
estimate the corresponding p-value. In Section 15.2 this
was done by Monte Carlo simulation, made possible by
the fact that the null distribution was provided. Here the
null distribution (that generated all the samples) is not
provided.
We already encountered this issue in Remark 15.13,

where it was noted that the expected counts were not
available. This was addressed by simply replacing them
by estimates. In the same way, we can estimate the (entire)
null distribution, by again plugging in θ̂ in place of the
unknown θ (which parameterizes the null distribution).
The idea then is to estimate the p-value by Monte Carlo

simulation, as before, but now using the estimated null
distribution to generate the samples. This process, of per-
forming Monte Carlo simulations based on an estimated
distribution, is generally called a bootstrap. The resulting
samples are typically called bootstrap samples.
Remark 15.14. Because it relies on an estimate for the
null distribution, as opposed to the exact null distribution
needed for Monte Carlo simulation, the bootstrap p-value
is not exactly valid. That said, it is exactly valid in the
large-sample limit.
Problem 15.15. In R write a function that takes as input
the list of observed counts as a g-by-m matrix of counts
and the number of bootstrap samples to be drawn, and
returns an estimate of the p-value. Apply your function
to the dataset of Table 15.2.

15.4 Completely randomized experiments

The data presented in Table 15.2 can be analyzed us-
ing the methodology for comparing groups presented in
Section 15.3, as done in Problem 15.15. We present a
different perspective which leads to a different analysis.
It is reassuring to know that the two analyses will yield
similar results as long as the group sizes are not too small.
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The typical null hypothesis in such a situation is that
the treatment and the placebo are equally effective. We
describe a model where inference can only be done for the
group of subjects — while a generalization to a larger pop-
ulation would be contingent on this sample of individuals
being representative of the said population.

Suppose that the group sizes are n1 and n2, for a total
sample size of n = n1 + n2. The result of the experiment
can be summarized in a table of counts, Table 15.3, often
called a contingency table.
If z = z1 + z2 denotes the total number of successes,

in the present model it is assumed to be deterministic
since we are drawing inferences on the group of subjects
in the study. What is random is the group labeling, and
if treatment and placebo truly have the same effect on
these individuals, then the group labeling is completely
arbitrary. Thus this is the null hypothesis to be tested.
There is no model for the alternative, so we cannot

derive the LR, for example. However, it is fairly clear
what kind of test statistic we should be using. In fact,
a good option is the same statistic (15.7), which in the

Table 15.3: A prototypical contingency table summa-
rizing the result of a completely randomized experiment
with two groups and two possible outcomes.

Success Failure Total

Group 1 z1 n1 − z1 n1
Group 2 z2 n2 − z2 n2

Total z n − z n

context of Table 15.3 takes the form

z1 log (nz1
n1z

) + (n1 − z1) log(n(n1 − z1)
n1(n − z)

)

+ z2 log (nz2
n2z

) + (n2 − z2) log(n(n2 − z2)
n2(n − z)

) .

Another option is the odds ratio, which after applying a
log transformation takes the form

log ( z1
n1 − z1

) − log ( z2
n2 − z2

) .

More generally, consider a randomized experiment
where the subjects are assigned to one of g treatment
groups and the response can take m possible values. With
the notation of Section 15.3, the jth group is of size nj , for
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a total sample size of n ∶= n1 +⋯ + ng. In the null model,
the total counts (15.6) are here taken to be deterministic
(while there are random in Section 15.3), while the group
labeling is random. The test statistic of choice remains
(15.7).
Problem 15.16. Write down the contingency table (in
general form) using the notation of Section 15.3.

15.4.1 Permutation p-value

Regardless of the test statistic that is chosen, the corre-
sponding p-value is obtained under the null model. Since
the group sizes are set, the null model amounts to per-
muting the labels. This procedure is an example of re-
randomization testing, developed further in Section 22.1.1.
Let Π denote the set of all permutations of the labels.

There are
∣Π∣ = n!

n1!⋯ng!
such permutations in the present setting. Importantly, we
permute the labels placed on the rolls, which then yield
new counts. (We do not permute the counts.) Let T be a
test statistic whose large values provide evidence against
the null hypothesis. We let t denote the observed value
of T and, for a permutation π ∈ Π, we let tπ denote the

value of T applied to the corresponding permuted data.
Then the permutation p-value is defined as

pvperm ∶= #{π ∶ tπ ≥ t}
∣Π∣ . (15.9)

Proposition 15.17. The permutation p-value (15.9) is
a valid p-value in the sense of (12.22).

Problem 15.18. Prove this result using the conclusions
of Problem 8.63.

Monte Carlo estimation Unless the group sizes are
very small, ∣Π∣ is impractically large, and this leads one to
estimate the p-value by sampling permutations uniformly
at random from Π. This may be called a Monte Carlo
permutation p-value. The general procedure is detailed in
Algorithm 5.

Proposition 15.19. The Monte Carlo permutation p-
value (15.10) is a valid p-value in the sense of (12.22).

Problem 15.20. Prove this result using the conclusions
of Problem 8.63.
Problem 15.21. In R, write a function that implements
Algorithm 5. Apply your function to the data in Ta-
ble 15.2.
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Algorithm 5 Monte Carlo Permutation p-value
Input: data ω, test statistic T , group Π of permuta-
tions that leave the null invariant, number of Monte
Carlo samples B
Output: an estimate of the p-value

Compute t = T (ω)
For b = 1, . . . ,B
draw πb uniformly at random from Π
permute ω according to πb to get ωb
compute tb = T (ωb)

Return
p̂vperm ∶= #{b ∶ tb ≥ t} + 1

B + 1
. (15.10)

Remark 15.22 (Conditional inference). This proposition
holds true also in the setting of Section 15.3. The use of
a permutation p-value there is an example of conditional
inference, which is discussed in Section 22.1.

15.5 Matched-pairs experiments

Consider a randomized matched-pairs design where two
treatments are compared (Section 11.2.5). The outcome
is binary (‘success’ or ‘failure’). The sample is of the

form (ω11, ω21), . . . , (ωn1, ωn2), where ωij is the response
for the subject in pair i that received Treatment j, with
ωij = 1 indicating success. If no other information on
the subjects is taken into account in the analysis, the
data can be summarized in a 2-by-2 table contingency
table (Table 15.4) displaying the counts where yst ∶= #{i ∶
(ωi1, ωi2) = (s, t)}.

The iid assumption At this point we cannot claim
that the counts are jointly sufficient. This is the case,
however, in a situation where the pairs can be assumed to
be sampled uniformly at random from a population. In
that case, the pairs can be taken to be iid and we may
define θst as the probability of observing the pair (s, t).
The treatment (one-sided) effect is defined as θ10 − θ01.

Table 15.4: A prototypical contingency table summa-
rizing the result of a matched-pairs experiment with two
possible outcomes.

Treatment B
Success Failure

Treatment A Success y11 y10
Failure y01 y00
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The null hypothesis of no treatment effect is θ10 = θ01.
It is rather natural to ignore the pairs where the two

subjects responded in the same way and base the infer-
ence on the pairs where the subjects responded differently,
which leads to rejecting for large values of Y10 − Y01 while
conditioning on (Y11, Y00). After all, (Y10 − Y01)/n is un-
biased for θ10 − θ01. This is the McNemar test [165] and it
is known to be uniformly most powerful among unbiased
tests (UMPU) in this situation.
Problem 15.23. Argue that rejecting for large values of
Y10−Y01 given (Y11, Y00) is equivalent to rejecting for large
values of Y10 given (Y11, Y00). Further, show that given
(Y11, Y00) = (y11, y00), Y10 has the binomial distribution
with parameters k ∶= n − y11 − y00 and p ∶= θ10/(θ10 + θ01).
Conclude that the McNemar test reduces to testing p = 1/2
in a binomial experiment with parameters (k, p).
Problem 15.24. Is the McNemar test the likelihood ratio
test in the present context?
Remark 15.25 (Observational studies). Although we
worked in the context of a randomized experiment, the
test may be applied in the context of an observational
study with the caveat that the conclusion is conservatively
understood as being in terms of association instead of
causality.

Beyond the iid assumption In some situations it
may not be realistic to assume that the pairs constitute
a representative sample from a population. Even then,
a permutation approach remains valid due to the initial
randomization. The key observation is that, if there is
no treatment effect, then ωi1 and ωi2 are exchangeable by
design. The idea then is to condition on the observed ωij
and permute within each pair. Then, under the null hy-
pothesis, any such permutation is (conditionally) equally
likely, and this is exploited in the derivation of a p-value.
This procedure is again an example of re-randomization
testing (Section 22.1.1).
In more detail, a permutation in the present context

transforms the (observed) data,

(ω11, ω12), . . . , (ωn1, ωn2),

into
(ω1π1(1), ω1π1(2)), . . . , (ωnπn(1), ωnπn(2)),

with (πi(1), πi(2)) = (1,2) or = (2,1). Let Π denote the
class of π = (π1, . . . , πn) where each πi is a permutation
of {1,2}. Note that ∣Π∣ = 2n.

Suppose we still reject for large values of T ∶= Y10 − Y01,
which after all remains appropriate. The observed value
of this statistic is t ∶= y10 − y01. Let tπ denote the value of
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this statistic computed on the data permuted by applying
π ∈ Π. Then the permutation p-value is defined as

pv ∶= #{π ∈ Π ∶ tπ ≥ t}
∣Π∣ .

This is a valid p-value in the sense of (12.22).
Computing this p-value may be challenging, as there are

many possible permutations and one would in principle
have to consider every single one of them. Luckily, this is
not necessary.
Problem 15.26. Find an efficient way of computing the
p-value.
Problem 15.27. Show that, in fact, this permutation
test is equivalent to the McNemar test.

15.6 Fisher’s exact test

Fisher 13 describes in [86] a now famous experiment meant
to illustrate his concept of null hypothesis. The setting
is that of a lady who claims to be able to distinguish
whether milk or tea was added to the cup first. To test
her professed ability, she is given 8 cups of tea, in four
of which milk was added first. With full information on
how the experiment is being conducted, she is asked to

choose 4 cups where she believes milk was poured first.
The resulting counts, reproduced from Fisher’s original
account, are displayed in Table 15.5.

Table 15.5: The columns are labeled by the liquid that
was poured first (milk or tea) and the rows are labeled by
the lady’s guesses.

Truth

Lady’s guess Milk Tea

Milk 3 1
Tea 1 3

The null hypothesis is that of no association between
the true order of pouring and the woman’s guess, while
the alternative is that of a positive association. 75 In
particular, under the null, the lady is purely guessing and
the lady’s guesses are independent of the truth. This
gives the null distribution, which leads to a permutation
p-value.
Remark 15.28. Thus a p-value is obtained by permuta-
tion, exactly as in Section 15.4, because here too the total
counts are all fixed. However, the situation is not exactly

75 Some statisticians might prefer an alternative of no association,
which would lead to a two-sided test.
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the same. The difference is subtle: here, all the totals are
fixed by design; there, the totals are fixed because of the
focus on the subjects in the study.

In such a 2×2 setting, it is possible to test for a positive
association. Indeed, first note that, since the margin totals
are fixed (all equal to 4), the number in the top-left corner
(‘milk’, ‘milk’) determines all the others, so it suffices to
consider this number (which is obviously sufficient). Now,
clearly, a large value of that number indicates a positive
association. This leads us to rejecting for large values of
this statistic.

Consider a general 2× 2 setting, where there are n cups,
with k of them receiving milk first. The lady is to select
k cups that she believes received the milk first. Then the
contingency table would look something like this

Truth

Lady’s guess Milk Tea Total

Milk y11 y12 k
Tea y21 y22 n − k
Total k n − k n

The test statistic is Y11, whose large values weigh against
the null, and the resulting test is often referred to as
Fisher’s exact test.

Problem 15.29. Prove that, under the null, Y11 is hy-
pergeometric with parameters (k, k, n − k).

Thus computing the p-value can be done exactly, with-
out having to enumerate all possible permutations.
Problem 15.30. Derive the p-value for the original ex-
periment in closed form, and confirm your answer numeri-
cally using R.
R corner. Fisher’s exact test is implemented in the func-
tion fisher.test.
Remark 15.31. Fisher’s exact test is applicable in the
context of Section 15.4, and doing so is an example of
conditional inference (Section 22.1).

15.7 Association in observational studies

Consider the poll summarized in Table 15.6 and depicted
in Figure 15.2. The description of the polling procedure
that appears on the website, and additional practical
considerations, lead one to believe that the interviewees
were selected without a priori knowledge of their political
party affiliation. We will assume this is the case.
It is safe to guess that one of the main reasons for

collecting these data is to determine whether there is an
association between party affiliation and views on climate

https://cbsnews.com/news/global-warming-and-the-paris-climate-change-conference/
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Table 15.6: New York Times - CBS News poll of 1030
adults in the US (November 18-22, 2015). “Do you think
the US should or should not join an international treaty
requiring America to reduce emissions in an effort to fight
global warming?”

should should not other

Republicans 42% 52% 6%
Democrats 86% 9% 5%
Independents 66% 25% 9%

change, and the steps that the US Government should take
to address this issue if any. (The entire poll questionnaire,
not shown here, includes other questions related to climate
change.)

Formally, a lack of association in such a setting is mod-
eled as independence. The variables here are A for ‘party
membership’, equal to either ‘Republican’, ‘Democrat’, or
‘Independent’; and B for ‘opinion’, equal to either ‘should’,
‘should not’, or ‘other’.
Remark 15.32 (Factors). In statistics, a categorical vari-
able is often called a factor and the values it takes are
called levels. Thus A is a factor with levels {‘Republican’,
‘Democrat’, ‘Independent’}.

Figure 15.2: A segmented bar chart of the data appear-
ing in Table 15.6.

Republicans Democrats Independents

Other
Should Not
Should

The raw data here is of the form {(ai, bi) ∶ i = 1, . . . , n},
where n = 1030 is the sample size. Table 15.6 provides the
percentages. We are told that there were 254 republicans,
304 democrats, and 472 independents. With this informa-
tion, we can recover the table of counts up to rounding
error. See Table 15.7.

An abstract model for the present setting is that of an
experiment where two dice are rolled together n times.
Die A has faces labeled 1, . . . ,ma, while Die B has faces
labeled 1, . . . ,mb. (As before, the labeling by integers
is for convenience, as the faces could be labeled by any
other symbols.) The outcome of the experiment is ω =
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Table 15.7: The table of counts corresponding to the
poll summarized in Table 15.6.

should should not other

Republicans 107 132 15
Democrats 261 27 15
Independents 312 118 42

((a1, b1), . . . , (an, bn)). Define the cross-counts as

yst ∶= Yst(ω) ∶= #{i ∶ (ai, bi) = (s, t)}.

Assuming the rolls are iid, which we do, these counts are
jointly sufficient, and have the multinomial distribution
with parameters n and (θst), where θst is the probabil-
ity that a roll results in (s, t). These counts are often
displayed in a contingency table.

If (A,B) denotes the result of a roll, the task is testing
for the independence of A and B. Under (θst), A has
(marginally) the multinomial distribution with parameters
n and (θas), while B has (marginally) the multinomial
distribution with parameters n and (θbs), where

θas ∶=
mb

∑
t=1
θst , θbt ∶=

ma

∑
s=1

θst .

The null hypothesis of independence can be formulated as

H0 ∶ θst = θasθbt ,
for all s = 1, . . . ,ma and all t = 1, . . . ,mb.

Remark 15.33. Contrast the present situation with that
of Section 15.4, where only the null distribution is modeled.

15.7.1 Likelihood ratio

Recall that (yst) denotes the observed counts. Based on
these, define the proportions θ̂st = yst/n, the marginal
counts

yas =
mb

∑
t=1
yst, ybt =

ma

∑
s=1

yst, (15.11)

and the corresponding marginal proportions θ̂as = yas /n
and θ̂bt = ybt /n.
Problem 15.34. Show that the LR in the variant (12.16)
is equal to

ma

∏
s=1

mb

∏
t=1

( θ̂st

θ̂as θ̂
b
t

)
yst

,

Taking the logarithm, this becomes
ma

∑
s=1

mb

∑
t=1
yst log( yst

yasy
b
t /n

) , (15.12)



15.7. Association in observational studies 214

and dividing by n, this becomes
ma

∑
s=1

mb

∑
t=1
θ̂st log( θ̂st

θ̂as θ̂
b
t

) .

Problem 15.35 (Estimated expected counts). Justify
calling yasybt /n the estimated expected countestimated ex-
pected counts for (s, t).

15.7.2 Deterministic or random group sizes

Compare (15.7) and (15.12). They are identical as func-
tions of the counts. This is rather surprising, perhaps
shocking, given that the statistic is rather peculiar and
the counts are, at first glance, quite different. Although
in both cases the counts are organized in a table, in Sec-
tion 15.3 they are indexed by (value, group), while in the
present section they are indexed by (A value, B value).

This can be explained by viewing ‘group’ in the setting
of Section 15.3 as a variable. Indeed, from this perspective
the only difference between the two settings is that, in
Section 15.3, the group sizes are predetermined, while
here they are random. The fact that the likelihood ratios
coincide can be explained by the fact that the group sizes
are not informative.

However, despite the fact that the likelihood ratios are
the same, and that the same test statistics can be used in

both settings, the p-value is derived in (slightly) different
ways.

15.7.3 Bootstrap p-value

In Section 15.3.2, we presented a form of bootstrap tailored
to the situation there. The situation is a little different
here since the group sizes are not predetermined and
another form of bootstrap is more appropriate. In the
end, however, these two methods will yield similar p-values
as long as the sample sizes are not too small.
The motivation for using a bootstrap approach is the

same. Indeed, if we were given the marginal distributions,
(θas) and (θbt), we would simply sample their product, as
this is the null distribution in the present situation. How-
ever, these distributions are not available to us, but we
have estimates, (θ̂as) and (θ̂bt), and the bootstrap method
consists in estimating the p-value by Monte Carlo sim-
ulation by repeatedly sampling from the corresponding
product distribution.
Problem 15.36. In R, write a function which takes as
input the matrix of observed counts and the number of
bootstrap samples to be drawn, and returns an estimate
of the p-value. Apply your function to the dataset of
Table 15.7.
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15.7.4 Extension to several variables

The narrative above focused on two discrete variables. It
extends without conceptual difficulty to any number of
discrete random variables. When there are k factors with
m1, . . . ,mk levels respectively, the counts are organized
in a m1 ×⋯ ×mk array.
In particular, the methodology developed here applies

to testing whether the variables are mutually independent.
Beyond that, when there are k ≥ 3 variables, other ques-
tions can be considered, for example, whether the two
variables are independent conditional on the remaining
variables.

15.7.5 Simpson’s paradox

In Problem 2.42 we saw that inequalities involving prob-
abilities could be reversed when conditioning. This is a
relatively common phenomenon in real life.
Example 15.37 (Berkeley admissions). Consider the sit-
uation discussed in [22]. In 1973, the Graduate Division at
the University of California, Berkeley, received a number
of applications. Ignoring incomplete applications, there
were 8442 male applicants of whom 3738 were admitted
(44%), compared with 4321 female applicants of whom
1494 were admitted (35%). The difference is not only

statistically highly significant but also substantial with
a difference of almost 10% in the admission rate when
comparing men and women. This appeared to be strong
and damning evidence of gender bias on the part of the
admission office(s) of this university.
However, a breakdown of admission rates by depart-

ment 76 revealed a much more nuanced picture, where in
fact few departments showed any significant difference in
admission rates when comparing men and women, and
among these departments about as many favored men as
women. In the end, the authors of [22] concluded that
there was little evidence for gender bias, and that the num-
bers could be explained by the fact that women tended
to apply to departments with lower admission rates. 77

Example 15.38 (Race and death-penalty). Consider the
following table, taken from [188], which examined the
issue of race in death penalty sentences in murder cases
in the state of Florida from 1976 through 1987:

76 Graduate admissions at University of California, Berkeley rest
with each department.

77 The authors did not publish the entire dataset for reasons of
privacy and university policy, but the published data are available
in R as UCBAdmissions.
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Defendant Death (yes/no)
Caucasian 53/430
African-American 15/176

Thus, in the aggregate, Caucasians were more likely to be
sentenced to the death penalty. However, after stratifying
by the race of the victim, the table becomes:

Victim Defendant Death (yes/no)
Caucasian Caucasian 53/414
Caucasian African-American 11/37
African-American Caucasian 0/16
African-American African-American 4/139

Thus, in the disaggregate, African-Americans were more
likely to be sentenced to the death penalty, particularly
in cases where the victim was Caucasian.
Thus the analyst needs to use extreme caution when

deriving causal inferences based on observational data, or
any other situation where randomization was not prop-
erly applied, as this can easily lead to confounding. (In
Example 15.37, a confounder is the department, while in
Example 15.38, a confounder is the victim’s race.)

15.8 Tests of randomness

Consider an experiment where the outcome is a sequence
of symbols of length n denoted ω = (ω1, . . . , ωn). In Sec-
tion 15.2, we focused on the situation where this sequence
is the result of drawing repeatedly from an unknown dis-
tribution which was the object of our interest.
We now turn to the question of whether the sequence

was generated iid from some distribution. When this is the
case, the sequence is said to be random, and procedures
addressing this question are called tests of randomness.
Formally, suppose we know before observing the out-

come that each ωi belongs to some space Ω☆, so that
ω ∈ Ω ∶= Ωn

☆ , which is the sample space. The question
of interest is whether the distribution that generated ω,
denoted P, is the product of its marginals, and whether
these marginals are all the same. Let P0 denote the class
of iid distributions on Ω, meaning that P ∈ P0 is of the
form P⊗n☆ for some distribution P☆ on Ω☆. We want to test
the null hypothesis that P ∈ P0.
Example 15.39 (Binary setting). In a binary setting
where Ω☆ has cardinality 2 and thus can be taken to
be {0,1} without loss of generality, P0 is the family of
Bernoulli trials of length n.
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iid-ness vs independence We are testing iid-ness and
not independence, as we presuppose that the marginal
distributions are all the same. In fact, testing for indepen-
dence is ill-posed without further restricting the model.
To see this, suppose the outcome is ω = (ω1, . . . , ωn). This
could have been the result of sampling from the point
mass at ω, for which independence trivially holds, and the
available data, ω, are clearly not enough to discard this
possibility.

iid-ness vs exchangeability P is exchangeable if it
is invariant with respect to permutation, meaning that,
for any permutation π = (π1, . . . , πn) of (1, . . . , n), P(ω) =
P(ωπ), where ωπ ∶= (ωπ1 , . . . , ωπn). As we know, this
property is more general than iid-ness, but it turns out
that the available data, ω, are not sufficient to tell the
two apart. This can be explained by de Finetti’s theorem
(Theorem 8.56). To directly argue this point, though,
we place ourself in the binary setting of Example 15.39.
Within that setting, consider the distribution P where,
with probability 1/2, we generate an iid sequence of length
n from Ber(1/4), while with probability 1/2, we generate
an iid sequence of length n from Ber(3/4). Thus P here
is not an iid distribution. However, the outcome will be a
realization of an iid distribution — either Ber(1/4)⊗n or

Ber(3/4)⊗n.
Thus, what we can hope to test is exchangeability. (That

said, to adhere to tradition, we will use ‘randomness’ in
place of ‘exchangeability’.) The tests that follow all take
a conditional inference approach by conditioning on the
values of the ωi without regard to their order. This leads
to obtaining their p-values by permutation.

There are many tests of randomness. We present a few
here that are tailored to the discrete setting. Such tests
are important for evaluating the accuracy of a generator of
pseudo-random numbers. Examples include the DieHard
suite of George Marsaglia, included and expanded in the
DieHarder suite of Robert Brown 78, and some tests de-
veloped by the US National Institute of Standards and
Technology (NIST) for the binary case [200]. Some of
these tests are available in the RDieHarder package in R.

15.8.1 Tests based on runs

Some tests of randomness are based on runs, where a run
is a sequence of identical symbols. Take the binary setting
and consider the following outcome sequence (of length

78 webhome.phy.duke.edu/ rgb/General/dieharder.php
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n = 20 here) where there are 9 runs total:

1® 000° 1® 0000± 1111± 0® 1® 00¯ 111°

Number of runs test This test rejects for small values
of the total number of runs. Intuitively, a small number of
runs indicates less ‘mixing’. The test dates back to Wald
and Wolfowitz [243], who proposed the test for the purpose
of two-sample goodness-of-fit testing (Section 17.3.5).
Problem 15.40. The conditional null distribution of this
statistic is known in closed form in the binary setting. To
derive this distribution, first consider the number of 0-
runs. (There are 4 such runs in the sequence displayed
above.) Derive its null distribution. Then use that to
derive the null distribution of the total number of runs.
Problem 15.41. What kinds of alternatives do you ex-
pect this test to be powerful against?

Longest run test This test rejects for large values of
the length of the longest run (equal to 4 in the sequence
displayed above). Intuitively, the presence of a long run
indicates less ‘mixing’. The test is due to Mosteller [171].
Remark 15.42 (Erdős–Rényi Law). The conditional null
distribution of this statistic, denoted Ln, is not known in

an amiable form, although it can be estimated by Monte
Carlo permutation in practice. However, the asymptotic
behavior of Ln under the unconditional null is well un-
derstood, at least in the binary setting. The first-order
behavior was derived by Erdös and Rényi [77], which in
the context of Bernoulli trials with parameter θ is given
by

Ln
logn

PÐ→ 1
log(1/θ) , as n→∞.

(Although Ln does not have a limiting distribution, it has
a family of limiting distributions [8].)
Problem 15.43. What kinds of alternatives do you ex-
pect this test to be powerful against?

15.8.2 Tests based on transitions

The following class of tests are designed with Markov
chain alternatives in mind. The simplest such test is
based on counting transitions a → b, meaning instances
where (ωi, ωi+1) = (a, b), where a, b ∈ Ω☆. The test consists
in computing a test statistic for independence applied to
the pairs

(ω1, ω2), (ω2, ω3), . . . , (ωn−1, ωn),
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and then obtaining a p-value by permutation (which is
typically estimated by Monte Carlo, as usual).
Problem 15.44. In R, write a function that takes in the
observed sequence and a number of Monte Carlo replicates,
and outputs the p-value just described. Compare this
procedure with the number-of-runs test in the binary
setting.
Problem 15.45. In the binary setting, perform some
numerical simulations to evaluate the power of this proce-
dure against a distribution corresponding to starting at
0 or 1 with probability 1/2 each (which is the stationary
distribution) and then running the Markov chain with the
following transition matrix n − 1 times

( q 1 − q
1 − q q

)

(i) Show that the resulting distribution is exchangeable
if and only if q = 1/2. (In fact, in that case the
distribution is iid.)

(ii) Evaluate the power by applying the procedure of
the previous problem to various settings: try n ∈
{10,100,1000} and for each n choose a set of q in
[1/2, 1] that reveal a transition from powerless to pow-
erful as q decreases towards 1. Repeat each setting

1000 times. Draw a power curve for each n. (Note
that, as q approaches 0, the sequence is more and
more mixed.)

Problem 15.46. The test procedures described here are
based on first-order transitions, meaning of the form a→
b. How would test procedures based on second-order
transitions look like? Implement such a procedure in R,
and apply it to the setting of the previous problem.
Problem 15.47. Continuing with Problem 15.60, apply
all the tests of randomness introduced in this section to
test the exchangeability of the first 20000 digits of the
number π.

15.9 Further topics

15.9.1 Pearson’s approximations

Before the advent of computers, computing logarithms
was not trivial. Karl Pearson 79 (1857 - 1936) suggested
an approximation to the likelihood ratios (15.4) and (15.8)
that can be computed using simpler calculations [180].
Take (15.4) for simplicity. Pearson’s approximation is

based on two facts:
79 This is the father of the Egon Pearson 71.
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(i) Under the null, θ̂s →P θ0,s as the sample size increases
(due to the Law of Large Numbers), and this is true
for all s.

(ii) Based on a Taylor development of the logarithm,

x log(x/x0) = x − x0 +
(x − x0)2

2x0
+O(x − x0)3,

when x→ x0 > 0.
Problem 15.48. Use these facts to show that, under the
null,

m

∑
s=1

ys log( ys
nθ0,s

) = (1/2 +Rn)
m

∑
s=1

(ys − nθ0,s)2

nθ0,s
,

as the sample size increases to infinity, where Rn is an
unspecified term that converges to 0 in probability as
n → ∞. The sum of the right-hand side is Pearson’s
statistic.

15.9.2 Sampling without replacement

Our discussion was so far based on rolling dice. The
same concepts and methods extend to experiments with
urns. As we know, if the sampling of balls is done with
replacement, then the setting is equivalent to that of
rolling dice. Therefore, we assume that the sampling is
done without replacement.

Multivariate hypergeometric distributions We
sample without replacement from an urn containing vs
balls of color s ∈ {1, . . . ,m}. This is done n times and, for
this to be possible, we assume that n ≤ v ∶= v1 + ⋯ + vm.
Let ωi = s if the ith draw resulted in a ball with color s,
and let (Y1, . . . , Ym) be the counts, as before. We say that
this vector of counts has the multivariate hypergeometric
distribution with parameters (n, v1, . . . , vm).
Problem 15.49. Argue as simply as you can that Ys
has (marginally) the hypergeometric distribution with
parameters (n, vs, v − vs).

Proposition 15.50. The multivariate hypergeometric
distribution with parameters (n, v1, . . . , vm) has probability
mass function

f(y1, . . . , ym) ∶=
(v1
y1
)⋯(vm

ym
)

(v
n
)

, (15.13)

supported on m-tuples of integers y1, . . . , ym ≥ 0 such that
y1 +⋯ + ym = n.

Problem 15.51. Prove Proposition 15.50.
Problem 15.52 (Maximum likelihood). Assume that
the total number of balls in the urn (denoted v above) is
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known. Can you derive the maximum likelihood estimator
for (v1, . . . , vm)?
Problem 15.53 (Sufficiency). Show that (Y1, . . . , Ym) is
sufficient for (v1, . . . , vm).

Goodness-of-fit testing In principle, the likelihood
ratio statistic can be derived under the multivariate hy-
pergeometric model in the various settings considered in
the present chapter under the multinomial model. An
approach that is often good enough, though, is to use the
test statistic obtained under the multinomial model and
obtain the corresponding p-value under the multivariate
hypergeometric model.

15.10 Additional problems

Problem 15.54. For Y = (Y1, . . . , Ym) multinomial with
parameters (n, θ1, . . . , θm), compute Cov(Ys, Yt) for s ≠ t.
Problem 15.55 (Daily 3 lottery). The Daily 3 is a lottery
game run by the State of California. Each day of the year,
3 digits are drawn independently and uniformly at random
from {0, . . . ,9}. Note that the order matters. According
the website “The draws are conducted using an Automated
Draw Machine, which is a state-of-the-art computer used

to draw winning numbers.” A goodness-of-fit test could
be used to test the machine. Before continuing, download
all past winning numbers from the website. 80

• Independent digits. Suppose we are willing to assume
that the digits are generated independently. The
question that remains, then, is whether they are
generated uniformly at random. Take m = 10 and
θ0,s = 1/m for all s, and perform the test using the
function of Problem 15.9.

• Independent daily draws. Suppose we are not willing
to assume a priori that the digits are generated in-
dependently, but we are willing to assume that the
daily draws (each consisting of 3 digits) are generated
independently. There are 10 × 10 × 10 = 1000 possi-
ble draws (since the order matters), 81 so that here
m = 1000 and θ0,s = 1/m for all s. Perform the test
using the function of Problem 15.9.

Problem 15.56. (continued) Although the second test
makes fewer assumptions, it is not necessarily better than
the first test in terms of power. Indeed, while by con-
struction the first test is insensitive to any dependency

80 calottery.com/play/draw-games/daily-3
81 The number of possible values, m = 1000, is rather large. See

Problem 15.58. However, this is compensated by the fact that the
sample size is quite large, as the 16000th draw was on June 19, 2019.

calottery.com/play/draw-games/daily-3
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between the digits in a draw, it is more powerful than the
second test if there is no such dependency. Perform some
numerical simulations to probe this claim.
Problem 15.57. Another reasonable way to obtain a
test statistic in the context of Section 15.2 is to come up
with an estimator θ̂ for θ (for example the MLE) and use
as test statistic L(θ̂,θ0), where L is some predetermined
loss function, e.g., L(θ,θ0) = ∥θ − θ0∥, where ∥ ⋅ ∥ denotes
here the Euclidean norm. In R, perform some simulations
to compare the resulting test with the Pearson test of
Section 15.9.1.
Problem 15.58. Consider a goodness-of-fit situation
with m possible values for each trial and assume that
n trials are performed. Suppose we want to test

H0 ∶ the distribution is uniform,

versus

H1 ∶ the distribution has support of size ⌊m/2⌋.

These hypotheses are seemingly quite ‘far apart’, but in
fact this really depends on how large m is compared to n.
(i) Show that, if m,n → ∞ with n ≪ √

m then no test
has any power in the limit meaning that any test at
level α has limiting power α.

(ii) Confirm this with numerical experiments. In R,
perform some simulations, evaluating the power of
the LR test. Set the level at α = 0.01. Try
m ∈ {100,1000,10000} and n = ⌊√m⌋.

Problem 15.59 (Group sizes and power). Consider a
simple setting where we want to compare two coins in
terms of their chances of landing heads. Coin j is a θj-
coin and is tossed nj times, for j ∈ {1,2}. Fix the total
sample size at n = n1 + n2 = 100. Also, fix θ1 at 1/2. For
n2 ∈ {10, 20, 30, 40, 50}, evaluate the power of the LR test
as a function of θ2 carefully chosen on a grid that changes
with n2. A possible way to present the results is to set the
level at α = 0.10 and draw the (estimated) power curve as
a function of θ2 for each n2.
Problem 15.60 (The number π). We mentioned in Sec-
tion 10.6.1 that the digits defining π in base 10 behave
very much like a sequence of iid random variables from
the uniform distribution on {0, . . . ,9}. Consider the first
n = 20000 digits. 82 Ignoring the order, could these num-
bers be construed as a sample from the uniform distribu-
tion?
Problem 15.61 (Gauss-Kuzmin distribution). Let X be
uniform in [0,1] and let (Km) denote the coefficients in

82 Available at http://oeis.org/A000796/b000796.txt

http://oeis.org/A000796/b000796.txt


15.10. Additional problems 223

the continued fraction expansion of X, meaning that

X = 1
K1 + 1

K2+...

.

Then (Km) converges weakly to the Gauss-Kuzmin dis-
tribution, defined by its mass function

f(k) ∶= − log2 (1 − 1/(k + 1)2), for k ≥ 1.

(log2 denotes the logarithm in base 2.) Perform some
simulations in R to numerically corroborate this statement.
Problem 15.62 (Racial discrimination in the labor mar-
ket). The article [19] describes an experiment where re-
sumés are sent in response to real job ads in Boston and
Chicago with randomly assigned African-American- or
White- sounding names. Look at the data summarized
in Table 1 of that paper. Identify and then apply the
most relevant testing procedure introduced in the present
chapter.
Problem 15.63 (Proportions test). The authors of [19]
used a procedure not introduced in the present chapter
called the proportions test, which is based on the fact
that the difference of the sample proportions is approxi-
mately normal. In general, consider an experiment as in

Table 15.3. Define Z̄j = Zj/nj and Z̄ = (Z1+Z2)/(n1+n2).
Show that, under the null hypothesis,

Z̄1 − Z̄2√
Z̄(1 − Z̄)(1/n1 + 1/n2)

LÐ→ N (0,1),

in the large-sample limit where n1 ∧ n2 → ∞. Based on
this, obtain a p-value. (Note that the p-value will only
be valid in the large-sample limit.) Apply the resulting
testing procedure to the data of Table 1 in [19]. [In R,
this test is implemented in the prop.test function.]
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We consider an experiment that yields, as data, a sample
of independent and identically distributed (real-valued)
random variables, X1, . . . ,Xn, with common distribu-
tion denoted P, having distribution function F, and
density f (when absolutely continuous). We will let
x1, . . . , xn denote a realization of X1, . . . ,Xn, and de-
note X = Xn = (X1, . . . ,Xn) and x = xn = (x1, . . . , xn).
Throughout, we will let X denote a generic random vari-
able with distribution P. The distribution P is assumed
to belong to some class of distributions on the real line,
which will be taken to be all such distributions whenever
that class is not specified. The goal, as usual, is to infer
this distribution, or some of its features, from the observed
data.
Example 16.1 (Exoplanets). The Extrasolar Planets
Encyclopaedia offers a catalog of confirmed exoplanets to-
gether with some characteristics of these planets including
mass, which is available for hundreds of these planets.

https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
http://exoplanet.eu/
http://exoplanet.eu/


16.1. Order statistics 225

Remark 16.2. There is a statistical model in the back-
ground, (Ω,Σ,P), which will be left implicit, except that
P ∈ P will be used on occasion to denote the (true) under-
lying distribution.

16.1 Order statistics

Order X1, . . . ,Xn to get the so-called order statistics, typ-
ically denoted

X(1) ≤ ⋯ ≤X(n).

Each X(k) is indeed a bona fide statistic. In particular,
X(1) = min(X1, . . . ,Xn) and X(n) = max(X1, . . . ,Xn).
Problem 16.3. Derive the distribution of (X1, . . . ,Xn)
given (X(1), . . . ,X(n)) = (y1, . . . , yn), where y1 ≤ ⋯ ≤ yn.
[This distribution only depends on (y1, . . . , yn).]
This proves that the orders statistics are jointly suffi-

cient, regardless of the assumed statistical model. That
the order statistics are sufficient is intuitively clear since
when reducing the sample to the order statistics all that is
lost is the ordering of X1, . . . ,Xn, and that ordering does
not carry any information on the underlying distribution
because the sample is assumed to be iid.
Problem 16.4. Show that, if X1, . . . ,Xn are iid from a
continuous distribution, then they are all distinct with

probability 1, implying in particular that, with probabil-
ity 1,

X(1) < ⋯ <X(n). (16.1)

16.2 Empirical distribution

The empirical distribution is defined as the uniform distri-
bution on {x1, . . . , xn}, meaning

P̂x(A) ∶= #{i ∶ xi ∈ A}
n

, for A ⊂ R. (16.2)

As a function of X1, . . . ,Xn, P̂X is a random distribution
on the real line. (We sometimes drop the subscript in
what follows.)
Problem 16.5 (Consistency of the empirical distribu-
tion). Using the Law of Large Numbers, show that, for
any Borel set A ⊂ R,

P̂Xn(A) PÐ→ P(A), as n→∞. (16.3)

16.2.1 Empirical distribution function

The empirical distribution function is the distribution
function of the empirical distribution defined in (16.2).
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Problem 16.6. Show that the empirical distribution
function is given by

F̂x(x) ∶=
1
n

n

∑
i=1

{xi ≤ x}.

Seen as a function of X1, . . . ,Xn, F̂X is a random dis-
tribution function. (We sometimes drop the subscript in
what follows.)

When the observations are all distinct (which happens
with probability one when the distribution is continuous,
as seen in Problem 16.4), F̂x is a step function jumping
an amount of 1/n at each xi, and

F̂x(x(i)) =
i

n
, for all i = 1, . . . , n.

See Figure 16.1 for an illustration.
In general, if x(i−1) < x(i) = ⋯ = x(i+k−1) < x(i+k), then

F̂x jumps an amount of k/n at x(i)
R corner. The function ecdf takes a sample (in the form
of a numerical vector) and returns the empirical distribu-
tion function.
Problem 16.7 (Consistency of the empirical distribution
function). Using the Law of Large Numbers, show that,
for any x ∈ R,

F̂Xn(x)
PÐ→ F(x), as n→∞. (16.4)

Figure 16.1: A plot of the empirical distribution function
of a sample of size n = 20 drawn from the standard normal
distribution.
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Thus the empirical distribution function is a pointwise
consistent estimator of the distribution function. In fact,
the convergence is uniform over the whole real line.

Theorem 16.8 (Glivenko–Cantelli 83). In the present
context of an empirical distribution function based on an
iid sample of size n with distribution function F, Xn,

sup
x∈R

∣F̂Xn(x) − F(x)∣ PÐ→ 0, as n→∞.

In fact, the convergence happens at the
√
n rate.

83 Named after Valery Glivenko (1897 - 1940) and Cantelli 40.
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Theorem 16.9 (Dvoretzky–Kiefer–Wolfowitz [70]). In
the context of Theorem 16.8, assuming that F is continuous,
for all t ≥ 0,

P( sup
x∈R

∣F̂Xn(x) − F(x)∣ ≥ t/
√
n) ≤ 2 exp(−2t).

Remark 16.10 (Continuous interpolation). Even if the
underlying distribution function is continuous, its empiri-
cal counterpart is a step function. For this reason, it is
sometimes preferred to use a continuous variant of the em-
pirical distribution function. A popular one is the function
that linearly interpolates the points

(x(1),1/n), (x(2),2/n), . . . , (x(n),1).
(This assumes the observations are distinct.) The function
is defined to take the value 1 at x > x(n), but it is not
clear how to define this function at x < x(1). An option is
to define it as 0 there, but in case the resulting function
is discontinuous at x(1). If the underlying distribution is
known to be supported on the positive real line, for exam-
ple, then the function can be made to linearly interpolate
(0,0) and (x(1),1/n), and take the value 0 at x < 0.

16.2.2 Empirical quantile function

The empirical quantile function is simply the quantile
function of the empirical distribution, or equivalently, the

pseudo-inverse defined in (4.16) of the empirical distribu-
tion function. (If one prefers the variant of the empirical
distribution function defined in Remark 16.10, then its
pseudo-inverse should be preferred also.)
Problem 16.11. The function quantile in R computes
quantiles in a number of ways. In fact, the method offers
no fewer than 9 ways of doing so.
(i) What type of quantile corresponds to our definition

above (based on (4.16))?
(ii) What type of quantile corresponds to the pseudo-

inverse (4.23) of the empirical distribution function?
(iii) What type of quantile corresponds to the pseudo-

inverse of the piecewise linear variant of the empirical
distribution function defined in Remark 16.10?

Remark 16.12. When the observations are distinct, ac-
cording to the definition given in (4.21), x(i) is a u-quantile
of the empirical distribution for any (i − 1)/n ≤ u ≤ i/n.
Problem 16.13 (Consistency of the empirical quantile
function). Show that, at any point u where F is continuous
and strictly increasing,

F̂−Xn
(u) PÐ→ F−(u), as n→∞,

[This is based on (16.4) and arguments similar to those
underlying Problem 8.59.]
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16.2.3 Histogram

Assume that F has a density, denoted f . Is there an
empirical equivalent to f? F̂X , being discrete, does not
have a density but rather a mass function, and it is clear
that a mass function cannot provide a good approximation
to a density.
The idea behind the construction of a histogram is to

consider averages of the mass function over short intervals
so that it provides a piecewise constant approximation
to the underlying density. This approximation turns out
to be pointwise consistent under some conditions. See
Figure 16.2 for an illustration.
Consider a strictly increasing sequence (ak ∶ k ∈ Z),

which defines a partition of the real line into the intervals
{(ak−1, ak] ∶ k ∈ Z}, often called bins in the present context.
Define the corresponding counts, also called frequencies,
as

yk ∶= #{i ∶ xi ∈ (ak−1, ak]}, k ∈ Z,
with the corresponding random variables being denoted
(Yk ∶ k ∈ Z). We have that Yk ∼ Bin(n, pk) with

pk ∶= F(ak) − F(ak−1),
which can therefore be estimated by p̂k ∶= yk/n.

Assume that f can be taken to be continuous. (The
discussion that follows extends without difficulty to the

Figure 16.2: A histogram and a plot of the distribution
function of the data described in Example 16.1, meaning
of the mass of 1582 exoplanets discovered in or before 2017.
The mass is measured in Jupiter mass (MJup), presented
here in logarithmic scale for clarity.
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case where f has a finite number of discontinuities.) If
ak − ak−1 is small, then

pk = F(ak) − F(ak−1) ≈ (ak − ak−1)f(ak). (16.5)

The approximation is in fact exact to first order.
The histogram with bins defined by (ak) is the piecewise

constant function

f̂xn(x) ∶=
yk

n(ak − ak−1)
, when x ∈ (ak−1, ak].
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For x ∈ (ak−1, ak],

f̂Xn(x)
PÐ→ pk

(ak − ak−1)
≈ f(ak), as n→∞, (16.6)

where the approximation is accurate when ak − ak−1 is
small, as seen in (16.5).

For f̂Xn to be consistent for f , it is thus necessary that
the bins become smaller and smaller as the sample size
increases. Below we let the bins depend on n and denote
(ak,n) the sequence defining the bins and, for clarity, we
let f̂n denote the resulting histogram based on Xn and
these bins.
Problem 16.14. Suppose that

max
k

(ak,n − ak−1,n)→ 0,

with min
k

(ak,n − ak−1,n) ≫ 1/n.
(16.7)

Show that, at any point x ∈ R where f is continuous,

f̂n(x)
PÐ→ f(x), as n→∞.

To better appreciate the crucial role that (16.7) plays,
consider the regular grid ak,n = k/n, so that all bins have
size 1/n. In particular, this sequence does not satisfy
(16.7). In fact, in that case, show that, at any point x,

P(f̂n(x) = 0)→ 1/e, as n→∞.

Remark 16.15 (Choice of bins). Choosing the bins au-
tomatically is in general a complex task. Often, a regular
partition is chosen, for example ak = kh, and even then,
the choice of h > 0 is nontrivial. It is known that, if the
function has a bounded first derivative, a bin size of order
h ∝ n−1/3 is best. Although this can provide some guid-
ance, the best choice depends on the underlying density,
resulting in a chicken-and-egg problem. 84 See Figure 16.3
for an illustration.
R corner. The function hist computes and (by default)
plots a histogram based on the data. The function offers
the possibility of manually choosing the bins as well as
three methods for choosing the bins automatically.

16.3 Inference about the median

Recall the definition of a u-quantile of P or, equivalently,
F, given in (4.21). We called median any 1/2-quantile.
In particular, by definition, x is a median of F if (recall
(4.19))

F(x) ≥ 1/2 and F̃(x) ≥ 1/2,
84 It is possible to choose the bin size h by cross-validation, as

Rudemo proposes in [199]. We provide some details in the closely
related context of kernel density estimation in Section 16.10.6.
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Figure 16.3: Histograms of a sample of size n = 1000
drawn from the standard normal distribution with different
number of bins. (The bins themselves where automatically
chosen by the function hist.)
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or, equivalently in terms of X ∼ P,

P(X ≤ x) ≥ 1/2 and P(X ≥ x) ≥ 1/2.

Problem 16.16. Show that these inequalities are in fact
equalities when F is continuous at any of its median points.
Problem 16.17. Show that the set of medians is the
interval [a, b) where a ∶= inf{x ∶ F(x) ≥ 1/2} and b ∶=
sup{x ∶ F(x) = F(a)}, where by convention [a, a) = {a}.
Conclude that there is a unique median if and only if the
distribution function is strictly increasing at any of its
median points.

In what follows, to ease the exposition, we consider the
case where there is a unique median (denoted µ). The
reader is invited to examine how what follows generalizes
to the case where the median is not unique.

16.3.1 Sample median

We already have an estimator of the median, namely,
F̂−X(1/2), which is consistent if F is strictly increasing and
continuous at µ (Problem 16.13). Any such estimator for
the median can be called a sample median. Any reasonable
definition leads to a consistent estimator.
R corner. In R, the function median computes the median
of a sample based on a different definition of pseudo-
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inverse, specifically F̂⊖x as defined in (4.23). In particular,
if all the data points are distinct,

F̂⊖x(1/2) =
⎧⎪⎪⎨⎪⎪⎩

x(n+1)/2 if n is odd,
1
2(x(n/2) + x(n/2+1)) if n is even.

16.3.2 Confidence interval

A (good) confidence interval can be built for the median
without really any assumption on the underlying distri-
bution. The interval is of the form [X(k),X(l)] for some
k ≤ l chosen as functions of the desired level of confidence.
We start with

P(X(k) ≤ µ ≤X(l)) = P(X(k) ≤ µ) − P(X(l) < µ).

Let
qk ∶= Prob{Bin(n,1/2) ≥ k}.

We have

P(X(k) ≤ µ) = P(#{i ∶Xi ≤ µ} ≥ k) ≥ qk,

because #{i ∶ Xi ≤ µ} is binomial with probability of
success P(X ≤ µ) ≥ 1/2, and similarly,

P(X(l) < µ) = P(#{i ∶Xi < µ} ≥ l) ≤ ql,

because P(X < µ) ≤ 1/2. Thus,

P(X(k) ≤ µ ≤X(l)) ≥ qk − ql.

Hence, [X(k),X(l)] is a confidence interval for µ at level
qk − ql. Choosing k as the largest integer such that qk ≥
1 − α/2 and l the smallest integer such that ql ≤ α/2, we
obtain a (1 − α)-confidence interval for µ.
Problem 16.18 (One-sided interval). Derive a one-sided
(1 − α)-confidence interval for the median following the
same reasoning.
Problem 16.19. In R, write a function that takes as in-
put the data points, the desired confidence level, and the
type of interval, and returns the corresponding confidence
interval for the median. Try your function on a sample
of size n ∈ {10,20,30, . . . ,100} from the exponential dis-
tribution with rate 1. Repeat each setting N = 200 times
and plot the average length of the confidence interval as
a function of n.

16.3.3 Sign test

Suppose we want to test H0 ∶ µ = µ0. We saw in Sec-
tion 12.4.6 how to derive a p-value from a procedure for
constructing confidence intervals.
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Problem 16.20. In R, write a function that takes as
input the data points and µ0, and returns the p-value
based on the above procedure for building a confidence
interval for the median.

Depending on what variant of the median is used, and
on whether there are observed values at the median, the
resulting test procedure coincides with, or is very close to,
the following test known as the sign test. Let

Y+ = #{i ∶Xi > µ0}, Y− = #{i ∶Xi < µ0},

and
Y0 = #{i ∶Xi = µ0}.

The test rejects for large values of S ∶= max(Y+, Y−), with
the p-value computed conditional on Y0.
Remark 16.21. The name of the test comes from looking
at the sign of Xi−µ0 and counting how many are positive,
negative, or zero.
Problem 16.22. Show that, if the underlying distribu-
tion has median µ0,

P(Y+ ≥ k ∣ Y0 = y0) ≤ Prob{Bin(n − y0,1/2) ≥ k},
P(Y− ≥ k ∣ Y0 = y0) ≤ Prob{Bin(n − y0,1/2) ≥ k},

and deduce that

P(S ≥ k ∣ Y0 = y0) ≤ 2Prob{Bin(n − y0,1/2) ≥ k}. (16.8)

[This upper bound can be used as a (conservative) p-value.]
Problem 16.23. Derive the sign test and its (conserva-
tive) p-value for testing H0 ∶ µ ≤ µ0.
Problem 16.24. In R, write a function that takes in
the data points and µ0, and the type of alternative, and
returns the (conservative) p-value for the corresponding
sign test.

16.3.4 Inference about a quantile

Whatever was said thus far about estimating or testing
about the median can be extended to any u-quantile with
0 < u < 1.
Problem 16.25. Repeat for the 1st quartile what was
done for the median.
Estimating the 0-quantile or the 1-quantile amounts

to estimating the boundary points of the support of the
distribution.
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16.4 Possible difficulties

We consider some emblematic situations where estimating
the median is difficult. We do the same for the mean, as a
prelude to studying its inference. In the process, we pro-
vide some insights into why it is much more complicated
than inference for the median.

16.4.1 Difficulties with the median

A difficult situation for inference about the median is
when the underlying distribution is flat at the median.
For θ ∈ [0,1], consider the following density

fθ(x) = (1 − θ) {x ∈ [0,1]} + θ {x ∈ [2,3]},

and let Fθ denote the corresponding distribution function.
Problem 16.26. Show that sampling from fθ amounts
to drawing ξ ∼ Ber(θ) and then drawing X ∼ Unif(0, 1) if
ξ = 0, and X ∼ Unif(2,3) if ξ = 1.
Problem 16.27. Show that Fθ is flat at its median if and
only if θ = 1/2. When this is the case, show that any point
in [1,2] is a median. When this is not the case, meaning
when θ ≠ 1/2, show that the median is unique and derive
it as a function of θ.

Assume we have an iid sample from fθ of size n and
that our goal is to draw inference about ‘the’ median.
Problem 16.28. Show that, when θ = 1/2 and n is odd,
the sample median belongs to [0,1] with probability 1/2
and belongs to [2,3] with probability 1/2.
The difficulty is only in appearance, however. Indeed,

the sample median will converge, as the sample size in-
creases, to a median of the underlying distribution and,
more importantly, the confidence interval of Section 16.3.2
has the desired confidence no matter what, although it
can be quite wide.
Problem 16.29. In R, generate a sample from fθ of
size n = 101 (so it is odd) and produce a 95% confidence
interval for the median using the function of Problem 16.19.
Do that for θ ∈ {0.2,0.4,0.45,0.49,0.5,0.51,0.55,0.6,0.8}.
Repeat each setting a few times to get a feel for the
randomness.
Remark 16.30. The situation is qualitatively the same
when

fθ(x) = (1 − θ) f0(x) + θ f1(x),

with f0 and f1 being densities with disjoint supports.
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16.4.2 Difficulties with the mean

While estimating the median does not pose particular
difficulties despite some cases where it is ‘unstable’, esti-
mating the mean poses very real difficulties, to the point
that the problem is almost ill-posed.

For a prototypical example, consider the family of den-
sities

fθ(x) = (1 − θ) {x ∈ [0,1]} + θ {[h(θ), h(θ) + 1]},

parameterized by θ ≥ 0, where h ∶ R+ → R+ is some
function.
Problem 16.31. Show that fθ has mean 1/2 + θh(θ).
As before, sampling from fθ amounts to generating

ξ ∼ Ber(θ), and then drawing X ∼ Unif([0,1]) if ξ = 0,
and X ∼ Unif([h(θ), h(θ) + 1]) if ξ = 1.
Problem 16.32. In a sample of size n from fθ, show
that the number of points generated from Unif([0,1]) is
binomial with parameters (n,1 − θ).

Consider the situation where h is such that θh(θ)→∞
as θ → 0, and choose θ = θn such that nθn → 0. In
particular, fθn has mean 1/2 + θnh(θn) → ∞ as n → ∞,
while with probability tending to 1, the entire sample is
drawn from Unif([0,1]), which has mean 1/2.

Remark 16.33. A very similar difficulty is at the core of
the Saint Petersburg Paradox discussed in Section 7.10.3.
We saw there that considering the median instead of the
mean offers an attractive way of solving the apparent
paradox.

16.5 Bootstrap

Inference about the mean will rely on the bootstrap.
The reasoning is the same as in Section 15.3.2 and Sec-
tion 15.7.3. It goes as follows. If we could sample from
P at will, we would be able to estimate any feature of P
(including mean, median, quantiles, etc) by Monte Carlo
simulation, and the accuracy of our inference would only
be limited by the amount of computational resources at
our disposal. Doing this is not possible since P is unknown,
but we can estimate it by the empirical distribution. This
is justified by the fact that the empirical distribution is a
consistent estimator, as seen in (16.3).
Remark 16.34 (Bootstrap world). The bootstrap world
is the fictitious world where we pretend that the empir-
ical distribution is the underlying distribution. In that
world, we know everything, at least in principle, since
we know the empirical distribution, and in particular we
can use Monte Carlo simulations to compute any feature
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of interest of that distribution. An asterisk ∗ next of a
symbol representing some quantity is often used to denote
the corresponding quantity in the bootstrap world. For
example, if µ denotes the median, then µ∗ will denote the
empirical median. In particular, we will use P∗ in place of
P̂x in what follows to denote the empirical distribution.

16.5.1 Bootstrap sample

Sampling from P∗ is relatively straightforward, since it
is the uniform distribution on {x1, . . . , xn}. A sample
(of same size n) drawn from the empirical distribution is
called a bootstrap sample and denoted X∗

1 , . . . ,X
∗
n .

A bootstrap sample is generated by sampling with
replacement n times from {x1, . . . , xn}.

R corner. In R, the function sample can be used to sample
(with or without replacement) from a finite set, where a
finite set is represented by a vector.
Remark 16.35 (Ties in the bootstrap sample). Even
when all the observations are distinct, by construction, a
bootstrap sample may include some ties.

Problem 16.36. Compute the probability that there
are no ties in a bootstrap sample when x1, . . . , xn are all
distinct.

16.5.2 Bootstrap distribution

Let T be a statistic of interest, and let PT denote its
distribution (meaning, the distribution of T (X1, . . . ,Xn)).
Having observed x1, . . . , xn, resulting in the empirical
distribution P∗, the bootstrap distribution of T is the dis-
tribution of T (X∗

1 , . . . ,X
∗
n). We denote this distribution

by P∗T . It is used to estimate the distribution of T .
In practice, only rarely can we obtain P∗

T in closed
form. Instead, P∗T is typically estimated by Monte Carlo
simulation, which is available to us since we may sample
from F∗ at will.
Problem 16.37. In R, generate a sample of size n ∈
{5, 10, 20, 50} from the exponential distribution with rate
1. Let T be the sample mean and estimate its bootstrap
distribution by Monte Carlo using B = 104 replicates. For
each n, draw a histogram of this estimate, overlay the
density given by the normal approximation, and overlay
the density of the gamma distribution with shape param-
eter n and rate n, which is the distribution of T (meaning
PT ) in this case.
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16.5.3 Bootstrap estimate for a bias

Suppose a particular statistic T is meant to estimate a
feature of the underlying distribution, denoted ϕ(P). For
that purpose, its bias is defined as

b ∶= E(T ) − ϕ,

where E(T ) is shorthand for E(T (X1, . . . ,Xn)) where
X1, . . . ,Xn are iid from P, and ϕ is shorthand for ϕ(P).
It turns out that it can be estimated by bootstrap.

Indeed, in the bootstrap world the corresponding quantity
is

b∗ ∶= E∗(T ) − ϕ∗,

where E∗(T ) is shorthand for E(T (X∗
1 , . . . ,X

∗
n)) where

X∗
1 , . . . ,X

∗
n are iid from P∗, and ϕ∗ is shorthand for ϕ(P∗).

(We assume that ϕ applies to discrete distributions such
as the empirical distribution. This is the case, for example,
if ϕ is a moment or quantile.)

In the bootstrap world, we know P∗, and therefore b∗, at
least in principle. In practice, though, b∗ is typically esti-
mated by Monte Carlo simulation by repeatedly sampling
from P∗. This MC estimate for b∗ serves as an estimate
for b, the bias of T in the ‘real’ world.

16.5.4 Bootstrap estimate for a variance

In addition to the bias, the variance can also be estimated
by bootstrap. Suppose that we are interested in estimating
the variance of a given statistic T . The bootstrap estimate
is simply its variance in the bootstrap world, namely, its
variance under P∗, or in formula

Var∗(T ) = E∗(T 2) − (E∗(T ))2.

As before, this is estimated by Monte Carlo simulation
based on repeatedly sampling from P∗.

16.5.5 What makes the bootstrap work

We say that the bootstrap works when it provides consis-
tent estimates as the sample size n→∞.
The bootstrap tends to work when the statistic of in-

terest is a ‘smooth’ function of the data. Mere continuity
is not enough, as the next example shows.
Problem 16.38. Consider 85 the case where X1, . . . ,Xn

are iid uniform in [0, θ] and we want to estimate θ.
(i) Show that X(n) = max(X1, . . . ,Xn) is the MLE for θ.

(Note that this statistic is continuous in the sample.)
85 This example appears in [247] under a different light.
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(ii) Assume henceforth that θ = 1, which is really without
loss of generality since we are dealing with a scale
family. Let Yn ∶= n(1−X(n)). Derive the distribution
function of Yn in closed form and then its limit as
n→∞. Plot this limiting distribution function as a
dashed line.

(iii) In R, generate a sample of size n = 106 and estimate
the bootstrap distribution of Yn using B = 104 Monte
Carlo samples. 86 Add the corresponding distribution
function to the same plot as a solid line.

16.6 Inference about the mean

While the inference about the median can be performed
sensibly without really any assumption on the underly-
ing distribution, the same cannot be said of the mean.
The reason is that the mean is not as well-behaved as
the median, as we saw in Section 16.4. Thus, it might
be preferable to focus on the median rather than the
mean whenever possible. However, some situations call
for inference about the mean.

86 Of course, the larger n and B, the better, but with finite
computational resources, we might have to choose. Why is it more
important in this particular setting to have n large rather than B
large? (Of course, in practice n is the sample size, and therefore set
once the data are collected.)

16.6.1 Sample mean

We assume in this section that P has a mean, which we
denote by µ. A statistic of choice here is the sample mean
defined as the average of x1, . . . , xn, namely x̄ ∶= 1

n ∑
n
i=1 xi.

This is also the mean of the empirical distribution. We
will denote the corresponding random variable X̄, or X̄n

if we want to emphasize that it was computed from a
sample of size n.
The Law of Large Numbers implies that the sample

mean is consistent for the mean, that is

X̄n
PÐ→ µ, as n→∞.

16.6.2 Normal confidence interval

Assume that P has variance σ2. The Central Limit Theo-
rem implies that

X̄n − µ
σ/√n

LÐ→ N (0,1), as n→∞.

This in turn implies that, if zu denotes the u-quantile of
the standard normal distribution, we have

µ ∈ [X̄n − z1−α/2
σ√
n
, X̄n − zα/2

σ√
n
] (16.9)
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with probability converging to 1 − α as n→∞.
If σ2 is known, then the interval in (16.9) is a bona fide

confidence interval and its level is 1−α in the large-sample
limit, although the confidence level at a given sample size
n will depend on the underlying distribution.
Problem 16.39. Bound the confidence level from below
using Chebyshev’s inequality.

If σ2 is unknown, we estimate it using the sample vari-
ance, which may be defined as

S2 ∶= 1
n

n

∑
i=1

(Xi − X̄)2. (16.10)

This is the variance of the empirical distribution. By
Slutsky’s theorem, in conjunction with the Central Limit
Theorem, it holds that

X̄n − µ
Sn/

√
n

LÐ→ N (0,1), as n→∞,

which in turn implies that

µ ∈ [X̄n − z1−α/2
Sn√
n
, X̄n − zα/2

Sn√
n
] (16.11)

with probability converging to 1 − α as n→∞.

Remark 16.40 (Unbiased sample variance). The follow-
ing variant is sometimes used instead in place of (16.10)

1
n − 1

n

∑
i=1

(Xi − X̄)2. (16.12)

This is what the R function var computes. This variant
happens to be unbiased (Problem 16.92). In practice, the
two variants are of course very close to each other, unless
the sample size is quite small.

Student confidence interval When X1, . . . ,Xn are
iid from a normal distribution,

X̄ − µ
S/

√
n − 1

has the Student distribution with parameter n − 1. In
particular, if tnu denotes the u-quantile of this distribution,
then

µ ∈ [X̄n − tn−1
1−α/2

Sn√
n − 1

, X̄n − tn−1
α/2

Sn√
n − 1

] (16.13)

with probability 1 −α when the underlying distribution is
normal. In general, this is only true in the large-sample
limit.
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Problem 16.41. Show that the Student distribution
with n degrees of freedom converges to the standard nor-
mal distribution as n increases. Deduce that, for any
u ∈ (0,1), tnu → zu as n→∞.
Remark 16.42. The Student confidence interval (16.13)
appears to be more popular than the normal confidence
interval (16.11).
R corner. The family of Student distributions is available
via the functions dt (density), pt (distribution function),
qt (quantile function), and rt (pseudo-random number
generator). The Student confidence intervals and the
corresponding tests can be computed using the function
t.test.

16.6.3 Bootstrap confidence interval

When σ is known, the confidence interval in (16.9) relies
on the fact that the distribution of X̄ −µ is approximately
normal with mean 0 and variance σ2/n (that is, if n is
large enough).
Remark 16.43. The random variable X̄−µ is often called
a pivot. It is not a statistic, as it cannot be computed
from the data alone (since µ is unknown).
Let us carefully examine the process of deriving this

confidence interval. Let Q denote the distribution of X̄−µ.
Let qu denote a u-quantile of Q. By (4.17) and (4.20),

P(X̄ − µ ≤ q1−α/2) ≥ 1 − α/2, (16.14)
P(X̄ − µ < qα/2) ≤ α/2, (16.15)

so that
P(qα/2 ≤ X̄ − µ ≤ q1−α/2) ≥ 1 − α,

or, equivalently,

µ ∈ [X̄ − q1−α/2, X̄ − qα/2], (16.16)

with probability at least 1 − α. The issue here, of course,
is that this construction relies on Q, which is unknown, so
that this interval is not a bona fide confidence interval. In
(16.9), Q is approximated by a normal distribution. Here
we estimate Q by bootstrap instead.

The bootstrap estimation of Q is done, as usual, by
going to the bootstrap world. Suppose we have observed
x1, . . . , xn. In the bootstrap world, the equivalent of X̄ −µ
is X̄∗ −µ∗, where X̄∗ is the average of a bootstrap sample
of size n and µ∗ is the mean of P∗, so that µ∗ = x̄. Let Q∗

denote the distribution function of X̄∗ − µ∗. This is the
bootstrap estimate for Q. The hope, as usual, is that the
sample is large enough that Q∗ is close to Q.
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Remark 16.44. In practice, Q∗ is itself estimated by
Monte Carlo simulation from P∗, and that estimate is our
estimate for Q. Below we reason as if we knew Q∗, or
equivalently, as if we had infinite computational power and
we had the luxury of drawing an infinite number of Monte
Carlo samples. (This allows us to separate statistical
issues from computational issues.)
Having computed Q∗, a confidence interval is built as

done above. Let q∗u denote the u-quantile of Q∗. The
bootstrap (1 − α)-confidence interval for µ is obtained by
plugging q∗ in place of q in (16.16), resulting in

[X̄ − q∗1−α/2, X̄ − q∗α/2]. (16.17)

(Note that it is X̄ and not X̄∗. The latter does not really
have a meaning since it denotes the average of a generic
bootstrap sample and the procedure is based on drawing
many such samples.)
Problem 16.45. In R, write a function that takes in the
data, the desired confidence level, and a number of Monte
Carlo replicates, and returns the bootstrap confidence
interval (16.17).

16.6.4 Bootstrap Studentized confidence
interval

Instead of using X̄ −µ as pivot as we did in Section 16.6.3,
we now use (X̄−µ)/S. The process of deriving a bootstrap
confidence interval is then completely parallel. 87

Redefine Q as the distribution of (X̄−µ)/S, and redefine
qu as the u-quantile of Q. Then

µ ∈ [X̄ − Sq1−α/2, X̄ − Sqα/2], (16.18)

with probability at least 1 − α. In (16.11), Q is approxi-
mated by a normal distribution. Here we estimate Q by
bootstrap instead.

Suppose we have observed x1, . . . , xn. In the bootstrap
world, the equivalent of (X̄ −µ)/S is (X̄∗−µ∗)/S∗, where
S∗ is the sample standard deviation of a bootstrap sample
of size n. Let Q∗ denote the distribution function of (X̄∗−
µ∗)/S∗ and let q∗u denote its u-quantile. The bootstrap
Studentized (1 − α)-confidence interval for µ is obtained
by plugging q∗ in place of q in (16.18), resulting in

[X̄ − Sq∗1−α/2, X̄ − Sq∗α/2]. (16.19)

(Note that it is X̄ and S, and not X̄∗ and S∗.)
87 We only repeat it for the reader’s convenience, however the

reader is invited to anticipate what follows.
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Problem 16.46. In R, write a function that takes in the
data, the desired confidence level, and number of Monte
Carlo replicates, and returns the bootstrap confidence
interval (16.19).
Remark 16.47 (Comparison). The Studentized version
is typically more accurate. You are asked to probe this in
Problem 16.95.

16.6.5 Bootstrap tests

Suppose we want to test H0 ∶ µ = µ0. We saw in Sec-
tion 12.4.6 how to derive a p-value from a confidence
interval procedure.
Problem 16.48. In R, write a function that takes as
input the data points and µ0 and returns the p-value
based on the bootstrap Studentized confidence interval.

16.6.6 Inference about other moments and
beyond

The bootstrap approach to drawing inference about the
mean generalizes to other moments, and more generally,
to any expectation such as µψ ∶= E(ψ(X)), where ψ is
a given function (e.g., ψ(x) = xk gives the kth moment).

This is because, if we define Yi = ψ(Xi), then Y1, . . . , Yn
are iid with mean µψ.
Problem 16.49. Define a bootstrap Studentized confi-
dence interval for the kth moment.

16.7 Inference about the variance and
beyond

A confidence interval for the variance σ2 can be obtained
by computing a confidence interval for the mean and a
confidence interval for the second moment, and combining
these to get a confidence interval for the variance, since

Var(X) = E(X2) − (E(X))2.

However, there is a more direct route, which is typically
preferred.
In general, consider a feature of interest ϕ(P). We

assume that ϕ applies to discrete distributions. In that
case, a natural estimator is the plug-in estimator ϕ(P∗).
A bootstrap confidence interval can then be derived as we
did for the mean in Section 16.6.3, using ϕ(P∗) −ϕ(P) as
pivot.
Indeed, let vu denote the u-quantile of its distribution.

Then
ϕ(P) ∈ [ϕ(P∗) − vα/2, ϕ(P∗) − v1−α/2]
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with probability at least 1−α. Since vu is not available, we
go to the bootstrap world. There the corresponding object
is ϕ(P∗∗)−ϕ(P∗), where P∗∗ is the empirical distribution
function of a sample of size n from P∗. We then estimate
vu by v∗u, the u-quantile of the bootstrap distribution of
ϕ(P∗∗) − ϕ(P∗), resulting in

ϕ(P) ∈ [ϕ(P∗) − v∗α/2, ϕ(P∗) − v∗1−α/2]

with approximate probability 1−α under suitable circum-
stances (see Section 16.5.5).
Remark 16.50. A bootstrap Studentized confidence in-
terval can also be constructed based on (ϕ(P∗)−ϕ(P))/D
as pivot, where D is an estimate for the standard devia-
tion of ϕ(P∗). Unless a simpler estimator is available, we
can always use the bootstrap estimate for the standard
deviation. If this is our D, then the construction of the
Studentized confidence interval requires the computation
of a bootstrap estimate for the variance in the bootstrap
world, meaning that such an estimate is computed for
each bootstrap sample. A direct implementation of this
requires a loop within a loop, and is therefore computa-
tionally intensive.

16.8 Goodness-of-fit testing and
confidence bands

Suppose we want to test whether the underlying distri-
bution is a given distribution, often called the null dis-
tribution and denoted P0 henceforth, with distribution
function F0 and (when applicable) density f0. Recall
that we considered this problem in the discrete setting in
Section 15.2.

If this happens in the context of a family of distributions
that admits a simple parameterization, the hypothesis
testing problem will likely be approachable via a standard
test (e.g., the likelihood ratio test) on the underlying
parameter. This is the case, for example, when we assume
that the underlying distribution is in {Beta(θ,1) ∶ θ > 0},
and we are testing whether the distribution is uniform
distribution on [0,1], which is equivalent in this context
to testing whether θ = 1.

We place ourselves in a setting where no simple param-
eterization is available. In that case, a plugin approach
points to comparing the empirical distribution with the
null distribution (since the empirical distribution is always
available as an estimate of the underlying distribution).
We discuss two approaches for doing so: one based on
comparing distribution functions and another one based
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on comparing densities.
Remark 16.51 (Tests for uniformity). Under the null
distribution, the transformed data U1, . . . , Un, with Ui =
F0(Xi), are iid uniform in [0,1]. In principle, therefore,
testing for a particular null distribution can be reduced
to testing for uniformity, that is, the special case where
the null distribution is P0 = Unif(0,1). For pedagogical
reasons, we chose not to work with this reduction in what
follows. (See Section 16.10.1 for additional details.)

16.8.1 Tests based on the distribution function

A goodness-of-fit test based on comparing distribution
functions is generally based on a statistic of the form

∆(F̂X ,F0),

where ∆ is a measure of dissimilarity between distribution
functions. There are many such dissimilarities and we
present a few classical examples. In each case, large values
of the statistic weigh against the null hypothesis.

Kolmogorov–Smirnov test 88 This test uses the
supremum norm as a measure of dissimilarity, namely

∆(F,G) ∶= sup
x∈R

∣F(x) −G(x)∣. (16.20)

Problem 16.52. Show that

∆(F̂X ,F0) = max
i=1,...,n

max{ i
n
− F0(X(i)),F0(X(i)) −

i − 1
n

}.

Calibration is (obviously) by Monte Carlo under F0.
This calibration by Monte Carlo necessitates the use of a
computer, yet the method was in use before the advent of
computers. What made this possible is the following.

Proposition 16.53. The distribution of ∆(F̂X ,F0) un-
der F0 does not depend on F0 as long as F0 is continuous.

Proof. We prove the result in the special case where F0 is
strictly increasing on the real line. The key point is that,
under F0, F0(X) ∼ Unif(0,1). Let Ui = F0(Xi) and let Ĝ
denote the empirical distribution function of U1, . . . , Un.
Also, let F̂ be shorthand for F̂X . For x ∈ R, let u = F0(x),
and derive

F̂(x) − F0(x) = F̂(F−1
0 (u)) − F0(F−1

0 (u))
= Ĝ(u) − u.

88 Named after Kolmogorov 1 and Nikolai Smirnov (1900 - 1966).
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Thus, because F0 ∶ R→ (0,1) is one-to-one, we have

sup
x∈R

∣F̂(x) − F0(x)∣ = sup
u∈(0,1)

∣Ĝ(u) − u∣.

Although the computation of Ĝ surely depends on F0 (since
F0 is used to define the Ui), clearly its distribution under
F0 does not. Indeed, it is simply the empirical distribution
function of an iid sample of size n from Unif(0,1). Note
that the function u ↦ u coincides with the distribution
function of Unif(0,1) on the interval (0,1).

Remark 16.54. In the pre-computer days, the distribu-
tion of ∆(F̂X ,F0) under F0 was obtained in the special
case where F0 is the distribution function of Unif(0,1).
There are recursion formulas for the exact computation
of the p-value. The large-sample limiting distribution,
known as the Kolmogorov distribution, was derived by
Kolmogorov [143] and tabulated by Smirnov [213], and
used for larger sample sizes. Details are provided in Prob-
lem 16.93.
R corner. In R, the test is implemented in ks.test, which
returns a warning if there are ties in the data. The Kol-
mogorov distribution function is available in the package
kolmim.

Remark 16.55. The recursion formulas just mentioned
are only valid when there are no ties in the data, a condi-
tion which is satisfied (with probability one) in the context
of Proposition 16.53, as F0 is assumed there to be contin-
uous. Although some strategies are available for handling
ties, a calibration by Monte Carlo simulation is always
available and accurate.
Problem 16.56. In R, write a function that mimics
ks.test but instead returns a Monte Carlo p-value based
on a specified number of replicates.

Cramér–von Mises test 89 This test uses the follow-
ing dissimilarity measure

∆(F,G)2 ∶= E [(F(X) −G(X))2], X ∼ G. (16.21)

Problem 16.57. Show that

∆(F̂X ,F0)2 = 1
12n2 +

1
n

n

∑
i=1

[2i − 1
2n

− F0(X(i))]
2
.

As before, calibration is done by Monte Carlo simulation
under F0.
Problem 16.58. Show that Proposition 16.53 applies.

89 Named after Harald Cramér (1893 - 1985) and Richard von
Mises (1883 - 1953).
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Anderson–Darling tests 90 These tests use dissimi-
larities of the form

∆(F,G) ∶= sup
x∈R

w(x)∣F(x) −G(x)∣, (16.22)

or of the form

∆(F,G)2 ∶= E [w(x)2(F(X) −G(X))2], X ∼ G, (16.23)

where w is a (non-negative) weight function. In both cases,
a common choice is

w(x) ∶= [G(x)(1 −G(x))]−1/2.

This is motivated by the fact that, under the null, for any
x ∈ R, F̂X(x) − F0(x) has mean 0 and variance F0(x)(1 −
F0(x)).
Problem 16.59. Prove this assertion.

16.8.2 Confidence bands

Confidence bands are the equivalent of confidence intervals
when the object to be estimated is a function rather
than a real number. A confidence band can be obtained

90 Named after Theodore Anderson (1918 - 2016) and Donald
Darling (1915 - 2014).

by inverting a test based on a measure of dissimilarity
∆, for example (16.20), following the process described
in Section 12.4.6. In what follows, we assume that the
underlying distribution, F, is continuous and that ∆ is
such that Proposition 16.53 applies.
Let δu denote the u-quantile of ∆(F̂X ,F), which does

not depend on F by Proposition 16.53. Within the space
of continuous distribution functions, define the following
(random) subset

B ∶= {G ∶ ∆(F̂X ,G) ≤ δ1−α}.

This is the acceptance region for the level α test defined
by ∆. This is thus the analog of (12.31), and following
the arguments provided in Section 12.4.9, we obtain

PF(F ∈ B) = PF(∆(F̂X ,F) ≤ δ1−α) = 1 − α.

(PF denotes the distribution under F, meaning when
X1, . . . ,Xn are iid from F.)
Remark 16.60. The region B is called a ‘confidence ban’
because, if all the distribution functions in B are plotted,
it yields a band as a subset of the plane (at least this is
the case for the most popular measures of dissimilarity).
Problem 16.61. In the particular case of the supremum
norm (16.20), the band is particularly easy to compute or
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draw, because it can be defined pointwise. Indeed, show
that in this case the band (as a subset of R2) is defined as

{(x, p) ∶ ∣p − F̂(x)∣ ≤ δ1−α}.

In R, write a function that takes in the data and the desired
confidence level, and plots the empirical distribution func-
tion as a solid black line and the corresponding band in
grey. [The function polygon can be used to draw the band.]
Try out your function on simulated data from the standard
normal distribution, with sample sizes n ∈ {10,100,1000}.
Each time, overlay the real distribution function plotted
as a red line. See Figure 16.4 for an illustration.

16.8.3 Tests based on the density

A goodness-of-fit test based on comparing densities rejects
for large values of a test statistic of the form

∆(f̂X , f0),

where f̂X is an estimator for a density of the underlying
distribution, f0 is a density of F0, and ∆ is a measure of
dissimilarity between densities such as the total variation
distance,

∆(f, g) ∶= ∫
R
∣f(x) − g(x)∣dx,

Figure 16.4: A 95% confidence band for the distribution
function based on a sample of size n = 1000 from the
exponential distribution with rate λ = 1. In black is the
empirical distribution function, in red is the underlying
distribution function, and in grey is the confidence band.
The marks identify the sample points.
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or the Kullback–Leibler divergence,

∆(f, g) ∶= ∫
R
f(x) log(f(x)/g(x))dx. (16.24)

Remark 16.62. If a histogram is used as a density esti-
mator, the procedure is similar to binning the data and
then using a goodness-of-fit test for discrete data (Sec-
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tion 15.2). (Note that this approach is possible even if
the null distribution does not have a density.)
Problem 16.63. In R, write a function that implements
the procedure of Remark 16.62 using the likelihood ratio
goodness-of-fit test detailed in Section 15.2. Use the
function hist to bin the data and let it choose the bins
automatically. The function returns a Monte Carlo p-value
based on a specified number of replicates.

16.9 Censored observations

In some settings, the observations are censored. An em-
blematic example is that of clinical trials where patient
survival is the primary outcome. In such a setting, pa-
tients might be lost in the course of the study for other
reasons, such as the patient moving too far away from
any participating center, or simply by the termination
of the study. Other fields where censoring is common
include, for example, quality control where the reliability
of some manufactured item is examined. The study of
such settings is called Survival Analysis.

We consider a model of independent right-censoring. In
the context of a clinical trial, let Ti denote the time to event
(say death) for Subject i, with T1, . . . , Tn assumed iid from
some distribution H. These are not observed directly as

they may be subject to censoring. Let C1, . . . ,Cn denote
the censoring times, assumed to be iid from some distribu-
tion G. The actual observations are (X1, δ1), . . . , (Xn, δn),
where

Xi = min(Ti,Ci), δi = {Xi = Ti},

so that δi = 1 indicates that the ith case was observed un-
censored. The goal is to infer the underlying distribution
H, or some features of H such as its median.
Problem 16.64. Recall the definition of the survival
function given in (4.14). Show that X1, . . . ,Xn are iid
with survival function F̄(x) ∶= H̄(x)Ḡ(x).

16.9.1 Kaplan-Meier estimator

We consider the case where the variables are discrete. We
assume they are supported on the positive integers without
loss of generality. In a survival context, this is the case, for
example, when survival time is the number days to death
since the subject entered the study. In that special case, it
is possible to derive the maximum likelihood estimator for
H. Denote the corresponding survival and mass functions
by H̄(t) = 1−H(t) and h(t) = H(t)−H(t− 1), respectively.
Let I = {i ∶ δi = 1}, which indexes the uncensored survival
times.
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Problem 16.65. Show that the likelihood is

lik(H) ∶=∏
i∈I

h(Xi) ×∏
i∉I

H̄(Xi). (16.25)

As usual, we need to maximize this with respect to H.
For a positive integer t, define the hazard rate

λ(t) = P(T = t ∣ T > t − 1)
= 1 − P(T > t ∣ T > t − 1)
= h(t)/H̄(t − 1).

By the Law of Multiplication (1.21),

H̄(t) = P(T > t) =
t

∏
k=1

P(T > k ∣ T > k − 1) (16.26)

=
t

∏
k=1

(1 − λ(k)), (16.27)

so that

h(t) = H̄(t − 1) − H̄(t)

= λ(t)
t−1
∏
k=1

(1 − λ(k)).

In particular, λ determines h, and therefore H.

Problem 16.66. Deduce that the likelihood, as a func-
tion of λ, is given by

lik(λ) =∏
t≥1
λ(t)Dt(1 − λ(t))Yt−Dt .

where Dt is the number of events at time t, meaning

Dt ∶= #{i ∶Xi = t, δi = 1},

and Yt is the number of subjects still alive (said to be at
risk) at time t, meaning

Yt ∶= #{i ∶Xi ≥ t}.

Then show that the maximizer is λ̂ given by

λ̂(t) ∶=Dt/Yt.

The corresponding estimate for H̄ is obtained by plug-
ging λ̂ in (16.27), resulting in the MLE for H̄ being

H̄km(t) ∶=
t

∏
k=1

(1 −Dk/Yk),

known as the Kaplan-Meier estimator.
Remark 16.67. Bootstrap confidence bands for this esti-
mator are discussed in [4]. The situation is a bit complex
and we omit details.
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16.10 Further topics

16.10.1 Reduction to a uniform sample

Assume that X1, . . . ,Xn are iid from a continuous dis-
tribution F. If we define Ui ∶= F(Xi), U1, . . . , Un are
iid Unif(0,1). Thus the study of the order statistics
(X(1), . . . ,X(n)) reduces to the study of the uniform or-
ders statistics (U(1), . . . , U(n)), which is the object of an
area known as Empirical Process Theory. To emphasize
the total sample size n, the notation (U(1∶n), . . . , U(n∶n))
is often used.

It is known, for example, that U(i∶n) has the beta distri-
bution with parameters (i, n + 1 − i), which in particular
implies that

E(U(i∶n)) =
i

n + 1
,

and
Var(U(i∶n)) =

i(n + 1 − i)
(n + 1)2(n + 2) ≤ 1

4n + 8
.

Problem 16.68. Prove that U(i∶n) is concentrated near
its mean by showing that, for all t > 0,

P(∣U(i∶n) − i/(n + 1)∣ ≥ t/
√
n) ≤ 1/4t2.

(See also Problem 16.96.)

It is also known that U(i∶n) is approximately normal
when n is large and i/n is not too close to 0 or 1. In par-
ticular, this implies the following (via the delta method).

Proposition 16.69 (Asymptotic normality of the sample
median). Assume that (Xi ∶ i ≥ 1) are iid with median
θ and distribution function F having a strictly positive
derivative at θ (denoted f(θ)). Then

√
n(Med(X1, . . . ,Xn) − θ)

LÐ→ N(0, 1
4 f(θ)2 ),

as n→∞.

As mentioned in Remark 16.51, when testing for a
particular null distribution F0, we can work with the
transformed sample Ui ∶= F0(Xi) and test for uniformity.
The test that Berk and Jones [15] proposed directly ex-
ploits the fact that distribution under the null of each
order statistic is known. Specifically, the test rejects for
small values of min(S−, S+), where S+ ∶= miniGi(U(i))
and S− ∶= mini(1 − Gi(U(i))), where Gi is the distribution
function of Beta(i, n+ 1− i). The asymptotic distribution
of this test statistic under the null hypothesis is derived
in [170].
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16.10.2 Other forms of bootstrap

There are other forms of bootstrap besides the one that
relies on the empirical distribution (often called the em-
pirical bootstrap ). We briefly describe a few.

Smooth bootstrap The empirical distribution is al-
ways available as an estimate of the underlying distribu-
tion, but being discrete, it is not ‘smooth’. A smooth
bootstrap is based on a smoother estimate of the un-
derlying distribution, for example, the piecewise linear
empirical distribution function (Remark 16.10) or a kernel
density estimate (Section 16.10.6).

A common way to implement the latter is as follows. Let
x1, . . . , xn denote the observations. Given a distribution
with density K, generate a (smooth) bootstrap sample by
first generating an iid sample from K, denotedW1, . . . ,Wn,
and then adding that to the observations, resulting in
the bootstrap sample X∗

1 , . . . ,X
∗
n with X∗

i ∶= xi +Wi. By
(6.11) and Section 16.10.6, conditional on the observations,
X∗

1 , . . . ,X
∗
n are iid with density

f∗(x) ∶= 1
n

n

∑
i=1

K(xi − x),

which is a kernel density estimate.

Remark 16.70. When the task is to estimate a param-
eter of interest, ϕ(F), with ϕ not defined on discrete
distributions, the empirical bootstrap is not applicable,
but a smooth bootstrap might.

Parametric bootstrap If we know (or rather, if we
are willing to assume) that F is in some parametric family
of distributions, say {Fθ ∶ θ ∈ Θ}, then a possible approach
is to estimate F with Fθ̂, where θ̂ is an estimator for θ,
for example, the MLE. (This is in fact what we did in
Section 15.3.2 in the context of discrete distributions.)

16.10.3 Method of moments

Suppose an experiment results in an iid sample, denoted
X1, . . . ,Xn, having distribution Pθ on R, where θ ∈ Θ is
unknown and needs to be estimated. This is for example
the case of the binomial experiment of Example 12.2 if we
define Xi = 1 when the ith trial results in heads and Xi = 0
otherwise. Let P̂X denote the empirical distribution.

We already saw maximum likelihood estimation. A com-
peting approach is the method of moments. Having chosen
some distributional features of interest (e.g., various mo-
ments), the idea is to find a value of θ such that, in terms
these features, Pθ is close to the empirical distribution.
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A feature here is a real-valued function on distributions
on R. Let Λ1, . . . ,Λk denote k such features. Based on
these, define the following estimator

S ∶= arg min
θ∈Θ

k

∑
j=1

[Λj(Pθ) −Λj(P̂X)]2
.

(This assumes the minimization problem has a unique
solution.)
Remark 16.71 (Classical method of moments). The fea-
tures are traditionally chosen to be moments, meaning,
Λj(P) = EP(Xj), where EP denotes the expectation under
X ∼ P.
In some classical settings, it is possible to find θ ∈ Θ

such that Λj(Pθ) = Λj(P̂X) for all j = 1, . . . , k.
Problem 16.72 (Binomial experiment). Consider the
binomial experiment of Example 12.2. Apply the method
of moments estimator based solely on the 1st moment,
meaning that k = 1 and Λ1(P) = mean(P), and show
that the resulting estimator coincides with the maximum
likelihood estimator.
Problem 16.73. More generally, assume that Θ ⊂ R and
that θ is the mean of Pθ. Show that the classical method
of moments estimate for θ, with k = 1, is the sample mean.

Extend this to the case where Θ = R ×R+ and θ = (µ,σ2),
with µ being the mean and σ2 the variance of Pθ.

16.10.4 Prediction intervals

In Section 16.3.2 and in Section 16.6 our goal was to
construct a confidence interval for the location param-
eter of interest, respectively the median and the mean.
Consider instead the problem of constructing an interval
for a new observation sampled from the same underly-
ing distribution. Such an interval is called a prediction
interval.

In what follows, we let X1, . . . ,Xn,Xn+1 be iid from a
distribution P on the real line, where Xn ∶= (X1, . . . ,Xn)
plays the role of the available sample, while Xn+1 plays
the role of a new datum.
Problem 16.74. Suppose that P is the normal distri-
bution with unknown mean µ and unknown variance σ2.
Let X̄n and Sn denote the sample mean and standard
deviation based on Xn. Show that

Xn+1 ∈ [X̄n − tn−1
1−α/2Sn

√
n−1
n+1 , X̄n − tn−1

α/2Sn

√
n−1
n+1]

with probability 1 − α.
Compared to the confidence interval for the mean given

in (16.13), the prediction interval above is much wider. In
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fact, its half-width converges (in probability) to σz1−α/2,
and therefore does not converge to zero as n → ∞. (As
before, zu denotes the u-quantile of the standard normal
distribution.) This is to be expected. Indeed, even when
µ and σ are known, we cannot do better asymptotically.
Problem 16.75. Show that [µ−z1−α/2σ,µ−zα/2σ] is the
shortest interval I such that

P(X ∈ I) ≥ 1 − α, (16.28)

when X is sampled from N (µ,σ2).
When no parametric family is assumed, one can rely on

the empirical distribution to obtain a prediction interval.
One way to do so is via the appropriate sample quantiles.
Problem 16.76. Let F̂−n denote the empirical quantile
function based on Xn. Prove that

Xn+1 ∈ [F̂−n(α/2), F̂−n(1 − α/2)] (16.29)

with probability tending to 1 − α as n → ∞. Propose
another variant such that, asymptotically, the interval is
shortest (at the same confidence level 1 − α).
The prediction interval (16.29) has asymptotically the

prescribed confidence level. If the level must be guar-
antied in finite samples, one can use the Dvoretzky–Kiefer–
Wolfowitz bound.

Problem 16.77. Derive a prediction interval based on
Theorem 16.9 that satisfies the prescribed level of confi-
dence in finite samples. [The shorter the better.] How
does the interval behave in the large-sample limit?
The following may provide a more satisfying option.

Proposition 16.78. With X(1) ≤ ⋯ ≤X(n) denoting the
ordered sample, it holds that

Xn+1 ∈ [X(⌊nα/2⌋),X(⌈n(1−α/2)⌉)] (16.30)

with probability at least 1 − α.

Proof. For a sample x1, . . . , xn ∈ R, let

I(x1, . . . , xn) = [x(⌊nα/2⌋), x(⌈n(1−α/2)⌉)],

where x(1) ≤ ⋅ ⋅ ⋅ ≤ x(n) denote the ordered sample. For
i ∈ {1, . . . , n + 1}, let

Yi =
⎧⎪⎪⎨⎪⎪⎩

1 if Xi ∈ I(X1, . . . ,Xi−1,Xi+1, . . . ,Xn+1);
0 otherwise.

Because the event (16.30) can be equivalently stated as
Yn+1 = 1, it suffices to prove that P(Yn+1 = 1) ≥ 1 − α.
Since Yn+1 takes values in {0,1}, P(Yn+1 = 1) = E(Yn+1).
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Although Y1, . . . , Yn+1 are not independent, they are ex-
changeable, and in particular they have the same expec-
tation, so that

E(Yn+1) = E(Y1 +⋯ + Yn+1
n + 1

).

We then conclude with the following problem.

Problem 16.79. For x1, . . . , xn+1 ∈ R, define yi = 1 if xi ∈
I(x1, . . . , xi−1, xi+1, . . . , xn), and yi = 0 otherwise. Show
that

y1 +⋯ + yn+1
n + 1

≥ 1 − α.

Remark 16.80 (Conformal prediction). The approach
underlying the construction of the prediction interval
(16.30) can be seen as an example of conformal predic-
tion [208, 239], which may be seen as a general approach
based on inverting a permutation test for goodness-of-fit
comparing samples {X1, . . . ,Xn} and {Xn+1} using an
approach similar to that of Section 12.4.6 for inverting a
test to obtain a confidence interval.

16.10.5 Testing against a family of
distributions

Section 16.8 dealt with a situation where there is a single
null distribution to test against. We saw in Remark 16.51

that, as long as the null distribution is continuous, we can
assume it to be the uniform distribution on [0, 1]. In fact,
it can be assumed to be any other continuous distribution,
e.g., the standard normal distribution.

We now consider a situation where there is a null family
of distributions to test against. For example, we may want
to know whether the sample was generated by the uniform
distribution on an unspecified interval (Problem 22.9). Or
we may need to decide whether the sample comes from
a normal distribution, often referred to as testing for
normality.

Suppose, therefore, that we have access to a sample,X =
(X1, . . . ,Xn), assumed iid from a continuous distribution,
and our task is to test whether the underlying distribution
is in some given (null) family of distributions, {Fθ ∶ θ ∈ Θ},
against the alternative that is not in that family.
Assuming we have an estimator for θ, denoted S(X),

and working with distribution functions as in Sec-
tion 16.8.1, a plug-in approach leads to using a test statis-
tic of the form

∆(F̂X ,FS(X)). (16.31)

We still reject for large values of this statistic, although
the main difference here is that a p-value is obtained by
bootstrap, since the null distribution needs to be estimated.
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Lilliefors test This is a test for normality that de-
rives from using the supremum norm as a measure of
dissimilarity (16.20). The parameters (mean and vari-
ance) are obtained by maximum likelihood or the method
of moments.
Although the p-value is in principle obtained by boot-

strap as explained above, here the test statistic has the
same distribution under the null hypothesis regardless of
the sample values. This is because the normal family is a
location-scale family, and the supremum norm is invariant
with respect to affine transformations.
Problem 16.81. Prove that the statistic (16.31), with
∆ denoting the supremum norm (16.20), has the same
distribution under any normal distribution.
Problem 16.82. Compare the Lilliefors test to the
Kolmogorov–Smirnov test against the estimated null dis-
tribution.
R corner. In R, the test is implemented in the function
lillie.test in the package nortest.

16.10.6 Kernel density estimation

Consider a sample, X1, . . . ,Xn, drawn iid from a density
f that we want to estimate. Let K be a function on R,
which here plays the role of kernel function, and for a > 0

define
Ka(x) = a−1K(x/a). (16.32)

The key is the following result.

Proposition 16.83. Suppose that ∫R K(x)dx = 1 and f
is continuous at x and bounded on R. Then

∫
R

Ka(z − x)f(z)dz → f(x), as a→ 0.

Since,

∫
R

Ka(z − x)f(z)dz = Ef(Ka(X − x)),

where Ef denotes the expectation with respect to X ∼ f ,
this suggests estimating f with

f̂a(x) ∶=
1
n

n

∑
i=1

Ka(xi − x). (16.33)

The method has one parameter a > 0, called the band-
width, that plays the exact same role as the bin size in the
construction of a histogram (with bins of equal size). In
fact, when K is the so-called rectangular (aka flat) kernel,
namely, K(x) = {x ∈ [−1/2,1/2]}, the estimate is close to
a histogram with bin size h.
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R corner. The function density in R offers a number of
choices for the kernel K. The default is the Gaussian
kernel K(x) ∶= 1√

2π exp(−x2/2).

A kernel density estimate is at least as smooth the kernel
used to define it. In particular, a kernel density estimate
with the Gaussian kernel is infinitely differentiable.
Desiderata. For reasons of approximation accuracy, it
is desired that the kernel is most typically chosen even
and either compactly supported or fast-decaying.

Choice of bandwidth The choice of bandwidth a has
generated a lot of proposals. It is directly related to the
choice of bin size in the construction of a histogram, and
the same chicken-and-egg situation arises.

For example, here too, the optimal choice for a is of order
n−1/3 when f has bounded slope. To see why, suppose
that f is bounded by c0 and has slope bounded by c1
everywhere, meaning

f(x) ≤ c0, for all x ∈ R, (16.34)
∣f(x) − f(z)∣ ≤ c1 ∣x − z∣, for all x, z ∈ R. (16.35)

Assume that the kernel is non-negative, has support in
[−1/2,1/2], and is bounded by some c2 > 0 in absolute
value.

The mean squared error at x ∈ R is

msea(x) ∶= E [(f̂a(x) − f(x))2],

where the expectation is with respect to the sample defin-
ing f̂a.
Problem 16.84. Derive the following bias-variance de-
composition

msea(x) = (E[f̂a(x)] − f(x))
2 +Var[f̂a(x)].

For the mean, by (16.33),

E[f̂a(x)] − f(x) = E[Ka(X − x)] − f(x)

= ∫
R

Ka(z − x)f(z)dz − f(x)

= ∫
R

Ka(z − x)(f(z) − f(x))dz,

using the fact that Ka integrates to 1. Hence, using
Jensen’s inequality,

∣E[f̂a(x)] − f(x)∣ ≤ ∫
R

Ka(z − x)∣f(z) − f(x)∣dz

≤ ∫
R

Ka(z − x)c1∣z − x∣dz

≤ c1a∫
[−a/2,a/2]

Ka(z)dz

= c1a,
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using the bound on the slope of f , the fact that the kernel
is non-negative, supported on [−1/2,1/2], and integrates
to 1.
For the variance, by (16.33) and independence,

Var[f̂a(x)] =
1
n

Var[Ka(X − x)],

with

Var[Ka(X − x)] ≤ E[Ka(X − x)2]

= ∫
R

Ka(z − x)2f(z)dz

≤ c2
a
c0∫

R
Ka(z − x)dz

= c2c0/a,

using the bound on K and the bound on f , and the fact
that the kernel integrates to 1.
Thus,

msea(x) ≤ (c1a)2 + c2c0
na

,

and the right-hand side is minimized at c3n
−1/3 where

c3 ∶= (c0c2/2c2
1)1/3.

These calculations are crude and refinements are defi-
nitely possible. However, the order of magnitude of the
optimal bandwidth is known to be ∝ n−1/3, with a multi-
plicative constant that depends on the (unknown) density.

That constant is important in practice and makes it nec-
essary to choose the bandwidth based on the data.

Cross-validation A popular way to choose the band-
width is by cross-validation (CV). We present a particular
variant called leave-one-out cross-validation, proposed by
Rudemo in [199]. The idea is to choose a to minimize the
following risk

R(a) ∶= E [∫ (f̂a(x) − f(x))2dx],

where the expectation is with respect to the sample that
underlies the estimate f̂a. Based on this risk, Rudemo
proposes the following choice of bandwidth

â ∶= arg min
a>0

Q(a),

Q(a) ∶= ∫ f̂a(x)2dx − 2
n − 1

n

∑
i=1
f̂a(Xi).

Problem 16.85. Relate E[Q(a)] to R(a).
R corner. This is very close to how the R function bw.ucv
selects the bandwidth. A more faithful implementation
may be found in the function h.ucv in the kedd package.
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16.10.7 Monotonic density estimation

Kernel density estimation is, as we saw, founded on the
implicit assumptions that the underlying density has a
certain degree of smoothness. An alternative is to assume
that the density has a certain shape. We present the
simplest, and most famous example, where the underlying
density is supported on R+ and assumed to be monotone
(and therefore non-increasing).

It so happens that there is a maximum likelihood esti-
mator for this model, proposed by Ulf Grenander (1923 -
2016) [112]. The likelihood is here defined as

arg max
f∈F

n

∏
i=1
f(xi),

where x1, . . . , xn denote the observations and F denotes
the class of monotone densities on R+. It turns out to
be maximized by the first derivative of the least concave
majorant of the empirical distribution function. It is a
decreasing piecewise-constant function.
R corner. The grenander function in the fdrtool package
computes this estimator.

16.11 Additional problems

Problem 16.86. In R, for n ∈ {10, 100, 1000}, generate n
points from the uniform distribution on [0,1]. Draw the
empirical distribution function (solid line) and overlay the
actual distribution function (dashed line). Do it several
times for each n to get a feel for the randomness. Repeat
with the standard normal distribution.
Problem 16.87. In R, write a function which behaves
as ecdf but returns the piecewise linear variant of Re-
mark 16.10 instead. In addition, write another function
which behaves as plot.ecdf. To each plot of Problem 16.86,
add (in a different color) a graph of this variant.
Problem 16.88. In R, generate a sample of size n = 10
from the standard normal distribution. Plot the quantile
function, type 1, 4, 5, in red, green, and blue, respectively.
Add the underlying quantile function (given by qnorm).
Make sure to use a fine grid, say, 1000 points covering
[0,1], for otherwise visual artifacts will result. Add dot-
ted vertical lines at k/n for k = 0,1, . . . , n, and dotted
horizontal lines at the data points. Repeat with n = 100.
Problem 16.89. In R, generate a sample of size n ∈
{100,1000} from the standard normal distribution. Plot
the histogram in various ways, each time overlaying the
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density. Do it several times in each setting to get a feel
for the randomness. Try different methods for choosing
the bins.
Problem 16.90. Suppose that Pθ is the exponential dis-
tribution with rate θ > 0, and that we have an iid sample of
size n, X1, . . . ,Xn, from it. Suppose we want to estimate
ϕ ∶= θ1/2.
(i) Show that the MLE for θ is X̄−1, where X̄ is the

sample mean. We thus use X̄−1/2 to estimate ϕ.
(ii) Compute its bias by numerical integration. [Note

that the family is a scale family, so that the bias
under θ can be obtained from the bias under θ = 1.]

(iii) In R, for n ∈ {10, 20, 30, 50}, under θ = 1, estimate that
quantity by Monte Carlo, using B = 104 replicates.

(iv) Now estimate that quantity by bootstrap based on
B = 104 replicates. Do this for various choices of n.
Repeat a few times to get a feel for the randomness
and compare with the value obtained by numerical
integration.

Problem 16.91. Repeat Problem 16.90 with the variance
in place of the bias.
Problem 16.92. Show that the variant (16.12) is unbi-
ased. However, ‘unbiased’ does not mean ‘better’, and
indeed, show that for the estimation of the variance in

the normal location-scale family, (16.10) has smaller mean
squared error than (16.12).
Problem 16.93 (Kolmogorov distribution). In [143], Kol-
mogorov derived the null distribution of the test statistic
(16.20). He showed that, based on an iid sample of size n
from a continuous distribution F, the empirical distribu-
tion function F̂n as a random function satisfies

lim
n→∞

P( sup
x∈R

∣F̂n(x) − F(x)∣ ≥ t/
√
n)

= 2∑
k≥1

(−1)k−1 exp(−2k2t), (16.36)

for all t ≥ 0. In R, perform simulations to probe the
accuracy of this limit for various choices of sample size n.
Problem 16.94 (A failure of the bootstrap). Consider
the situation where X1, . . . ,Xn are iid normal with mean
θ and variance 1. It is desired to provide a confidence
interval for ∣θ∣. A natural estimator is the plug-in estimator
∣X̄ ∣. The bootstrap confidence interval of Section 16.6.3
is based on estimating the distribution of ∣X̄ ∣ − ∣θ∣ by the
bootstrap distribution of ∣X̄∗∣ − ∣X̄ ∣. It happens to fail
when θ = 0, because the absolute value, as a function, is
not smooth at the origin.
(i) Show that the MLE for ∣θ∣ is ∣X̄ ∣.
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(ii) Compute the distribution function of
√
n(∣X̄ ∣ − ∣θ∣).

Specialize to the case where θ = 0 and draw it.
(iii) In R, generate a sample of size n = 106 and esti-

mate the bootstrap distribution
√
n(∣X̄∗∣− ∣X̄ ∣) using

B = 1000 Monte Carlo replicates. Add the resulting
empirical distribution function to the plot.

Problem 16.95. In R, do the following. Generate a
sample of size n ∈ {10, 20, 50, 100, 200, 500, 1000} from the
standard normal distribution (so that µ = 0 and σ = 1).
Set the confidence level at 0.95.
(i) Compute the Student confidence interval. This is the

gold standard if the sample is known to be normal
and the variance is unknown.

(ii) Compute the bootstrap confidence interval using the
function implemented in Problem 16.45.

(iii) Compute the bootstrap Studentized confidence inter-
val using the function implemented in Problem 16.46.

Each time, record whether the true mean is in the inter-
val and measure the length of the interval. After doing
that 200 times, for each of the three confidence interval
constructions, display the fraction of times the interval
contained the true mean and plot a histogram of its length.
Problem 16.96. Derive a bound that is sub-exponential
in t for the probability that appears in Problem 16.68.

Problem 16.97 (Student test). Consider a normal ex-
periment where we observe a realization of X1, . . . ,Xn

assumed an iid sample from N (µ,σ2). Both parameters
are unknown. Our goal is to test µ = µ0 for some given
µ0 ∈ R. The Student test (aka t-test) rejects for large
values of ∣T ∣ where T ∶= (X̄ − µ0)/S, with X̄ being the
sample mean and S being the sample standard deviation.
(i) Show that there is a constant cn such that, under

the null hypothesis, cnT has the Student distribution
with n − 1 degrees of freedom.

(ii) Show that this test corresponds to the likelihood ratio
test under the present model.

Problem 16.98. In R, do the following. Generate a
sample of size n from some exponential distribution (say
with rate λ = 1, although this is inconsequential). Plot a
histogram. Compute the maximum likelihood estimator
and overlay the corresponding density. Then compute
the Grenander’s estimator and overlay the corresponding
density (in a different color). Repeat several times for
several choice of sample size n.
Problem 16.99 (Log-concave densities). A function
f ∶ R→ R+ is said to be log-concave if log f is concave. Any
normal distribution is log-concave, for example. Just as
for monotonic densities, the class of log-concave densities
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admits a maximum likelihood estimator, which also turns
out to be piecewise linear. This estimator is available in
the package longcondens. In R, do the following. Generate
a sample of size n from some normal distribution (say,
standard normal, although this is inconsequential). Plot
a histogram. Compute the maximum likelihood estimator
among normal distributions and overlay the corresponding
density. Then compute the maximum likelihood estimator
among log-concave distributions and overlay the corre-
sponding density (in a different color). Repeat several
times for several choice of sample size n.

Problem 16.100. Propose and study, analytically or via
computer simulations, a test for goodness-of-fit based on
the characteristic function, that is, based on a test statistic
comparing the sample characteristic function (i.e., the
characteristic function of the empirical distribution) and
the null characteristic function (i.e., the characteristic
function of the null distribution).
Problem 16.101 (A uniform law of large numbers). The
Glivenko–Cantelli Theorem is an example of a uniform
law of large numbers. Here is another example, due to
Jennrich [136]. Assume that X is a random variable on
some probability space, and that Θ is a compact parameter
space. Consider a (measurable) function g ∶ R × Θ → R

such that θ ↦ g(x, θ) is continuous for all x ∈ R; and
∣g(x, θ)∣ ≤ h(x) for all x and all θ, with E[h(X)] < ∞.
Then, if (Xi) are iid copies of X,

sup
θ∈Θ

∣ 1
n

n

∑
i=1
g(Xi, θ) −E[g(X,θ)]∣ PÐ→ 0, as n→∞.

Prove this result.
Problem 16.102. Verify as many statements in [52] as
you can, in particular those in dimension one.
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In the previous chapter we considered an experiment re-
sulting in an iid real-valued sample from an unknown
distribution and the task was to infer this distribution or
some of its features. Here we consider a setting where
either two or more real-valued samples are observed, and
the goal is to compare the underlying distributions that
generated the samples. Randomized clinical trials are a
rich source of examples (Section 11.2.5). Although it is
somewhat more complicated, the methodology parallels
that of Chapter 16. Permutation tests play a central role
in goodness-of-fit testing.
Example 17.1 (Weight loss maintenance). In [227], a
“two-phase trial in which 1032 overweight or obese adults
with hypertension, dyslipidemia, or both, who had lost at
least 4 kg during a 6-month weight loss program (Phase
1) were randomized to a weight-loss maintenance inter-
vention (Phase 2).” There were 3 intervention groups:
monthly personal contact, unlimited access to an interac-
tive technology, or self-directed (which served as control).

https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
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Subjects were followed for a total of 30 months.
Example 17.2 (Manual vs. automated blood pressure
measurement). The paper [172] reports on a clinical trial
where the objective was to “compare the quality and accu-
racy of manual office blood pressure and automated office
blood pressure”. It was a cluster randomized trial where
67 medical practices in eastern Canada were randomized
to measuring blood pressure either manually or using a
BpTRU device. (The awake ambulatory blood pressure
was used as gold standard.)

We start with two groups to ease the presentation, and
then extend the narrative to multiple groups. We typically
leave the dependence on the sample sizes implicit to lighten
up the notation.

17.1 Inference about the difference in
means

We have two samples, X1,1, . . . ,Xn1,1 assumed to be iid
from F1 and, independently, X1,2, . . . ,Xn2,2 assumed to
be iid from F2. The sample sizes are therefore n1 and
n2, respectively, and we let n ∶= n1 + n2 denote the total
sample size.

Assume that F1 has mean µ1 and that F2 has mean µ2.

We are interested in the difference

δ ∶= µ1 − µ2.

The plugin estimator is the difference of the sample means,
or in formula

D ∶= X̄1 − X̄2,

where
X̄j ∶=

1
nj

nj

∑
i=1
Xi,j .

In particular, D is unbiased for δ.
In the following, we present various ways of building a

confidence interval based on that estimator.

17.1.1 Normal confidence interval

Assume that F1 has variance σ2
1 and F2 has variance σ2

2.
Note that D has variance

γ2 ∶= σ
2
1
n1

+ σ
2
2
n2
.

Problem 17.3. Prove, using the Central Limit Theo-
rem, that (D − δ)/γ is asymptotically standard normal
as n1, n2 →∞. Is this still true if one of the sample sizes
remains bounded?
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This normal limit implies that, if zu denotes the u-
quantile of the standard normal distribution,

δ ∈ [D − z1−α/2 γ,D − zα/2 γ], (17.1)

with probability converging to 1 − α as n1, n2 →∞.
Typically, σ2

1 and σ2
2 are unknown, in which case this

interval is not a confidence interval. We obtain a bona
fide confidence interval by plugging the sample variances,
S2

1 and S2
2 , in place of the variances, where

S2
j ∶=

1
nj

nj

∑
i=1

(Xi,j − X̄j)2, (17.2)

so that γ is estimated by

G ∶= [S2
1/n1 + S2

2/n2]
1/2
.

Then by Slutsky’s theorem, (D − δ)/G is asymptotically
standard normal as the sample sizes diverge to infinity,
and this implies that

δ ∈ [D − z1−α/2G,D − zα/2G], (17.3)

with probability converging to 1 − α as n1, n2 →∞. (This
interval is a confidence interval since it can be computed
from the data.)

Student confidence interval As in the one-sample
setting, using quantiles from the Student distribution is
the common practice, despite the fact that even with
normal samples the Student distribution is only an ap-
proximation. (In that case, the sample variance is defined
as in(16.12).) The computation of the number of degrees
of freedom identifying the Student distribution is a bit
involved. This derivation is due to Welch [251] and for this
reason the test sometimes bares his name. A conservative
choice is min(n1, n2) − 1.
R corner. These Student-Welch confidence intervals, as
well as the corresponding tests, can be computed using
the function t.test.

17.1.2 Bootstrap Studentized confidence
interval

There are analogs to the bootstrap confidence intervals
presented in Section 16.6.3 and Section 16.6.4 in the set-
ting of one sample. The Studentized variant is typically
preferred as it tends to me more accurate, so this is the
one we focus on.
Problem 17.4. Before or after reading this subsection,
derive the analog to the bootstrap confidence interval of
Section 16.6.3 in the present setting of two samples.
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The idea is to estimate the distribution of T ∶= (D−δ)/G
by bootstrap instead of relying on a normal approximation,
as done in (17.3). For this we go to the bootstrap world.
Assume that the data, (xi,j), have been observed. As
usual, a star indicates a quantity in the bootstrap world.
In particular, F∗j denotes the empirical distribution for
Group j. A bootstrap sample is thus (X∗

i,j), where

X∗
i,j ∼ F∗j , independent. (17.4)

Its sample mean and variance will be denoted by X̄∗
j and

S∗j . In the bootstrap world we can define the analog of
the various quantities that are needed for the analysis:

µ∗j ∶= x̄j , δ∗ ∶= µ∗1 − µ∗2 = x̄1 − x̄2,

and

D∗ ∶= X̄∗
1 − X̄∗

2 , G∗ ∶= [S∗1
2/n1 + S∗2

2/n2]
1/2
,

and T ∗ ∶= (D∗−δ∗)/G∗. The bootstrap distribution of T ∗
is used as an estimate of the distribution of T . Let t∗u be
the u-quantile of the bootstrap distribution of T ∗. Then

δ ∈ [D − t∗1−α/2G,D − t∗α/2G], (17.5)

with approximate probability 1 − α.

As usual, an analytically derivation of the bootstrap
distribution of T ∗ is impractical and one resorts to Monte
Carlo simulation to estimate it.
Problem 17.5. In R, write a function that takes in the
data, the confidence level, and number of Monte Carlo
replicates, and returns the bootstrap confidence interval
(17.5).

17.2 Inference about a parameter

In this section we consider the task of comparing a param-
eter of interest, denoted ϕ (e.g., standard deviation). Let
ϕj = ϕ(Fj). We are interested in building a confidence
interval for

δ ∶= ϕ1 − ϕ2.

Remark 17.6. One might be interested, instead, in the
ratio ϕ1/ϕ2. Almost invariably, ϕ is a non-negative pa-
rameter in this case, and if so, one can simply take the
logarithm and the problem becomes that of estimating
the difference logϕ1 − logϕ2.
Problem 17.7. Suppose that I = [A,B] is a (1 − α)-
confidence interval for logϕ1 − logϕ2. Turn that into a
(1 − α)-confidence interval for ϕ1/ϕ2.
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17.2.1 Naive approach

A naive, yet very reasonable approach consists in building
a confidence interval for each parameter based on the
corresponding sample, for example, using a bootstrap
approach as described in Section 16.7, and then combining
these intervals to obtain a confidence interval for the
difference.
In detail, let I1 = [A1,B1] be a (1 − α/2)-confidence

interval for ϕ1 based on the 1st sample, and let I2 =
[A2,B2] be a (1 − α/2)-confidence interval for ϕ2 based
on the 2nd sample
Problem 17.8. Show that [A1−B2,B1−A2] is a (1−α)-
confidence interval for δ.
Although this approach is clearly valid, it can be con-

servative, in the usual sense that, although the level of
confidence may be valid, the resulting interval is relatively
wide.

17.2.2 Bootstrap confidence interval

We now present the two-sample analog of the approach
described in Section 16.6.3. We assume that ϕ can be
defined for a discrete distribution so that we may use the
empirical bootstrap. A reasonable estimator for δ is the

plugin estimator, which may be written as

D ∶= ϕ(F̂1) − ϕ(F̂2),

where F̂j denotes the empirical distribution for Group j
(seen as a random distribution). Beyond mere estima-
tion, the construction of a confidence interval necessitates
knowledge of the distribution ofD−δ. As in Section 16.6.3,
we estimate this distribution by bootstrap.

Having observed the data (xi,j), we travel to the boot-
strap world. There, bootstrap samples are generated as
in (17.4), and the quantities of interest are

δ∗ ∶= ϕ(F∗1) − ϕ(F∗2),

and
D∗ ∶= ϕ(F∗∗1 ) − ϕ(F∗∗2 ),

where F∗∗j is the empirical distribution of X∗
1,j , . . . ,X

∗
nj ,j

.
We estimate the distribution of D − δ by the bootstrap

distribution ofD∗−δ∗. As usual, computing this bootstrap
distribution in closed form is practically impossible and
we resorts to Monte Carlo simulation to estimate it.
Problem 17.9. In R, write a function that takes in the
two samples as numerical vectors, the desired confidence
level, and a number of Monte Carlo replicates, and re-
turns an appropriate bootstrap confidence interval for the
difference in medians.
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Remark 17.10. A bootstrap Studentized confidence in-
terval can also be derived, but the method is in general
more complex and computationally more intensive.
Remark 17.11. In the two-sample setting, there does not
seem to be a distribution-free confidence interval for the
difference in medians that would mimic the one developed
in Section 16.3.2 in the one-sample setting. (That is,
unless one is willing to assume that the two underlying
distributions are translates of each other, as in (17.8).)

17.3 Goodness-of-fit testing

Consider now the problem of goodness-of-fit testing, mean-
ing that we want to test

H0 ∶ F1 = F2. (17.6)

We considered this problem in the discrete setting in
Section 15.3.
Problem 17.12 (Naive approach). A naive, although
reasonable approach, consists in computing a (1 − α/2)-
confidence band for Fj as in Section 16.8.2, denoted Bj ,
and then rejecting the null if F1 ∈ B2 or F2 ∈ B1. Show
that this yields a test at level α.

17.3.1 Kolmogorov–Smirnov test

We present a more direct approach based on rejecting
for large values of ∆(F̂1, F̂2), where ∆ is a measure of
dissimilarity between distribution functions. We saw some
examples in Section 16.8.1. We focus on the supremum
norm (16.20), which is one of the most popular.

Proposition 17.13. The distribution of ∆(F̂1, F̂2) when
both samples are drawn from the same distribution, say F0,
does not depend on F0 as long as it is continuous. (The
distribution does depend on the sample sizes n1, n2, left
implicit here.)

Problem 17.14. Prove this proposition.
There are recursive formulas for computing that dis-

tribution, which are valid when there are no ties in the
data.
R corner. Such recursive formulas are implemented in
the function ks.test, although for larger sample sizes, the
function relies on the asymptotic distribution, which is
also known in closed form.
When there are no ties in the data, the p-value may

be obtained by Monte Carlo simulation, which consists in
drawing the two samples independently from the uniform
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distribution in [0,1] (or any other continuous distribu-
tion). Alternatively, this can be done by permutation
(Section 17.3.2).
Problem 17.15 (Random walk). There is a close connec-
tion with the simple random walk process of Example 9.25,
particularly when the sample sizes are equal (n1 = n2). In
that case, provide an interpretation of ∆(F̂1, F̂2) in terms
of a simple random walk.

17.3.2 Permutation distribution

Define the concatenated sample

Xi =
⎧⎪⎪⎨⎪⎪⎩

Xi,1 if i ≤ n1;
Xi−n1,2 if i > n1.

Thus, if the samples are x1 = (xi,1 ∶ i = 1, . . . , n1) and
x2 = (xi,2 ∶ i = 1, . . . , n2), the concatenated sample is
x = (x1,x2) and is of length n1 + n2 = n.
Let Π denote the group of permutations of {1, . . . , n}.

For a permutation π, let xπ denote the corresponding
vector, meaning xπ = (xπ1 , . . . , xπn) if π = (π1, . . . , πn).
The permutation distribution of a statistic T conditional
on x is the uniform distribution on (T (xπ) ∶ π ∈ Π). If a
test rejects for large values of T , the corresponding p-value
is computed as in (15.9).

Problem 17.16. Assume that the samples come from the
same continuous distribution. Show that the distribution
of the Kolmogorov–Smirnov statistic coincides with its
permutation distribution. Show that the same is true of
any test statistic based on a test of randomness (after
reading Section 15.8).

17.3.3 General permutation tests

Any test statistic T (z) can be used to test for goodness-
of-fit, with the corresponding p-value being obtained by
permutation as in (15.9). Although this results in a valid
p-value in the sense of (12.22), the resulting testing proce-
dure will have more or less power depending on the choice
of test statistic T and on the particular alternative.
Remark 17.17 (Conditional inference). In the context
of a randomized trial, where (say) individuals are assigned
to either of two groups at random to receive one of two
treatments, under the null distribution, all the permu-
tations are equally likely, and obtaining the p-value by
permutation is an example of re-randomization testing
(Section 22.1.1). That said, the permutation p-value is
valid regardless, and can be motivated by conditional
inference (Section 22.1)

In the present setting, there is no uniformly most pow-
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erful test (Problem 17.43). The choice of test statistic is
rather guided by alternatives of particular interest. For ex-
ample, if a difference in means is practically important, it
makes sense to use a statistic like the difference in sample
means.
Remark 17.18. In general, let ϕ be a parameter, such
as the mean. If there is evidence against ϕ(F1) = ϕ(F2),
then this is obviously evidence against F1 = F2. To test
ϕ(F1) = ϕ(F2) it is natural to base the inference on the
empirical equivalent, ϕ(F̂1) − ϕ(F̂2), for which we can
obtain a bootstrap p-value. (All this was detailed in
Section 17.1 and Section 17.2.) However, when the null
hypothesis we are truly interested in is F1 = F2, then
obtaining a p-value by permutation is also an option (and
typically preferred). See Problem 17.44 for a numerical
comparison of these two options.
Remark 17.19 (Re-randomization and conditional in-
ference). When an experiment is based on a completely
randomized design, relying on the permutation p-value is
a form of re-randomization testing (Section 22.1.1). More
generally, the permutation distribution is the distribution
of T under the null conditional on the observed values.
The resulting inference is thus a form of conditional infer-
ence (Section 22.1).

17.3.4 Rank tests

Let ri,j denote the rank of xi,j in increasing order when
the two samples are combined. Ties, if present, can be
broken in any number of ways, for example by giving to
all the tied observations their average rank, or by breaking
them them at random.
R corner. The function rank offers a number of ways for
breaking ties, including these two.
Problem 17.20. Prove that

2
∑
j=1

nj

∑
i=1
ri,j = n(n + 1)/2,

so that the set of ranks for Group 1 determines the set of
ranks for Group 2.
A rank statistic is any statistic that can be computed

based on the ranks.
Problem 17.21. Show that the Kolmogorov–Smirnov
statistic is a rank statistic.
Problem 17.22 (Rank tests are permutation tests).
Show that under the null hypothesis where both samples
were generated by the same distribution, if that distribu-
tion is continuous or the ranks are broken at random, the
concatenated vector ranks, (Ri,j), is uniformly distributed
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over all permutations of {1, . . . , n1 + n2}. In particular,
the p-value is obtained by permutation.

Wilcoxon rank-sum test This (popular) test is based
on the sum of the ranks from Group 1, meaning

r1 ∶=
n1

∑
i=1
ri,1. (17.7)

In the two-sided setting of (17.6), we reject for large and
small values of this test statistic. Equivalently, the test
rejects for large values of the difference in the sum of
ranks, r1 − r2, where r2 is the sum of ranks for Group 2.
Problem 17.23. Show that the null distribution of R1 is
symmetric about its mean, namely, n1(n + 1)/2. Deduce
that the two-sided rank-sum test corresponds to rejecting
for large value of (r1 − n1(n + 1)/2)2.
Remark 17.24. There are advantages and disadvantages
to replacing the observations by their ranks and working
with the latter. The main disadvantage is a loss in sen-
sitivity, which may result in a loss of power. This loss
is typically quite mild. The two main advantages are in
terms of computation and robustness.

• Computation and tabulation. Assuming that ties are
broken at random, the null distribution of R1 only

depends on (n1, n2). This was particularly important
in the pre-computer age as the null distribution could
be tabulated once for each (n1, n2). (This was done
using recursive formulas for smaller sample sizes and
asymptotic calculations for larger sample sizes.)

• Robustness. Using ranks offers some protection
against gross outliers. For example, consider the
permutation test based on the difference in sample
means. Assume that one value has been corrupted
and is now larger than the sum of the absolute values
of all the other observations. Then the p-value will
be approximately 1/2, whether the null is true or not.
If one uses ranks, leading to the Wilcoxon rank-sum
test, the influence of this corrupted observation re-
mains minimal. The most it can do is change the
rank of that observation (before being corrupted) to
one of the extreme ranks (1 or n). The overall impact
will be quite minimal.

Problem 17.25. Substantiate the claims above.
Remark 17.26. The Wilcoxon rank-sum test is some-
times presented as a test for comparing medians. This
is not correct in general, the reason being that, as any
other permutation test (Problem 17.22), the rank-sum
test is a goodness-of-fit test. By this we mean that it
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results in a valid p-value (in the sense of (12.22)) when
the distributions are the same under the null. When only
the medians are the same under the null, the p-value is
not guarantied to be valid. That being said, testing for
the equality of medians is equivalent to goodness-of-fit
testing when the underlying distributions are assumed to
be translates of each other, meaning

F1 = F2(⋅ − µ) for some µ. (17.8)

In that case, obviously, the distributions are the same if
and only if their medians are the same.

17.3.5 Patterns and tests of randomness

A pattern is obtained by ordering the observations in the
combined sample and labeling each observation according
to the group it belongs to. For example, the data

Group 1: 2.5 0.9 -1.0 -1.6 0.7
Group 2: -1.2 -0.5 -1.4

results in the following pattern 12212111.
Once the pattern is computed on a particular dataset,

tests of randomness (Section 15.8) can be used for
goodness-of-fit testing.

Problem 17.27. Suppose that F1 and F2 are continuous.
Show that any pattern is equally likely if and only if
F1 = F2.
Therefore, when ties are broken at random, we can

rely on the p-value returned by the test of randomness
applied to the pattern. (In any case, we can rely on the
permutation p-value.)
Remark 17.28. A pattern provides the same informa-
tion as the ranks modulo the ordering within each group,
but this within-group ordering is irrelevant for inference
because each group is assumed to be iid. Because of this,
any reasonable test statistic based on the ranks can be
computed based on the pattern.

17.4 Multiple samples

We now consider the more general situation where g groups
of observations are available and need to be compared.
The observations from Group j are denoted (Xi,j ∶ i =
1, . . . , nj), so that nj is the sample size for Group j. We
assume that these are iid from some distribution, Fj , and
that the samples are independent of each other. We let
n ∶= n1 +⋯ + ng denote the total sample size.
Remark 17.29 (Format on a computer). While a two-
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sample method can be implemented as a function taking
the two samples as two vectors (plus additional parame-
ters), a method for multiple samples requires a different
data format as it needs to be able to handle any number
of groups. One way to format the data is as a two-column
array, with one column listing the values and the other col-
umn listing the corresponding group index. For example,
the data

Group 1: 2.2 0.8 1.0
Group 2: 1.1 0.3 1.6
Group 3: 0.3 0.8

results in the array (here horizontal)

Values: 2.2 0.8 1.0 1.1 0.3 1.6 0.3 0.8
Group: 1 1 1 2 2 2 3 3

17.4.1 All pairwise comparisons

A reasonable approach is to perform all pairwise compar-
isons using a method for the comparison of two groups.
If we are performing a test, for example, this leads us to
do so for every pair, so that (g2) tests are performed in
total. Such multiple testing situations are discussed in
more detail in Chapter 20.

R corner. The function pairwise.t.test performs all the
pairwise Student-Welch tests, while pairwise.wilcox.test
performs all the pairwise Wilcoxon rank-sum tests. (A
number of ways to correct for multiple testing are offered.)
Remark 17.30 (Many-to-one comparisons). Another ap-
proach consists in performing a many-to-one comparison,
where all the ‘treatment’ groups are compared to a ‘con-
trol’ group, the latter serving as benchmark. In particular,
treatment groups are not compared to each other. (For
more on this, see the classic book Miller [169].)
In the remainder of this section, we focus on various

forms of global testing, by which we mean testing whether
there is any difference between the groups. (We develop
this further in Section 20.2.)

17.4.2 Testing for a difference in means

Let µj denote the mean of Fj . We first focus on testing
for the equality in means

H0 ∶ µ1 = ⋯ = µg.

This generalizes the testing problem of Section 17.1, where
we considered the case g = 2. The methods presented there
have analogs.
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F-test This test was proposed by Fisher in the 1920’s
and later modified by Welch [250] to settings where the
groups do not necessarily have the same variance. This
test, which we will call the Fisher-Welch test, generalizes
the Student-Welch test and, in particular, also relies on
the Central Limit Theorem. Its form and derivation are
rather complex and will not be given here.
R corner. This test is implemented in the R function
oneway.test.

Bootstrap test The bootstrap procedure is analo-
gous to the one presented in Section 17.1.2 in that the
resampling is within groups.

As for the choice of a test statistic, one possibility is to
choose the treatment sum-of-squares, defined as

p

∑
j=1

nj(x̄j − x̄)2, (17.9)

where x̄j is the average for Group j and x̄ is the overall
average. Another option is to use the Fisher-Welch test
statistic, which leads to an extension of the bootstrap
Studentized procedure.
We assume that we reject for large values of a test

statistic T . Importantly, we need to place ourselves under

the null distribution before bootstrapping. We do this by
centering each group, which effectively makes the groups
have the same mean (equal to 0). Having observed the
data, let F⊛j denote the empirical distribution for Group j
after centering. A bootstrap sample is thus X∗ = (X∗

i,j),
where

X∗
i,j ∼ F⊛j , independent.

Then the bootstrap p-value is, as usual, the probability
that T ∗ ∶= T (X∗) ≥ t ∶= T (x). (Note that t is the ob-
served value of the test statistic.) This p-value is typically
estimated by Monte Carlo simulation.
Problem 17.31. In R, write a function that takes in the
values and group labels, and the number of bootstrap
samples to be generated, and returns the Monte Carlo
estimate for the bootstrap p-value of the Fisher-Welch
test. (Although we did not provide an analytic form
for this statistic, it can be computed using the function
oneway.test.)

17.4.3 Goodness-of-fit testing

As in Section 17.3, suppose we are interested in comparing
the distributions that generated the groups in the sense
of testing

H0 ∶ F1 = ⋯ = Fg.
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Permutation tests As in Section 17.3.3, a calibra-
tion by permutation is particularly appealing. (In par-
ticular, Remark 17.19 applies.) Suppose we decide to
reject for large values of a test statistic T . This could be
the treatment sum-of-squares or the Fisher-Welch statis-
tic, or any other. We concatenate the groups as we
did in Section 17.3.2, obtaining x = (x1, . . . ,xg), where
xj ∶= (x1,j , . . . , xnj ,j) are the observations from Group j.
Let Π be the group of permutations of {1, . . . , n} and for
π ∈ Π, let xπ denote the dataset permuted according to π.
The corresponding p-value is computed as in (15.9), and
it is a valid p-value under the null hypothesis H0 above.
Problem 17.32. In R, write a function that takes in the
values and group labels and the number of permutations
to be generated, and returns a Monte Carlo permutation
p-value for the Fisher-Welch test statistic.

Rank tests As in Section 17.3.4, replacing the obser-
vations by their ranks is a viable option. Let ri,j be the
rank of xi,j in increasing order in the combined sample.
A direct extension of the Wilcoxon rank-sum test, in par-
ticular in view of Problem 17.23, consists in rejecting for

large values of
g

∑
j=1

(rj − nj(n + 1)/2)2
, (17.10)

where rj ∶= ∑nji=1 ri,j is the rank sum for Group j.
Problem 17.33. Show that, indeed, this reduces to the
two-sided rank-sum test when g = 2.
Problem 17.34. In R, write a function that implements
the test based on (17.10). The function takes as input the
data and the number of permutations to be drawn and
returns the corresponding estimated p-value.

The most rank test in the present setting, however, is the
Kruskal–Wallis test, which is based instead on rejecting
for large values of the treatment sum-of-squares (17.9)
computed on the ranks, namely

g

∑
j=1

1
nj

(rj − nj(n + 1)/2)2
. (17.11)

Problem 17.35. Show that the Kruskal–Wallis test
equivalently rejects for large value of ∑gj=1 r

2
j /nj . [Use

the fact that r1 +⋯ + rg = n(n + 1)/2.]
Remark 17.36. The actual Kruskal–Wallis test statis-
tic involves a standardization that makes the resulting
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statistic have, under the null hypothesis, the chi-squared
distribution with g − 1 degrees of freedom in the large-
sample limit where minj nj →∞.
R corner. This test is implemented in the function
kruskal.test, which returns a p-value based on the lim-
iting distribution.
Problem 17.37. In R, write a function that takes in the
data and a number of Monte Carlo replicates, and returns
a Monte Carlo estimate of the permutation p-value for the
Kruskal–Wallis test. (Being a rank test, the permutation
p-value is the exact p-value, at least when the ties are
broken at random.)

17.5 Further topics

17.5.1 Two-sample median test

Despite its name, the median test is for goodness-of-fit,
meaning a test for (17.6). It works as follows. We consider
two groups, of sizes n1 and n2, as before. Let M denote
the sample median of all the observations combined. Let
T denote the number of observations from Group 1 that
exceed M . The two-sided variant of the test rejects for
large and small values of T .
Problem 17.38. Assume that ties are broken at random.

(i) Assume the n = n1 + n2 is even. Show that, under
the null hypothesis (17.6), T has the hypergeometric
distribution with parameters (n1, n/2, n/2).

(ii) Assume that n is odd. What is the distribution of T
under the null?

Problem 17.39. In R, write a function that implements
this test.

17.5.2 Consistency

Consider the two-sample setting. We say that a testing
procedure is universally consistent if, when F1 ≠ F2, at any
level α > 0 the corresponding test has power converging
to 1 has n1 ∧ n2 →∞.
Problem 17.40. Show that the Kolmogorov–Smirnov
test procedure is universally consistent. [Use the fact that
the empirical distribution function is consistent for the
underlying distribution function.]

Proposition 17.41. The Wilcoxon rank-sum test proce-
dure is not universally consistent.

The Wilcoxon rank-sum test is, however, consistent in a
shift model (17.8), and in fact, in that model, it tends to be
substantially more powerful that the Kolmogorov–Smirnov
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test. The two tests are compared in Problem 17.43.
Remark 17.42 (Stochastic dominance). More generally,
the rank-sum test is consistent when, under the alternative,
F1 stochastically dominates F2, or vice versa (assuming the
two-sided version of the test). We say that F stochastically
dominates G if

F̄(t) ≥ Ḡ(t), for all t ∈ R.

This means that, if X has distribution F and Y has dis-
tribution G, then P(X > t) ≥ P(Y > t) for all t.

17.5.3 Inverting a permutation test

All the goodness-of-fit tests that we saw, including the
rank tests, are permutation tests. And a permutation test,
strictly speaking, is a goodness-of-fit test. If, however,
we are willing to assume that the distributions are in the
same location family, that is

Fj(x) = F(x − µj), for all j = 1, . . . , g, (17.12)

for some distribution F and some shifts µj , then a
goodness-of-fit test can be used to compare the means or
medians. In the two-sample setting, when this assump-
tion is in place, a permutation test can be used to build
a confidence interval for the difference in means, as seen

in Section 12.4.9. This will be a valid confidence interval
with the desired level of confidence, as long as all the
assumptions are valid, including (17.12).

17.6 Additional problems

Problem 17.43 (Kolmogorow-Smirnov vs Wilcoxon). In
R, perform some simulations to compare the power of the
Kolmogorov–Smirnov test and that of the Wilcoxon test.
Consider the case where both samples are of same size
m ∈ {20, 50, 100}. The first group comes from N (0, 1). In
the first situation, the second group comes from N (θ,1).
In the second situation, the second group comes from
N (0, 1+θ). In each case θ > 0 is chosen carefully on a grid
to make the setting interesting, showing the power going
from α ∶= 0.01 to close to 1. (This interesting range for θ
will depend on m.) Repeat each setting (situation, m, θ)
B = 1000 times. For each (situation, m), in the same plot
draw the power curve for each test as a function of θ. Use
different colors and add a legend.
Problem 17.44 (Bootstrap goodness-of-fit tests). When
testing for goodness-of-fit, permutation is typically con-
sidered the calibration of choice, in large part because the
permutation p-value is valid, regardless of the group sizes.
However, a bootstrap approach is also possible. Explain,
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when testing whether two groups come from the same dis-
tribution, how you would obtain a p-value by bootstrap.
[This bootstrap is different from that used for comparing
features (Section 17.2.2).]

Problem 17.45 (Permutation vs rank tests). In R, per-
form some simulations to compare the power of the per-
mutation test based on the difference in sample means
and the corresponding rank test, which is none other than
the rank-sum test. Specifically, consider the case where
both samples are of same size m ∈ {20,50,100}. The first
group comes from N (0, 1), while the second group comes
from N (θ,1). In each case θ > 0 is chosen carefully to
make the setting interesting, showing the power going
from α ∶= 0.01 to close to 1. Repeat each setting (situa-
tion, m, θ) B = 1000 times. For each (situation, m), in
the same plot, draw the power curve for each test as a
function of θ.
Problem 17.46. Strictly speaking, a permutation p-
value is only valid for the null hypothesis that the un-
derlying distributions are the same. How does it behave
when it is used when testing for a parameter? Consider a
two sample setting where we test for a difference in means.
We choose as test statistic the difference in sample means,
which we calibrate by permutation. The first group comes

from N (0, 1), while the second group comes from N (0, 3).
Clearly, we are under the null hypothesis (same means),
and the distributions are different. Assume both groups
are of same size m, and the permutation p-value is based
on a number B of Monte Carlo replicates. By varying m
and B, assess the accuracy of the permutation p-value.
Offer some brief comments, and possibly some elements
of explanation for that behavior.
Problem 17.47 (Mann–Whitney test). This test is based
on the test statistic

U ∶=
2
∑
j=1

nj

∑
i=1

{Xi,1 >Xi,2}.

Show that, when there are no ties, U =W − n1(n1 + 1)/2,
where W is the Wilcoxon rank-sum statistic (17.7).
Problem 17.48. The two tests, based on (17.10) and
(17.11) respectively, coincide when the design is balanced
in the sense that the group sizes are identical. How do
they compare when the group sizes are not the same?
Perform some simulations to investigate that.
Problem 17.49 (Student test). Consider a normal ex-
periment where we observe independent realizations of
X1, . . . ,Xm, assumed an iid sample from N (µ,σ2), and of
Y1, . . . , Yn, assumed an iid sample from N (ξ, σ2). Impor-
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tantly, the two normal distributions are assumed to have
the same variance. All three parameters are unknown.
Our goal is to test the null hypothesis that the means are
equal, µ = ξ. The Student test rejects for large values of
∣T ∣ where

T ∶= X̄ − Ȳ
S

, (17.13)

with X̄ and Ȳ being the sample means and S being the
pooled sample standard deviation.
(i) Show that there is a constant cm,n such that the

distribution of cm,nT under the null hypothesis is
the Student distribution with m + n − 2 degrees of
freedom.

(ii) Show that this test corresponds to the likelihood ratio
test under the present model.

Problem 17.50 (Welch test). Consider a normal ex-
periment where we observe independent realizations of
X1, . . . ,Xm, assumed an iid sample from N (µ,σ2), and
of Y1, . . . , Yn, assumed an iid sample from N (ξ, τ2). All
four parameters are unknown. Our goal is to test µ = ξ.
The Welch test rejects for large values of ∣T ∣ where

T ∶= X̄ − Ȳ√
S2
X/m + S2

Y /n
, (17.14)

with X̄ and Ȳ being the sample means and SX and SY
being the sample standard deviations. It turns out that
T does not have a Student distribution under the null
hypothesis. Does this test correspond to the likelihood
ratio test under the present model?
Problem 17.51 (Fisher test). Consider a normal experi-
ment where we observe independent realizations of (Xi,j ∶
i = 1, . . . , nj) assumed an iid sample from N (µj , σ2), for
j = 1, . . . , g. Importantly, the normal distributions are
assumed to have the same variance. All g + 1 parameters
are unknown. Our goal is to test the null hypothesis that
µ1 = ⋯ = µg. The F-test rejects for large values of F where

F ∶=
∑gj=1 nj(X̄j − X̄)2

S2 ,

with X̄j being the sample mean for the group j, X̄ the
pooled sample mean, and S the pooled sample standard
deviation. This is the multiple-sample analog of (17.13).
(i) Show that there is a constant cm,n such that the

distribution of cm,nF under the null hypothesis is the
Fisher distribution with g − 1 and n − g degrees of
freedom, where n is the total sample size.

(ii) Show that this test corresponds to the likelihood ratio
test under the present model.
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(There is a Welch version of this test which is the multi-
sample analog of (17.14). The exact form of the test
statistic is rather complicated [250].)
Problem 17.52 (Energy statistics). Cramér 89 proposed
in [48] the following dissimilarity for comparing two dis-
tribution functions

∆(F,G)2 ∶= ∫
∞

−∞
(F(x) −G(x))2dx.

(Note the difference with the Cramér–von Mises dissimi-
larity defined in (16.21).)
(i) Letting X,X ′ be iid from F and (independently) Y,Y ′

be iid from G, show that

∆(F,G)2 = E[∣X −Y ∣]− 1
2
(E[∣X −X ′∣]+E[∣Y −Y ′∣]).

(ii) Use this to provide an explicit (and as simple as
possible) expression for the sample equivalent, mean-
ing when applying the dissimilarity to the empirical
distribution functions of the two samples under con-
sideration. 91

91 The resulting statistic is an example of what Székely and
collaborators call energy statistics. See [228]. for a survey and
historical perspective, which includes the early proposal by Cramér.

(iii) Implement this as a test in R. (Calibration is by per-
mutation based on a specified number of MC repli-
cates.)

(iv) Is the test distribution-free?

Problem 17.53. The test of Problem 17.52 was ex-
pressed there in terms of distribution functions. However,
it turns out it also has a relatively simple expression in
terms of characteristic functions. Indeed, show that

∆(F,G)2 = 1
2π ∫

∞

−∞

∣ϕF(t) − ϕG(t)∣2
t2

dt,

where ϕF and ϕG are the characteristic functions of F and
G, respectively.
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We consider in this chapter experiments where the vari-
ables of interest are paired. Importantly, we assume that
these variables are directly comparable (in contrast with
the following two chapters).

Crossover trials are important examples of such experi-
ments. Other examples include the following.
Example 18.1 (Judge panel). In the food industry in
particular, it is common to ask individuals to rate the
taste of different products, typically of the same type. For
example, in [40], 12 experienced wine tasters were asked
to rate 78 wines on a variety of characteristics.
Example 18.2 (Father-son heights). Karl Pearson col-
lected data on the heights of 1078 fathers and their (adult)
sons [181]. In that case xi = father’s height and yi = son’s
height (both in inches) for the ith pair. (This dataset is
discussed at length in [92], and in fact a scatterplot of
the data is on the cover of that book, and reproduced in
Figure 18.1.)

https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
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Figure 18.1: A scatterplot of the data described in
Example 18.2.
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18.1 Two paired variables

We start with a setting where we observe a bivariate
numerical sample (X1, Y1), . . . , (Xn, Yn). The pairs are
assumed iid from some unknown distribution. We assume
that the X and Y variables can be compared directly.

Taking the example of a crossover trial comparing two

treatments (one of them could be a placebo), when there
is no difference between treatments it is assumed that X
and Y are exchangeable. When testing for a difference in
treatment, we are thus testing the following null hypothesis

H0,∗ ∶ (X,Y ) ∼ (Y,X).

There is a one-to-one correspondence

(X,Y )↔ (U,Z) ∶= (X + Y,X − Y ),

and the null hypothesis can be equivalently expressed as
follows

H0,∗ ∶ (U,Z) ∼ (U,−Z).
This invites 92 the drop of U and the focus on Z, where
the null hypothesis becomes that of symmetry, meaning

H0 ∶ Z ∼ −Z. (18.1)

The rest of this section is dedicated to testing this
hypothesis based on an iid sample Z1, . . . , Zn. (Unless
restricted further, the underlying distribution is simply
assumed to be in the family of all distributions on the real
line.)

92 This can be justified based on invariance considerations [147,
Sec 6.8], although the dropping of U could a priori lead to some
information loss.
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18.1.1 Symmetric distributions

A random variable Z is said to be symmetric about µ if

P(Z < z) = P(Z > µ − z), for all z ∈ R.

Problem 18.3. Assuming that Z has continuous distri-
bution function F, show that this is equivalent to

F(z) = 1 − F(µ − z), for all z ∈ R.

In particular, F is symmetric about 0 if

F(z) = 1 − F(−z),

that is, if z ↦ F(z) − 1/2 is odd.
Problem 18.4. Suppose that F has a piecewise continu-
ous density f . Show that F is symmetric about µ if and
only if

f(z) = f(µ − z), at any continuity point z.

In particular, if f is continuous, f is symmetric about 0
if and only f is even. (In any case, f is essentially even.)
Problem 18.5. Show that if F is symmetric about µ,
then µ is necessarily a median of F, and also its mean if
it has a mean.

Although symmetry can be about any point on the real
line, in what follows we assume that point to be the origin.
This is the most important case, in part because it is
motivated by (18.1), and can be considered without loss
of generality. In particular, in what follows, by ‘symmetric’
we mean ‘symmetric about 0’.

Problem 18.5 justifies the application of tests for the
median, such as the sign test (Section 16.3.3), as well
as tests for the mean, for example a bootstrap test (Sec-
tion 16.6.5). If such a test rejects, it is evidence against
the (null) hypothesis of symmetry. However, such a test
cannot be universally consistent since a distribution can
be asymmetrical and yet have zero median, or zero mean,
or both.
Problem 18.6. Construct a distribution that is asym-
metrical and has median and mean both equal to 0. One
avenue is to consider a Gaussian mixture of the form
pN (a,1) + (1 − p)N (b, σ2), where p ∈ [0,1], a, b ∈ R, and
σ2 > 0 are chosen to satisfy the requirements. Another
avenue is to consider a distribution with finite support.
In that case, what is the minimum support size needed to
satisfy the requirements?
The procedures presented below are based on the fol-

lowing characterizations of symmetry.
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Problem 18.7. Let Z be a random variable. Show that
the following assertions are equivalent: (i) Z is symmetric;
(ii) sign(Z) is symmetric and independent of ∣Z ∣; (iii)
P(Z > 0) = P(Z < 0) and Z ∣ Z > 0 and −Z ∣ Z < 0 share
the same distribution.

Problem 18.7 can be used to motivate the comparison of
the positive part of the sample, meaning {Zi ∶ Zi > 0}, with
the negative part of the sample, meaning {−Zi ∶ Zi < 0},
as one would for two different groups. The techniques
developed in Section 17.3 for that purpose are particularly
relevant. Following this logic leads to two well-known
methods for testing for symmetry that we present next.
Remark 18.8 (Zero values). Since the values that are
exactly 0 do not carry any information on the asymmetry
of the underlying distribution, it is common to simply
drop these values before applying a procedure. (This is
an example of conditional inference.) This is what we
do in what follows, and although it changes the sample
size, we redefine n as the sample size after removing these
observations.

18.1.2 A test based on sign flips

The following test comes from applying a permutation
test for two-sample goodness-of-fit testing, as discussed in

Section 17.3.3, to compare the distributions of Z ∣ Z > 0
and −Z ∣ Z < 0.

We let z = (z1, . . . , zn) denote the observed sample, and
for ε = (ε1, . . . , εn) ∈ {−1, 1}n, we let zε = (ε1z1, . . . , εnzn).
Suppose that we reject for large values of a test statistic
T (z). A popular choice is

T (z) = ∣
n

∑
i=1
zi∣. (18.2)

Having observed Z = z, the p-value is

pvT (z) =
#{ε ∶ T (zε) ≥ T (z)}

2n
. (18.3)

The denominator is the cardinality of the set of sign vectors
{−1,1}n. Thus this is the proportion of sign vectors that
lead to a value of the test statistic that is at least as
extreme as the one observed.

Proposition 18.9. This quantity is a valid p-value in
the sense that it satisfies (12.22), meaning that

P(pvT (Z) ≤ α) ≤ α, for all α ∈ [0,1],

when the underlying distribution is symmetric.

In practice, computing the p-value (18.3) is quickly
intractable. This is because the number of sign vectors
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of interest, 2n, grows exponentially (> 1030 when n =
100). As usual, one resorts to Monte Carlo simulation to
estimate this p-value, by repeatedly drawing sign vectors
uniformly at random.
Problem 18.10. In R, write a function that takes as
input the sample and a number of Monte Carlo replicates,
and returns the p-value estimated by Monte Carlo for the
test statistic (18.2).
Remark 18.11. Although the test is built on a permu-
tation test, it is not a permutation test per se. Nothing
is being permuted. However, its construction can be
motivated by conditional inference (Section 22.1): we con-
dition on the absolute values, ∣Z1∣, . . . , ∣Zn∣, which a priori
do not carry any information on whether the underlying
distribution is symmetric.
Problem 18.12. How is the test above, based on the
statistic (18.2) and returning the p-value (18.3) different
from the permutation test, based on the absolute value of
the difference in sample means, applied to compare the
positive and negative samples? [The two tests are almost
the same, but not quite identical.]

18.1.3 Wilcoxon signed-rank test

We now turn to the test that results from comparing
the distributions of Z ∣ Z > 0 and −Z ∣ Z < 0 using the
Wilcoxon rank-sum test presented in Section 17.3.4. This
leads one to use the test statistic

n

∑
i=1
ri{zi > 0},

where ri is the rank of ∣zi∣ among ∣z1∣, . . . , ∣zn∣. In the
two-sided situation, we reject for large and small values of
this statistic, as we did for the two-sided rank-sum test.
Problem 18.13. Verify that this is indeed the resulting
test statistic when using the rank-sum test to compare
the distributions of Z ∣ Z > 0 and −Z ∣ Z < 0.
R corner. The function wilcox.test computes the signed-
rank test when provided with a numerical vector, and the
rank-sum test when provided with two numerical vectors.
Problem 18.14. Show that it is equivalent to use the
following statistic

n

∑
i=1
ri sign(zi) = ∑

zi>0
ri − ∑

zi<0
ri. (18.4)

(In this form, it is clear that this is the rank variant of
the test of Section 18.1.2.)
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Problem 18.15. When the underlying distribution is
symmetric, and assuming in addition that it is continuous
or that ties among ranks are broken at random, show
that the signed-rank statistic in the form of (18.4) has
the distribution of ∑ni=1 i εi with 93 ε1, . . . , εn iid uniform
in {−1,1}.
Whether the underlying distribution is continuous or

not, and whether ties are broken at random or not, an
approach by conditional inference remains available: it
consists in computing a p-value by fixing the ranks while
sampling sign vectors uniformly at random.
Problem 18.16. In R, write a function that takes in the
data and a number of Monte Carlo replicates, and returns
the Monte Carlo estimate for this p-value. Compare your
function with wilcox.test in simulations.

Sign pattern We saw in Section 17.3.5 that any rank
test for goodness-of-fit in a two-sample setting is based on
the pattern defined by the two samples combined. The
situation is analogous here. Indeed, any test of symme-
try based on the ranks and signs is based on the sign
pattern given by ordering the absolute values and then

93 The uniform distribution on {−1,1} is sometimes called the
Rademacher distribution.

listing the signs in that order. For example, the following
observations

1.3 2.1 2.5 -1.4 1.0 0.4 -3.5 -1.0 0.2

yield the following sign sequence

+ + + − + − − + +

18.2 Multiple paired variables

We now consider the more general case of p paired vari-
ables. The sample is of size n, and denoted

(X1,1, . . . ,X1,p), . . . , (Xn,1, . . . ,Xn,p).

Let Xi = (Xi,1, . . . ,Xi,p) denote the ith observation,
which is a vector of length p here. We assume these
n observations to be iid from some unknown distribution,
and we also assume that all the variables are directly
comparable. This is the case Example 18.1, where Xi,j is
the rating of ith wine by the jth judge.
These observations are typically gathered in a n-by-p

data matrix, (Xi,j), where a rows correspond to observa-
tions. See Table 18.1.
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Table 18.1: Prototypical data matrix in the context of
a crossover clinical trial.

Treatment 1 Treatment 2 ⋯ Treatment p
Subject 1 X1,1 X1,2 ⋯ X1,p

Subject 2 X2,1 X2,2 ⋯ X2,p

⋮ ⋮ ⋮ ⋮
Subject n Xn,1 Xn,2 ⋯ Xn,p

Taking the example of a crossover clinical trial, the goal
is to assess whether the treatments are different. This is
again modeled by testing

H0 ∶ (X1, . . . ,Xp) are exchangeable.

18.2.1 Permutation tests

A calibration by permutation is particularly attractive in
the present context, since permutations are at the core of
the definition of exchangeability. In fact, in the context of
a crossover trial, this corresponds to re-randomization test-
ing (Section 22.1.1). Compared to a completely random-
ized design, the permutation in the context of a crossover
trial or any other repeated measures design is done differ-
ently. Indeed, here the permutation is within subject. In
particular, permuting across subjects (as is done in the

context of a completely randomized design) is not appro-
priate since doing so does not preserve the null hypothesis.
Let T be a test statistic whose large values are evi-

dence against the null. Having observed (x1, . . . ,xn), a
calibration by permutation is done as follows. Let Π0 be
the group of permutations of {1, . . . , p} and let Π ∶= Π×n

0 ,
which is itself of group. The permutations in Π are the
valid permutations in the present context.
Problem 18.17. Show that ∣Π∣ = (p!)n.

Let t denote the observed value of the statistics, meaning
t = T (x1, . . . ,xn). For π = (π1, . . . , πn) ∈ Π, with πi ∶=
(πi,1, . . . , πi,p) ∈ Π0, let tπ denote the value of the statistic
when it is applied to the same data except permuted by
π, meaning tπ = T (π1(x1), . . . , πn(xn)) where πi(xi) ∶=
(xπi,1 , . . . , xπi,p). The permutation p-value is then defined
as usual

#{π ∈ Π ∶ tπ ≥ t}
∣Π∣ .

In practice, it is typically estimated by Monte Carlo simu-
lation based on a number of permutations that are sampled
independently and uniformly at random from Π.
Problem 18.18. Show that the permutation p-value and
its Monte Carlo estimate, seen as random variables, are
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both valid in the sense of (12.22). [Use the conclusions of
Problem 8.63.]
Problem 18.19. In R, write a function that takes in
as input the data matrix and a number of Monte Carlo
replicates, and returns the estimated permutation p-value
for the treatment sum-of-squares defined in (17.9). [Note
that there are p groups here, with sample size nj = n for
all j.]

18.2.2 Rank tests

Using ranks is particularly appealing in settings where the
measurements across subjects are not easy to compare.
This is for example the case when the measurements are
subjective evaluations. A prototypical example is that of a
judge panel experiment (Example 18.1) as the judges may
be more or less liberal in the use of the full appraisal scale.
Another important example is that of crossover trials
where what is measured is the improvement of symptoms
on a visual analog scale (VAS). Such subjective evaluations
are notoriously difficult to compare. The use of ranks
disregards the scale implicitly (and often unconsciously)
used by a subject, and focuses on the subject’s ranking
instead. Thus ranks are computed within subjects.

In detail, let ri,j be the rank of xi,j among x1,j , . . . , xn,j

and let rj = ∑ni=1 ri,j be the rank sum for Treatment j.
(Although we are using the same notation, these ranks
are defined differently than in Section 17.4.3.)
Remark 18.20. Rank tests are special cases of permu-
tation tests, as their null distribution is the permutation
distribution (at least when the ties are broken at random).

Friedman test Like the Kruskal–Wallis test, this test
uses as test statistic the treatment sum-of-squares applied
to the ranks defined above. It was proposed by Milton
Friedman (1912 - 2006) in [100].
Problem 18.21. Show that using the treatment sum-of-
squares is equivalent to using ∑pj=1 r

2
j .

Remark 18.22. The actual Friedman test statistic in-
volves a standardization that makes the resulting statistic
have, under the null hypothesis, the chi-squared distri-
bution with p − 1 degrees of freedom in the large-sample
limit where n→∞.
R corner. The function friedman.test, which implements
that test, uses the limiting distribution to compute the
p-value.



18.3. Additional problems 287

18.3 Additional problems

Problem 18.23. Consider a strictly increasing and con-
tinuous distribution function F. Derive a necessary and
sufficient condition on the corresponding quantile function
F−1 (a true inverse in this case) for F to be symmetric
about a given µ ∈ R.
Problem 18.24 (Sign-flip vs signed-rank). Perform some
simulations to compare the power of the sign-flip test
of Section 18.1.2 and the Wilcoxon signed-rank test of
Section 18.1.3.
Problem 18.25 (Smirnov test). The Smirnov test for
symmetry is based on comparing the distributions of Z ∣
Z > 0 and −Z ∣ Z < 0 using the two-sample Kolmogorov–
Smirnov test.
(i) Write down an expression, as simple as possible, for

the corresponding test statistic.
(ii) In R, write a function that takes in the data and a

number of Monte Carlo replicates, and returns the
Monte Carlo estimate for the p-value (18.3).
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We consider an experiment resulting in paired numeri-
cal variables (X,Y ). The general goal addressed in this
chapter is that of quantifying the strength of association
between these two variables. By association we mean de-
pendence. We have an iid sample, (X1, Y1), . . . , (Xn, Yn),
from the underlying distribution. Contrary to the setting
of Section 18.1, here X and Y can be measurements of
completely different kinds.
Example 19.1. The study described in [140] evaluates
the impact of the time in detention on the mental health of
asylum seekers in the US in terms of (self-reported) symp-
toms of anxiety, depression, and post-traumatic stress
disorder. Focusing on just one symptom, say anxiety,
the data would look like (T1,A1), . . . , (Tn,An), where Ti
denotes the time spent in detention and Ai the level of
anxiety for Individual i. (There were n = 70 individuals
interviewed for this study.)
A correlation analysis amounts to quantifying the

https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
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strength of association between X and Y . A more detailed
description of this association is the goal of regression
analysis, which is the topic of Chapter 21.
Remark 19.2. We assume throughout that neither X
nor Y are constant random variables, for otherwise a
correlation analysis is not relevant.

19.1 Testing for independence

Suppose we want to test

H0 ∶X and Y are independent. (19.1)

This is in some sense the most extreme form of non-
association between two variables. Most of this chapter is
dedicated to testing for independence.

19.1.1 Tests based on binning

We saw in Section 15.7 how to test for independence
between (paired) discrete variables. In principle, the tools
developed there could be used when the variables are
numerical (which we assume here), but only after binning.
Problem 19.3 (Independence tests based on binning).
Based on the tools introduced in Section 15.7 for discrete
variables, propose at least one test for independence that

is applicable to numerical variables. The general idea is to
first bin the numerical variables, thus obtaining discrete
variables, and then apply an independence test for discrete
variables. Implement that test procedure in R.

(Notice the parallel with Problem 16.63.)

19.1.2 Permutation tests

In the present context, a permutation consists in permut-
ing one coordinate, say, the Y coordinate (without loss of
generality), while leaving the other variable fixed. Doing
this leaves a null distribution unchanged while breaking
any dependence under an alternative.
Suppose we reject for large values of a statistic T . Let

t denote the observed value of the statistic, meaning
t = T ((x1, y1), . . . , (xn, yn)). Letting Π be the group of
permutations of {1, . . . , n}, for π = (π1, . . . , πn) ∈ Π, let tπ
denote the value of the statistic when applied to the data
permuted by π, meaning tπ = T ((x1, yπ1), . . . , (xn, yπn)).
Then the permutation p-value is defined as usual

#{π ∈ Π ∶ tπ ≥ t}
∣Π∣ .

Since ∣Π∣ = n! can be quite large, this p-value is typically
estimated by Monte Carlo simulation.
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Problem 19.4. Show that the permutation p-value and
its Monte Carlo estimate, seen as random variables, are
both valid in the sense of (12.22). [Use the conclusions of
Problem 8.63.]
Problem 19.5 (Bootstrap tests). Although a calibration
by permutation is favored, in large part because the per-
mutation p-value is valid regardless of the sample size, a
calibration by bootstrap is also possible (and reasonable).
Propose a way to do so in the present context.
In the remainder of this chapter, we give several ex-

amples of test statistics that are commonly used for the
purpose of testing for independence. The alternative set
is very large, comprising all distributions on R2 that are
not the product of their marginals, and there is no test
that is uniformly best. Instead, each of the following tests
is designed for certain alternatives.

19.2 Affine association

The variables X and Y are in perfect affine association if
one of them is an affine function of the other, for example,

Y = aX + b, for some a, b ∈ R. (19.2)

Such a perfect association is extremely rare in real
applications. Even in settings governed by the laws of

physics the relation is not exact, for example, because
of various factors including measurement precision and
error.
Example 19.6 (Boiling temperature in the Himalayas).
In [88], James Forbes reports data collected by Joseph
Hooker on the boiling temperature of water at different
elevations in the Himalayas. (Part of the dataset is avail-
able in R as Hooker in the alr4 package.) The variables are
boiling temperature (degrees Fahrenheit) and barometric
pressure (inches of mercury). Although the laws of physics
predict an affine relationship, this is not exactly the case
in this dataset, although it is an excellent model.

19.2.1 Pearson correlation

The correlation, defined in (7.13), was seen to measure
affine association between paired random variables. This
motivates the use of the sample correlation, defined as the
correlation of the empirical distribution.
Problem 19.7. Show that the sample correlation is given
by

r ∶= ∑ni=1(xi − x̄)(yi − ȳ)√
∑ni=1(xi − x̄)2

√
∑ni=1(yi − ȳ)2

.

This is often called the Pearson sample correlation.
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Problem 19.8. Show that r ∈ [−1,1], and ∣r∣ = 1 if and
only if there are a, b ∈ R such that xi = ayi + b for all i or
yi = axi + b for all i.
Problem 19.9 (Consistency of the sample correlation).
Let {(Xi, Yi) ∶ i ≥ 1} be iid bivariate numerical with
correlation ρ. Let Rn denote the sample correlation of
(X1, Y1), . . . , (Xn, Yn). Show that Rn →P ρ as n→∞.
The Pearson correlation test, which in its two-sided

variant rejects for large values of ∣R∣, is not universally
consistent, essentially because there are bivariate distri-
butions with ρ = 0 that are not the product of their
marginals.
Problem 19.10. Suppose that X is uniform in [−1,1]
and define Y =X2. Show that the distribution of (X,Y )
has correlation ρ = 0. Generalize this result as much as
you can (within reason).

Proposition 19.11. If X and Y are independent and
normal,

T ∶= R
√
n − 2√

1 −R2

has the Student distribution with n − 2 degrees of freedom.
In general, if X and Y are independent and have finite

second moments,

T = Tn
LÐ→ N (0,1), as n→∞.

R corner. The function cor computes, by default, the
Pearson correlation, while the function cor.test implements,
by default, the Pearson correlation test, albeit returning
a p-value computed based on Proposition 19.11.
Problem 19.12. Detail how Proposition 19.11 is used to
produce a p-value. (Note that the null hypothesis, in this
case, can be that the variables are independent, or more
generally, that they have zero Pearson correlation. In
either case, the p-value is approximate, except in the ex-
ceedingly rare situation where the underlying distribution
is known to be bivariate normal.)
Problem 19.13. In R, write a function that takes in
the dataset and a number of Monte Carlo replicates, and
returns the estimated permutation p-value for the Pearson
correlation.

19.3 Monotonic association

The variables X and Y are in perfect monotonic associa-
tion if one of them is a monotonic function of the other,
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for example,

Y = g(X), for some monotone function g. (19.3)

As before, and for similar reasons, perfect monotonic
association is extremely rare in practice.
Example 19.14 (Antoine’s equation). For a pure liquid,
the vapor pressure (p) and temperature (t) are related, to
first order, by Antoine’s equation

log(p/p0) = t0/t,

where p0 and t0 are constants. Note that p is a mono-
tone function of t in this model. Actual data does not
fit the equation perfectly, but comes very close to that.
(See [129] for more details in the case of mercury, including
a discussion of more refined equations.)

Rank pattern The two most popular tests for mono-
tonic association, which we introduce below, are based
on the rank pattern, which is given by ranking the Xi

among themselves, and then listing these ranks according
to increasing values of the Yi. For example, the following
data

X: -1.0 -1.3 0.8 1.1 -0.4 -0.3 0.9 -0.8
Y : 0.2 0.0 1.6 0.1 0.6 -0.6 1.0 -0.7

yield the following rank pattern

3 5 1 8 2 4 7 6

Problem 19.15. Suppose that ties are broken at ran-
dom. Prove that the rank pattern is uniformly distributed
among the permutations of (1, . . . , n) when X and Y are
independent.

19.3.1 Spearman correlation

The Spearman correlation is the rank variant of the Pear-
son correlation. We start with the sample version. Let
ai denote the rank of xi within x1, . . . , xn and bi de-
note the rank of yi within y1, . . . , yn. The Spearman
sample correlation is the Pearson sample correlation of
(a1, b1), . . . , (an, bn).
Problem 19.16. Show that this is a rank statistic.
Problem 19.17. Show that the Spearman sample corre-
lation can be written as

rs = 1 − 6
n3 − n

n

∑
i=1

(ai − bi)2.

Problem 19.18. Show that rs ∈ [−1,1] and equal to 1
(resp. −1) if and only if there is a non-decreasing (resp. non-
increasing) function g such that yi = g(xi) for all i.
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We have first defined the sample version of the Spear-
man correlation, the reason being that it is easy to moti-
vate. One may wonder if there is a corresponding feature
of the underlying distribution. Coming from another an-
gle, is there a result analogous to Problem 19.9 here? The
answer, encapsulated in the following problem, is Yes.

Proposition 19.19. Let {(Xi, Yi) ∶ i ≥ 1} be iid bivariate
numerical. Let Rs,n denote the Spearman sample correla-
tion of (X1, Y1), . . . , (Xn, Yn). Then Rs,n →P ρs as n→∞,
where

ρs ∶= 3E [ sign ((X1 −X2)(Y1 − Y3))].

(ρs is sometimes called Spearman’s ρ.)

The Spearman correlation test, which in its two-sided
variant rejects for large values of ∣Rs∣, is not universally
consistent, essentially because there are bivariate distri-
butions with ρs = 0 that are not the product of their
marginals.
Problem 19.20. Show that the distribution(s) of Prob-
lem 19.10 are examples of such distributions.
R corner. The function cor can be used to compute the
Spearman correlation, while the function cor.test can be

used to perform the Spearman correlation test. The p-
value is computed analytically up to a certain sample size,
and after that the large-sample null distribution is used.
(It turns out that the second part of Proposition 19.11
applies to Rs.)

19.3.2 Kendall correlation

The Kendall sample correlation is defined as

rk ∶=
2

n(n − 1) ∑∑
1≤i<j≤n

sign ((xj − xi)(yj − yi)).

Problem 19.21. Show that this is a rank statistic.
Problem 19.22. Show that rk ∈ [−1,1] and equal to 1
(resp. −1) if and only if there is a non-decreasing (resp. non-
increasing) function g such that yi = g(xi) for all i.

Here too, this statistic estimates a feature of the under-
lying distribution.

Proposition 19.23. Let {(Xi, Yi) ∶ i ≥ 1} be iid bivariate
numerical. Let Rk,n denote the Kendall sample correlation
of (X1, Y1), . . . , (Xn, Yn). Then Rk,n →P ρk as n → ∞,
where

ρk ∶= E [ sign ((X1 −X2)(Y1 − Y2))].
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(ρk is sometimes denoted by τ and called Kendall’s τ .)

The Kendall correlation test, which in its two-sided
variant rejects for large values of ∣Rk∣, is not universally
consistent, essentially because there are bivariate distri-
butions with ρk = 0 that are not the product of their
marginals.
Problem 19.24. Show that the distribution(s) of Prob-
lem 19.10 are examples of such distributions.
R corner. The function cor can be used to compute the
Kendall correlation, while the function cor.test can be
used to perform the Kendall correlation test. The p-value
is computed analytically up to a certain sample size, and
after that the large-sample null distribution is used. (It
turns out that Rk is asymptotically normal.)
Problem 19.25. Show that, under the null hypothesis
of independence, Rk has mean zero and variance given by
(4n + 10)/9n(n − 1).

19.4 Universal tests for independence

We saw that none of the correlation tests is universally
consistent. This is because they focus on features that
are not characteristic of independence. We present below

approaches that can lead to universally consistent tests,
which do so by looking at the entire distribution through
its distribution, density, and characteristic function.

19.4.1 Tests based on the distribution function

Recall the definition of the distribution function of a ran-
dom vector given in (6.4). For (X,Y ) bivariate numerical,
it is defined as

FX,Y (x, y) = P(X ≤ x,Y ≤ y).

We saw in Proposition 6.3 that it characterizes the under-
lying distribution. In particular, the following is true.
Problem 19.26. X and Y are independent if and only
if

FX,Y (x, y) = FX(x)FY (y), for all x, y ∈ R.

Prove this claim.
In view of this, it becomes natural to consider test

statistics of the form

∆(F̂X,Y , F̂X ⊗ F̂Y ), (19.4)

where ∆ denotes a measure of dissimilarity between dis-
tribution functions as considered in Section 16.8.1, while
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F̂X , F̂Y , and F̂X,Y denote the empirical distribution func-
tions of the X, Y , and (X,Y ) samples, respectively. In
particular,

F̂X,Y (x, y) ∶= 1
n

n

∑
i=1

{Xi ≤ x,Yi ≤ y}.

For example, the analogue of the Kolmogorov–Smirnov
test rejects for large values of

sup
x,y∈R

∣F̂X,Y (x, y) − F̂X(x)F̂Y (y)∣. (19.5)

Problem 19.27. Show that this statistic is a function of
the ranks (so that the resulting test is a rank test).
Problem 19.28. Argue that this test is universally con-
sistent.
Hoeffding [126] proposed, instead, the analogue of the

Cramér–von Mises test, except in reverse, as it rejects
which rejects for large values of ∆(F̂X ⊗ F̂Y , F̂X,Y ), with
the ∆ defined in (16.21).
Problem 19.29. The statistic (19.4), with the same ∆,
appears to be an equally fine choice. Perform some nu-
merical experiments to compare these two choices.

19.4.2 Tests based on the density

Tests for independence based on binning the observations,
as studied in Problem 19.3, can interpreted as tests based
on the density function.
Problem 19.30. In parallel with Section 19.4.1, but this
time in analogy with Section 16.8.3, propose a class of tests
for independence based on the density function. Speculate
on whether the tests you propose are universally consistent,
or not. Implement your favorite test among these in R,
and perform some simulations to assess its power.

19.4.3 Tests based on the characteristic
function

As we saw in Remark 7.59, the characteristic function of
a random vector, (X,Y ), is defined as

ϕX,Y (s, t) ∶= E[exp(ı(sX + tY ))].

We also saw there that a distribution on R2 is characterized
by its characteristic function.
Problem 19.31. Show that X and Y are independent if
and only if ϕX,Y (s, t) = ϕX(s)ϕY (t) for all s, t ∈ R.
Problem 19.32. Propose a class of tests for indepen-
dence based on the characteristic function. Speculate on
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whether the tests you propose are universally consistent,
or not. Implement your favorite test among these in R,
and perform some simulations to assess its power.

Distance covariance In [229], Székely, Rizzo and
Bakirov propose a test for independence based on pairwise
distances, which in fact turns out to be based on the
characteristic function.
Based on data (x1, y1), . . . , (xn, yn), define

aij = ∣xi − xj ∣, ai =
1
n

n

∑
j=1

aij , a = 1
n2

n

∑
i=1

n

∑
j=1

aij ,

and
uij = aij − ai − aj + a.

Similarly, define

bij = ∣yi − yj ∣, bi =
1
n

n

∑
j=1

bij , b = 1
n2

n

∑
i=1

n

∑
j=1

bij ,

and
vij = bij − bi − bj + b.

The test rejects for large values of the sample distance
covariance defined as

1
n2

n

∑
i=1

n

∑
j=1

uijvij . (19.6)

Being a test for independence, a p-value is typically ob-
tained by (Monte Carlo) permutation.

To see how the test is based on the characteristic func-
tion, let ϕ̂x denote the empirical characteristic function
based on the sample x, meaning the characteristic function
of F̂x, and define ϕ̂y as well as ϕ̂x,y analogously.
Problem 19.33. Show that, when computed on x =
(x1, . . . , xn),

ϕ̂x(s) =
1
n

n

∑
j=1

exp(ı sxj). (19.7)

Prove that the sample characteristic function is pointwise
consistent for the characteristic function, meaning that
ϕ̂Xn(s) →P ϕX(s) as n → ∞, for all s ∈ R, where Xn =
(X1, . . . ,Xn) are iid copies of a random variable X.
Repeat with the joint characteristic function, ϕ̂x,y.

Proposition 19.34. The statistic (19.6) is equal to

1
π2 ∫

∞

−∞
∫

∞

−∞

∣ϕ̂X,Y (s, t) − ϕ̂X(s)ϕ̂Y (t)∣2

s2t2
dsdt

In view of this result, it is not too hard to believe
that the sample distance covariance is consistent for the



19.5. Further topics 297

distance covariance of (X,Y ), defined as

1
π2 ∫

∞

−∞
∫

∞

−∞

∣ϕX,Y (s, t) − ϕX(s)ϕY (t)∣2

s2t2
dsdt.

And from this it is not too hard to argue that the distance
covariance test is universally consistent.
Problem 19.35. The distance covariance is intimately
related to the energy statistic of Problem 17.52. Can you
see that? [This is analogous to how the Hoeffding test is
related to the Cramér–von Mises test.]

19.5 Further topics

19.5.1 When one variable is categorical

In this chapter we have focused on the situation where
both variables are numerical. And in Section 15.7 we
addressed the situation where both are categorical (or,
more generally, discrete). Suppose now that one of the
variables, say X, is categorical while the other variable,
Y , is numerical.

To derive tests for independence, we make a connection
with goodness-of-fit testing. Testing for the independence
of X and Y is equivalent to testing

Y ∣X = x is distributed as Y, for all x.

This is a problem of goodness-of-fit testing where the
groups are the ones defined by the values of X. The
only difference with the setting of Section 17.3 and Sec-
tion 17.4.3 is that here the group sizes are random. How-
ever, conditional on X1, . . . ,Xn, the setting is exactly that
of goodness-of-fit testing, and the methods presented there
are applicable. Note that this is an example of conditional
inference (Section 22.1).
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In a wide range of real-life situations, not one but several,
even many hypotheses are to be tested.
Example 20.1 (Genetics). In genetics an important line
of research revolves around discovering how an individual’s
genetic material influences his/her health. In particular,
biologists have developed ways to measure how ‘expressed’
a gene is, and a typical experiment for understanding
what genes are at play in a given disease can be described
as follows. A number of subjects with the disease, and
a number of subjects without the disease, are recruited.
For each individual in the study, the expression levels of
certain genes (m of them) are measured. For each gene,
a test comparing the two groups is performed, so that m
tests are performed in total [50]. In practice, for human
subjects,m is on the order of 10,000. Experiments focusing
on single nucleotide polymorphisms (SNP’s) instead of
genes result in an even larger number of tests, on the order
of 100,000.

https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
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Example 20.2 (Surveillance). In a surveillance setting,
a signal is observed over time and the task is to detect a
change in the signal of particular relevance. The signal
can be almost anything and the change is typically in
terms of features that are deemed important for the task
at hand. Practical examples include the detection of fires
from satellite images [149] and the detection of epidemics
(aka syndromic surveillance) based on a variety of data
such as transcripts from hospital emergency visits and
pharmacy sales of over-the-counter drugs [121, 122]. In
such settings, a test is applied at every location/time
point.
Example 20.3 (Functional MRI). Functional magnetic
resonance imaging (fMRI) can be used as a non-invasive
technique for understanding what regions of the human
brain are active when performing a certain task [154]. In
an experiment involving a single subject, a person’s brain
is observed over time while the individual is put under
two or more conditions, where a condition might consist
in performing a given task. The goal is then to identify
which parts of the brain are most active under a condition
relative to the other conditions. The identification is
typically done by performing a test for each voxel, where a
voxel represents a small unit of space (typically, a 3× 3× 3
millimeter cube). There are on the order of 1,000,000

voxels.
For now, consider a simplified situation where m null

hypotheses, H1, . . . ,Hm, need to be tested. (Note that,
in the present setting, H1 is a null hypothesis and not an
alternative hypothesis.) We apply a test to each null
hypothesis Hj , resulting in a p-value denoted Pj . Assume
for simplicity that the p-values are independent and that
each Pj is uniform in [0,1] under Hj , that is,

P1, . . . , Pm are independent, with
Pj ∼ Unif(0,1) under Hj , for j = 1, . . . ,m.

(20.1)

Here are two aspects of the situation that illustrate the
underlying difficulties:

• Suppose that we proceed as usual, choosing a level
α ∈ (0,1) and rejecting Hj if Pj ≤ α. Then, even
if all the hypotheses are true, on average there are
αm rejections (all incorrect). In settings where very
many tests are performed, meaning that m is large,
choosing α to be the usual 0.05 or 0.01 leads to an
impractically large number of rejections. Take Exam-
ple 20.1, where (say) m = 10, 000 tests are performed.
Then rejecting at level α = 0.05 leads to 500 rejections
on average, even when all the hypotheses are true
(meaning that no gene is truly differentially expressed
when comparing the two conditions).
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• The smallest p-value can be quite small even if all the
hypotheses are true. Indeed, minj Pj has expectation
1/(m + 1) in that case.

When confronted with the task of testing a number of
(null) hypotheses we talk of multiple testing.

20.1 Setting

We postulate a statistical model (Ω,Σ,P) as in Chap-
ter 12, where Ω is the sample space containing all possible
outcomes, Σ is the class of events of interest, and P is a
family of distributions on Σ. We assume as before that P
is parameterized as P = {Pθ ∶ θ ∈ Θ}.
Within this framework, we consider a situation where

m null hypotheses need to be tested, with the jth null
hypothesis being

Hj ∶ θ∗ ∈ Θj ,

for some given Θj ⊂ Θ. (Recall that θ∗ denotes the true
value of the parameter.) The alternative to Hj will simply
the negation of Hj and denoted Hc

j (which makes sense
since it is the complement of Hj).
Recall that a test is applied to each null hypothesis,

resulting in a total of m p-values, denoted P1, . . . , Pm.
What tests are used obviously depends on the situation.

In Example 20.1, for instance, the rank-sum test could
be applied to each hypothesis. We always assume that
each p-value Pj is valid in the usual sense that it satisfies
(12.22), meaning here that

Under Hj ∶ P(Pj ≤ α) ≤ α, ∀α ∈ (0,1). (20.2)

Remark 20.4. For the sake of conciseness, we focus on
methods for multiple testing that are based on the p-
values. Such methods are all based on the ordered p-values,
denoted

p(1) ≤ ⋯ ≤ p(m). (20.3)

For future reference, we note that ordering the p-values
can be done in O(m logm) basic operations using a good
sorting algorithm. We will let H(j) denote the hypothesis
associated with p(j).

20.1.1 Normal sequence model

The normal sequence model provides a stylized mathe-
matical framework within which methods can be studied.
Although it is too simple to accurately model real-life situ-
ations, it is nevertheless relevant, in part because common
test statistics used in practice are approximately normal
in large samples.
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The model is as follows. We observe Y1, . . . , Ym, inde-
pendent, with Yj ∼ N (θj ,1). We are interested in testing
H1, . . . ,Hm, where

Hj ∶ θj = 0.

The problem can be consider one-sided, in which case
Hc
j ∶ θj > 0; or two-sided, in which case Hc

j ∶ θj ≠ 0.
Assuming the one-sided setting, it makes sense to reject

Hj for large values of Yj , since doing so is optimal for that
particular hypothesis (Theorem 13.23). The corresponding
p-value is Pj ∶= 1 −Φ(Yj), where Φ denotes the standard
normal distribution function.

20.2 Global null hypothesis

The global null hypothesis (aka complete null hypothesis)
is defined as

H0 ∶ “the hypotheses H1, . . . ,Hm are all true”,

or, equivalently,

H0 ∶ θ∗ ∈ Θ0 ∶=
m

⋂
j=1

Θj .

In most situations, a null hypothesis represents “busi-
ness as usual”. We will assume this is the case throughout.

Then the global null hypothesis represents “there is noth-
ing at all going on”. Although one is typically interested
in identifying the false hypotheses, testing the global null
hypothesis might be relevant in some applications, for
example, in surveillance settings (Example 20.2).

The global null hypothesis is just a null hypothesis. We
present below some commonly used tests, all based on
the available p-values. Such tests are sometimes called
combination tests.
Remark 20.5. Recall a small p-value provides evidence
against the hypothesis it is associated with. This explains
why all the tests below are all one-sided.

Fisher test This test rejects for large values of

T (p1, . . . , pm) ∶= −2
m

∑
j=1

log pj .

The test statistic was designed that way because its null
distribution is stochastically dominated by the chi-squared
distribution with 2m degrees of freedom. (This explains
the presence of the factor 2.)
Problem 20.6. Assume (20.1). Show that, under the
global null, T has the chi-squared distribution with 2m
degrees of freedom.
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Liptak–Stouffer test This test rejects [151] for large
values of

T (p1, . . . , pm) ∶= 1√
m

m

∑
j=1

Φ−1(1 − pj). (20.4)

The test statistic was designed that way because its null
distribution is stochastically dominated by the standard
normal distribution.
Problem 20.7. Assume (20.1). Show that, under the
global null, T has the standard normal distribution.
Problem 20.8. Consider the normal model of Sec-
tion 20.1.1. First, express the test statistic as a function of
y1, . . . , ym. Then, setting the level to some given α ∈ (0, 1),
provide a sufficient condition for the test to have power
tending to 1. [Use Chebyshev’s inequality.]

Tippett–Šidák test This test [209] rejects for small
values of

T (p1, . . . , pm) ∶= min
j=1,...,m

pj . (20.5)

Problem 20.9. Assume (20.1). Derive the distribution
of T under the global null.
Problem 20.10. Repeat Problem 20.8 with this test.
[This time, use Boole’s inequality together with the fact

that 1 − Φ(x) ≤ φ(x)/x, where φ denotes the density of
the standard normal distribution.]

Simes test This test [211] rejects for small values of

T (p1, . . . , pm) ∶= min
j=1,...,m

mp(j)/j.

Proposition 20.11. Assuming that (20.1) holds, T has
the uniform distribution in [0,1] under the global null.

Problem 20.12. Prove this proposition, and perform
some simulations in R to numerically confirm it.

Tukey test Better known as the higher criticism test,
it comes from applying the one-sided Anderson–Darling
procedure (16.22) to test the hypothesis that the p-values
are iid uniform in [0,1] — that is, the global null under
(20.1).
Problem 20.13. Show that the test rejects for large
values of

T (p1, . . . , pm) ∶= max
j=1,...,m

j/m − p(j)√
p(j)(1 − p(j))

.

Under the global null, T has a complicated distribution,
but asymptotically (m→∞) it becomes of Gumbel type
(after a proper standardization) [134].
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Problem 20.14. In R, write a function that computes
the statistic T above based on the p-values. Then, using
that function, write another one hc.test that returns a
p-value for the test based on a specified number of Monte
Carlo replicates.

In general, any test for uniformity in its proper one-sided
version is appropriate.
Problem 20.15. Show that the relevant form of the Berk–
Jones test (Section 16.10.1) for the present setting rejects
for small values of

T (p1, . . . , pm) ∶= min
j=1,...,m

Prob(Beta(j,m − j + 1) ≤ p(j)).

Problem 20.16. Repeat Problem 20.14 with this test.
[Change hc into bj.]

20.3 Multiple tests

Testing the global null amounts to weighing the evidence
that one or several hypotheses are false. However, even if
we reject, we do not know what hypotheses are doubtful.
We now turn to the more ambitious goal of identifying
the false hypotheses (if there are any). We will call a
procedure for this task a multiple test.

While a test is a function of the data with values in
{0,1}, with ‘1’ indicating a rejection, a multiple test (Re-
mark 20.4) is a function of the p-values with values in
{0,1}m, with ‘1’ in the jth component indicating a rejec-
tion of Hj . Thus a multiple test is of the form

ϕ∶ [0,1]m → {0,1}m
p ∶= (p1, . . . , pm) ↦ (ϕ1(p), . . . , ϕm(p))

Seen as a function on [0,1]m, ϕj is a test for Hj , but
possibly based on all the p-values instead of just pj .

For θ ∈ Θ, let hj(θ) = {θ ∈ Θj}, so that hj(θ) = 0 if Hj is
true, and = 1 if it is false. Also, let m0(θ) = #{j ∶ θ ∈ Θj},
which is the number of true hypotheses, and m1(θ) =
#{j ∶ θ ∉ Θj}, which is the number of false hypotheses.
Note that m0(θ) +m1(θ) =m. For a given multiple test
ϕ, define the following quantities: 94

N0∣0(ϕ, θ) = #{j ∶ ϕj = 0 and hj(θ) = 0}, (20.6)
N1∣0(ϕ, θ) = #{j ∶ ϕj = 1 and hj(θ) = 0}, (20.7)
N0∣1(ϕ, θ) = #{j ∶ ϕj = 0 and hj(θ) = 1}, (20.8)
N1∣1(ϕ, θ) = #{j ∶ ϕj = 1 and hj(θ) = 1}. (20.9)

94 A different notation is typically used in the literature, stemming
from the influential paper [12], but that choice of notation is not
particularly mnemonic. Instead, we follow [103].
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(These are summarized in Table 20.1.) In particular,
N1∣0(ϕ, θ) is the number of Type I errors and N0∣1(ϕ, θ)
the number of Type II errors made by the multiple test ϕ
when the true value of the parameter is θ. In particular,
the total number of errors made by the multiple test is
given by

N1∣0(ϕ, θ) +N0∣1(ϕ, θ) = #{j ∶ ϕj ≠ hj(θ)},

and the total number of rejections is given by

R(ϕ) = N1∣0(ϕ, θ) +N1∣1(ϕ, θ) = #{j ∶ ϕj = 1}.

These counts are all functions of the p-values and, with
the exception of R(ϕ), of the true value of the parameter.
This is left implicit.

For a single hypothesis, the accepted modus operandi
is to control the level and, within that constraint, design
a test that maximizes the power (as much as possible).
We introduce some notion of level and power for multiple
tests below. These apply to a given multiple test ϕ which
is left implicit in places.

20.3.1 Notions of level for multiple tests

Family-wise error rate (FWER) For a long time,
this was the main notion of level for multiple tests. It is

Table 20.1: The counts below summarize the result of
applying a multiple test ϕ when the true value of the
parameter is θ.

No Rejection Rejection Total

True Null N0∣0(ϕ, θ) N1∣0(ϕ, θ) m0(θ)
False Null N0∣1(ϕ, θ) N1∣1(ϕ, θ) m1(θ)

Total m −R(ϕ) R(ϕ) m

defined as the probability of making at least one Type I
error or, using the notation of Table 20.1,

fwer(ϕ) = sup
θ∈Θ

Pθ(N1∣0(ϕ, θ) ≥ 1).

A multiple test ϕ controls the FWER at α if

fwer(ϕ) ≤ α.

Problem 20.17. Assume (20.1). Derive the FWER for
the multiple test defined by

ϕj = {Pj ≤ α}. (20.10)

False discovery rate (FDR) This notion is more
recent. It was suggested in the mid 1990’s by Benjamini
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and Hochberg [12]. It is now the main notion of level used
in large-scale multiple testing problems. It is defined as
the expected proportion of incorrect rejections among all
rejections or, using the notation of Table 20.1,

fdr(ϕ) = sup
θ∈Θ

Eθ (
N1∣0(ϕ, θ)
R(ϕ) ∨ 1

).

A multiple test ϕ controls the FDR at α if

fdr(ϕ) ≤ α.

(The name comes from the fact that, in most settings, a
rejection indicates a discovery.)
Problem 20.18. As notions of level for multiple tests,
the FDR is always less severe then the FWER. Indeed,
show that in any situation and any multiple test ϕ,

fdr(ϕ) ≤ fwer(ϕ).

20.3.2 Notions of power for multiple tests

Notions of power for multiple tests can be defined by
analogy to the notions of level presented above, by having
Type II errors play the role of Type I errors.
Problem 20.19. Define the power equivalent of FWER.
(This quantity does not seem to have a name in the liter-
ature.)

False non-discovery rate (FNR) To define the
power equivalent of FDR, one possibility is [103]

fnr(ϕ) = sup
θ∈Θ

Eθ (
N0∣1(ϕ, θ)

(m −R(ϕ)) ∨ 1
).

This definition leads to a quantity that could look artifi-
cially small when m0/m is close to 1 (meaning the vast
majority of the hypotheses are true), which is common
in practice, in which case the following variant might be
preferred:

fnr(ϕ) = sup
θ∈Θ

Eθ(N0∣1(ϕ, θ))
m1(θ) ∨ 1

.

20.4 Methods for FWER control

For a given θ ∈ Θ, define

Tθ = {j ∶ θ ∈ Θj}, (20.11)

which is the subset of indices corresponding to true null
hypotheses.

Tippett multiple test This multiple test Hj if

pj ≤ cα,
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where cα is such that

sup
θ∈Θ

Pθ(min
j∈Tθ

Pj ≤ cα) ≤ α. (20.12)

Note that cα is a valid critical value for the Tippett test
for the global null H0.

Proposition 20.20. The Tippett multiple test controls
the FWER at α.

Proof. A Type I error occurs if the multiple test rejects
some Hj with j ∈ Tθ. This happens with probability

Pθ(∃j ∈ Tθ ∶ ϕj = 1) = Pθ(min
j∈Tθ

Pj ≤ cα) ≤ α,

using (20.12) at the end.

Problem 20.21 (Šidák multiple test). Show that, under
(20.1), the inequality (20.12) holds with cα = 1 − (1 −α)m.
Problem 20.22 (Bonferroni multiple test). Show that,
under all circumstances, the inequality (20.12) holds with
cα = α/m.

Holm multiple test This multiple test [127] rejects
H(j) if

p(k) ≤ α/(m − k + 1) for all k ≤ j.

Problem 20.23. Show that a brute force implementation
based on this description requires on the order of O(m2)
basic operations. In fact, the method can be implemented
in order O(m) basic operations after ordering the p-values.
Describe such an implementation.
Remark 20.24 (Step down methods). This is a step-
down procedure as it moves from the most significant to
the least significant p-value.

Proposition 20.25. The Holm multiple test above con-
trols the FWER at α.

Proof. Recall (20.11) and let j0 = arg minj∈Tθ p(j). Note
that j0 is a function of the p-values. Since ∣Tθ ∣ = m0(θ),
necessarily,

j0 ≤m −m0(θ) + 1. (20.13)

The procedure makes an incorrect rejection if and only if
it rejects H(j0), which happens exactly when

p(j) ≤ α/(m − j + 1), for all j ≤ j0,

which in particular implies that

p(j0) ≤ α/(m − j0 + 1) ≤ α/m0(θ), (20.14)
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by (20.13). But

Pθ(P(j0) ≤ α/m0(θ)) = Pθ(min
j∈Tθ

Pj ≤ α/m0(θ))

≤ ∑
j∈Tθ

Pθ(Pj ≤ α/m0(θ))

≤ ∑
j∈Tθ

α/m0(θ)

= α,
using the union bound and then the fact that the p-values
are valid in the sense of (20.2).

Problem 20.26. Prove (20.13).
Problem 20.27. How would you change Holm’s proce-
dure if you knew that the p-values where independent?
In practice, Holm’s procedure is thus always preferred

over Bonferroni’s.
Problem 20.28 (Holm vs Bonferroni). Show that Holm’s
procedure is always preferable to Bonferroni’s, in the
(strongest possible) sense that any hypothesis that Bon-
ferroni’s rejects Holm’s also rejects.

Hochberg multiple test This multiple test rejects
H(j) if

p(k) ≤ α/(m − k + 1) for some k ≥ j.

Problem 20.29. Repeat Problem 20.23 but for the
Hochberg multiple test.
Remark 20.30 (Step up methods). This is a step-up
procedure as it moves from the least significant to the
most significant p-value.

Proposition 20.31. The Hochberg multiple test above
controls the FWER at α when the p-values are indepen-
dent.

Problem 20.32 (Hochberg vs Holm). Prove that, if the
p-values are independent, Hochberg’s multiple test is more
powerful than Holm’s in the (strongest possible) sense that
any hypothesis that Holm’s rejects Hochberg’s also rejects.
Remark 20.33 (Hommel multiple test). There is an-
other procedure, Hommel’s, that is more powerful than
Hochberg’s. However, it is a bit complicated to describe,
and we do not detail it here.

20.5 Methods for FDR control

Benjamini–Hochberg multiple test This multiple
rejects H(j) if

p(k) ≤ kα/m for some k ≥ j.
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It was the first (and still the main) method guarantied to
control the FDR at the desired level under appropriate
conditions.
Problem 20.34. Let r denote the number of rejections
when this method is applied to a particular situation.
Show that the method rejects Hj if and only if pj ≤ rα/m.

Proposition 20.35. The Benjamini–Hochberg multiple
test above controls the FDR at αCm, in general, where
Cm ∶= 1 + 1/2 + ⋯ + 1/m, and at α if the p-values are
independent.

Proof sketch. We only prove 95 the first part, and only
when each p-value is uniform in [0, 1] under its respective
null. Let ϕ denote the multiple test and let R = R(ϕ) de-
note the number of rejections when applied to a particular

95 We learned of this proof from Emmanuel Candès.

situation. Define Al = ((l − 1)α/m, lα/m]. We have

{ϕj = 1}
R ∨ 1

=
m

∑
r=1

{pj ≤ r αm}{R(ϕ) = r}
r

(20.15)

=
m

∑
r=1

r

∑
l=1

{pj ∈ Al}
{R(ϕ) = r}

r
(20.16)

=
m

∑
l=1

{pj ∈ Al}
{R(ϕ) ≥ l}
R(ϕ) (20.17)

≤
m

∑
l=1

{pj ∈ Al}
l

. (20.18)

Thus,

Eθ (
N1∣0(ϕ, θ)
R(ϕ) ∨ 1

) = Eθ (
∑j∈Tθ {ϕj = 1}
R(ϕ) ∨ 1

) (20.19)

≤ ∑
j∈Tθ

m

∑
l=1

1
l
Pθ(Pj ∈ Al) (20.20)

= ∑
j∈Tθ

m

∑
l=1

1
l

α

m
(20.21)

≤ αCm. (20.22)

In the last line we used the fact that ∣Tθ ∣ =m0(θ) ≤m.

Problem 20.36. Show that Cm < logm + 1. [Start by
showing that 1/k ≤ ∫ kk−1 dx/x.]
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One way to arrive at the Benjamini–Hochberg procedure
is as follows. Consider the multiple test that rejects Hj

when pj ≤ t. With some abuse of notation, let N1∣0(t)
and R(t) denote the corresponding number of Type I
errors and total number of rejections, and define Ft =
N1∣0(t)/(R(t) ∨ 1). Ideally, we would like to choose t
largest such that Ft ≤ α. However, N1∣0(t) cannot be
computed solely based on the p-values as it depends on
knowing which hypotheses are true. The idea is to replace
it by an estimate. Since we assume the p-values to be
valid (20.2), we have

Eθ(N1∣0(t)) ≤m0(θ)t ≤mt.

If we replace N1∣0(t) by mt, we effectively estimate Ft by
F̂t ∶=mt/(R(t) ∨ 1).
Problem 20.37. Let t̂ = max{t ∶ F̂t ≤ α}. Show that the
multiple test that rejects Hj when pj ≤ t̂ is Benjamini–
Hochberg’s.

20.6 Meta-analysis

Meta-analysis is a branch of Statistics/Epidemiology that
focuses on combining multiple studies in order to reach
stronger conclusions on a particular issue.

Example 20.38 (Bone density and fractures). The
study [162] is a “meta-analysis of prospective cohort stud-
ies published between 1985 and end of 1994 with a baseline
measurement of bone density in women and subsequent
follow up for fractures”. The stated purpose of this analy-
sis was to “determine the ability of measurements of bone
density in women to predict later fractures”. Combined,
the studies comprised “eleven separate study populations
with about 90,000 person years of observation time and
over 2,000 fractures”.
Example 20.39 (Alcohol consumption). The paper [223]
presents a meta-analysis of 87 studies on the relation-
ship between alcohol consumption and all-cause mortality.
Some previous studies had concluded that consuming a
small amount of alcohol (1-2 drinks per day) was asso-
ciated with a slightly longer lifespan. The authors here
argue that this association can be explained in great part
by the classification of former drinkers (who might have
stopped drinking because of health issues) as abstainers.
Remark 20.40. As one would expect, there are meta-
analyses of meta-analyses [56].
It is often the case that several studies examine the

same effect, and it is rather tempting to use all this in-
formation combined to boost the power of the statistical
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inference. This is possible under restrictive assumptions.
In particular, the studies have to be comparable.
The bulk of the effort in a meta-analysis goes, in fact,

to deciding which studies to include. There are a number
of criteria for that, which by nature are ad hoc, although
there are some guidelines [124, Ch 5]. Importantly, the
studies need to be comparable, and judging of that often
requires domain-specific knowledge.

Otherwise, in terms of methods for inference, the meta-
analysist makes use of various tests, including combination
tests (Section 20.2). Some, mostly ad hoc, methods for
detecting the presence of publication bias (introduced in
Section 23.8.2) have also been developed. Most, like the
popular funnel plot, are based on the so-called small study
effect, which is the empirically-observed fact that small
studies are more prone to publication bias compared to
larger studies, presumably because large studies require
more funding and cannot remain unpublished as easily.

20.6.1 Cochran–Mantel–Haenszel test

It is not uncommon for studies in the medical field (e.g.,
clinical trials) to result in a 2-by-2 table. This happens,
for example, with a completely randomized design on
two treatments and a binary outcome of ‘success’ or ‘fail-
ure’. The Cochran–Mantel–Haenszel (CMH) test is applied

when examining a number of such studies. The goal is to
determine whether there is a treatment effect or not, and
(optionally) to specify the direction of the effect when it
is determined that there is an effect.
Example 20.41 (Low protein diets in chronic renal insuf-
ficiency). In [90], a meta-analysis is undertaken to better
assess the impact that low protein diets have on chronic
renal insufficiency. A total of 46 clinical trials where ex-
amined, from which 6 were selected (5 European and 1
Australian, between 1982 and 1991). This amounted to a
combined sample of size 890 subjects with mild to severe
chronic renal failure. Among these, 450 patients received
a low protein diet (treatment) and 440 a control diet.
Assignment was at random in all trials. Each subject
was followed for at least one year. The main outcome
was renal death (start of dialysis or death) during the
study. Table 20.2 provides a summary in the form of six
contingency tables (one for each study).

Simplest approach is arguably to collapse of all these 2-
by-2 tables into a single 2-by-2 table, followed by applying
one of the tests seen in Section 15.3, or Section 15.4, or
Section 15.6. Some meta-analysts, however, are reluctant
to do that because, although the studies are supposed to
be comparable, they are invariably performed on samples
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Table 20.2: The following is taken from Table 3 in [90].
See description in Example 20.41.

Diet Survived Died

Study 1 Control 95 15
Treatment 110 8

Study 2 Control 2 7
Treatment 5 5

Study 3 Control 194 32
Treatment 209 21

Study 4 Control 8 17
Treatment 14 11

Study 5 Control 25 13
Treatment 30 4

Study 6 Control 21 11
Treatment 21 12

from different populations, and collapsing the tables could
dilute the strength of association in some of the studies.
(Remember Simpson’s paradox.) The CMH test does not
combine tables.
For notation, assume there are m studies and let the

contingency table resulting from jth study be as follows

Success Failure

Treatment aj bj
Control cj dj

The one-sided CMH test is based on rejecting for large
values of the total number of successes in the treatment
group, namely ∑mj=1 aj .
Problem 20.42. In which direction is the test one-sided?
How would you define a two-sided CMH test?
Problem 20.43 (Normal approximation). The classical
version of the test relies on a normal approximation for
calibration. Specify this normal approximation. Can you
justify this normal approximation when the results from
the studies are independent?
Problem 20.44. How would you calibrate the test by
Monte Carlo simulation?
Problem 20.45. Compare this with the test that col-
lapses the tables into a single table. (This test is based
on the same statistic. What distinguishes the tests is in
how the p-value is computed.)
It is rather natural to approach this problem from a

multiple testing perspective. After all, we are testing a
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global null.
Problem 20.46. Can you propose a combination test
based on Fisher’s exact test (Section 15.6) applied to each
table? [Recall Remark 15.31.]

20.6.2 File drawer problem

Rosenthal [197] refers to publication bias (Section 23.8.2)
as the file drawer problem. This was the 1970’s, so that
manuscripts were written on paper and stored in a file
drawer. Unpublished papers would remain hidden from
view in such file drawers.

Rosenthal considers a setting where some published
papers address the same general question (formalized as a
null hypothesis) and report on a p-value obtained from a
test of significance performed on independently collected
data. Having access to all these published papers, Rosen-
thal asks the question: How many papers addressing the
same question (and each performing a test on a separate
dataset) would have to be left unpublished, stored away in
a file drawer, to offset the combined significance resulting
from the published papers?
Assume that we have available m studies testing for

the presence of the same effect (e.g., effectiveness of a
particular drug compared to a placebo), with Study j

resulting in a p-value denoted pj . The Liptak-Stouffer
(LS) combination test seen in (20.4) rejects for large val-
ues of y ∶= ∑mj=1 zj , where zj ∶= Φ−1(1 − pj) is the z-score
associated with pj . (Φ denotes the standard normal dis-
tribution function.) The test is significant at level γ if
y/√m ≥ Φ−1(1 − γ).

Rosenthal’s method Suppose the LS test is signifi-
cant at level γ. In an effort to answer his own question,
Rosenthal then computes the fail-safe number 96, defined
as

n̂ ∶= min {n ∶ y/
√
m + n < Φ−1(1 − γ)}.

To motivate this definition, let zm+1, . . . , zm+n denote the
z-scores corresponding to the studies that have remained
unpublished. Let y′ = ∑m+nj=m+1 zj . If we had access to all
studies, published and unpublished, we would base our
inference on ∑m+nj=1 zj = y + y′. Specifically, we would fail
to reject at level γ when

(y + y′)/
√
m + n < Φ−1(1 − γ).

96 Rosenthal does not make a connection with the Liptak-Stouffer
test in his original paper. Also, we are working with p-values and
transforming them into z-scores. Rosenthal works directly with z-
scores and assumes a two-sided situation. This leads to a different
definition for the fail-safe number.



20.7. Further topics 313

In light of this, the fail-safe number is based on replacing
the unobservable y′ with 0, which is the mean of the zj
when there is no effect and no selection.

In a variant, Iyengar and Greenhouse [133] suggest
replacing 0 above with the expected value of a standard
normal conditional on not exceeding Φ−1(1 − α), where
α is the common level of significance a study is typically
required to achieve to be published (α = 0.05 is common).
(Note that α may be different from γ.)

Gleser and Olkin’s method Gleser and Olkin [107]
take a more principled approach, based on a worst-case
scenario in which, out of a total of m + n studies, each
yielding a p-value as above, we only get to observe the
smallest m. The goal remains to estimate n assuming that
there is no effect. Assume that all these p-values are inde-
pendent and that each p-value is uniformly distributed in
[0, 1] under its associated null hypothesis. Thus, denoting
p(1) ≤ ⋯ ≤ p(m+n) the ordered p-values, we only get to
observe p(1), . . . , p(m).

We have a bona fide probability model, with likelihood
(m + n)!

n!
(1 − qm)n {0 ≤ q1 ≤ ⋯ ≤ qm ≤ 1},

where we wrote qj in place of p(j) for clarity. (This plays
the role of null model in the present context.)

Problem 20.47. Show that p(m) is sufficient for n and
derive its distribution.
Problem 20.48. Show that the maximum likelihood es-
timator is

n̂mle ∶= ⌊m(1 − p(m))/p(m)⌋.

In fact, Gleser and Olkin prefer to use an unbiased
estimator.
Problem 20.49. Show that the following estimator is
unbiased

n̂ ∶=
m(1 − p(m)) − 1

p(m)

.

(This estimator happens to be the only unbiased estimator
of n based on p(m).)

20.7 Further topics

20.7.1 Positive dependence

We say that a subset Q ⊂ Rm is an increasing set if u =
(u1, . . . , um) ∈ Q ⇒ v = (v1, . . . , vm) ∈ Q whenever vj ≥
uj for all j. We say that a random vector Z = (Z1, . . . , Zm)
is PRDS 97 on J ⊂ {1, . . . ,m} if for any j ∈ J and any

97 This stands for positive regression dependency on each one
from a subset.
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increasing set Q ⊂ Rm, z ↦ P(Z ∈ Q ∣ Zj = z) is non-
decreasing in z.
Problem 20.50. Show that the PRDS property is in-
variant with respect to monotone transformations in the
sense that, if (Z1, . . . , Zm) is PRDS on J and f1, . . . , fm
are non-decreasing functions, then (f1(Z1), . . . , fm(Zm))
is also PRDS on J .

Theorem 20.51. The Benjamini–Hochberg multiple test
controls the FDR at the desired level when the p-values
(P1, . . . , Pm) are PRDS on the set of true nulls (20.11).

20.7.2 Adjusted p-values

An adjusted p-value is such that, when it is below α
(the desired FWER or FDR level) the corresponding null
hypothesis is rejected. Take, for example, Bonferroni’s
multiple test meant to control the FWER at α. The
corresponding Bonferroni adjusted p-values are defined as

pBonf
j ∶= (mpj) ∧ 1.

And indeed, the Bonferroni multiple test with parameter
α rejects Hj if and only if pBonf

j ≤ α.

Problem 20.52. Show that the Holm adjusted p-value
for Hj can be defined as

pHolm
j ∶= max {(m − k + 1)pk ∶ k ≤ j} ∧ 1,

in the sense that the Holm multiple test with parameter
α rejects Hj if and only if pHolm

j ≤ α.
Problem 20.53. Derive the Hochberg adjusted p-values.
Problem 20.54. Derive the Benjamini–Hochberg ad-
justed p-values (called q-values in [225]).
R corner. The multiple tests presented here are imple-
mented in the function p.adjust, which returns the adjusted
p-values. (The default multiple test is Holm’s, which is
the safest since it applies regardless of the dependence
structure of the p-values.)

20.8 Additional problems

Problem 20.55 (Comparing global tests). Perform some
numerical experiments to compare the tests for the global
null presented in Section 20.2 in the normal sequence
model of Section 20.1.1.
Problem 20.56 (Comparing multiple tests for FWER
control). Perform some numerical experiments to compare
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the multiple tests available in p.adjust for FWER control.
Do this in the setting of the normal sequence model of
Section 20.1.1.
Problem 20.57 (k-FWER). For a multiple test ϕ, and
for k ≥ 1 integer, the k-FWER is defined as

fwerk(ϕ) = sup
θ∈Θ

Pθ(N1∣0(ϕ, θ) ≥ k).

Note that the 1-FWER coincides with the FWER. In
general, k stands for the number of Type I errors that the
researcher is willing to tolerate.
(i) (Bonferroni) Show that the multiple test that rejects

Hj if Pj ≤ αk/m controls the k-FWER at α.
(ii) (Tippett) More generally, how would you change

the definition of cα given in (20.12) to control the
k-FWER at the desired level?

Problem 20.58 (marginal FDR). For a multiple test ϕ,
the marginal false discovery rate (mFDR) is defined as

mfdr(ϕ) = sup
θ∈Θ

Eθ[N1∣0(ϕ, θ)]
Eθ[R(ϕ)] .

(i) Show that the mFDR is the probability that a null
hypothesis, chosen uniformly at random among those
that were rejected, is true. (Thus, in looser terms,

the mFDR is the probability that a claimed discovery
is actually false.)

(ii) Show that, in general, the mFDR cannot be controlled
at any level strictly less than 1.
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Beyond quantifying the amount of association between
(necessarily paired) variables, as was the goal in Chap-
ter 19, regression analysis aims at describing that associa-
tion. Partly because the task is so much more ambitious,
the literature on the topic is vast. Our treatment in this
chapter is necessarily very limited in scope but provides
some essentials. For more on regression analysis, we rec-
ommend [120], or the lighter version [135].

We assume the experiment of interest results in paired
observations, assumed to be iid from an underlying un-
known distribution and denoted

D ∶= {(X1, Y1), . . . , (Xn, Yn)}. (21.1)

Throughout

d ∶= {(x1, y1), . . . , (xn, yn)} (21.2)

will denote a realization of D. We also let ∣d∣ denote the
size of the sample d, also denoted by n above and in what
follows.

https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks


Regression Analysis 317

At this stage, the variables x and y can be of any type.
Suppose we set as a general goal that of predicting y as a
function of x. In that case, x be will called the predictor
variable and y will called the response variable.

There are two main motives for performing a regression
analysis.

• Modeling The main purpose is to build a model
that describes how the response variable varies as
a function of a value of the predictor variable. A
simple, parsimonious model is often sought to ease
interpretability. Finding such a model is desirable,
for example, in fundamental sciences like physics,
chemistry, or biology, where gaining a functional un-
derstanding is important. An example of that is
relating the vapor pressure of a pure liquid to its
temperature (Example 19.14).

• Prediction The main purpose is to predict the value
of the response variable given the predictor variable.
Examples of applications where this is needed abound
in engineering and a broad range of industries (insur-
ance, finance, marketing, etc). For example, in the
insurance industry, when pricing a policy, the predic-
tor variable encapsulates the available information
about what is being insured, and the response vari-
able is a measure of risk that the insurance company

would take if underwriting the policy. In this context,
a procedure is solely evaluated based on its perfor-
mance at predicting that risk, and can otherwise be
very complicated and have no simple interpretation.

We focus here on the goal of prediction because it is
simpler, its scope is broader in terms of applications, and
it is easier to formalize mathematically.
Example 21.1 (Real estate prices). A number of real
estate websites, besides listing properties that are cur-
rently on the market (for which the asking price is set
by the sellers), also estimate the price of properties that
are not currently for sale, using proprietary regression
models that take in all the available information on these
properties (prediction variable) and returns an estimated
value (response). For a residential property, the prediction
variable may include square footage, number of bedrooms,
number of bathrooms, location, etc.
Example 21.2 (MNIST dataset). The special case where
the response is categorical is most often called classifica-
tion instead of regression. The MNIST dataset is a dataset
that researchers have used for many years for comparing
procedures for classification. Each observation is a 28× 28
grey level pixel image of a handwritten digit, which is
labeled accordingly. The main goal is to recognize the

https://yann.lecun.com/exdb/mnist/
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digits. This can be cast as a classification task where
each observation is of the form (x, y) with x ∈ Rp with
p = 28 × 28 = 784 and y ∈ {0,1, . . . ,9}. Importantly, y is
categorical here. Indeed, the fact that y is a digit, and
therefore a number, is irrelevant, as the order between the
digits is not pertinent to the classification task.

21.1 Prediction

Stating a prediction problem amounts to specifying the
class of possible distributions for (X,Y ), as well as a
functional quantifying the error made by a procedure.

21.1.1 Loss and risk

Assume that X takes values in X and Y takes values in Y .
Most of the time, both X and Y are subsets of Euclidean
spaces. Choose a function L ∶ Y × Y → R+ meant to
measure dissimilarity. This function L is referred to as
the loss function. For a function f ∶ X → Y , define its risk
(aka expected loss or prediction error) as

R(f) = E [L(Y, f(X))], (21.3)

where the expectation is with respect to (X,Y ). Thus
R(f) quantifies the average loss, measured in terms of L,
when predicting Y by f(X).

Note that f has to be measurable. Henceforth, we
letM denote the class of measurable functions from X
to Y. (As usual, X and Y are implicitly equipped with
σ-algebras.)
Example 21.3 (Numerical response). In the important
case where Y = R, L is very often chosen of the form
L(y, y′) = ∣y − y′∣γ for some γ > 0. Popular choices in that
family of losses include

squared error loss L(y, y′) = (y − y′)2,

absolute loss L(y, y′) = ∣y − y′∣.

Example 21.4 (Categorical response). Another impor-
tant example is where Y is a discrete set, which arises
when the response is categorical, i.e., in a classification
setting. A popular choice of loss function is

0-1 loss L(y, y′) = {y ≠ y′}. (21.4)

21.1.2 Regression estimators

Having chosen a loss function, we turn to finding a function
with relatively low risk as defined in (21.3) based on the
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available data. This is the role of a regression estimator,
which is of the form

f̂ ∶ D Ð→M
dz→ f̂d

where D ∶= ⋃n≥1(X ×Y)n is where the data (21.2) resides.
The action of applying f̂ to data d to obtain f̂d is

referred to as fitting or training the regression estimator
f̂ on the data d, and the resulting estimate, f̂d, is then
referred to as the fitted or trained estimator. The result
is a (measurable) function from X to Y, which is meant
to predict Y from future observations of X.
An estimator being a random function, we use its ex-

pected risk, or generalization error, to quantify its perfor-
mance, which for an estimator f̂ is defined as

R̄n(f̂) = E[R(f̂D)], (21.5)

where the expectation is with respect to a dataset D of
size n.

21.1.3 Regression functions

A more ambitious goal than just finding a function with
low risk is to approach a minimizer, meaning an element

of
F∗ ∶= arg min

f
R(f), (21.6)

when this set is not empty. Any element of F∗ is called
a regression function. In many cases of interest, F∗ is
(essentially) a singleton.

It helps to work conditional on X, because of the fol-
lowing.
Problem 21.5 (Conditioning on X). Show that

inf
f
E [L(Y, f(X))] ≥ E ( inf

y′∈Y
E [L(Y, y′) ∣X]).

Deduce that any function f satisfying

f(x) ∈ arg min
y′∈Y

E [L(Y, y′) ∣X = x], for all x, (21.7)

minimizes the risk (21.3). (This assumes that the mini-
mum above is attained for any x.)
Problem 21.6 (Mean regression). Consider a setting
where Y = R. Assume that Y has a 2nd moment and take
L to be the squared error loss. Show that the minimum
in (21.7) is uniquely attained at y′ = E[Y ∣X = x], so that
the risk (21.3) is minimized by

f∗(x) ∶= E[Y ∣X = x]. (21.8)

[Use Problem 7.91.]
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Problem 21.7 (Median regression). Consider a setting
where Y = R. Assume that Y has a 1st moment and take
L to be the absolute loss. Show that the minimum in
(21.7) is attained at any median of Y ∣X = x, and only
there. In the special case where, for all x, Y ∣X = x has a
unique median, the risk (21.3) is thus minimized by

f∗(x) ∶=Med(Y ∣X = x). (21.9)

[Use Problem 7.92.]
Problem 21.8 (Classification with 0-1 loss). Consider a
classification setting with 0-1 loss. Show that the minimum
in (21.7) is attained at any y′ maximizing y ↦ P(Y =
y ∣X = x), so that the risk (21.3) is minimized by any
function f∗ satisfying

f∗(x) ∈ arg max
y∈Y

P(Y = y ∣X = x). (21.10)

Such a function is called a Bayes classifier.

21.2 Local methods

The methods that follow are said to be local, in the sense
that the value of the estimated function at some point
x ∈ X is computed based on the observations (xi, yi) with
xi in a neighborhood of x.

Let δ denote a dissimilarity on X , so that δ(x,x′) is
a measure of how dissimilar x,x′ ∈ X are. ‘Local’ is
henceforth understood in the context of X equipped with
the dissimilarity δ.
Example 21.9 (Euclidean metric). When X is a Eu-
clidean space, it is most common to use the Euclidean
metric, meaning that δ(x,x′) = ∥x−x′∥, with ∥ ⋅∥ denoting
the Euclidean norm.
There are two main types of neighborhoods used in

practice:
• Ball neighbors For x ∈ X and h > 0, its h-ball

neighbors are indexed by

Ihd(x) ∶= {i ∶ xi ∈ Bh(x)}, (21.11)

where
Bh(x) ∶= {x′ ∈ X ∶ δ(x′, x) ≤ h}.

(This is the ball centered at x and of radius h defined
by the dissimilarity δ.)

• Nearest neighbors For x ∈ X and k ≥ 1 integer, its
k-nearest neighbors are indexed by

Jkd(x) ∶= {i ∶ δ(xi, x) is among the k smallest
in δ(x1, x), . . . , δ(xn, x)}. (21.12)
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We mostly work with ball neighbors for concreteness.
We assume throughout that the distribution of X has

support X , in the sense that P(X ∈ Bh(x)) > 0 for every
x ∈ X and every h > 0.
Problem 21.10. In that case, show that for every x ∈ X ,

min
i=1,...,n

δ(Xi, x)
PÐ→ 0, as n→∞. (21.13)

21.2.1 Local methods for regression

Consider the setting where Y = R and the loss is the
squared error loss, so that the regression function is the
conditional expectation f∗ given in (21.8). The methods
that we present below aim directly at estimating f∗.

Local average Computing the regression function
as given in (21.8) is impossible without access to the
distribution of Y ∣X, which is unknown. A local average
approach attempts to estimate this function by making
two approximations:

• Conditioning on a neighborhood While in (21.8) the
conditioning is on X = x, we approximate this by
conditioning on a neighborhood. Using a ball neigh-
borhood, the approximation is

E[Y ∣X ∈ Bh(x)] ≈ E[Y ∣X = x]. (21.14)

when h is small. This approximation is reasonable
when the regression function f∗ is continuous, and
can indeed be shown to be valid under additional
mild assumptions (Problem 21.47).

• Averaging As we often do, we estimate an expecta-
tion with an average, yielding the approximation

1
∣IhD(x)∣ ∑

i∈IhD(x)

Yi ≈ E[Y ∣X ∈ Bh(x)].

By the Law of Large Numbers, the approximation is
valid when ∣IhD(x)∣ is large.

The local average estimator combines these two approxi-
mations to take the form

f̂hd (x) ∶=
1

∣Ihd(x)∣
∑

i∈Ih
d
(x)

yi. (21.15)

The tuning parameter h is often called the bandwidth.

Kernel regression Kernel regression is a form of
weighted local average, and as such includes (21.15) as a
special case. Choose a non-increasing function Q ∶ R+ →
R+, and for h > 0, define

Kh(x′, x) = Q(δ(x′, x)/h). (21.16)
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The function Q is sometimes referred to as the kernel
function, and most often chosen compactly supported or
fast-decaying.
The Nadaraya–Watson estimate 98 is defined as

f̂hd (x) ∶=
n

∑
i=1
wi,h(x)yi, (21.17)

where
wi,h(x) ∶=

Kh(xi, x)
∑nj=1 Kh(xj , x)

.

R corner. The Nadaraya–Watson kernel regression esti-
mate can be computed using the function ksmooth. Several
choices of kernel function are offered.
Remark 21.11. Kernel regression is analogous to kernel
density estimation (Section 16.10.6).

Local linear regression A kernel regression estimate
is built by fitting a constant locally (Problem 21.51). Local
linear regression is based on fitting an affine function
locally. For this to make sense, we need to assume that
X is a Euclidean space, and we assume that δ is a norm
for concreteness.

98 Named after Èlizbar Nadaraya (1936 - ) and Geoffrey Stuart
Watson (1921 - 1998).

Assuming the regression function f∗ is differentiable,
we have the Taylor expansion

f∗(x′) ≈ f∗(x) +∇f∗(x)⊺(x′ − x), (21.18)

the approximation being accurate to first order when
δ(x′, x) is small. Having noticed that x′ ↦ f∗(x) +
∇f∗(x)⊺(x′ − x) is an affine function, its coefficients are
estimated in a neighborhood of x (since the approximation
is only valid near x).
In more detail, having chosen a kernel function Q and

a bandwidth h > 0, for x ∈ X , define (ahd(x), bhd(x)) to be
the solution to

min
(a,b)

n

∑
i=1

Kh(xi, x)(yi − a − b⊺(xi − x))
2
.

The intercept, ahd(x), is meant to estimate f∗(x), while
the slope, bhd(x), is meant to estimate ∇f∗(x). The local
linear regression estimate is simply the intercept, namely

f̂hd (x) = ahd(x), as computed above.

Figure 21.1 illustrates an application of local linear
regression to synthetic data.
R corner. The function loess implements local linear
regression.
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Figure 21.1: An example of application of local linear
regression. The model that was generated is the follow-
ing: Yi = f∗(Xi) + Zi, with X1, . . . ,Xn iid uniform in
[0, 1], f∗(x) = (1+10x−5x2) sin(10x), and (independently)
Z1, . . . , Zn iid standard normal. Local linear regression
was applied with two different values of h, resulting in a
rough (green) curve and a smooth (red) curve, with the
latter coming very close to the function f∗.

●
●●●

●
●

●

●●

●
●

●

●

●
●●
●

●

●●
●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●
●

●●
●

●

●

●●●●

●

●●
●

●●

●●●

●

●●

●

●
●

●

●

●●

●
●
●●

●

●

●
●
●

●

●

●

●

●●

●

●

●●

●

●●

●●●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●
●

●●●

●

●●●
●
●
●

●

●

●
●
●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●●

●

●●
●
●
●

●
●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●

●●

●

●

●

●
●
●

●

●
●

●

●

●

●●
●

●

●
●
●

●
●
●
●
●

●

●●

●
●

●
●

●

●

●●

●

●●●
●●

●
●
●
●

●
●
●

●

●
●

●
●

●
●

●

●
●
●

●

●
●

●

●

●

●

●
●

●
●
●●

●

●

●●
●●
●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●●
●
●
●
●

●
●

●

●●●●

●

●

●

●●
●

●

●●

●
●●
●

●

●

●
●

●

●

●

●

●

●

●
●
●
●

●

●●

●

●

●

●

●
●

●●●

●●

●
●

●●
●●

●

●

●

●●

●
●

●

●●
●

●

●

●

●●

●
●

●

●●

●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●●

●●

●●

●

●
●
●●
●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●
●●
●●

●

●
●
●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●
●●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●●●

●

●●
●
●
●
●●●●

●
●

●●

●
●
●●
●●

●

●

●
●●

●

●

●

●
●

●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●●
●

●

●
●●

●

●

●

●

●●

●

●
●

●

●●
●●

●

●
●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●●
●

●
●
●

●

●

●

●

●

●

●

●

●●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●

●

●●
●

●
●

●

●

●

●
●●
●

●

●

●
●

●

●●
●

●

●●
●

●

●

●
●

●

●

●
●

●●
●
●●

●
●

●
●●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●●

●

●
●

●●●
●●
●

●

●

●
●
●●
●

●

●

●

●

●

●
●

●●●
●

●

●

●
●

●

●●●●

●

●

●

●
●
●

●●●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●●
●

●

●
●
●

●

●
●●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●●

●

●
●

●●

●

●

●
●●

●

●

●●

●●
●
●●
●●●

●
●

●

●

●

●●
●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●●
●●

●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−6
−4

−2
0

2
4

6
Remark 21.12. Loader [153] proposes a local linear den-
sity estimation method based on a Taylor expansion of
the logarithm of the density.

21.2.2 Local methods for classification

Consider the setting where Y is discrete and the loss is
the 0-1 loss, so that the regression function is the Bayes
classifier f∗ given in (21.10). The methods that we present
below aim directly at estimating f∗.

Local majority vote The arguments that lead to the
local average of (21.15) can be adapted to the present
setting, starting from (21.10) instead of (21.8). The end
result is the following classifier

f̂hd (x) ∈ arg max
y∈Y

∑
i∈Ih

d
(x)

{yi = y}. (21.19)

In words, the classifier, at a given x, returns the most
common category in the neighborhood of x.
Problem 21.13. Detail the arguments leading to (21.19)
following those that lead to (21.15).

The expected risk of a classifier f̂ at a point x ∈ X when
fitted to data D is

P(Y ≠ f̂D(x) ∣X = x),
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where the expectation with respect to Y ∣X = x and the
data D. We saw in Problem 21.8 that this is bounded
from below by the risk of the Bayes classifier (21.10),
which at x is equal to

1 −max
y∈Y

P(Y = y ∣X = x). (21.20)

Nearest-neighbor classifier Local majority vote
based on nearest neighbors has some universality property,
in the sense that its risk comes close to that of the Bayes
classifier under mild assumptions.

Proposition 21.14 (Nearest neighbor classifier). In the
present setting, assume that for all y ∈ Y, the function
x↦ g(y ∣x) ∶= P(Y = y ∣X = x) is continuous on X . Then,
as the sample size increases, the limiting expected risk of
the nearest neighbor classifier is, pointwise, at most twice
the risk of the Bayes classifier.

Proof sketch. Fix x ∈ X , and with some abuse of notation
let f̂n denote the nearest neighbor classifier based on
a sample of size n. Specifically, f̂n(x) = Yin(x), where
in(x) ∈ {1, . . . , n} indexes one the the data points closest
to x (with ties, if any, broken in a systematic way). Then

(21.13) implies that

δ(Xin(x), x)
PÐ→ 0, as n→∞. (21.21)

The expected risk of f̂n at x is

P(Y ≠ Yin(x) ∣X = x)
= 1 − P(Y = Yin(x) ∣X = x)
= 1 − ∑

y∈Y

P(Y = y, Yin(x) = y ∣X = x)

= 1 − ∑
y∈Y

P(Y = y ∣X = x)P(Yin(x) = y),

using the independence of the generic observation (X,Y )
and the data (and the fact that Yin(x) is a function of the
data). We also have

P(Yin(x) = y) = E [P(Yin(x) = y ∣Xin(x))]
= E [g(y ∣Xin(x))]
→ g(y ∣x), as n→∞, (21.22)

by (21.21) combined with the continuity of x ↦ g(y ∣x)
and dominated convergence (Proposition 8.18). Hence,

P(Y ≠ f̂n(x) ∣X = x)→ 1 − ∑
y∈Y

g(y ∣x)2, as n→∞.

We then conclude with Problem 21.16.
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Problem 21.15. Prove the convergence (21.22).
Problem 21.16. For any probability vector (pj), show
that

1 −∑
j

p2
j ≤ 2(1 −max

j
pj).

This is enough to complete the proof of Proposition 21.14,
but can you sharpen the bound?

21.2.3 Curse of dimensionality

We assume in this section that X is Euclidean and that
the dissimilarity δ derives from a norm on X . In this
context, the local methods presented in Section 21.2 are
better suited for when X has small dimension. (In fact,
a dimension as low as dim(X ) = 5 is already a stretch in
practice.) This is because the space is mostly empty of
data points unless the sample size is exponential in the
dimension. This phenomenon, in regression, is called the
curse of dimensionality.

For a concrete example, take X = [0,1]p, which is a
‘nice’ compact domain of Rp. Assume furthermore that
X has the uniform distribution on X . Fix h ∈ (0,1/2).
Then, in the setting where the data are as in (21.1), the
chances that a Euclidean ball centered at x ∈ X of radius

h is empty of data points are given by

P(∀i ∶Xi ∉ Bh(x)) = P(X1 ∉ Bh(x))
n (21.23)

= [1 − P(X1 ∈ Bh(x))]
n (21.24)

≥ (1 − (2h)p)n (21.25)
→ 1, when n(2h)p → 0. (21.26)

(Note that the inequality is very conservative, but has the
benefit of applying to balls based on other norms.) Taking
h to be fixed, the condition on n and p holds, for example,
when p≫ logn.

We conclude that, when the dimension is a little more
than logarithmic in the sample size, the ball neighborhood
of any given point is very likely empty of data points,
which is of course very problematic for any local method.
Problem 21.17. In the same setting, compute as pre-
cisely as you can the minimum sample size n such that
the probability that a Euclidean ball of radius h is empty
of data points is at most 1/2. Do this for p = 1, . . . ,10.
[Calculations may be done using a computer.]

21.3 Empirical risk minimization

The empirical risk is the risk computed on the empirical
distribution. It can be used to produce an estimator,
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by minimizing it over an appropriately chosen function
class. Although such an estimator is typically less ‘local’,
it may nevertheless suffer from the curse of dimensionality
(Problem 21.53). This is not the case for estimators based
on linear models, an important family of function classes.

21.3.1 Empirical risk

Given data (21.1), the empirical risk of a function f is
defined as

R̂D(f) ∶= 1
n

n

∑
i=1

L(Yi, f(Xi)). (21.27)

Problem 21.18. Show that the empirical risk is an un-
biased and consistent estimate for the risk, in the sense
that, for any function f ∈M, E[R̂D(f)] = R(f), and

R̂D(f) PÐ→ R(f), as ∣D∣→∞. (21.28)

21.3.2 Empirical risk minimization

With the empirical risk estimating the risk, it is rather
natural to aim at minimizing the empirical risk. This is
done over a carefully chosen subclass F ⊂M.
Assuming a minimizer over F exists, and that some

other measurability issues are taken care of, empirical

risk minimization (ERM) over the class F amounts to
returning a minimizer of the empirical risk over F , namely

f̂FD ∈ arg min
f∈F

R̂D(f). (21.29)

Thus a function class F ⊂ M defines an estimator via
ERM minimization, namely f̂F .

We say that ERM is consistent 99 for the class F when

R(f̂FD) PÐ→ inf
f∈F

R(f), as ∣D∣→∞. (21.30)

Importantly, this consistency is not implied by (21.28).
Instead, what is needed is a uniform consistency over F .
Problem 21.19. Show that (21.30) holds when

sup
f∈F

∣R̂D(f) −R(f)∣ PÐ→ 0, as ∣D∣→∞. (21.31)

21.3.3 Interpolation and inconsistency

Consider the case where X = R and Y = R. For simplicity,
assume that X has a continuous distribution, so that

99 This notion of consistency is with respect to the underlying
distribution. If it holds regardless of the underlying distributions,
then ERM is said to be universally consistent.
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the Xi are distinct with probability one. We work with
squared error loss, meaning L(y, y′) = (y − y′)2.

Having observed the data, for a function f , the empirical
risk (21.27) takes the form

R̂d(f) =
1
n

n

∑
i=1

(yi − f(xi))2.

Clearly, this risk is non-negative and equal to 0 if and only
if yi = f(xi) for all i = 1, . . . , n, meaning that the function
f interpolates the data points. Consequently, if for any
sample size n there is a function in F that interpolates
the data points, then R̂d(f̂Fd ) = 0. If, at the same time,
inff∈F R(f) > 0, then ERM cannot be consistent.
Problem 21.20. Suppose, without loss of generality, that
Y as support Y. Take a loss L such that L(y, y′) = 0 if
and only if y = y′. Show that inff∈F R(f) = 0 if and only
if

P(Y = f(X)) = 1, for some f ∈ F . (21.32)

Overfitting We find it desirable to choose a function
class for which ERM is consistent, for otherwise it is
difficult to know what ERM does. When ERM is not
consistent, we say that it overfits, and from our discussion
above, we know that this happens, for example, when

the function class is so ‘expressive’ that interpolation is
possible.
Problem 21.21. In R, generate data according to the
model of Figure 21.1. In an effort to perform ERM on
the class of all polynomials, interpolate the data points by
Lagrange interpolation, which is available via the package
polynom. Produce a scatterplot with the fitted polynomial
overlaid (as done in that same figure for local linear re-
gression). Repeat for increasing values of n to get a sense
of how (wildly) the estimated function behaves.

21.3.4 Linear models

Linear function classes, that is, classes of functions which
have the structure of a linear space, have been popular
for decades. This is because of their simplicity, their
expressive power, and the fact that ERM is relatively easy
to compute (or at least approximate). Throughout, we
assume that the linear class has finite dimension.

Linear regression Assume that the response is nu-
merical, meaning that Y = R. Given a set of functions,
f1, . . . , fm ∶ X → R, we may consider linear combinations,
meaning functions of the form

f(x) = a1f1(x) +⋯ + amfm(x), (21.33)
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for arbitrary reals a1, . . . , am.
Example 21.22 (Polynomial regression). Polynomials
of degree at most k form such a class. In dimension one,
meaning when X = R, we can choose fj(x) = xj−1 for
j = 1, . . . , k + 1.

Proposition 21.23. Assume that the loss is as in Exam-
ple 21.3, and that each fj has finite risk. Then ERM is
consistent for the linear class defined by f1, . . . , fm.

Problem 21.24. Prove this proposition, possibly under
some additional assumptions, based on Problem 16.101.
Problem 21.25 (Least squares). ERM with the square
error loss is implemented via the method of least squares ,
defined by the following optimization problem

minimize
n

∑
i=1

(yi − a1f1(xi) −⋯ − amfm(xi))
2

over a1, . . . , am ∈ R.

Show that this optimization problem can be reduced to
solving an m ×m linear system.

Linear classification Assume that the response is
binary, so that we may take Y to be {−1,1} without loss

of generality. Given a set of functions, g1, . . . , gm ∶ X → R,
we may consider the class of functions of the form

f(x) = sign(a1g1(x) +⋯ + amgm(x)),

for arbitrary reals a1, . . . , am.

Proposition 21.26. Working with the 0-1 loss, ERM is
consistent for any such class.

It turns out that implementing ERM with the 0-1 loss
is in general quite difficult. For this reason, a surrogate
loss is sometimes chosen. This loss is defined not on
Y = {−1,1}, but on R. Let S ∶ R ×R → R+ be such a loss
function. In general, a class G of functions g ∶ X → R
defines a class F of functions f ∶ X → {−1,1} of the form
f(x) = sign(g(x)), for some g ∈ G. ERM for such a class
F with the surrogate loss S proceeds by first minimizing
the empirical risk over G, yielding

ĝd ∈ arg min
g∈G

n

∑
i=1

S(yi, g(xi)),

and then returning f̂d = sign(ĝd).
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Examples of surrogate losses used in practice include

exponential loss S(y, z) = exp(−yz),
logistic loss S(y, z) = log(1 + exp(−yz)),
hinge loss S(y, z) = (1 − yz) ∨ 0.

These are all convex and lead to a convex optimization
problem when applying ERM to a linear class.
Remark 21.27. ERM with the logistic loss is also called
logistic regression, and ERM with the hinge loss corre-
sponds to support vector machines.
Under some conditions, it turns out that ERM with

one of these surrogates losses leads to consistency with
respect to the 0-1 loss. This is the case, for example, when
the class is linear and, importantly, when the minimum
risk is achieved over that class (i.e., when the linear class
contains a Bayes classifier) [29, Sec 4.2].

21.4 Selection

The local methods presented in Section 21.2 depend on
a choice of bandwidth, while empirical risk minimization
depends on a choice of function class. In general, when
having to choose among various regression estimators,
one would want to compare their expected risk (21.5).

However, this is not an option, as the expected risk is
based on the underlying distribution, which is known.
Instead, we substitute the expected risk with an estimate.
Remark 21.28 (Beyond the empirical risk). Even when
consistent for the risk (21.30), the empirical risk is typi-
cally not useful for comparing various regression estima-
tors. This is because the empirical risk favors expressive-
ness or richness, and as a consequence leads to choosing
an estimate that interpolates the data points when this is
possible.
Problem 21.29. Consider kernel regression with a given
kernel function, and let r̂h denote the empirical risk at
bandwidth h. Show that r̂h ≤ r̂h′ whenever h ≤ h′. As-
suming that all the xi are distinct, show that r̂h = 0
(interpolation) when h is small enough. Describe in a
similar way what happens for local linear regression.
Problem 21.30. For a function class F , let r̂F denote
the empirical risk of the estimate resulting from ERM over
F . Show that r̂F ≤ r̂F ′ whenever F ⊃ F ′. Assuming that
all the xi are distinct, show that r̂F = 0 (interpolation)
when F is ‘rich’ enough.
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21.4.1 Data splitting

The main motive for splitting the data is to separate the
two operations of fitting and risk assessment, by having
them use disjoint parts of the data.

Recall that d denotes the data as in (21.2). Let t ⊂ d and
v ⊂ d denote the training and validation sets, respectively.
These are chosen disjoint, namely t ∩ v = ∅. Let C denote
a set of estimators to be compared. For each estimator in
that set, f̂ ∈ C, we do the following:

• Fitting Fit the estimator on the training set, ob-
taining f̂t.

• Assessment Compute the average loss of the fitted
estimator on the validation set, obtaining R̂v(f̂t).

Having done this, we choose the estimator among those
in C that has the smallest estimated prediction error,
obtaining

f̂C ∶= arg min
f̂∈C

R̂v(f̂t). (21.34)

We call this estimator the selected estimator. (The se-
lection process was based on t and v, but we leave this
implicit.)
Remark 21.31. The selected estimator is typically fitted
on the entire dataset, resulting in f̂Cd , which is in turn
used for prediction.

Problem 21.32. Show that, for a given estimator f̂ , we
have E[R̂V (f̂T )] = R̄m(f̂) if the training set is of size m.
How does this compares with R̄n (which is arguably what
we would like to estimate)?

Test set The use of a set separate from the training
and validation sets becomes necessary if it is of interest
to estimate the prediction error of the selected estimator,
namely f̂C of (21.34). This set is called the test set. The
reason the training and validation sets cannot be used for
that purpose is because they were used to arrive at f̂C.
Let s ⊂ d denote the test set. It is disjoint from the

training and validation sets, meaning that s ∩ (t ∪ v) = ∅.
The risk estimate for the selected estimator is obtained by
fitting the selected estimator on the training and validation
sets, and then computing the average loss on the test set,
obtaining R̂s(f̂Ct∪v).

21.4.2 Cross-validation

Data splitting is often seen as being wasteful in the sense
that the dataset is subdivided into even smaller subsets
(training, validation, and possibly test sets) with each
subset playing only one role. The methods we present
next mimic data splitting while attempting to make better
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use of the available data. These are all variants of cross-
validation (CV), arguably the most popular approach for
comparing estimators in the context of regression.

k-fold cross-validation Let k ∈ {2, . . . , n} and parti-
tion the dataset d into k subsets of (roughly) equal size,
denoted d1, . . . ,dk. In a nutshell, in the jth round, the
jth subset plays the role of validation set while the others
together play the role of training set, resulting in a risk
estimate. The final risk estimate is the average of these k
estimates. See Table 21.1 for an illustration.
In more detail, take one of the estimators to be com-

pared, f̂ ∈ C. We first fit the estimator on tl ∶= d ∖ dl,
obtaining f̂tl . Then we compute the average loss on dl.
Finally, we average these k risk estimates, obtaining

1
k

k

∑
l=1

R̂dl(f̂tl). (21.35)

Remark 21.33. The choices k = 5 and k = 10 appear to
be among the most popular in practice.
Problem 21.34. Compute the expectation of the risk
estimate (21.35).

Leave-k-out cross-validation Pushing the rationale
behind CV to its extreme leads to having each subset of

observations of size k play the role of validation set in
turn.
Problem 21.35. Write down the leave-k-out CV risk
estimate directly in formula, taking care of defining any
mathematical symbols that you use.

Because there are (n
k
) subsets of size k out of n observa-

tions total, this procedure is computationally prohibitive
for almost all choices of k — even with k = 2 or k = 3 the
procedure may be too costly.

Although leave-k-out CV is typically not computation-
ally tractable, Monte Carlo simulation is possible. Indeed,
each subset of size k yields a risk estimate and the leave-
k-out CV risk estimate is the average of all these risk
estimates. The Monte Carlo approach consists in drawing
a certain number of subsets of size k at random, comput-
ing their associated risk estimates, and returning their
average.

The special choice k = 1, leave-one-out cross-validation,
is computationally more feasible, although it still requires
fitting the estimator n times, at least in principle. Note
that leave-one-out CV is equivalent to n-fold CV, and the
corresponding risk estimate is also known as prediction
residual error sum-of-squares (PRESS).

For a comprehensive review of cross-validation (both
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Table 21.1: 5-fold cross-validation for a given estimator f̂ . The jth row illustrates the jth round where the jth data
block (highlighted) plays the role of validation set. Each round results in a risk estimate and the average of all these risk
estimates (5 of them here) is the cross-validation risk estimate for f̂ .

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5
Round 1 Validate Train Train Train Train
Round 2 Train Validate Train Train Train
Round 3 Train Train Validate Train Train
Round 4 Train Train Train Validate Train
Round 5 Train Train Train Train Validate

for regression and density estimation), we refer the reader
to the survey by Arlot and Celisse [7].

21.5 Further topics

21.5.1 Signal and image denoising

Denoising is an important ‘low-level’ task in the context
of signal and image processing. (Object recognition is an
example of ‘high-level’ task.) It is important in a wide
array of contexts including astrophysics, satellite imagery,
various forms of microscopy, as well as various types of
medical imaging.

Signal or image denoising can be seen as a special case
of regression analysis, the main specificity being that X
is typically not random; rather, the signal or image is
sampled on a regular grid. For example, in dimension 1,
this could be xi = i/n for a signal supported on [0,1].
In the signal and image denoising literature, kernel

regression is known as linear filtering.
R corner. In the context of signal or image processing,
the function kernel provides access to a number of well-
known kernel functions. Having chosen such a kernel,
the function kernapply computes the corresponding kernel
regression estimate.
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21.5.2 Additive models

Additive models are an alternative to linear models. Al-
though nonparametric, they do not suffer from the curse
of dimensionality.
We assume throughout that X = Rp. We say that

f ∶ Rp → R is an additive function if it is of the form

f(x) =
p

∑
j=1

fj(xj), for x = (x1, . . . , xp). (21.36)

Additive models for regression Let Fo be any
model class of univariate functions. The corresponding
model class of additive functions of p variables is

F ∶= {f as in (21.36) with fj ∈ Fo}.

Such models do not tend to suffer from the curse of di-
mensionality because, in essence, all happens on the axes.

ERM over an additive class F can be done via backfitting,
described in Algorithm 6, which is based on being able
to perform ERM over the class of univariate functions Fo
defining F .
Problem 21.36. Define a backfitting procedure based on
kernel regression. In R, write a function taking in the data
and a bandwidth, and fitting an additive model based on

Algorithm 6 Backfitting Algorithm
Input: data d = {(xi, yi)} with xi = (xi1, . . . , xip), uni-
variate model Fo
Output: fitted additive model

Initialize: f̂j ≡ 0 for all j
Repeat until convergence:
For j = 1, . . . , p
(i) Compute the residuals ri ← yi −∑k≠j f̂k(xik)
(ii) Compute the ERM estimate (21.29) for Fo based

on {(xij , ri)} and update f̂j

kernel regression with the corresponding bandwidth and
the Gaussian kernel.

Additive models for classification With an ad-
ditive function class, we can obtain a class of classifiers
as described in Section 21.3.4. In particular, when using
the logistic loss, this is sometimes called additive logistic
regression.
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21.5.3 Classification based on density
estimation

A less direct way of approximating the Bayes classifier
(21.10) is via the estimation of the class proportions, πy ∶=
P(Y = y), and the class densities, φy. Note that π defines
the marginal of Y and φy is the conditional density of
X ∣Y = y. In terms of these quantities, the Bayes classifier
can be expressed as

f∗(x) ∈ arg max
y∈Y

πyφy(x).

Problem 21.37. Show this using the Bayes formula.
Thus, if we have estimates, π̂y and φ̂y for all y ∈ Y, we

can estimate the Bayes classifier by plugging them in, to
obtain

f̂(x) ∈ arg max
y∈Y

π̂yφ̂y(x).

The class proportions are typically estimated by the
sample class proportions, namely

π̂y =
#{i ∶ yi = y}

n
.

The class densities can be estimated by applying any
procedure for density estimation to each sample class.

Problem 21.38. Derive the classifier that results from
applying a kernel density estimation procedure (Sec-
tion 16.10.6) to each sample class. Compare with a local
majority vote (with same bandwidth).

Discriminant analysis When the class distributions
are modeled as Gaussian and fitted by maximum likeli-
hood, the resulting procedure is called quadratic discrimi-
nant analysis (QDA).
Problem 21.39. Show that for QDA the classification
boundaries, meaning the sets separating the classes, are
quadratic surfaces.
If in addition to being modeled as Gaussian, the class

distributions are assumed to share the same covariance ma-
trix, then procedure is called linear discriminant analysis
(LDA).
Problem 21.40. Show that for LDA the classification
boundaries are affine surfaces.

Naive Bayes Density estimation by local methods (e.g.,
kernel density estimation), also suffers from a curse of di-
mensionality. For this reason, some structural assumptions
are sometimes made.
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A naive Bayes approach is analogous additive modeling
(Section 21.5.2). The corresponding assumption here is
that each class density φy is the product of its marginals,
in the sense that

φy(x) =
p

∏
j=1

φj,y(xj),

for x = (x1, . . . , xp), where if X = (X1, . . . ,Xp), then φj,y
is the density of Xj ∣Y = y. This leads to estimating, for
each class, the marginal densities separately and then
taking the product to obtain an estimate for the class
density.

21.5.4 Isotonic regression

Assume that X = R and that Y = R. Define

F = {f ∶ R→ R non-decreasing}. (21.37)

ERM based on this class is called isotonic regression. 100

Proposition 21.41. ERM is consistent for the class
(21.37).

100 One can as easily work with the class of non-increasing func-
tions, and ERM based on this class is called antitonic regression.

The pooled adjacent violators algorithm (PAVA) com-
putes the isotonic regression estimate. The paper [55]
describes PAVA (and also presents an alternative convex
optimization formulation).
R corner. Isotonic regression is available from the pack-
age isotone.
Remark 21.42. Notice the parallel with density esti-
mation based on an assumption of monotonicity (Sec-
tion 16.10.7).

21.6 Additional problems

Problem 21.43. Consider a setting where the response
is categorical and Y is finite of size q ≥ 2. Explain how
a loss function in this context can be represented by a
matrix. What matrix corresponds to the 0-1 loss?
Problem 21.44. Consider the case where X and Y are
independent. Let ξ ∈ Y be such that

ξ ∈ arg min
y′∈Y

E [L(Y, y′)].

Show that the constant function f ≡ ξ minimizes the risk
(21.3).
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Problem 21.45. In the context of Problem 21.6, show
that the converse of Problem 21.44 is also true, in the
sense that if a constant function minimizes the risk, then
X and Y must be independent.
Problem 21.46. Let g be a bounded and continuous
function on Rp. Let Bh(x0) denote the ball centered at
x0 of radius h > 0 in Rp with respect to some norm. Show
that

1
∣Bh(x0)∣ ∫Bh(x0)

g(x)dx→ g(x0), as h→ 0.

Problem 21.47. Assume that X has a density φ on Rp
and that (X,Y ) have a joint density ψ on Rp ×R. Show
that

E[Y ∣X ∈ Bh(x0)] =
∫Bh(x0) ∫R yψ(x, y)dydx

∫Bh(x0)
φ(x)dx .

Using Problem 21.46 and assuming continuity as needed,
show that

E[Y ∣X ∈ Bh(x0)]→ E[Y ∣X = x0], as h→ 0,

thus justifying the approximation (21.14).
Problem 21.48. Bound the mean-squared error of the
local average (21.15), adapting the arguments given in

Section 16.10.6. Do the same for the Nadaraya–Watson
method (21.17) if you can. The analysis should provide
some insights on how to choose the bandwidth h (at least
in theory).
Problem 21.49. Adapt the discussion of local methods
for regression under squared error loss (Section 21.2.1) to
the setting where the loss is the absolute loss instead.
Problem 21.50 (Local polynomial regression). In the
context of Section 21.2.1, if we assume that the regression
function is m times differentiable, it becomes reasonable
to locally estimate its Taylor expansion of order m. This
results in the so-called local polynomial regression estima-
tor of order m. Define this estimator in analogy with the
local linear regression estimator.
Problem 21.51. Local polynomial regression of order
m = 0 amounts to fitting a constant locally. Compare that
with kernel regression (with the same kernel function and
the same bandwidth).
Problem 21.52. In parallel to Problem 21.48, provide
an analysis of local polynomial regression of order m
when X is uniform on some interval, say the unit interval,
and the regression function is m + 1 times continuously
differentiable on that interval.
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Problem 21.53 (ERM over Lipschitz classes). Consider
the case where X = [0, 1]p and Y = R. Assume that X has
a continuous distribution. For f ∶ [0,1]p → R, let

∣f ∣∞ ∶= sup
x

∣f(x)∣, L(f) ∶= sup
x≠x′

∣f(x) − f(x′)∣
∥x − x′∥ .

For c0, c1 > 0, define

Fc0,c1 ∶= {f ∶ ∣f ∣∞ ≤ c0, L(f) ≤ c1}. (21.38)

It is known that ERM is consistent for the class Fc1,c2 ,
for any given constants c1, c2.
(i) Show that, unless Y is a deterministic function of X,

this is not the case when c1 is unspecified, meaning
that ERM is inconsistent for the class

Fc0,∗ ∶= {f ∶ ∣f ∣∞ ≤ c0 ∨L(f) <∞}.

(ii) Argue that, even when c0, c1 are given, ERM over the
class Fc1,c2 suffers from the curse of dimensionality.

Problem 21.54. Define a backfitting method based on
kernel regression. Implement that method in R.
Problem 21.55. Define an additive model where each
component is monotonic (i.e., either non-decreasing or
non-increasing). Propose a way to fit such a model, and
implement that method in R.

Problem 21.56 (Kernel classification). Local majority
vote (21.19) is the analog in classification to the local
average (21.15) in regression. Define the analog in clas-
sification to the Nadaraya–Watson estimator (21.17) in
regression.
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Randomization was presented in Chapter 11 as an essen-
tial ingredient in the collection of data, both in survey
sampling and in experimental design. We argue here that
randomization is the essential foundation of statistical
inference: It leads to conditional inference in an almost
canonical way, and allows for causal inference.

22.1 Conditional inference

We already saw in previous chapters a number of situa-
tions where inference is performed conditional on some
statistics. Invariably, these statistics are not informative.
This includes testing for independence as discussed in
Chapter 15 and Chapter 19, as well as all other situations
where permutation tests are applicable.

22.1.1 Re-randomization tests

Consider an experiment that was designed to compare a
number of treatments, and in which randomization (Sec-
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tion 11.2.4) was used to assign treatments to experimental
units (or said differently, to assign units to treatment
groups). The design could be one of the classical designs
presented in Section 11.2.5, or any other design that uti-
lizes randomization. Suppose we are interested in testing
the null hypothesis that the treatments are equally effec-
tive. As we saw in Chapter 17, this can be formalized
as a goodness-of-fit testing problem: the null hypothesis
is that the joint distribution of the response variables
is exchangeable with respect to re-randomization of the
treatment group labels.
More formally, suppose there are g treatments and n

experimental units (i.e., human subjects in clinical trials),
and let Π denote the possible treatment assignments under
the randomization scheme employed in the experiment.
(Note that Π often depends on characteristics of the ex-
perimental units, such as gender or age in clinical trials
involving humans.) Let π0 = (π0

1, . . . , π
0
n) ∈ Π denote the

assignment used in the experiment, where π0
i ∈ {1, . . . , g}

denotes the treatment assigned to unit i ∈ {1, . . . , n}. The
experiment results in response yi for unit i. We know that
we can organize the data as (y1, π

0
1), . . . , (yn, π0

n), written
henceforth as (y,π0) and seen as a two-column array. For
example, in a completely randomized design, Π is the set
of all permutations of {1, . . . , n}. In general, though, Π

can be quite complicated.
Let T be a test statistic, with large values weighing

against the null hypothesis. For example, T could be the
treatment sum-of-squares. In the present context, the
randomization p-value is defined as

#{π ∈ Π ∶ T (y,π) ≥ T (y,π0)}
∣Π∣ . (22.1)

This is an example of conditional inference, where the
conditioning is on the responses.
In most experimental designs, if not all of them, any

π ∈ Π is a permutation of π0. If thus seen as a subset of
permutations Π forms a subgroup, in the sense that it is
stable by composition, the quantity defined in (22.1) is a
valid p-value in the sense of (12.22). This is a consequence
of Proposition 22.3 below.
As usual, this p-value may be difficult to compute ex-

actly as the number of possible treatment assignments
(which varies according to the design) tends to be large.
In such situations, one typically resorts to estimating the
p-value by Monte Carlo simulation. All that is required
is the ability to sample uniformly at random from Π,
which is already required in order to perform the initial
randomization (meaning the generation of π0).
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Problem 22.1. Verify that the re-randomization p-value
corresponds to the permutation p-value in the settings
previously encountered.
Remark 22.2. Re-randomization is quite natural, as the
randomness is present by design and exploiting that ran-
domness is a rather safe approach to inference. This strat-
egy is quite old and already mentioned in the pioneering
works of Ronald Fisher and Edwin Pitman in the 1930’s.
However, at the time the Monte Carlo approach outlined
above was impractical as there were no computers and a
normal approximation was used instead. Over the years,
this normal approximation became canon and is, to this
day, better known than the re-randomization approach.
(This normal approximation is at the foundation of the
Student test, for example.)

22.1.2 Randomization p-value

Consider a general statistical model (Ω,Σ,P), where P =
{Pθ ∶ θ ∈ Θ}. When needed, we will let θ∗ ∈ Θ denote the
true value of the parameter. Our goal is to test a null
hypothesis H0 ∶ θ∗ ∈ Θ0, for some given Θ0 ⊂ Θ.
Let Π denote a finite set of one-to-one 101 transforma-

101 We also require that any π ∈ Π be bi-measurable, meaning that
both π and π−1 are measurable.

tions π ∶ Ω→ Ω such that

Pθ(π−1(A)) = Pθ(A), for all A ∈ Σ, for all θ ∈ Θ.

Crucially, we work under the assumption that Π forms a
group, meaning that id ∈ Π; that if π ∈ Π then also π−1 ∈ Π;
and that if π1, π2 ∈ Π then π1 ○ π2 ∈ Π. (id is the identity
transformation id∶ω ↦ ω.)
Under these circumstances, Π can be used to obtain a

p-value for a given test statistic T . Assuming that large
values of T are evidence against the null, the following is
the randomization p-value for T with respect to the action
of Π:

pv(ω) ∶=
#{π ∈ Π ∶ T (π(ω)) ≥ T (ω)}

∣Π∣ , (22.2)

where ω represents the observed data. This is another
instance of conditional inference where the conditioning is
on {π(ω) ∶ π ∈ Π} (called the orbit of ω under the action
of Π).

Proposition 22.3. In the present context, the quantity
defined in (22.2) is a valid p-value in the sense of (12.22).

This proposition implies that (22.1) is a valid p-value
when Π corresponds to a subgroup of permutations. In
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particular, this applies to the permutation goodness-of-fit
tests, as well as the permutation tests for independence
and the tests for symmetry seen in previous chapters.

In order to prove Proposition 22.3, we use the following
result, which implies that any finite group is isomorphic
to a group of permutations.

Theorem 22.4 (Cayley). Suppose that Π is a finite group
with distinct elements denoted π1, . . . , πl. For each π ∈ Π,
{π1 ○ π, . . . , πl ○ π} is a reordering of {π1, . . . , πl}. Let σπ
denote the corresponding permutation of {1, . . . , l}. Then
SΠ ∶= {σπ ∶ π ∈ Π} is a group of permutations. Moreover,
π ↦ σπ is an isomorphism from Π to SΠ.

Proof of Proposition 22.3. We use the notation of Theo-
rem 22.4. Let S be short for SΠ and, for each j, let σj be
short for σπj .
Assume without loss of generality that π1 = id. Define

Tj = T ○ πj and T = (T1, . . . , Tl). Note that (22.2) can be
written #{j ∶ Tj ≥ T1}/l.

We consider a null distribution, left implicit. For any
j, we have T σj = T ○ πj , which has same distribution as
T , by assumption. Moreover, for any j and k distinct,
let m be such that πm = π−1

j ○ πk. Since πj ○ πm = πk, by
definition of σm in Theorem 22.4, we have σm(j) = k. We
then conclude using Problem 8.64.

Remark 22.5 (Balanced permutations). The group
structure is needed besides being used in the proof above.
To illustrate that, consider the case of two treatments be-
ing compared in a completely randomized design. Assume
the group sizes are the same (which is often desirable).
Suppose we want to calibrate a test statistic by permuta-
tion. Based on power considerations, it is rather tempting
to consider permutations that move half of each group
over to the other group. These are called balanced permu-
tations in [219]. However, one should resist the temptation
because, although power is indeed improved, the level is
not guarantied to be controlled, as shown in [219].
Problem 22.6. Show that the set of balanced permuta-
tions of {1, . . . ,2k} is not a group unless k = 1.

Monte Carlo estimation In many instances, the
randomization p-value (22.2) cannot be computed exactly
because the group of transformations Π is too large. In
that case, one can resort to an estimation by Monte Carlo
simulation, which as usual requires the ability to sample
from the uniform distribution over Π. In detail, in the
same setting as before, we sample π1, . . . , πB iid from the
uniform distribution on Π and return

p̂v(ω) ∶= #{b ∶ T (πb(ω)) ≥ T (ω)} + 1
B + 1

.



22.1. Conditional inference 342

Proposition 22.7. In the context of Proposition 22.3,
this Monte Carlo p-value is a valid p-value in the sense
of (12.22).

Problem 22.8. Prove this proposition by following the
proof of Proposition 22.3.

22.1.3 Goodness-of-fit testing

Besides re-randomization testing, conditional inference
may also be used for goodness-of-fit testing. Suppose
our goal is to test for a null model of distributions. A
general approach consists in conditioning on a statistic
that is sufficient for that model, and then examining the
remaining randomness.
In detail, suppose that we have data ω ∈ Ω and want

to test whether ω was generated from a distribution in
a given family of distribution {Pθ ∶ θ ∈ Θ}. Each Pθ is
a distribution on (Ω,Σ), where Σ is some σ-algebra on
Ω. Based on particular alternatives we have in mind, we
decide to reject for large values of some statistic S. But
how can we obtain a p-value for S?

Suppose that T is sufficient statistic for this family. Let
t = T (ω) denote the observed value of that statistic. If
the null hypothesis is true, meaning if ω was generated
from a distribution in that family, then the conditional

distribution of S given T = t is independent of θ ∈ Θ, and
is therefore known (at least in principle). Letting s = S(ω)
denote the observed value of the test statistic, we may
thus define a conditional p-value for S as follows

pv(s ∣ t) ∶= Pθ0(S ≥ s ∣ T = t),

where θ0 is an arbitrary element of Θ.
For example, a p-value for a test of randomness (Sec-

tion 15.8) is, in the discrete setting, obtained by condi-
tioning on the counts, and the resulting distribution is
simply the permutation distribution.
Problem 22.9. Consider an experiment yielding a sam-
ple of size n, X1, . . . ,Xn. We want to test whether the
sample was generated iid from the uniform distribution
on [0, θ] for some (unknown) θ > 0. We choose to re-
ject for large values of S, the largest spacing defined as
S = maxi(X(i+1)−X(i)), where X(1) ≤ ⋯ ≤X(n) are the or-
der statistics. Describe how you would obtain, via Monte
Carlo simulations, a p-value for that statistic based on
the approach described above. (A more direct approach,
not based on computer simulations, is proposed in [249].)
We provide further examples below. The last three

are quite similar, even though they are motivated by
completely different applications.
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22.1.4 Genetic selection

Consider n individuals taken from a population where a
particular gene is undergoing neutral selection. Let the
number of alleles (variants of that gene) that appear j
times be denoted Mj . Under some simplifying assump-
tions, and assuming a mutation rate θ > 0, Warren Ewens
in [80] derived

Pθ(M1 =m1, . . . ,Mn =mn)

= n!
θ(θ + 1)⋯(θ + n − 1)

n

∏
j=1

θmj

jmjmj !
,

under the constraint that m1, . . . ,mn are non-negative
integers such that ∑nj=1 jmj = n.
Problem 22.10. Show that, when θ = 0, all alleles rep-
resented in the sample are the same with probability one.
Show that, when θ →∞, they are all distinct with proba-
bility tending to 1.
Problem 22.11. Show that the number of distinct alleles
represented in the sample, namely K ∶=M1 +⋯ +Mn, is
sufficient for this model.
Watterson [248] suggests to test for neutral selection

based on

S(m1, . . . ,mn) ∶=m2
1 +⋯ +m2

n.

A test based on S can be one-sided or two-sided.
Problem 22.12. Show that S is maximum when all alle-
les represented in the sample are distinct, and minimum
when they are all the same.

If k denotes the observed number of distinct alleles
in the sample, a p-value is then obtained based on the
distribution of S given K = k.

For more on Ewens’ formula, we refer the reader to [49].

22.1.5 Rasch model

The Rasch model [192] was proposed in the context of
Psychometry. A prototypical situation that arises in ed-
ucational research is that of a exam which consists of
multiple questions, taken by a number of individuals. If
Individual i answers Question j correctly, set xij = 1, oth-
erwise set xij = 0. Assuming there are m individuals and
n questions, the data are organized in the m-by-n data
matrix x ∶= (xij). The Rasch model presumes that, as
random variables (meaning before the test is taken), the
Xij are independent with

P(Xij = 1) = exp(ai − bj)
1 + exp(ai − bj)

, (22.3)
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where ai is the ability of Individual i and bj is the difficulty
of Question j. These are the parameters of the model.
Let X = (Xij) denote the (random) data matrix.
Problem 22.13. Show that this model is not identifi-
able. Then show that fixing the average subject ability
1
m ∑

m
i=1 ai or the average problem difficulty 1

n ∑
n
j=1 bj makes

the model identifiable. (Identifiability is not of concern in
what follows.)

Let Ri = ∑nj=1Xij denote the row sum for Individual i
(which corresponds to the number of questions that indi-
vidual answered correctly) and let Cj = ∑mi=1Xij denote
the column sum for Question j (which corresponds to
the number of individuals that answered that question
correctly). Set R = (R1, . . . ,Rm) and C = (C1, . . . ,Cn).

Proposition 22.14. The row and column sums are
jointly sufficient for the individual ability and question
difficulty parameters and, conditioning on these, the data
matrix is uniformly distributed in the set of binary matri-
ces with these row and column sums.

Problem 22.15. Prove this proposition.
Suppose that we simply want to know whether the data

are compatible with such a model, which we formalize
as testing the null hypothesis that the data matrix was

generated from an (unspecified) Rasch model. Based on
the alternatives we have in mind, we choose to work with
a test statistic, denoted T , whose large values provide
evidence against the null hypothesis. Having observed the
data matrix, x = (xij), we are left with the problem of
obtaining a p-value for T (x).
Inspired by Proposition 22.14, we fix the margins. Let

r = (r1, . . . , rm) and c = (c1, . . . , cn) denote the vectors of
observed row and column sums. If the null hypothesis
is true, then conditional on R = r and C = c, the data
matrix X is uniformly distributed in the set, denoted
X (r,c), of binary matrices with row and column sums
given by r and c. The p-value conditional on the row and
column sums is consequently obtained as follows

pv(x) ∶= #{x′ ∈ X (r,c) ∶ T (x′) ≥ T (x)}
∣X (r,c)∣ . (22.4)

Problem 22.16. Show that (22.4) is a valid p-value in
the sense of (12.22).

The p-value (22.4) is hard to compute in general due to
the fact that the set X (r,c) can be very large and even
difficult to enumerate. In fact, the mere computation of
the cardinality of X (r,c) is challenging [59].
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22.1.6 Species co-occurrence

In Ecology, co-occurrence analysis refers to the study of
how different species populate some geographical sites. 102

Various species (of interest) are observed, or not, in some
geographical sites (of interest). These findings are stored
in a so-called presence-absence matrix where rows repre-
sent species and columns represent sites, and the (i, j)
entry is 1 or 0 according to whether Species i is found in
Site j or not. We adopt the notation of Section 22.1.5.
This time xij = 1 if Species i is present in Site j, and
xij = 0 otherwise, and the row sum ri corresponds to the
total number of sites that Species i inhabits, while the
column sum cj corresponds to the total number of species
that inhabit Site j.
A longstanding controversy and source of conflict in

the Ecology community has surrounded the analysis and
interpretation of such data. In the 1970’s, Diamond [61]
collected presence-absence data for various species of birds
in the Bismarck Archipelago (where each island was con-
sidered a site). Based on these data, he formulated a
number of ‘assembly rules’ having to do with competition
for resources (e.g., food, shelter, breeding grounds, etc)

102 Related concepts of co-occurrence exist in other areas such as
in Linguistics and the analysis of textures in Image Processing.

and implying that some pairs of species would not inhabit
the same site. However, Connor and Simberloff [44] ques-
tioned the basis upon which these rules where formulated.
They claimed that the presence-absence patterns that
Diamond attributed to his assembly rules could in fact
be attributed to ‘chance’. 103 An important part of the
resulting (ongoing?) controversy has to do with how to
interpret ‘chance’, meaning, what probability model to
use for statistical inference.
A simple version of the original null model of Connor

and Simberloff [44] amounts to the uniform distribution
after conditioning on the margins. This is exactly the
model we discussed in Section 22.1.5, and a test statistic
of interest (perhaps chosen to test the validity of some
assembly rule) is calibrated based on this model. Note
that here other null models are possible and, in fact, the
relevance of this model in the present situation is part of
the controversy.

103 Part of their criticism involved questions of how the data were
handled and analyzed. In essence, they claimed that Diamond had
simply selected some pairs of species to support his theory. We will
not elaborate on these rules or the controversy surrounding them as
these are domain specific. We refer the curious reader to [111, Ch 7]
for further details.
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22.1.7 Ising model

Recall the Ising model described in Example 10.21.
Problem 22.17. Show that ξ(X) and ζ(X) are jointly
sufficient and, further, that conditional on ξ(X) = s and
ζ(X) = t, X is uniformly distributed among m-by-n spin
matrices satisfying these constraints.
As before, suppose that we simply want to test the

null hypothesis that the data matrix was generated from
an (unspecified) Ising model, and that we choose a test
statistic T whose large values provide evidence against
this hypothesis.
Problem 22.18. Based on Problem 22.17 and Sec-
tion 22.1.5, propose a way to obtain a p-value for T .
As before, implementing the method will involve serious
computational challenges; specify these challenges.

22.1.8 MCMC p-value

Besag and Clifford [20] propose a Markov chain Monte
Carlo (MCMC) approach to generate samples from the
null distribution in the context of testing for the Rasch
model — which we saw coincides with the null model of
Connor and Simberloff used in the species co-occurrence
problem — and in the context of testing for the Ising

model. They then build on that to propose a way to
obtain a valid p-value for a given test statistic.

Rasch model Recall that we want to sample from the
uniform distribution on the set of binary matrices with
row sums r1, . . . , rm and column sums c1, . . . , cn. This
model was already considered in Section 10.4.1, and we
saw there how to design an Markov chain (on the set of
such matrices) with stationary distribution the uniform
distribution.
Remark 22.19. The Ecology community struggled for
years to design a method for sampling from Connor and
Simberloff’s null model. The original algorithm of Con-
nor and Simberloff [44] was quite ad hoc and inaccurate.
Manly [161] used the work of Besag and Clifford [20] but
mistakenly forced the chain to move at every step (Prob-
lem 10.17), a flaw that was left unnoticed for some years
and upon which others built [110]. The error was appar-
ently only discovered almost ten years later [168]. Some
other efforts to sample from this null model are reviewed
in [258], which goes on to propose a weighted average
approach based on the ergodic theorem (Theorem 10.18).

Ising model Recall that we want to sample from the
uniform distribution on the set of spin matrices with given
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ξ and ζ. For this model, consider the following Markov
chain. Given such a matrix, choose a pair of distinct sites
(i1, j1) and (i2, j2) uniformly at random and switch their
spins if it preserves ζ; otherwise, stay put. (Such a switch
always preserves ξ.)
Problem 22.20. Show that this chain has stationary
distribution the uniform distribution. [See Problem 10.16.]

Obtaining a p-value Suppose the data are denoted
X as above, which under the null hypothesis of interest is
uniformly distributed on a finite set denoted X . Having
observed X = x, the p-value corresponding to a test
statistic T is defined as

pv(x) ∶= #{x′ ∈ X ∶ T (x′) ≥ T (x)}
∣X ∣ . (22.5)

Assume that a Markov chain on X is available with
stationary distribution the uniform distribution. The
ergodic theorem could be invoked to justify running a
chain from any x1 ∈ X , obtaining x2, . . . ,xB, and then
estimating the p-value using

#b ∶ T (xb) ≥ T (x)}
M

. (22.6)

Problem 22.21. Show that this is indeed a consistent
estimator of (22.5) for any choice of x1 ∈ X , where consis-
tency is as B →∞.
Alternatively, we can obtain a valid p-value as follows.

Let K be uniformly distributed in {1, . . . ,B} and indepen-
dent of the data. Assuming K = k, do the following: 104

• if k = 1, let x1 = x and run the chain B − 1 steps
(forward) from x1, obtaining x2, . . . ,xB;

• if k = B, let xB = x and run the chain B − 1 steps
(backward) from xB, obtaining xB−1, . . . ,x1;

• if 1 < k < B, let xk = x, run the chain B − k steps
(forward) from xk, obtaining xk+1, . . . ,xB, and run
the chain k − 1 steps (backward) from xk, obtaining
xk−1, . . . ,x1.

Having done this, estimate the p-value as in (22.6).

Proposition 22.22. The resulting p-value is a valid p-
value in the sense of (12.22).

Problem 22.23. Prove this proposition as follows. Show
that, under the null hypothesis (where X has the uniform

104 We saw how to run a chain backward in Section 9.2.5. Note
that the two chains described in this section are reversible so that
running the chain backward or forward is equivalent.



22.2. Causal inference 348

distribution on X ), and independently of K, the resulting
random variables X1, . . . ,XB are distributed as if the
first state were drawn from the uniform distribution and
the chain were run from there for B − 1 steps.
Problem 22.24. Prove the proposition using the conclu-
sions of Problem 8.64.
Problem 22.25. The method for obtaining a valid p-
value described here is the ‘serial method’ introduced
in [20]. Read enough of this paper to understand the
other method, called the ‘parallel method’, and prove the
analog of Proposition 22.22 for that method.

22.2 Causal inference

I have no wish, nor the skill, to embark upon
philosophical discussion of the meaning of ‘cau-
sation’.

Sir A. Bradford Hill [125]

The concept of causality has been, and continues to be,
a contentious area in Philosophy. Yet, at a very practical
level, establishing cause-and-effect relationships is central
to, and in many cases the ultimate goal of, most sciences.
For example, in the context of Epidemiology, according

to [106], “causal inference is implicitly and sometimes
explicitly embedded in public health practice and policy
formulation”.

22.2.1 Association vs causation

It is widely accepted that properly designed experiments
(that invariably use some form of randomization) can
allow for causal inference. We elaborate on that in Sec-
tion 22.2.2. In contrast, drawing causal inferences from
observational studies is not possible in general, unless one
is able to convincingly argue that there are no unmeasured
confounders. We study this situation in Section 22.2.3,
where we examine how matching attempts to mimic what
randomization does automatically.

In general, though, observational studies can only lead
to inferences about association. Indeed, take Exam-
ple 15.37 on graduate admissions at UC Berkeley in the
1970’s. Surely, there is a clear association between gender
and overall admission rate. (The statistical significance
is overwhelming.) However, inferring causation (gender
bias) would be misleading.
In conclusion, we warn the reader that drawing causal

inferences from observational studies is fraught with pit-
falls and remains controversial [6, 9, 95, 98]. We adopt
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this prudent stance in our discussion of causation, which
can be encapsulated in the following.

Proverb. Association is not causation.

22.2.2 Randomization

It may be said that the simple precaution of ran-
domisation will suffice to guarantee the validity
of the test of significance, by which the result of
the experiment is to be judged.

Ronald A. Fisher [86]

We describe a simple model for causal inference called
the counterfactual model, attributed to Neyman 105 [220]
and Rubin [198]. Within this model, randomization allows
for causal inference.
We describe a simple setting where two treatments

are compared based on n subjects sampled uniformly at
random from a large population. Each subject receives
only one of the treatments. Let Rij denote the response
of Subject i to Treatment j. The sampling justifies our

105 Neyman’s original paper dates back to 1923 and was written
in Polish.

working with the assumption that the Ri1 are iid (with
distribution that of R1) and, similarly, that the Ri2 are
iid (with distribution that of R2). The rub is that the
experiment results in observing a realization of either Ri1
or Ri2, but not both since Subject i receives only one of
the two treatments.

Comparing the means We discuss this model in the
context of comparing the mean response to the two treat-
ments, called the average causal effect and defined as

θ ∶= E[R2] −E[R1].

We interpret θ ≠ 0 as a causal effect: the change in treat-
ment causes a change in average response in the entire
population. Our immediate interest is to learn about θ
from the experiment.

LetXi = j if Subject i receives Treatment j and let Yi de-
note the response observed on Subject i, so that Yi = Rij if
Xi = j. We observe a realization of (X1, Y1), . . . , (Xn, Yn).
The association between treatment and response is defined
as

λ ∶= E[Y ∣X = 2] −E[Y ∣X = 1]. (22.7)
There is a natural estimator for λ, namely the difference

in sample means
D ∶= Ȳ2 − Ȳ1, (22.8)
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where Ȳj is the average of {Yi ∶Xi = j}.
Problem 22.26. Assume that the Xi are iid with distri-
bution X, where P(X = 1) > 0 and P(X = 2) > 0. Show
that D is a consistent estimator for λ in that case.

In causal inference, however, our target is θ and not λ.
But the two coincide when treatment assignment (namely
X) is independent of the response to treatment (namely
R1 and R2). This comes from writing

λ = E[R2 ∣X = 2] −E[R1 ∣X = 1],

and corresponds to an ideal situation where there is no con-
founding between assignment to treatment and response
to treatment.
Problem 22.27. Prove that a completely randomized
block design fulfills this condition and thus allows for
causal inference. In this case, show that D is unbiased for
θ and compute its variance.
Problem 22.28. Show that, in general, one cannot infer
causation from association, by providing an example where
D is bound to be a terrible estimate for θ.

22.2.3 Matching

Continuing with the same notation, assume now that
another variable is available, denoted Z, and may be a
confounder.
Problem 22.29. Argue that randomization allows us
to effectively ignore Z in the sense that what is said in
Section 22.2.2 remains applicable.
Here we want to examine whether we can do away

with randomization, and in particular if matching allows
us to do that. We use matching on Z with the intent of
removing any confounding it might induce. To simplify the
discussion, we interpret matching as simply conditioning
on Z in addition to conditioning on X. (See Remark 22.33
below.)
The punchline is that matching works as intended if

the dependency of Y on (X,Z) is properly modeled and
there are no other (unmeasured) confounding variables
at play. Both conditions are highly nontrivial. To avoid
modeling issues, we assume that Z has a finite support,
denoted Z below.

Our access to Z allows us to consider a refinement of λ
above, namely

λ(z) ∶= E[Y ∣X = 2, Z = z] −E[Y ∣X = 1, Z = z].
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Note that λ in (22.7) is the expectation of λ(Z).
Problem 22.30. Provide a consistent estimator for λ(z)
when the (Xi, Zi) are iid from a distribution where P(X =
j,Z = z) > 0 for any j ∈ {1,2} and any z ∈ Z.
In order to be able to estimate θ, we require that,

conditional on Z, R1 and R2 be independent of X .
Problem 22.31. Under this assumption, show that

θ = ∑
z∈Z

λ(z)P(Z = z).

Problem 22.32. For any z ∈ Z, propose a consistent
estimator for P(Z = z).
Remark 22.33. Estimating λ(z) accurately for each z ∈
Z requires, at the very least, a sample of size proportional
to that of Z. When Z has small cardinality, λ(z) is
estimated based on {(Xi, Zi) ∶ Zi = z}. When Z is large, or
even infinite, this simple approach may not be feasible. In
such situations, one can simply stratify Z, which amounts
to binning the Zi into a few bins, in essence reducing
the situation to the case where Z is of small cardinality.
Another approach consists in modeling Y as a function of
(X,Z). The validity of the causal inference in that case
rests squarely on whether the assumed model is accurate,
which may be hard to verify in practice [96, 150].
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The present chapter presents a collection of more special-
ized topics that offer a wide variety of more sophisticated
examples of statistical inference, beyond the classical set-
tings presented earlier in the book, as well as connections
to related topics (Information Theory and Randomized
Algorithms). The chapter also includes some pitfalls of
scientific publishing, and how the practice of statistics is
shaped in response to them.

23.1 Inference for discrete populations

We saw a number of sampling plans in Section 11.1. The
prototypical situation is that of a large, possibly infinite
(discrete) population where each element is marked. With-
out loss of generality, we index the population by the
positive integers, and let xk denote the mark on the el-
ement k. Here we assume that the mark is a numerical
value, and take as our goal the estimation of the popula-

https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
https://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/series/institute-mathematical-statistics-textbooks
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tion total, which we assume is finite:

λ =
∞

∑
k=1

xk. (23.1)

(If it turns out that the population is finite, say indexed
by {1, . . . ,N}, then we simply set xk = 0 for k > N .)

23.1.1 Sampling with replacement: the
Hansen–Hurwitz estimator

Assume that n elements are sampled with replacement
from the population, with the element k having probability
pk of being selected with each draw. Here p ∶= (pk) is a
probability vector that depends on the sampling plan. We
assume it is known and satisfies pk > 0 for all k.
Problem 23.1. Argue that unless pk > 0 for all k, it is
not possible to estimate λ. The problem is indeed ill-posed
in this case.
If (K1, . . . ,Kn) denotes the resulting sample of ele-

ments, the Ki are iid with distribution p. Note that
(xK1 , . . . , xKn) is the corresponding sample of values.
Problem 23.2. Show that the sample sum, ∑ni=1 xKi , is
not, in general, a ‘suitable’ estimator for λ.

As a (viable) alternative, the Hansen–Hurwitz estimator
for λ is given by

Ln ∶=
1
n

n

∑
i=1

xKi
pKi

.

Problem 23.3. Show that this estimator is unbiased for
λ and that it has variance

Var(Ln) = τ2/n, τ2 ∶=
∞

∑
k=1

pk(
xk
pk

− λ)
2
.

Below we use this estimator to build various confidence
intervals for λ. We follow Section 14.1.3 very closely.
Problem 23.4. Use Chebyshev’s inequality to obtain a
confidence interval for λ. [This requires bounding τ from
above.]

This interval is often deemed too conservative and it is
common (but not necessarily good) practice to rely on a
normal approximation to refine it.
Problem 23.5. Show that

Ln − λ
τ/√n

LÐ→ N (0,1), as n→∞.

This result is not enough, in itself, to yield a confidence
interval, simply because τ is unknown. A reasonable
estimate is the following.
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Problem 23.6. Show that

T 2
n ∶=

1
n − 1

n

∑
i=1

(xKi
pKi

−Ln)
2

is unbiased and consistent for τ2.
Combining the last two results, we obtain the following

approximate (1 − α)-confidence interval

[Ln ± zα/2 Tn/
√
n],

where zα is the standard normal α-quantile. The confi-
dence level is exact in the large-sample limit.

23.1.2 Horvitz–Thompson estimator

Assume now that m elements are sampled without replace-
ment from the population. 106 Let qk denote the probabil-
ity that the element k is in the sample. If (K1, . . . ,Km)
denotes the resulting sample, we assume the Kj are ex-
changeable.
The Horvitz–Thompson estimator for λ is defined as

Lm ∶=
m

∑
i=1

xKi
qKi

.

106 Otherwise, we simply ignore multiplicity.

Problem 23.7. Show that this estimator is unbiased for
λ and that it has variance

Var(Lm) =
∞

∑
k=1

(1 − qk
qk

)x2
k +

∞

∑
k=1
∑
l≠k

(qkl − qkql
qkql

)xkxl,

where qkl is the probability that both k and l are in the
sample.
Problem 23.8. Assuming that qkl > 0 for all k ≠ l, show
that

m

∑
i=1

(1 − qi
qi

)x2
Ki +

m

∑
i=1
∑
j≠i

(qij − qiqj
qiqj

)
xKixKj
qij

is an unbiased estimator for the variance of Lm.
The Horvitz–Thompson estimator is applicable as long

as one is able to compute q ∶= (qk), which may be chal-
lenging for some sampling plans. (The computation of the
qkl are also needed if one is to use the variance estimator
above.)
Problem 23.9. Consider the setting of Section 23.1.1.
Let M denote the number of distinct elements in the
sample. Relate M to the Coupon Collector Problem of
Section 3.8. Then express q as a function of n and p.
Problem 23.10. In the setting of Section 23.1.1, com-
pare the Hansen–Hurwitz estimator and the Horvitz–
Thompson estimator. Do so when the population is finite
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and p is the uniform distribution. [Since these two estima-
tors are both unbiased, the comparison can be in terms
of variance.]

23.1.3 Example: line-intercept sampling

Line-intercept sampling is a sampling method used in spa-
tial settings. Consider a setting where a finite population,
located in a region D ⊂ R2, is to be surveyed. Each speci-
men of the population, say i, occupies a certain amount of
space, say Si ⊂ D. (These may overlap.) Also, a specimen
i comes with a feature of interest or mark, denoted xi.
For example, in Forestry, a population of a certain

species of trees might be of interest. Each tree occupies
a certain amount of space, say, measured in terms of the
projection of its canopy onto the forest floor (as if seen
from an airplane).
A baseline consisting of a line segment is chosen and

a point on the baseline is picked uniformly at random.
The line passing through that point and perpendicular to
the baseline, called transect and denoted L, is followed
through the region D, and each specimen i such that
Si ∩ L ≠ ∅ is included in the sample, which effectively
means that xi is recorded. If xi is numerical as before,
and if qi denotes the probability that the specimen i is

sampled, the Horvitz–Thompson estimate is ∑i∈I xi/qi,
where I indexes the sampled specimens.
Problem 23.11. Let D = [0,1]2 and consider a disc
inside D with radius r and center z. Let the baseline
be a line segment of the form [A,A + h] × {0}, where
h > 0 is fixed and A is uniformly distributed on [0,1 − h].
Compute as a function of (r, z, h) the probability, q, that
the transect line (chosen as explained above) intersects
the disc. Compute q to first order when r/h is small.
Remark 23.12. In a sense, line-intercept sampling is a
form of 2D-from-1D stereology (while the usual setup is
3D-from-2D.)

23.2 Detection problems: the scan
statistic

Detection problems abound, spanning a wide array of ap-
plications ranging from tumor detection from MRI images,
to fire monitoring from satellite images, to disease out-
break detection (aka syndromic surveillance). Within the
field of statistics, detection is a core problem in subfields
such as spatial statistics and environmental statistics. In
engineering, detection problems are particularly abundant
in signal/image/video processing applications. In surveil-
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lance applications, the main goal is often the detection of
anomalies.
When mere detection is the most immediate goal, the

problem is modeled in statistics as a hypothesis testing
problem. After a detection has been made, it is often of
interest to identify/locate the anomaly, and this problem
is in turn modeled as an estimation problem.

In what follows, we focus attention on the detection of
high-concentration regions.

23.2.1 Testing for clustering and the
detection of clusters

Besag and Newell in [21] distinguish between testing for
clustering and the detection of clusters. The difference
between the two is that, in the former setting there is
an apparent cluster whose (statistical) significance needs
to be assessed, while in the latter setting the task is to
discover statistically significant clusters.

Testing for clustering According to [21], the pur-
pose of testing for clustering is to “investigate whether
an observed pattern of cases in one or more geographi-
cal regions could reasonably have arisen by chance alone,
bearing in mind the variation in background population
density”.

The main challenge is how to quantify the amount of
evidence based on what is necessarily a post hoc analysis.
Example 23.13 (Cancer clusters). A large incidence of
childhood cancers in Toms Rivers, New Jersey, lead to a
battle in court against a company operating a chemical
plant in the area [81].

Detection of clusters According to [21], the detec-
tion of clusters consists in “screening a large region for
evidence of individual ‘hot spots’ of disease but without
any preconception about their likely locations”. (In gen-
eral, replace ‘disease’ by ‘anomaly’.) See Figure 23.1 for
an illustration.

We will focus on the detection of clusters problem. We
will distinguish between purely spatial settings as in [145]
and spatiotemporal settings as in [144]. Although time
can sometimes be considered an additional dimension,
most often it plays a special role. So as to keep the expo-
sition simple, we will concern ourselves with the spatial
(aka static) setting.

23.2.2 Detection in point clouds

In this setting, we observe a point cloud, meaning points
in space, and ‘look’ for high-density regions.
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Figure 23.1: Influenza activity estimates reported for
the 14th week of 2018. Data from the Center of Disease
Control (CDC).

Detecting a high-density interval Consider the
emblematic (and also classical [174]) example of detecting
an interval with a high-concentration of points. More
formally, we observe a realization of X1, . . . ,Xn, assumed
to be generated iid from an unknown distribution F on
[0,1], and consider testing

H0 ∶ F is the uniform distribution on [0,1]. (23.2)

(We will assume that F is continuous for concreteness.) In
this generality, we would simply apply one of the goodness-
of-fit tests introduced in Section 16.8.1. However, here
we have in mind alternatives where there is one interval
where the points are more likely to concentrate.

In fact, this is always the case, for if F is not the uniform
distribution on [0,1] then necessarily there is an interval
[a, b] such that F(b)−F(a) > b−a, and if n is large enough,
such an interval will be seen to contain an unusually large
number of points. (‘Usual’ is with respect to the null
model.)
For an interval I, let

N(I) = #{i ∶Xi ∈ I}.

Thus N is the counting process in this situation.
Problem 23.14. Show that, under the null hypothesis,
N(I) ∼ Bin(n, ∣I ∣) for any interval I ⊂ [0,1].

https://www.cdc.gov/flu/weekly/
https://www.cdc.gov/flu/weekly/


23.2. Detection problems: the scan statistic 358

When the length is known Suppose that, when
present, the anomalous interval (the one with higher con-
centration) is of known length δ > 0. In that case, it is
natural to reject for large values of

max
∣I∣=δ

N(I). (23.3)

This is sometimes referred to as the scan statistic. (Here
the scanning is over intervals of length δ.)
Problem 23.15. Compare the test based on (23.3) with
the likelihood ratio test.

The corresponding p-value is obtained by Monte Carlo
simulation, specifically, by repeatedly sampling from the
uniform distribution. (We are in the setting of Sec-
tion 16.8.1 after all.)
Problem 23.16. In R, write an function scan that takes
as input the data points, an interval length, and a number
of Monte Carlo replicates, and returns the scan statistic
(23.3) as well as the corresponding p-value. (Optionally,
have the function return the maximizing interval too,
possibly together with a plot showing the points and the
maximizing interval in some other color.)

When the length is unknown: normalization
When the length is unknown, one cannot simply use the

maximum count over all intervals, maxI N(I), since this
is always equal to n (the total sample size).
One possibility is to use, instead, the maximum stan-

dardized count, where the standardization is there to en-
sure that the counts over intervals of different lengths are
comparable. A natural choice is

max
I

N(I) − ∣I ∣√
∣I ∣(1 − ∣I ∣)

. (23.4)

This particular standardization ensures that each of the
statistics we are maximizing over has zero mean and unit
variance under the null hypothesis.
Problem 23.17. Compare this test with the Anderson–
Darling test.
Problem 23.18. In R, write a function that computes
(23.4), this time maximizing over intervals of length at
least δ and at most 1/2. Follow the template of Prob-
lem 23.16. [Unless δ is quite large and/or the sample size
is quite small, with high probability the maximum will be
achieved by an interval with data points as end points.]

When the length is unknown: multiple testing
Another possibility for dealing with the case where the
anomalous interval, when present, is of unknown length,
is a multiple testing approach.
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Based on the count N(I), we define the p-value associ-
ated with I as

pv(I) ∶= Prob{Bin(n, ∣I ∣) ≥ N(I)}.

Assuming this p-value is computed for each interval, we
are left dealing with a multiple testing problem. Compared
to what we saw in Chapter 20, however, the setting here
is unusual for two reasons: the p-values are potentially
highly dependent on each other and there are infinitely
many intervals to consider.
Problem 23.19. Although computing all these p-values
is obviously impractical, if one is interested in using the
Tippett test statistic (20.5), there are only finitely many
intervals to consider. Indeed, show that the minimum
p-value is attained at an interval with data points as end
points.
This leads to rejecting for small values of

min
I

pv(I) = min
i<j

pv([X(i),X(j)]),

where X(1) ≤ ⋯ ≤X(n) are the ordered statistics.
Problem 23.20. In R, write a function that computes
that statistic and returns the corresponding p-value. Fol-
low the template of Problem 23.16.

Detecting a high-density region Given a compact
domain D ⊂ Rd and a sample of n points in D, consider
testing whether these points were generated iid from the
uniform distribution on D. The alternatives of interest
are again those where there is a subregion with higher
density. This, as before, calls for ‘scanning’ for regions
with an unusually high number of points.
Problem 23.21. Generalize our treatment of the prob-
lem of detecting a high-density interval to the problem of
detecting a high-density rectangle, where now the points
are located in the unit square, meaning D = [0,1]2.

23.2.3 Detection in discrete arrays

Suppose we observe a numerical array. As before, we ‘look’
for high-intensity regions within the array.
Remark 23.22 (From point clouds to arrays). It is not
uncommon in practice to reduce a point cloud to an ar-
ray. This is usually done by binning the points as in the
construction of histograms.

Detecting a high-intensity interval The prototyp-
ical example is that of a 1D array. We take the array to
be {1, . . . , n} seen as a subset of R, and let the intensities
be denoted X1, . . . ,Xn. The ‘business-as-usual’ scenario
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is the following

H0 ∶X1, . . . ,Xn are iid.

We have in mind alternatives where large values are more
likely on an (unknown) interval. This leads to ‘scanning’
for intervals with large average intensity. For an interval
I, which here is of the form I = {a, . . . , b} for some 1 ≤
a ≤ b ≤ n, define

Y [I] =∑
i∈I

Xi.

When the length is known When the length of the
anomalous interval, when present, is known to be k, we
are lead to rejecting for large values of the following scan
statistic

max
∣I∣=k

Y [I], (23.5)

where ∣I ∣ is the cardinality of I and I is constrained to
be an interval. Calibration is most naturally done by
permutation.
Problem 23.23. In R, write an function perm.scan that
takes as input the array, an interval length, and a number
of Monte Carlo replicates, and returns the scan statistic
(23.5) as well as the corresponding permutation p-value
obtained by Monte Carlo. (Optionally, have the function

return the maximizing interval too, possibly together with
a plot of the array and the maximizing interval in some
other color.)

When the length is unknown When the length of
the anomalous interval, when present, is unknown, one
can either take the maximum of the standardized sums,
or take a multiple testing approach.
Problem 23.24. In analogy with Section 23.2.2, propose:
(i) a scan statistic based on standardized sums, and (ii) a
multiple testing approach.

Detecting a high-intensity region Applications
in image processing and video involve (pixel) arrays in
dimension 2 (still images) or 3 (video).
Problem 23.25. Formalize such a setting in analogy with
Section 23.2.2. In particular, focus on the case of a 2D
array, say {1, . . . , n}×{1, . . . , n}, where an anomaly comes
in the form of a rectangle (meaning, a subset of the form
{a1, . . . , b1} × {a2, . . . , b2}) with high average intensity.

23.2.4 Detection in data matrices

By data matrix we specifically mean a 2D array where the
proximity between columns (resp. rows) has no meaning:
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for example, two adjacent columns (resp. rows) are not, a
priori, more or less related than two columns (resp. rows)
that are positioned farther apart. This is in contrast with
2D pixel images, where neighboring pixels tend to be
(highly) related.

An emblematic example of a detection problem in this
setting is that of detecting a submatrix with unusually
high intensity. Let the data matrix be denoted (Xij ∶ i =
1, . . . ,m; j = 1, . . . , n). ‘Business-as-usual’ is modeled as
follows

H0 ∶ the matrix entries are iid.

Here we have in mind alternatives where there is a
submatrix with higher-than-usual intensity. This mo-
tivates ‘scanning’ for such submatrices. For a submatrix
I ×J ⊂ {1, . . . ,m} × {1, . . . , n}, its total intensity is given
by

Y [I,J ] ∶=∑
i∈I

∑
j∈J

Xij .

Formally, the situation parallels that of detecting a
rectangle in a 2D array. In particular, if the size of an
anomalous submatrix is known to be k × l, then we want
to reject for large values of

max
∣I∣=k

max
∣J ∣=l

Y [I,J ]. (23.6)

Calibration is again by permutation. However, here nei-
ther I nor J is constrained to be an interval, and this
makes the computation of (23.6) much harder by compar-
ison.
Problem 23.26. Compute the number of k× l rectangles
in a m × n array. Then compute the number of k × l
submatrices within a m × n matrix.
For a heuristic approach, consider the procedure de-

scribed in Algorithm 7. This is an alternating maximiza-
tion procedure that consists (after some initialization) in
alternating between maximizing over J with I fixed and
maximizing over I with J fixed.

Algorithm 7 Alternating Maximization [207]
Input: data matrix (xij), submatrix size (k, l)
Output: submatrix (I,J )
Initialize: draw I uniformly at random among all the
row subsets of size k
Repeat until convergence:
1: Compute ∑i∈I xij for each j and let J index the l
largest
2: Compute ∑j∈J xij for each i and let I index the k
largest
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Problem 23.27. Show that Algorithm 7 always termi-
nates in a finite number of iterations. (This does not mean
that one should wait until this happens. In principle, a
maximum number of iterations could be specified.)
Problem 23.28. In R, write a function that implements
Algorithm 7.
Remark 23.29. If the goal remains that of testing for
the presence of an anomalous submatrix, or (almost equiv-
alently) that of ascribing a significance to a submatrix,
one needs to calibrate by permutation, which in principle
involves computing the scan statistic (23.6) not once but
B + 1 times, where B is the number of permutations that
are drawn at random.

23.3 Measurement error and
deconvolution

Measurement error models presume the observations are
corrupted. One of the popular models is the additive
measurement error model where one observes Y1, . . . , Yn
and presupposes that

Yi =Xi + εi,
with X1, . . . ,Xn, iid from a density fX , independent of
ε1, . . . , εn, iid from a density fε. The density fX is the

object of interest and in its most ambitious form the
problem is that of estimating it.
If Y = X + ε denotes a generic observation, then from

(6.11) we know it has density fY , given by the convolution
of fX and fε,

fY = fX ∗ fε.
Thus the problem of recovering fX amounts to a decon-
volution problem. In other words, the problem is that
of undoing the convolution with fε. In its main vari-
ant, which is also one of its simplest, the problem setup
includes knowledge of fε.

A popular approach then is via the characteristic func-
tion. Indeed, by the fact that X and ε are independent,
we know from (7.21) that the characteristic function of Y
is the product of the characteristic function of X and the
characteristic function of ε, or in formula

ϕY = ϕX ϕε. (23.7)

Thus ϕX = ϕY /ϕε, and using the inversion formula (7.23),
we get (under some mild conditions)

fX(x) = 1
2π ∫

∞

−∞
exp(−ıtx)ϕY (t)

ϕε(t)
dt.

If fε is known, so is ϕε. A plug-in approach thus consists
in plugging an estimator ϕ̂Y for ϕY in the last display.
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The empirical characteristic function defined in (19.7) is
such an estimator. However, this estimator is typically
not suitable because it performs poorly when ∣t∣ is large.

Another way of obtaining an estimator for ϕY is via an
estimator, f̂Y , for its density fY , which based on (7.24)
would be given by

ϕ̂Y (t) = ∫
∞

−∞
exp(ıty)f̂Y (y)dy.

Problem 23.30. For example, one can use a kernel den-
sity estimator for fY as in (16.33) based on a kernel K.
Derive the resulting estimator for fX . It happens to be a
kernel density estimator. Specify the kernel in terms of
fε and K.

23.4 Wicksell’s corpuscle problem

The field of Stereology is concerned with inferencing prop-
erties of a material or tissue from one or several 2D
slices. 107 Sven Dag Wicksell (1890 - 1939) was a statis-
tician who got interested in Stereology [252] and made
pioneering contributions. He was initially interested in

107 It is related but distinct from Tomography, where the goal is
to reconstruct a 3D object from multiple 1D and/or 2D sections of
the object.

the statistics of corpuscles present in the tissue of various
human organs.

Consider the stylistic setting of a 3D medium in which
a number of balls of varying radii are embedded. From a
(single) 2D slide through the medium it is of interest to
estimate the distribution of the radii of these balls. Note
that any ball that the slice traverses leaves a disc trace
on the slice.
Problem 23.31. Express the disc’s radius as a function
of the ball’s radius and the distance of the ball’s center to
the slicing plane.
More formally, we assume that the ball centers are

generated according to a homogeneous Poisson in R3 and
that the radii are independent of the centers and iid with
density f (and distribution function F) having mean µ.
The slice can be any fixed plane because the homogeneous
Poisson process is invariant with respect to orthogonal
transformations.
Problem 23.32. Prove that the balls that are sliced have
radii with density xf(x)/µ.
Problem 23.33. Prove that, given that a ball of radius
x is sliced, the radius y of the corresponding disc on the
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slice has (conditional) density

g(y ∣x) ∶= y

x
√
x2 − y2

, for 0 < y < x.

Proposition 23.34. The density of the radii of the discs
that appear on the slice is given by

g(y) ∶= y
µ
∫

∞

y

f(x)dx√
x2 − y2

. (23.8)

Problem 23.35. Prove this proposition based on the
previous two problems.
Recall that our target is f (or F) and that we can

measure the disc radii on the slice so that we observe a
sample from g. To see what is possible, suppose we have
an infinite sample from g, so that we know g perfectly.
It happens then that f is uniquely defined: indeed, the
formula in (23.8) is a so-called Abel integral and can be
inverted as follows

f(x) = −2µ
π
q′(x), where q(x) ∶= ∫

∞

x

g(y)dy√
y2 − x2

. (23.9)

(In particular, the model is identifiable.)
Many approaches have been suggested to estimate f

based on a finite sample (of size n) from g, denoted

Y1, . . . , Yn. In particular, there is an MLE for the dis-
tribution function. Arguably, a plug-in approach is more
natural, and this is what we detail next. We follow the
exposition of Groeneboom and Jongbloed in [114].

From (23.9) we obtain the following expression for the
distribution function 108

F(x) = 1 − q(x)
q(0) . (23.10)

Given an estimator q̂ for q, a plug-in approach yields the
following estimate for F:

F̂(x) ∶= 1 − q̂(x)
q̂(0) . (23.11)

Naive plug-in The simplest estimator for q may well
be the following plug-in estimator

q̂naive(x) ∶=
1
n

n

∑
i=1

1√
Y 2
i − x2

{Yi > x},

where we effectively estimated the distribution of Y by
the empirical distribution of Y1, . . . , Yn. The resulting

108 Although we have assumed the existence of a density f , imply-
ing that F is absolutely continuous, this was for expository purposes.
Indeed, one can work with the distribution function directly from
(23.10) without assuming that F has a derivative.
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estimator for the distribution function,

F̂naive(x) ∶= 1 − q̂naive(x)
q̂naive(0)

,

is (pointwise) consistent and achieves the ‘right’ conver-
gence rate, but has unpleasant features.
Problem 23.36. Show that F̂naive is not (at all) a distri-
bution function.

Isotonic plug-in It is possible to build on this naive
estimator to obtain an estimator that is guarantied to
be a bona fide distribution function. The basic idea is
straightforward: Enforce properties that guaranty that
the resulting estimator for F will indeed be a distribution
function (Section 4.4 and Section 4.5).
Problem 23.37. Show that q ∶ R+ → R+ is bounded, non-
increasing with limx→∞ q(x) = 0, and continuous from the
right.
Let Q denote the class of functions satisfying these

properties. The idea then is to find a function in Q that
is ‘close’ to the naive estimator q̂naive. A popular choice
for measuring ‘closeness’ is the L2 metric, which leads to

considering the following optimization problem

minimize ∫
∞

0
(q̃(x) − q̂naive(x))2 dx

over q̃ ∈ Q.

This problem is solved in [114], and if q̂ denotes the solu-
tion (shown to be unique), then the proposed estimator
is given by (23.11) and by construction is a bona fide
distribution function. In addition, its convergence proper-
ties are better than those of the naive estimator F̂naive as
shown in the same paper.

23.5 Number of species and missing mass

The problem of estimating the number of species has a
wide array of applications such as estimating biodiversity
in Biology and Ecology [43], vocabulary size in Linguis-
tics [73], the size of coinage in [78], and more [34].
We briefly discuss a few variants of this problem, in-

cluding the estimation of the total number of species, the
estimation of the number of species to be discovered on
a second expedition, and the estimation of the missing
mass.
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23.5.1 Sampling models

Sampling animal species in the wild can be challenging
and a variety of sampling schemes are in use. We consider
a few simple sampling models where we draw from an urn
in different ways. In Ecology, the draws correspond to
captures or observations, the balls correspond to animals,
and the labels correspond to species, and the way we draw
from the urn is meant to model how animals are captured
or observed.

Multinomial model As in Chapter 15, in this model
we consider an experiment that consists in drawing from
an urn with replacement n times. Each ball has a unique
label, but what distinguishes the present situation from
that of Chapter 15 is that we do not know what the labels
are beforehand. This is the model we will focus on.

Hypergeometric model As in Section 15.9.2, in this
model we consider an experiment that consists in drawing
n balls without replacement from an urn containing balls
with different labels. As before, the set of possible labels
is unknown.

Bernoulli-product model In this model the exper-
iment consists in collecting a sample in r (independent)

batches of unique labels, where each batch contains label
x independently with (unknown) probability πx.
Problem 23.38. In the Bernoulli-product model, the
total sample size is random. Assume that the labels are
in fact positive integers. Derive a sufficient condition on
(π1, π2, . . . ) for the total sample size to be finite with
probability one. [An obvious condition is that πx = 0
except for finitely many x. Find a more general condition.]
Problem 23.39. In the Bernoulli-product model, com-
pute the expected number of labels that are not repre-
sented in the sample as a function of r and (π1, π2, . . . ).

Capture-recapture model In this model, the sam-
pling is in two stages. In Stage 1, we draw from an
urn without replacement a certain number of balls, x1.
After recording their labels, these balls are tagged and
then returned to the urn. In Stage 2, we draw from an
urn without replacement a certain number of balls, x2.
Among them, we find that a certain number, X12, that
were tagged in Stage 1.
Problem 23.40. Derive the maximum likelihood estima-
tor for the total number of balls in the urn. (Note that
x1 and x2 are deterministic.)
Problem 23.41. In R, write a function that takes in
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(x1, x2, x12) and a confidence level, and returns the cor-
responding confidence interval for the total number of
balls in the urn based on inverting the likelihood ratio
test (Section 12.4.9).
Problem 23.42. Consider the Lincoln–Petersen estima-
tor, defined as x1x2/X12. Derive an approximate confi-
dence interval based on a normal approximation for this
statistic in an asymptotic setting where x1 and x2 increase
as the urn size increases.

23.5.2 Reduction by sufficiency and invariance

We consider the multinomial model above 109 The main
difference with situation in Chapter 15 is that here we do
not know what the labels are in advance. Nevertheless,
it is always possible to reduce the situation to where the
labels are the positive integers by, say, numbering the
labels in the order in which they appear in the sample.
For example,

sample C Z C X Q K Q H F H

numbering 1 2 1 3 4 5 4 6 7 6
109 We could as easily consider the roll of a die instead of the

sampling of balls from an urn, where the only relevant distinction is
that the sampling probability is not constrained to be rational.

Although this can be done, the situation is not the same
as the one where we know beforehand that the labels are
in {1,2, . . .}. Indeed, in the present situation it does not
make sense to talk about the probability that of drawing a
ball with a certain label, since we do not know the labels
beforehand.
That point being made, it is natural to model the

situation as follows. We do assume that the labels are in
{1,2, . . .} (so that we know them in advance) but only
allow ourselves to consider features of the urn distribution
that are invariant with respect to a permutation of the
labels. An example of such a feature is the total number
of distinct labels.

In the multinomial model, we thus observe an iid sam-
ple, X1, . . . ,Xn, from an unknown distribution f on the
positive integers, where f(x) is the probability that a
draw from the urn result in a ball labeled x ∈ {1,2, . . .}.
We know that the counts

Yx ∶= #{i ∶Xi = x}

are jointly sufficient. A reduction by sufficiency allows us
to focus on these counts.
Invariance and sufficiency considerations, combined,

lead us to base our inference not on the counts themselves
as we did in Chapter 15, but on the counts of counts [sic],
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defined as
Φy ∶= #{x ∶ Yx = y}.

Indeed, just like knowledge of the Yx is equivalent to
knowledge of the Xi up to permutation (of the i), it is
also the case that knowledge of the Φy is equivalent to
knowledge of the Yx up to permutation (of the x).

23.5.3 Total number of species

Consider estimating the total number of distinct labels,
N , which is also the size of the support of f . This feature
is indeed invariant with respect to a permutation of the
labels, and so fair game in our framework.
Example 23.43 (Shakespeare’s vocabulary). Efron and
Thisted [73] consider estimating the number of (English)
words Shakespeare knew based on the published works
attributed to him.

An obvious lower bound for N is the number of distinct
values in the sample, denoted D. Finding an upper bound
for N is however ill-posed in general. This is because the
number of labels could be very large, with some labels
being necessarily very minimally represented.
Problem 23.44. Fix N ≥ 1, n ≥ 1, and δ ∈ (0,1). Find
f such that f(x) > 0 for all x ∈ {1, . . . ,N} and yet, with

probability at least 1 − δ the only label represented in a
sample of size n is x = 1. [Note that f will depend on
(N,n, δ).] Extend this to the case where N =∞.

To make the problem of providing an upper bound well-
posed, one typically assumes that f(x) ≥ pmin whenever
f(x) > 0, where pmin is known. 110 This immediately
implies the upper bound N ≤ 1/pmin, which combined with
the lower bound above yields the trivial (100%) confidence
interval D ≤ N ≤ 1/pmin. The goal, of course, is to improve
on this, but the formulation of the problem requires some
care as D =Dn converges to N as n increases.
Problem 23.45. Drawing a parallel with the Coupon
Collector Problem, obtain a rate of convergence for D =
Dn. [Reduce to the worst possible case, which is when
f(x) = pmin for all x such that f(x) > 0, and analyze that
case.]

Taking a different route, Etsy in [79] assumes that the
underlying distribution is the uniform distribution on some
(unknown) subset of {1, 2, . . .}. In that case, the problem
is seen to be well-posed without requiring a lower bound
on f over its support set.
Problem 23.46. Show that, in this model, sufficiency

110 If pmin is unknown, the assumption is vacuous.
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and invariance considerations lead one to base the infer-
ence on D. In fact, show that the MLE for N is D.

It is worth comparing with the German Tank Problem
(Problem 12.29). As is the case there, in the light of D
being biased for N , it is tempting to consider a method
of moments estimator. In view of Problem 23.46, such an
estimator should be based on D.
Problem 23.47. Show that EN(D) = N(1− (1− 1/N)n)
and, based on that, suggest a method of moments estima-
tor for N .

23.5.4 Number of species on a second
expedition

Let us start with a classical example that lead to Fisher’s
involvement [87]. We follow the account given in [72, Sec
11.5]. Alexander Steven Corbet, a naturalist from the
British museum, was collecting butterflies in the Malay
Peninsula in the early 1940’s. After two years, and perhaps
considering whether it was worth staying longer, he asked
Fisher how many species he would likely find if he were to
continue his endeavor for an additional year. The counts
of counts [sic] from his two year effort are summarized in
Table 23.1.

We may formalize and generalize this problem as follows.
The formalization is in terms of the number of butterflies
that are captured in two consecutive expeditions instead
of the time spans of these two expeditions. Focusing on
the multinomial model, we assume that we have drawn n
balls from the urn and ask how many new labels we are
likely to draw if we were to draw another m balls from
the same urn. In formula, as before, we let X1, . . . ,Xn

denote the available sample (of size n) and, in addition to
that, we let Xn+1, . . . ,Xn+m denote another independent
sample (of size m). Thus the Xi are iid from an unknown
distribution f on {1, 2, . . .} and the question is about the
expected cardinality of {Xn+1, . . . ,Xn+m} ∖ {X1, . . . ,Xn}.
Note that the answer to this question (after observing

the second sample) does not depend on what the labels
are, that is, it is invariant with respect to a permutation of
the labels, and so is fair game in our framework. We also
note that the underlying feature of interest depends on
the urn distribution as well as on the sample sizes (n,m).
As before, sufficiency and invariance considerations

leads one to focus on the counts of counts.
Problem 23.48. Show that

E(Φy) = (n
y
)∑
x≥1

f(x)y(1 − f(x))n−y.
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Table 23.1: Counts of counts summary of Corbet’s expedition. Reproduced from [87, Tab 2].

y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Φy 118 74 44 24 29 22 20 19 20 15 12 14 6 12 6 9 9 6 10 10 11 5 3 3

Fisher [87] approached the problem from a parametric
perspective. We refer the reader to [72, Sec 11.5] for more
details. The resulting estimate is a linear combination of
the counts of counts, meaning of the form

∑
y≥1

ayΦy.

The coefficients (ay) define the estimate.
Good and Toulmin [108] approached the problem di-

rectly via the method of moments and used a Poisson ap-
proximation to the binomial distribution (Theorem 3.18)
to simplify some calculations. The resulting estimate is

∑
y≥1

(−1)y+1(m/n)yΦy. (23.12)

This estimator is almost unbiased but can have large
variance, particularly when m > n.

23.5.5 Missing mass

In the multinomial model, given a sample of size n, the
missing mass is the probability of observing a new label

when drawing from the urn one more time. In formula,
given the sample X = (X1, . . . ,Xn), the missing mass is
defined as

M0 ∶= ∑
x∉X

f(x) = ∑
x≥1

f(x){Yx = 0}.

The goal is to estimate the expected missing mass, E(M0),
which is a function of the urn distribution as well as the
sample size n.
Example 23.49 (Breaking the Enigma). In World War
II, I.J. Good (1916 - 2009) and Alan Turing (1912 - 1954),
and others at Bletchley Park, were trying to break the
Enigma, a machine used by the Germans to encode mes-
sages. To use an Enigma machine, an operator had to
choose a key in a key book to set up the machine before
sending messages. The team of cryptanalysts at Bletchley
Park wanted to estimate the frequency with which each
key was used. We refer the reader to Good’s own account
in [109] for more details.
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Problem 23.50. Show that

E(M0) = ∑
x≥1

f(x)(1 − f(x))n.

More generally, define the mass of all labels represented y
times in the sample as

My = ∑
x≥1

f(x){Yx = y},

and show that

E(My) = (n
y
)∑
x≥1

f(x)y+1(1 − f(x))n−y.

It so happens that there is no unbiased estimator of
E(M0). However, a method of moments approach can
be based on Φ1, which according to Problem 23.48 has
expectation

E(Φ1) = n∑
x≥1

f(x)(1 − f(x))n−1,

leading to the estimator

M̂0 ∶= Φ1/n.

Problem 23.51. Show that

E(M̂0) −E(M0) =
1
n
E(M1),

and deduce that 0 ≤ E(M̂0 −M0) ≤ 1/n.

Remark 23.52. Note that this estimator is the first term
in the expansion defining the Good-Toulmin estimator
(23.12) (here m = 1). The latter is in fact a refinement of
the former, with smaller bias but possibly larger variance.

23.6 Information Theory

Information Theory is the mathematical science of codes
and communication. It is intimately related to Probability
Theory and Statistics, and we present some basics in this
section. For a comprehensive introduction, we refer the
reader to the classical book by Cover and Thomas [46].
Consider sending a message consisting in a sequence

of symbols taken from a given discrete set over a binary
communication channel. A possible way to do so is to use
a pre-specified codebook where each symbol is coded as a
binary string. For example, suppose we want to send a
message originally written in English. One way to do so
is to code each of the 26 letters of the English alphabet
as a binary string, add one binary string to represent
‘space’ (to separate words), and add a binary string for
each punctuation mark.
Remark 23.53. An elaboration of that is in fact imple-
mented in the American Standard Code for Information
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Interchange (ASCII). The Morse code is structured differ-
ently [46, Example 5.1.3].

Each binary symbol, 0 or 1, counts as one bit. The cost
of sending one bit depends on the channel. With n bits
one can create a codebook of size 2n made of all possible
binary sequences of length n.

Let us formalize the concept of code. A (binary) code for
a random variable X with values in X (assumed discrete)
is a function κ ∶ X → ⋃n≥1{0,1}n. We will refer to κ(x)
as the codeword associated with x ∈ X and the collection
of all codewords is often called a codebook.
If f denotes the probability mass function of X then

the expected length of a codeword based on the code κ is

E(∣κ(X)∣) = ∑
x∈X

∣κ(x)∣ f(x).

Desiderata. Given a random variable X, we consider
the goal of designing a ‘good’ code, meaning a code with
low expected length.
Remark 23.54. Noise and corruption complicates mat-
ters. We work with clean channels so as to keep things
simple.

23.6.1 Entropy

Continuing with the same notation, the entropy of X is
defined as

H[X] ∶= − ∑
x∈X

f(x) log2 f(x),

where log2 denotes the logarithm in base 2. Note that
H[X] ≥ 0.
Problem 23.55. Compute the entropy of the Bernoulli
distribution with parameter θ.

Proposition 23.56. For any random variable X with
finite support X ,

H[X] ≤ log2(∣X ∣),

with equality if and only if X is uniformly distributed on
X .

Problem 23.57. Show that if X1, . . . ,Xn are indepen-
dent discrete random variables and X = (X1, . . . ,Xn)
then

H[X] =H[X1] +⋯ +H[Xn].

[Use a recursion on n. Note that X is here simply viewed
as a discrete random variable.]
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In fact, the following stronger result holds.

Proposition 23.58. If X1, . . . ,Xn are discrete random
variables and X = (X1, . . . ,Xn), then

H[X] ≤
n

∑
i=1
H[Xi],

with equality if and only if X1, . . . ,Xn are independent.

23.6.2 Optimal codes

A code is said to be instantaneous if no codeword is the
prefix of another codeword. Such a code as the practical
feature of being decodable sequentially, in the sense that
a message made of a sequence of (code)words can be
decoded as one reads the message. This is made possible
by the fact that the end of a codeword is immediately
recognizable without looking at the entire message.

Theorem 23.59. The expected length of any instanta-
neous binary code κ for a random variable X is no less
than its entropy, meaning

E[∣κ(X)∣] ≥H[X].

The lower bound can be attained if and only if X has a
mass function that only takes dyadic values.

A Shannon code 111 is a code κ satisfying

∣κ(x)∣ = ⌈log2(1/f(x))⌉.

The existence of a such a code relies on Kraft’s inequal-
ity [46, Thm 5.2.2].
Problem 23.60. Show that a Shannon code is subopti-
mal by at most one bit per symbol, meaning that for any
such code κ,

E[∣κ(X)∣] <H[X] + 1.

Thus the entropy is intimately related to the expected
length of an optimal code. In view of Proposition 23.56,
the uniform distribution is the hardest distribution to
code (which makes intuitive sense).
Problem 23.61. Choose a long text written in English
with words numbering in the thousands (at least). The
following operations should be done in R.
(i) Ignoring punctuation, case, hyphenation, etc, com-

pute the distribution of the letters and the space
symbol, and derive the entropy of that distribution.
This gives (within one bit) the expected length of
an optimal code based on coding the letters and the
space symbol.

111 Named after Claude Shannon (1916 - 2001).
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(ii) Similarly, compute the distribution of the words and
derive the entropy of that distribution. This gives
(within one bit) the expected length of an optimal
code based on coding the words. (Note that this code
has a much larger codebook.)

(For more on the entropy of the English language, see [46,
Sec 6.4].)

23.6.3 Quantization

Consider the problem of sending information over a dis-
crete channel. More precisely, suppose we need to send
real numbers and each number needs to be encoded with
n bits. The process of reducing a number to a limited
number of bits is called quantization.

Such a communication system is composed of two parts:
• The encoder takes a real number x ∈ R and returns a

codeword of n bits, κ∶x↦ w, where w ∈ {0,1}n.
• The decoder takes the codeword w and returns a

number, ζ ∶w ↦ y, where y ∈ R.
We define the distortion at x ∈ R as

(x − ζ ○ κ(x))2.

Although the situation arises more generally, suppose
that we want to optimize the system to send numbers that

are generated iid from a distribution on the real line. Let
X denote a random variable with that distribution. We
then consider designing a system that has low expected
distortion with respect to that distribution, meaning low

E [(X − ζ ○ κ(X))2].

With m = 2n, the problem is that of choosing code
points c1, . . . , cm ∈ R that minimize

E [min
j

(X − cj)2].

Indeed, let w1, . . . ,wm be codewords representing the code
points c1, . . . , cm. Then the encoding stage consists in
assigning x to the codeword wj if cj is closest to x, and
the decoding stage consists in returning the code point cj
associated with wj .

In general, this optimization problem (over m variables)
can be complicated. We present a simple heuristic method,
Lloyd’s algorithm, described in Algorithm 8.
R corner. Lloy’s algorithm is implemented in the func-
tion kmeans with the option algorithm = 'Lloyd'. The
function applies to a sample and the initialization consists
in choosing m data points uniformly at random without
replacement.
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Algorithm 8 Lloyd’s algorithm [152]
Input: distribution X, number of code points m
Output: code points c1, . . . , cm

Initialize: set cj at the ( j
m+1)-quantile of X; set a0 =

−∞ and am =∞
Repeat:
(i) aj ← (cj + cj+1)/2 for j = 1, . . . ,m − 1
(ii) cj ← E(X ∣X ∈ (aj−1, aj]) for j = 1, . . . ,m
Until convergence
Return the last c1, . . . , cm

Problem 23.62. The episode On Average from the pod-
cast 99% Invisible tells the story of how the US military
designed equipment for the ‘average’ soldier when in fact
very few soldiers are average. If you were to design mili-
tary pants (say) and could do so in five waist sizes, which
waist sizes would you choose? Assume you have access to
the waist sizes of all soldiers.

23.7 Randomized algorithms

Randomized algorithms use (exogenous) randomness. One
of the reasons for doing so is that, in some situations, it
is possible to improve on what deterministic (i.e., non-

randomized) algorithms can achieve, although only on
average or with high probability.

23.7.1 Verifying matrix multiplication

Consider a situation where we are given three n-by-n ma-
trices, A,B,C, and the goal is to verify whether AB = C.
The obvious approach — computing AB and compar-
ing it with C — requires on the order of O(nω) basic
operations, where 2 ≤ ω < 2.373 is the (still unknown)
matrix-multiplication exponent. This method is obviously
exact (up to machine precision). However, if one is willing
to tolerate the possibility of making a mistake with some
(small) probability, then it is possible to improve on this
running time.

The basic idea is to choose a set of vectors, u1, . . . ,uk,
and simply check that ABuj = Cuj for each j. For
a given set of k vectors, this can be done in O(kn2)
basic operations, using the fact that ABu =A(Bu). In
principle, one would want to choose k = n and u1, . . . ,uk
linearly independent. This would yield an exact method,
but it would require O(n3) basic operations. The key idea
is to choose u1, . . . ,uk at random. One way to do so is to
sample these vectors independently and uniformly from
the set of binary vectors of length n. It turns out that
generating such vectors is not too costly, and that the

https://www.99percentinvisible.org/episode/on-average/
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resulting procedure, Freivalds’ algorithm, only requires
O(kn2) basic operations.

Proposition 23.63. The algorithm is always correct
when AB = C, and when this is not the case, the proba-
bility that it makes a mistake is at most 1/2k.

Problem 23.64. Let D be an n-by-n matrix, different
from the zero matrix, and let u be sampled uniformly
at random from the set of binary vectors of length n.
Show that Prob(Du = 0) ≤ 1/2. Using this, prove the
proposition.

23.7.2 Randomized numerical linear algebra

There is now a substantial literature on randomized algo-
rithms for (numerical) linear algebra [66]. This is in large
part due to the fact that matrices that arise in practice
are very large, and the usual ways of manipulating them
do not scale too well.

One of the most important primitives is matrix multipli-
cation. Suppose we are given an m-by-n matrix A and an
n-by-p matrix B, and the goal is to compute C ∶=AB. In
principle, doing this takes on the order of O(mnp) basic
operations. However, this running time can be substan-
tially improved if one is willing to tolerate some random

error.
The key idea is to see C =AB as an average. Indeed,

if a∗k denotes the kth column of A and b⊺k∗ denotes the
kth row of B, then

1
n
C = 1

n

n

∑
k=1
a∗kb

⊺
k∗.

From the perspective of Section 7.10.2, this is the aver-
age of the population {a∗kb⊺k∗ ∶ k = 1, . . . , n}. It is then
tempting to sample from this population and estimate
this population average with the resulting sample average.
One way to do so is to sample k1, . . . , kr independently
and uniformly from {1, . . . , n}, and compute

Ĉ ∶= n
r

r

∑
s=1
a∗ksb

⊺
ks∗

.

Computing Ĉ can be done with O(mrp) basic operations.
Problem 23.65. Show that Ĉ is unbiased for C.
Problem 23.66. For a matrix M = (mij), we let ∥M∥
denote its Frobenius norm, defined by ∥M∥2 = ∑i,jm2

ij .
Show that

E (∥C − Ĉ∥2) ≤ n
r

n

∑
k=1

∥a∗k∥2∥bk∗∥2.
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Remark 23.67. It turns out that one can do better than
sampling uniformly at random from {1, . . . , n}, in that
there are other distributions that yield a better bound on
the expected Frobenius norm above [66, Thm 22].

23.7.3 Comparing two vectors

Suppose that two binary strings x,y ∈ {0,1}d, held in
memory in two distinct servers, need to be compared by a
processing center while limiting the amount of information
being exchanged. The straightforward method requires
each server to transmit its string to the center, and this
requires on the order of d bits. However, if we are willing
to tolerate some probability that the strings are declared
to match when in fact then do not, say ε > 0, then the
following randomized algorithm is useful.

First, the center chooses a prime number, p, uniformly
random among those not exceeding m ∶= 2(d/ε) log(d/ε),
where c is a constant to be defined below, and sends that to
the servers. This requires sending O(logm) bits, because
of the following variant of the Prime Number Theorem.

Lemma 23.68. For m large enough, there are between
m/ logm and 2m/ logm prime numbers bounded by m.

Each server computes the integer whose binary expan-

sion corresponds to its string, computes the remainder
modulo p, and sends that to the center: if x = (x1, . . . , xd),
then this is the binary expansion of x̆ ∶= x1 + 2x2 + 4x3 +
⋯ + 2d−1xd, and the corresponding server sends x̆ mod p.
Similarly, the other server sends y̆ mod p. This requires
sending O(log p) bits. The center then compares these
two numbers. So the entire protocol requires the exchange
of O(logm) bits. Note that logm = O(log d) if ε > 0 is
taken to be fixed. Below we assume thatm is large enough
that Lemma 23.68 applies.

Proposition 23.69. When x = y, the algorithm is always
correct, while when x ≠ y, the algorithm is correct with
probability at least 1 − ε.

Problem 23.70. Prove this proposition. [There is a short
and simple proof via Lemma 23.68.]

23.7.4 Nearest neighbor search

The search for points in a database that are ‘close’ to a
query point is a fundamental primitive in the manipulation
of databases. It is also a necessary step in local methods
for regression (Section 21.2).
There is an entire mathematically sophisticated liter-

ature on the topic. For a brief introduction, we focus
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on a simple instance of this problem. Define the d-
dimensional Hamming space as the space of binary strings
of length d, that is {0,1}d, equipped with the `1 met-
ric, i.e., δ(x,y) ∶= ∑dj=1 {xj ≠ yj}, for x = (x1, . . . , xd) and
y = (y1, . . . , yd). Our goal is the following: given data
points y1, . . . ,yn, and a query point x, find (if it exists) i
such that

δ(x,yi) ≤ r, (23.13)

where r > 0 is also given.
It turns out that solving this problem exactly requires

either an amount of computation that is linear in d and
n, specifically, on the order of O(dn) basic operations, or
an amount of memory storage that is exponential in d.
Problem 23.71. Propose a simple approach with O(dn)
query time and O(dn) storage, and then another simple
approach with O(d) query time and O(2d) storage. Note
that the pre-processing time for the 2nd approach will
also be quite large.
That said, if one is willing to tolerate some degree of

approximation, and also some chance that the algorithm
will not succeed, then the following simple randomized
algorithm can be useful.
The idea is to subsample the coordinates and select

the data points that agree with the query point on these

coordinates, and then repeat this routine a number of
times to achieve the desired probability of success. In
detail, suppose we are willing to accept a data point yi
such that

δ(x,yi) < cr (23.14)

while tolerating a probability of failure of ε or smaller, for
some c > 1 and ε > 0.
Here is a simple randomized algorithm for this task.

Draw J1, . . . ,Jm uniformly at random and without re-
placement from the class of subsets of {1, . . . , d} of size
k. For each s ∈ {1, . . . ,m}, identify the data points that
agree with the query point on the coordinates indexed by
Js, and among these points search for one that is within
distance cr of the query point. Stop the moment one such
data point is found. If no such data point is found, return
a symbol indicating that.

Proposition 23.72. Suppose (logn)2 ≤ r ≤ d/ logn. By
choosing k = ⌈(d/cr) logn⌉ and m ≥ log(1/ε)n1/c, when n
is large enough, with probability at least 1−ε the algorithm
succeeds in finding a data point satisfying (23.14) when
there is a data point satisfying (23.13).

Proof. Assume for convenience that cr is an integer. Let
J denote one of the random subsets of k coordinates.
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First, let y be one of the data points. If δ(x,y) ≥ cr,
meaning that y fails to satisfy (23.14), then

P(xj = yj ,∀j ∈ J ) = P(J ⊂ {j ∶ xj = yj})

≤
(d−cr

k
)

(d
k
)

≤ (1 − cr
d
)
k
.

The first inequality comes from the fact that {j ∶ xj = yj}
is of size at most d − cr. With k as defined, the expected
number of such inadequate data points is at most 1.
Next, let y∗ be a data point satisfying (23.13). Then

the probability that it agrees with the query point on J
is given by

P(xj = y∗j ,∀j ∈ J ) = P(J ⊂ {j ∶ xj = y∗j })

≥
(d−r
k
)

(d
k
)

≥ (1 − r

d − k + 1
)
k
.

By plugging in the expression for k, and some easy calcu-
lations, we find that the last expression is lower bounded
by n−1/c.
All this is for a single subset. For m subsets, we find

that the expected number of inadequate points is bounded
by m, and the probability of success (when possible) is
not worse than if the subsets were chosen independently

of each other, and for that case we find that the union
bound gives a probability of success bounded from below
by 1−(1−n−1/c)m, which is at least 1−ε when m is chosen
as prescribed.

Remark 23.73. With a use of a hash table, this approach
can be implemented with a O(dm) expected query time
and O(dn +mn) storage space.

23.7.5 Compressed sensing

Consider a setting where the state of a system is repre-
sented by a vector and our goal is to ‘learn’ this vector
based on relatively few linear measurements. More for-
mally, the vector x∗ ∈ Rd is the object of interest, and
although it is not directly available, we have at our dis-
posal m linear measurements, that is a⊺i x∗, i ∈ {1, . . . ,m}.
The task consists in recovering x∗ based on these inner
products, ideally with m substantially smaller than n. Let
A denote the matrix with row vectors a⊺1 , . . . ,a

⊺
m. We are

provided with y ∶=Ax∗ and our goal is to recover x∗.
We consider the situation where the measurement vec-

tors, a1, . . . ,am ∈ Rd, need to be chosen beforehand. In
that case, the situation is hopeless without additional
structure. It turns out that assuming that x∗ is a sparse
vector, meaning a vector with few relatively large coordi-
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nates, leads to a fruitful theory, and is also motivated by
a number of applications. It so happens that a random
design (where the choice of measurements vectors is ran-
dom) is very effective. We will not elaborate on why this
is so here, but rather refer the reader to [36, 233], as well
as to [157] for applications to magnetic resonance imaging
(MRI) and to [68] for the design of a single-pixel camera
based on these principles. There is also an entire book on
the topic [89].
In its simplest form, the assumption of sparsity takes

the form of a vector x∗ with only s non-zero coordinates.
In that case, it is tempting to try to recover x∗ by solving
the following optimization problem:

minimize ∥x∥0

subject to Ax = y,
(23.15)

where ∥x∥0 is the number of coordinates of x that are
nonzero.
Problem 23.74. Prove that x∗ is the unique solution to
(23.15) if and only if m > s.

This is very good (s + 1 such measurements suffice!),
except that solving the problem (23.15) is computationally
very difficult because of the discrete and unstable nature
of ∥ ⋅ ∥0. One way around this is a convex relaxation,

which consists in replacing the ∥ ⋅ ∥0 with ∥ ⋅ ∥1, where
∥x∥1 ∶= ∑dj=1 ∣xj ∣, which is a true norm and is therefore
convex:

minimize ∥x∥1

subject to Ax = y.
(23.16)

This can be cast as linear program and is therefore more
amenable to computation.
A central tenet of this theory is that, under some con-

ditions on the design, the solution to the easier problem,
(23.16), coincides with that of the harder problem, (23.15).
We consider the random design where the measurement
vectors are independent standard normal (in dimension d).
This is equivalent to A having its entries drawn indepen-
dently from the standard normal distribution.

Theorem 23.75. Under the present conditions, assume
that m > 2s(1 + log(d/s)). Then with probability tending
to 1 as m→∞, x∗ is the unique solution to (23.16).

Note that the theorem includes settings where s →
∞ or d → ∞. (The result is taken from [233], which
references [63], among other works.)
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23.8 Statistical malpractice

In the late 1990’s and early 2000’s, there was an increasing
concern with the fact that important findings reported in
the scientific literature could not be replicated in subse-
quent studies. To quote Wacholder et al [241]:

The high chance that an initial ‘statistically sig-
nificant’ finding will turn out to be a false-positive
finding, even for large, well-designed, and well-
conducted studies, is one symptom of the problem
we face.

This was later echoed by Ioannidis in [131], who then
went on, with his colleagues, to identify similar issues
in other scientific areas. This lack of replicability is now
understood to affect many, if not all, sciences. In Oncology,
researchers at a large biotech company (Amgen) were only
able to replicate 6 out of 53 landmark cancer studies [11];
see also [187]. In Psychology, a group of 270 researchers
joined forces to replicate 100 experiments reported in three
high-ranking journals in the year 2008, and were only able
to replicate less than half of them [1].

This issue has received a substantial amount of attention
in the last ten years. A good overall discussion appears
in [194]. In this section, we draw attention to a number

of aspects of this multi-faceted issue, in particular the
fact that editorial and funding policies drive researchers
to ignore serious issues of multiple testing [82].

23.8.1 An examination of the Base Rate
Fallacy

Both Wacholder et al [241] and Ioannidis [131], and oth-
ers before [33, 218], base their discussion on a idealized
situation where, in the course of research, a number of
tests are performed, each having size α and power 1 − β
for what they are testing. Letting π denote the proportion
of false null hypotheses, and applying the Bayes formula,
gives (1.26) as the probability that a test chosen among
these uniformly at random rejects correctly, or equiva-
lently, gives the probability that a randomly chosen test
rejects incorrectly as

B ∶= α(1 − π)
(1 − β)π + α(1 − π) . (23.17)

In particular, this is not necessarily bounded by α. (Be-
lieving so is an example of the Base Rate Fallacy.) The
quantity in (23.17) is referred to as the false positive report
probability in [241], and to the positive predictive value
in [131].
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Remark 23.76. Although simplistic, the calculations
generalize to a somewhat more realistic setting as seen in
Problem 1.52.
We see in (23.17) that this base rate is increasing in

the level, decreasing in the power, and decreasing in the
proportion of false null hypotheses. Although most re-
searchers understand that the smaller the level the stronger
the protection against false discoveries, the impact of the
power and that of the proportion of false null hypotheses
is not as well appreciated. Following [131], we encapsulate
these impacts in the following maxims.

Proverb. The higher the number of underpowered studies,
the larger the proportion of false discoveries.

Lack of power often comes from a sample that is too
small for the sought-after effect size. (This is why power
calculations, as presented in Section 11.2.3, are important,
and often required when applying for research funding.)

Proverb. The higher the number of hypotheses that are
tested, the larger the proportion of false discoveries.

This is particularly relevant in gene association studies
and also in the neurosciences, where a single study can
generate tens or even hundreds of thousands of null hy-

potheses, and it is generally accepted that among these
only a tiny fraction are false.

23.8.2 Publication bias

Dickersin and Min [62] define publication bias as follows

Publication bias is any tendency on the parts of
investigators or editors to fail to publish study
results on the basis of the direction or strength
of the study findings.

In that paper they provide strong evidence that publica-
tion bias is pervasive in psychological and medical research
over several decades, but this is true in all the sciences.
Indeed, the vast majority of research articles report posi-
tive findings. This stems from a strong preference from
journal editors (and the scientific community at large, as
well as funding agencies and other sponsors) for publish-
ing novel findings. This in turn has lead researchers to
practice selective reporting, meaning, to mostly submit
experiments resulting in significance. 112

Publication bias can, and does, have important (neg-
ative) consequences, for example, it can over-inflate the

112 For a satirical cartoon illustration, see xkcd.com/882

xkcd.com/882


23.8. Statistical malpractice 383

efficacy of certain drugs or procedures for a given ailment.
To quote [234]:

Evidence-based medicine is valuable to the extent
that the evidence base is complete and unbiased.
Selective publication of clinical trials — and the
outcomes within those trials — can lead to unre-
alistic estimates of drug effectiveness and alter
the apparent risk-benefit ratio.

Example 23.77 (FDA-registered anti-depressant stud-
ies). The authors in [234] obtained “reviews from the US
Food and Drug Administration (FDA) for studies of 12
antidepressant agents involving 12564 patients.” There
were 74 FDA-registered studies in total. Among the 38
studies viewed by the FDA as having positive results, all
but one were published. Among the 36 studies viewed by
the FDA as having negative or questionable results, 22
were not published and 11 were published, but presented
in a in a way that conveyed a positive outcome.

Over-inflation of effects In a different paper, Ioan-
nidis [132] reports on findings in the biomedical literature
of over-inflated effects. This is in part due to the fact that
there is a significance threshold to achieve for publication,
which then triggers a winner’s curse phenomenon.

Problem 23.78. As an illustration, consider a crossover
experiment comparing some drug to a placebo. In the
analysis, this comparison is done by testing µ ≤ 0, where µ
is the median of the difference (treatment minus placebo),
using the sign test (Section 16.3.3). Assume the exper-
iment involves n subjects. The experiment is repeated
until rejecting µ ≤ 0 at the 5% level. Based solely on the
last experiment (the first one achieving significance), a
one-sided 95% confidence interval for µ is produced. This
interval tends to be biased upward and in particular does
not have the right confidence level. In R, perform some
simulations to verify this assertion.
Problem 23.79. Suppose you receive a promotional
email from a investment manager offering his predictions
on a particular stock, specifically whether the price of the
stock will increase or decrease by the end of the week. For
ten weeks straight, his predictions are correct. If this were
a scam, explain how it would work. (Adapted from [119].)

Importance of negative findings A first step to-
wards solving the issue of publication bias is to recognize
that negative results are an important part of the scien-
tific discovery process. To quote [163] (which provides
a wealth of interesting, if not shocking examples of bias
towards positive results):
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Negative findings are fundamental to science:
they encourage good scientific practice, teach us
to critically analyze our pre-existing thoughts and
direct new avenues of research.

Some journals have been created for the sole purpose
of publishing negative findings. 113

Example 23.80 (Psychics). In [190], Randi recounts his
observation of a ‘psychic’ supposedly ‘reading’ members
of an audience. We are told that the audience was left
quite impressed with the performance. Randi tells us
that “A few days later, I invited two of these persons
[from the audience] to my home to put on tape their
accounts of his performance. I then played for them the
tape recording of the broadcast that I had made, and
we discovered by actual count that this so-called psychic
had, on the average, been correct in one out of fourteen
of his statements! [...] To the dismay of my visitors, their
accounts had been far from accurate. Selective thinking
had led them to dismiss all the apparent misses and the
obviously wrong guesses and remember only the ‘hits’.”

Preregistration Another step being taken, or at least
seriously considered and discussed, to mitigate publica-

113 For example, the Journal of Negative Results in BioMedicine.

tion bias is that of requiring that experiments be pre-
registered [16]. This has already been implemented in
the context of clinical trials [53, 204]. The US National
Institutes of Health (NIH) provide a website for register-
ing trials (ClinicalTrials.gov), which also accepts the
registration of observational studies [253]. For an example
of a preregistered trial, see [128]. A promising two-step
submission process is described in [216].

23.8.3 Pre-selection bias

Pre-selection bias occurs when a hypothesis to be tested
(or confidence interval to be built), or the method of
analysis, is selected based on the data. When this is not
taken into account, it can lead to severe bias [206].
Taking a peak at the data in that way is sometimes

called data snooping. The process of looking for a hypoth-
esis and/or a methodology that yields sufficient statistical
significance is known as significance chasing or p-hacking
or data-dredging. Such practices may stem from a lack
of understanding of multiple testing, or may be a result
of the systemic pressure of achieving a certain level of
statistical significance as discussed above.

An analysis performed after looking at the data is some-
times called a post hoc analysis.

ClinicalTrials.gov
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Multiple end points In clinical trials in particular,
the term end point is used to denote an outcome (e.g.,
death, death from a particular disease, the contracting of a
particular disease, presence of particular symptoms, blood
pressure, cholesterol level, level of anxiety, etc). There is a
multiple end points problem when the outcome(s) of inter-
est was(were) not clearly specified before the start of the
clinical trial. In well conducted clinical trials, a primary
and possibly several secondary outcomes are specified in
the planning phase. Changing the primary outcome mid-
way (or at the end) is only done under dire circumstances.
Of course, this is an issue in all experiments, clinical and
other. For example, it is a recognized issue in ESP re-
search [58]. (The problem of stopping a trial early is a
variant of the problem of multiple end points.)
Example 23.81 (Chocolate helps weight loss - really?).
In a study [26] on the effects of dark chocolate, subjects
were randomized to three group. The first group was put
on a low-carb diet with a daily serving of 42 grams of dark
chocolate. The second group was put on the same low-
carb diet but without the daily serving of dark chocolate.
And the third group was told to continue to eat their
regular diet. Among other ‘benefits’, the chocolate group
experienced the most weight loss. This may be surprising.
It turns out the study was a hoax! John Bohannon, a

science journalist, was the instigator. He wanted to show
how easy it was to publish grossly flawed diet research.
Of his own account [25]:

The study was 100 percent authentic. My col-
leagues and I recruited actual human subjects
in Germany. We ran an actual clinical trial,
with subjects randomly assigned to different diet
regimes. And the statistically significant benefits
of chocolate that we reported are based on the
actual data.

So is the result of the study simply due to chance varia-
tion? Yes, but the authors could not afford to repeat the
experiment many times to obtain significance. Instead,
they allowed themselves to choose the end points after
seeing the data. As Bohannon explains:

Here’s a dirty little science secret: If you measure
a large number of things about a small number
of people, you are almost guaranteed to get a
‘statistically significant’ result.

It is particularly revealing that, except for issues of multi-
ple end points and small sample size, there were no other
obvious flaws in the design or execution of the study. The
authors sent the paper to multiple ‘fake’ journals and was
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accepted overnight by several journals 114, and the press
picked up the story from there.

Flexibility in data analysis Not only do we need to
specify, before the experiment begins, which outcomes are
of interest and what we want to test about them, but the
same is true of the method of analysis. The researcher
degrees of freedom [212] refers to the fact that a researcher
can choose the method of analysis based on the data
(although he/she should not). Others speak of a garden
of forking paths [102]. It is a pervasive issue. For example,
a meta-analysis of fMRI studies reported [38]:

Across 241 studies, 223 unique combinations
of analytic techniques were observed. In other
words, there were nearly as many unique analysis
pipelines as studies in the sample.

Confidence interval for selected parameters In
Section 23.8.1 the discussion focused on tests of signif-
icance. We found that, although we may be testing at
the α level, the (expected) proportion of incorrectly re-
jected hypotheses can be much higher than α. A similar
phenomenon arises in the context of confidence intervals.

114 Bohannon has written about this issue [24].

Problem 23.82. Suppose that a number of (1 − α)-
confidence intervals are computed, each for a different
target parameter. Prove that the expected proportion of
these intervals that contain their target parameter is 1−α.
It is not uncommon, however, to first perform a test

to determine whether a parameter is of interest. This
selection phase is then followed by producing a (1 − α)-
confidence interval for each selected parameter. Sorić
in [218] argues that the expected proportion of these
intervals that do not contain their target parameter may
be much larger than α.
Problem 23.83. Argue that this is indeed the case by
following the arguments of Section 23.8.1.
Benjamini and Yekutieli in [13] propose a method for

controlling what they call the false coverage rate, defined
as the expected proportion of confidence intervals for
selected parameters that miss their target. (In their work,
the selection method is general.)

Post selection inference Regression analyses
(which most of the time amount to fitting a parametric
model to data) are routinely performed based on multiple
looks at the data. In particular, if the predictor variable is
one-dimensional, it is hard not to look at a scatterplot be-

https://express.co.uk/life-style/health/567211/Chocolate-weight-loss-lowers-blood-cholesterol-aids-better-sleep
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fore choosing a model. In fact, doing this is recommended
in a number of textbooks.
It is also quite standard to perform model selection

(using, e.g., cross-validation) to arrive at the final model.
Then inference is performed about the final model. (For
example, if it is a linear model, then confidence intervals
may be produced for several of the coefficients.) The
whole process that leads to the final model is rarely taken
into account in the inference, and this makes the inference
potentially very biased. (For more details, see [14].)

23.8.4 Replicability and reproducibility

Experimental results are deemed replicable when subse-
quent experiments carried out under the same conditions
replicate the result, meaning that they yield congruent
results. Replicability is the golden standard by which em-
pirical research findings are engraved as ‘real phenomena’
or ‘laws of nature’.
Utts in [235] argues, in the context of replicability in

parapsychology research, that judging how well some ex-
perimental results replicate is not intuitive at first.
Problem 23.84. Consider a binomial experiment based
on k tossed of a θ-coin. Suppose the hypothesis that
θ ≤ 1/2 is rejected at the 0.05 level. (The most powerful

test for that purpose is used throughout.)
(i) Argue in words (with no mathematical formula) that

the probability that an identical experiment also re-
jects this hypothesis at the 0.05 level can be as low
as 0.05.

(ii) Compute this probability as a function of θ and k.
There are many possible reasons an experimental result

may fail to replicate. A survey [10] of more than 1500
scientists from various fields asked about the main causes
for this. Their answers can be organized as follows:

• Cultural or systemic: selective reporting; pressure
to publish; not replicated enough in the original lab;
insufficient oversight/mentoring; fraud; insufficient
peer review.

• Flawed methodology: low statistical power or poor
analysis; poor experimental design.

• Missing details or data: methods or code unavailable;
raw data not available.

This is echoed in [224] with concrete examples.
The first set of issues has to do with various pressures

on researchers. The second set has to do with an incorrect
use of statistics and other methods for data analysis. The
third set of issues falls under the umbrella of computational
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reproducibility [64, 182] and has to do with being able to
reproduce an analysis carried out in a scientific article.
Example 23.85 (Mendel’s experiments). Mendel’s ex-
periments on plant hybridization [166] and his theory of
inheritance are important achievements in Genetics. Al-
though this has been widely recognized for quite some
time, there has been a longstanding controversy surround-
ing the data published in Mendel’s original paper, at least
since Fisher raised concerns that the data appeared too
good to be true [85]. There is an entire book on the
topic [91]. One of the main points of contention is how
the experiments were actually performed. (Fisher based
his calculations on some assumptions that have been con-
tested since then [118].)

Open Science Some initiatives aimed at promoting a
more open culture of scientific research are getting some
traction. 115 Also, some recommendations have been made
for the reporting of studies, particularly in the medical
research literature. 116 Some general recommendations are

115 Examples include the Open Science Framework (osf.io), the
Open Scholarship Initiative (osinitiative.org), the Peer Review-
ers’ Openness Initiative (opennessinitiative.org).

116 These include clinical trials (consort-statement.org), ob-
servational studies (strobe-statement.org), and meta-analyses

given in [177].

(prisma-statement.org). These and others are listed by the Equa-
tor Network (equator-network.org).

osf.io
osinitiative.org
opennessinitiative.org
consort-statement.org
strobe-statement.org
prisma-statement.org
equator-network.org
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A/B testing, 145, see sequential design
additive models, 333
admissibility, 181
σ-algebra, 7

Borel, 43
alternative

hypothesis, 165
set, 165

Anderson–Darling tests, 245
antitonic regression, see isotonic regres-

sion
association

affine, 290
in causal inference, 349
in observational studies, 211
monotonic, 291

average causal effect, 349
average power, 181
average risk, 178

backfitting algorithm, 333
balanced design, 145

balanced incomplete block design, 146
bandwidth, 254, 321, 322

choice, 255, 256, 329
bar chart, 199

segmented, 200
base rate, 14
Base Rate Fallacy, 14, 381, see also base

rate
Bayes classifier, 320
Bayes estimator, 178
Bayes formula, 13
Bayes risk, see average risk
Bernoulli distribution, 32, see also bino-

mial distribution
Bernoulli trials, 19, 96, 159, 192, 218,

see also Bernoulli distribution
beta distribution, 58
bias-variance decomposition, 255
biased sampling, 136
binning, 228
binomial coefficient, 21
binomial distribution, 22, 32, 33

experiment, 159, 186
normal approximation, 50
Poisson approximation, 37

Bonferroni’s inequalities, 9
Boole’s inequality, 9
bootstrap, 205

empirical, 235, 250
parametric, 250
smooth, 250

bootstrap confidence interval, 239, 265
Studentized, 240, 263

bootstrap distribution, 235
bootstrap estimate

bias, 236
variance, 236

bootstrap p-value, 205, 214, 253, 272,
276, 290

bootstrap world, 234
Borel–Cantelli lemmas, 91
boxplot, 47
branching process, 115
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case-control study, 152
Catalan numbers, 27
categorical variable, 62
Cauchy distribution, 58
causal inference, 348

natural experiment, 154
randomization, 143

Central Limit Theorem, 95
Lindeberg, 97
Lyapunov, 97

Chain Rule, 13
characteristic function, 77, 96

deconvolution, 362
goodness-of-fit tests, 260, 278, 295

Chebyshev’s inequality, 78
confidence interval, 163, 187

Chernoff’s inequality, 79
chi-squared distribution, 58
classification, 317, 318

additive, 333
linear, 328
local, 323

classification boundary, 334
clinical trial, 141
cluster sampling, 139
Cochran–Mantel–Haenszel test, 310
cohort study, 151, 309
combination tests, 301

Combinatorics, 18
completely randomized design, 144
compound Poisson distribution, 81
compound sum, 81
concentration inequalities, 78

Chebyshev, 78
Chernoff, 79
Markov, 78

conditional
distribution, 64
expectation, 75
probability, 10
variance, 76

confidence band, 245
confidence interval, 163
conformal prediction, 253
confounding, 142
consistency, 176

estimator, 177
test, 177

contingency table, 206, 213, 311
continuous distribution, 51, 63

absolutely, 53, 63
random variable, 54
random vector, 63

Continuous Mapping Theorem, 99
convenience sampling, 137
convergence

distribution, 93
probability, 92

convolution, 66, 362
correlation, 75

Kendall, 293
Pearson, 290
Spearman, 292

correlation analysis, 288
counterfactual model, 349
counting measure, 104
counting process, 104, 357
counts, 37, 201, 204, 228, 367, see also

contingency table
estimated expected, 205
expected, 202
observed, 202

counts of counts, 367
covariance, 74
Cramér–von Mises test, 244
critical value, 169
cross-sectional study, 153
cross-validation (CV), 256, 330, 331
crossover design, 148
cumulative distribution function, see

distribution function
curse of dimensionality, 325

data splitting, 330
de Finetti’s theorem, 100
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de Moivre–Laplace Theorem, 50, see
also Central Limit Theorem

deconvolution, see also measurement er-
ror

Defendant’s Fallacy, 15
density function, 53, 63

conditional, 65
convolution, 66, 362
estimation, 254, 257, 323, 334
goodness-of-fit tests, 246
independence testing, 295
likelihood, 173

detection of clusters, 356
discovery, see rejection
discrete distribution, 32, 61

random variable, 32
discriminant analysis, 334

linear (LDA), 334
disjunct design, 147
distance covariance, 296, 297, see also

energy statistics
distribution function, 44, 61
double-blind experiment, 143
Dvoretzky–Kiefer–Wolfowitz Theorem,

226

empirical bootstrap, 250
empirical distribution, 225, see also

Glivenko–Cantelli Theorem,

Dvoretzky–Kiefer–Wolfowitz
Theorem, empirical bootstrap

distribution function, 225, 243, 245,
266, 294

quantile function, 227, see also or-
der statistics

Empirical Process Theory, 249
empirical risk, 326

minimization (ERM), 326
end point, 385
energy statistics, 278
estimate, 160, see also estimator
estimation, 82
estimator, 160
events, 6
exchangeability, 100, 217
expectation

continuous, 68
discrete, 68

expected counts
estimated, 214

expected loss, see risk
expected risk, 319
experiment, 5
experimental design, elements of, 140
experimental design, examples of, 144
exponential distribution, 51, 56

F-distribution, see Fisher distribution

F-test, 272, 277
factor, see categorical variable
factorial, 21

falling, 21
factorization criterion, 176
fail-safe number, 312
false discovery rate (FDR), 304

marginal (mFDR), 315
false negative, see Type II error
false non-discovery rate (FNR), 305
false positive, see Type I error
family-wise error rate (FWER), 304
Fisher distribution, 58
Fisher’s exact test, 210, 211
fitting, 319
Fourier transform, 78
Fréchet distribution, 98
Freivalds’ algorithm, 376
frequencies, see binning, counts
Friedman test, 286
funnel plot, 310

Galton–Watson process, 113
Gambler’s Fallacy, 11, 20
Gambler’s Ruin, 111, see also random

walk
gamma distribution, 57
Gaussian distribution, see normal dis-

tribution
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general exponential family, 184
General Law of Multiplication, 13
generalization error, see expected risk
geometric distribution, 34

experiment, 192
Glivenko–Cantelli Theorem, 226
global null hypothesis, 301
global testing, 271, see also global null

hypothesis
goodness-of-fit, testing for, 202, 203,

242, 266, 297, 342
graph, 109, 115
Grenander estimator, 257
group testing, 146
Gumbel distribution, 98

Hamming space, 378
Hansen–Hurwitz estimator, 353
higher criticism, 302, see also Anderson–

Darling tests
histogram, 228, see also kernel density

estimation
homogeneity, testing for, 203
Horvitz–Thompson estimator, 354
hypergeometric distribution, 34

experiment, 190
hypothesis testing, 164, see also test

identifiability, 159, see also factorization
criterion

inclusion-exclusion formula, 10
independence, 11

events, 11
mutual, 12
pairwise, 12
random variables, 32, 63
testing for, 211, 289

independent and identically distributed
(iid), 94

Information Theory, 371
inter-arrival times, 105
interpolation, 327
Ising model, 131, 346
isotonic regression, 335

joint distribution, 61
joint independence, see mutual indepen-

dence

Kaplan-Meier estimator, 248
Kendall correlation, 293
Kendall’s τ , see Kendall correlation
kernel density estimation, 254
kernel function, 254
kernel regression, 321
Kolmogorov distribution, 244
Kolmogorov’s extension theorem, 88

Kolmogorov–Smirnov test, 243
Kruskal–Wallis test, 273
Kullback–Leibler divergence, 246

Laplace transform, 76
Law of Addition, 8
Law of Large Numbers, 94
Law of Multiplication, 12
Law of Small Numbers, 37
Law of Total Probability, 8
leave-k-out cross-validation, 331
leave-one-out cross-validation, 256, 331
Lebesgue integral, 53
level of a test, see significance level
likelihood function, 162, 173
likelihood ratio (LR), 166
Lincoln–Petersen estimator, 367
line-intercept sampling, 355
linear classification, 328
linear models, 327, see also linear re-

gression
linear regression, 327

least squares, 328
polynomial regression, 328

Literary Digest Poll, 138
local average, 321, see also kernel re-

gression
local linear regression, 322
local methods for regression, 321
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location family of distributions, 55
location-scale family of distributions, 55
LOESS, see local linear regression
log-concave density, 259
logarithmic distribution, 81
logistic regression, 329
longest run test, 218
loss, 161, 318

0-1, 318
absolute, 161, 318
exponential, 329
hinge, 329
logistic, 329
squared error, 161, 318

many-to-one comparison, 271
marginal distribution, 61
Markov chain, 106

ergodic theorem, 130
irreducible, 108
positive recurrent, 108
reversible, 109
stationary distribution, 108
transition matrix, 107

Markov chain Monte Carlo (MCMC),
128

Markov’s inequality, 78
mass function, 17, 61, see also density

function

matched-pairs design, 149, 208
matching, 153
maximum likelihood estimator (MLE),

162
maximum risk, 178
mean, 68, see also expectation
mean absolute error (MAE), 161, see

also risk
mean squared error (MSE), 161, see also

risk
measurable function, 44
measurable space, 7
measurement error, 362
median, 47, see also quartile, quantile

inference, 229
median test, 274, see also sign test
Meta-analysis, 309
method of least squares, 328
method of moments, 250
Metropolis–Hastings algorithm, 131
minimax estimator, 178
minimax risk, 178, see also maximum

risk
minimum power, 181
missing mass, 365
moment, 71

central, 73
moment generating function, 76

monotone likelihood ratio (MLR), 183
Monte Carlo integration, 125
Monte Carlo simulation, 123, 124
Monty Hall Problem, 11
multinomial distribution, 201
multiple test, 303

Benjamini–Hochberg, 307
Bonferroni, 306
Hochberg, 307
Holm, 306
Hommel, 307
Šidák, 306
Tippett, 305

multiple testing, 300
multivariate hypergeometric distribu-

tion, 220
mutual independence, 12, see also inde-

pendence
events, 12
random variables, 64

Nadaraya–Watson estimator, see kernel
regression

naive Bayes, 334
natural experiment, 154
nearest neighbor classifier, 324
negative binomial distribution, 35

experiment, 192
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negative hypergeometric distribution,
36

experiment, 192
neighborhood

ball neighbors, 320
nearest neighbors, 320

network sampling, 139
Neyman–Pearson Lemma, 182
non-response bias, 136
normal approximation to the binomial

distribution, see de Moivre–
Laplace Theorem

normal distribution, 55
standard, 51, 56
testing for, 253

normal sequence model, 300
null distribution, 242
null hypoothesis, 164
null set, 164
number of runs test, 218
number of species, 365

observational study, 149
optional stopping, 194
order statistics, 225
outcomes, 5
overfitting, 327

p-value, 167

adjusted, 314
permutation, 207, 210

Monte Carlo, 207
randomization, 339, 340

pairwise independence, 12
parameter space, 159
parametric bootstrap, 250
pattern, 270

rank, 292
sign, 284

Pearson correlation, 290
permutation distribution, 267

rank tests, 286
pie chart, 199
pivot, 239
placebo, 143
point cloud, 356
Poisson approximation to the binomial,

see Law of Small Numbers
Poisson distribution, 36
Poisson process, 103
pooled adjacent violators algorithm

(PAVA), 335
post hoc analysis, 384
post selection inference, 386
power calculations, 142
power of a test, 171, see also Type II

error

power set, 7
prediction, 318
prediction error, see risk
prediction interval, 251
prediction residual error sum-of-squares

(PRESS), 331, see also leave-
one-out cross-validation

predictor variable, 317
prior, 178
probabilistic modeling, 158
probability axioms, 7
probability distribution, 7
probability generating function, 77
probability space, 8
product distribution, 89
proportion test

one-sample, 197
two-sample, 223

proposal distribution, 127
Prosecutor’s Fallacy, 15
pseudorandom number generator, 132
publication bias, 310, 382

quantile, 47
function, 46

quantization, 374
quartile, see also quantile

Rademacher distribution, 284
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random graph, 115
Erdős-Rényi/Gilbert, 116
geometric, 119
percolation, 118
preferential attachment, 117

random matrix, 66
random variable, 31, 42
random vector, 60
random walk, 120

simple, 111
randomization, 142

p-value, 340
randomized complete block design, 145
randomness, testing for, 216
range, 44
rank, 268

pattern, 292
Rasch model, 343
ratio of uniforms, 128
re-randomization, 338

p-value, 339
test, 338

regression analysis, 316
regression discontinuity design, 155
regression estimator, 319
regression function, 319
rejection, 165

region, 169

rejection sampling, 126
repeated measures design, 148
replicability, 387
reproducibility, 388
response bias, 136
response variable, 317
Riemann integral, 53
risk, 161, 256, 318
risk unbiased estimator, 180

mean unbiased, 180
median unbiased, 180

run, 217

Saint Petersburg Paradox, 82
sample mean, 237
sample median, 230
sample space, 5
sample variance, 238
sampling

cluster, 139
line-intercept, 355
network, 139
stratified, 139
systematic, 139
with replacement, 23
without replacement, 23

scale family of distributions, 55
scan statistic, 358
self-selection bias, 136

sensitivity, 14, see also Type I error
sequential design, 145
sequential probability ratio test (SPRT),

193
Set Theory, 3
shape constraint, 257, 335
sign test, 232
significance level, 169, see also Type II

error
simple random sampling, 136
Simpson’s paradox, 215
Simpson’s reversal, 30
size of a test, 169, see also significance

level, see also level
Slutky’s theorem, 99
small study effect, 310
Smirnov test for symmetry, 287
smooth bootstrap, 250
sparse vector, 379
Spearman correlation, 292
Spearman’s ρ, see Spearman correlation
species co-occurrence, 345
specificity, 14, see also Type II error
split plot design, 146
standard deviation, 73
statistic, 160, see also estimator, test
statistical inference, 158
statistical model, 159
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statistical procedure, 176
stereology, 355
Stirling’s formula, 27
stochastic dominance, 275
stratification, 139
stratified sampling, 139
Student distribution, 58
Student test, 259, 277
sufficiency, 175, 176
support, 32, 44, 61
support vector machines, 329
surrogate loss, 328
Survey Sampling, 135
Survival Analysis, 247
survival function, 45, see also distribu-

tion function
symmetric distribution, 281
syndromic surveillance, 299
systematic sampling, 139

t-distribution, see Student distribution
t-test, 259
test, 168
test set, 330
testing for clustering, 356
total variation distance, 246
Tracy–Widom distribution, 102
training, see fitting
Two Envelopes Problem, 28

Type I error, 169
Type II error, 169

unbiased
estimator, 163, see also risk unbi-

ased estimator
test, 183

unbiased estimator, see risk unbiased
estimator

uniform distribution, 50, 55
discrete, 9, 18, 35
testing for, 243

uniformly most powerful (UMP), 182
unbiased (UMPU), 184

union bound, see Boole’s inequality
urn model, 5, 22

Moran, 26
Pólya, 25
Wright–Fisher, 26

variance, 73
Venn diagram, 3

weak convergence, see convergence in
distribution

Weibull distribution, 98
Wilcoxon rank-sum test, 269
Wilcoxon signed-rank test, 283

zero-one law, 91

Borel–Cantelli, 91, see also Borel–
Cantelli lemmas

Kolmogorov, 91


	Contents
	Preface
	Acknowledgements
	About the author

	Elements of Probability Theory
	Axioms of Probability Theory
	Elements of set theory
	Outcomes and events
	Probability axioms
	Inclusion-exclusion formula
	Conditional probability and independence
	Additional problems

	Discrete Probability Spaces
	Probability mass functions
	Uniform distributions
	Bernoulli trials
	Urn models
	Further topics
	Additional problems

	Discrete Distributions
	Random variables
	Discrete distributions
	Binomial distributions
	Hypergeometric distributions
	Geometric distributions
	Other discrete distributions
	Law of Small Numbers
	Coupon Collector Problem
	Additional problems

	Distributions on the Real Line
	Random variables
	Borel -algebra
	Distributions on the real line
	Distribution function
	Survival function
	Quantile function
	Additional problems

	Continuous Distributions
	From the discrete to the continuous
	Continuous distributions
	Absolutely continuous distributions
	Continuous random variables
	Location/scale families of distributions
	Uniform distributions
	Normal distributions
	Exponential distributions
	Other continuous distributions
	Additional problems

	Multivariate Distributions
	Random vectors
	Independence
	Conditional distribution
	Additional problems

	Expectation and Concentration
	Expectation
	Moments
	Variance and standard deviation
	Covariance and correlation
	Conditional expectation
	Moment generating function
	Probability generating function
	Characteristic function
	Concentration inequalities
	Further topics
	Additional problems

	Convergence of Random Variables
	Product spaces
	Sequences of random variables
	Zero-one laws
	Convergence of random variables
	Law of Large Numbers
	Central Limit Theorem
	Extreme value theory
	Further topics
	Additional problems

	Stochastic Processes
	Poisson processes
	Markov chains
	Simple random walk
	Galton–Watson processes
	Random graph models
	Additional problems


	Practical Considerations
	Sampling and Simulation
	Monte Carlo simulation
	Monte Carlo integration
	Rejection sampling
	Markov chain Monte Carlo (MCMC)
	Metropolis–Hastings algorithm
	Pseudo-random numbers

	Data Collection
	Survey sampling
	Experimental design
	Observational studies


	Elements of Statistical Inference
	Models, Estimators, and Tests
	Statistical models
	Statistics and estimators
	Confidence intervals
	Testing statistical hypotheses
	Further topics
	Additional problems

	Properties of Estimators and Tests
	Sufficiency
	Consistency
	Notions of optimality for estimators
	Notions of optimality for tests
	Additional problems

	One Proportion
	Binomial experiments
	Hypergeometric experiments
	Negative binomial and negative hypergeometric experiments
	Sequential experiments
	Additional problems

	Multiple Proportions
	Multinomial distributions
	One-sample goodness-of-fit testing
	Multi-sample goodness-of-fit testing
	Completely randomized experiments
	Matched-pairs experiments
	Fisher's exact test
	Association in observational studies
	Tests of randomness
	Further topics
	Additional problems

	One Numerical Sample
	Order statistics
	Empirical distribution
	Inference about the median
	Possible difficulties
	Bootstrap
	Inference about the mean
	Inference about the variance and beyond
	Goodness-of-fit testing and confidence bands
	Censored observations
	Further topics
	Additional problems

	Multiple Numerical Samples
	Inference about the difference in means
	Inference about a parameter
	Goodness-of-fit testing
	Multiple samples
	Further topics
	Additional problems

	Multiple Paired Numerical Samples
	Two paired variables
	Multiple paired variables
	Additional problems

	Correlation Analysis
	Testing for independence
	Affine association
	Monotonic association
	Universal tests for independence
	Further topics

	Multiple Testing
	Setting
	Global null hypothesis
	Multiple tests
	Methods for FWER control
	Methods for FDR control
	Meta-analysis
	Further topics
	Additional problems

	Regression Analysis
	Prediction
	Local methods
	Empirical risk minimization
	Selection
	Further topics
	Additional problems

	Foundational Issues
	Conditional inference
	Causal inference

	Specialized Topics
	Inference for discrete populations
	Detection problems: the scan statistic
	Measurement error and deconvolution
	Wicksell's corpuscle problem
	Number of species and missing mass
	Information Theory
	Randomized algorithms
	Statistical malpractice

	Bibliography
	Index


