
1. Review

1.1. The Geometry of Curves. A parametric curve in R3 is a map

↵ ∶ R �→ R3

t �→ ↵(t) ∶= (x(t), y(t), z(t)).
We say that ↵ is di↵erentiable if x, y, z are di↵erentiable. We say that it is C1 if, in addition, the

derivatives are continuous. We say ↵ is Cn if the first n derivatives exist and are continuous. We

say that ↵ is C∞ or smooth if derivatives to any order exist.

The length of a parametric curve from t
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is the integral
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)2 is the length of the velocity vector ↵′(t) ∶= (x′(t), y′(t), z′(t)).
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Also,

v ⋅w = �v� �w� cos(✓)
where ✓ is the angle between v and w. The above leads to the Schwarz inequality:

�v ⋅w� ≤ �v� �w�.
Theorem 1.1. A line is the shortest curve between two points.

1.2. Arclength parametrization. We say that a curve is parametrized by arclength s if the

parameter s is the length of the curve from a certain point. Let s(t) ∶= ∫ t

a

�↵′(t)�dt be the length of

the curve from the point t = a.
A reparametrization of the curve is a composition �(t) = ↵(u(t)) where u is a function of a real

variable. We say a curve is regular if ↵′(t) is never 0.
To reparametrize a curve by arclength, we must have

s(t) = t = � t

a

��′(t)�dt.
Taking derivatives of both sides, we obtain ��′(t)� = 1 by the fundamental theorem of Calculus.

Conversely, if ��′(t)� = 1, then s(t) = t and the curve is parametrized by arclength.



So to parametrize a curve by arclength means finding a parametrization such that the velocity

vector always has length 1. We have

Theorem 1.2. Every regular curve can be reparametrized by arclength.

1.3. Frenet frames. A Frenet frame can be thought of as the path along which you would want

three fingers to grab a curve so that it has no way of escaping! It is a coordinate system that moves

on the curve. The first vector is the unit tangent vector. So it is most convenient to assume that

the curve is parametrized by arclength so that the velocity vector automatically has length 1. The

other two vectors should be perpendicular to the tangent vector but how should we choose them?

They should be determined by the curve. One important property of the curve is how it turns. So

the second vector will be a unit vector that tells us how the tangent vector changes. We define

N(t) ∶= T ′(t)�T ′(t)� ,
Assuming that the curvature

(s) ∶= �T ′(s)�
is not zero. The curvature tells us how fast the tangent vector turns. Note that by the product

formula, because the length of T is constant, N is normal to T everywhere.

Definition 1.3. The osculating plane at the point of parameter s is the plane spanned by the vectors

T (s) and N(s).
The third vector is the unique vector that completes the system T,N into a coordinate system.

This vector is

B ∶= T ×N
the cross-product of T and N . Recall that the cross-product of two vectors v = (a
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) and
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, c
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) can be defined as the “determinant”
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where i, j, k are the unit vectors (1,0,0), (0,1,0), (0,0,1) respectively. The length of the cross-

product is �T � �N � sin(✓). So B has length 1. The cross-product is bilinear, non associative:

A × (B ×C) = (A ⋅C)B − (A ⋅B)C ≠ (A ×B) ×C,



anti-commutative. If both v and w have length 1, their cross-product is the unit vector perpendicular

to both of them, oriented with the thumb-screw rule.

The set (T,N,B) is the Frenet frame along �. We say that (T,N,B) is an orthonormal basis of

R3. The variation of T,N and B will tell us how � twists and turns through space. Their variations

are determined by their derivatives T ′,N ′ and B′.
We already know T ′ = N by the definition of N . The torsion of the curve is:

⌧ ∶= N ′ ⋅B = −B′ ⋅N.

We have the Frenet relations for a curve of unit speed:

T ′ = N

N ′ = −T +⌧B
B′ = −⌧N

So the torsion is the component of the derivative of the normal vector N on the vector B. It tells

us how the curve twists out of its osculating plane or how twisted the curve is! Torsion is the noun

associated to the French verb “tordre” which means to twist.

Recall that  = �T ′� is always ≥ 0. The curvature of a circle is the inverse of its radius.

Theorem 1.4. Let � be a unit speed curve. Then

(1)  = 0 if and only if � is a line.

(2) for  > 0, ⌧ = 0 if and only if � is a plane curve.

Theorem 1.5. A curve � is part of a circle if and only if it is a plane curve (⌧ = 0) and  > 0 is

constant.

Definition 1.6. For a general plane curve, the curve defined by

�(s) = �(s) + 1

(s)N(s)
is the evolute of �: the locus of centers of its osculating circles.

1.4. Non unit speed curves. As we saw, it is not always easy to reparametrize a curve by

arclength so we need to modify our Frenet formulas so that we can also compute with arbitrary

parametrizations.

For this we have to recall

�(s) = ↵(t).



The Frenet frame is defined in terms of a unit speed parametrization. So we theoretically switch to

unit speed and then use the Chain rule to compute with an arbitrary parametrization. T (s) = T (t)
is always the unit tangent vector. So

T (t) = ↵′(t)�↵′(t)� = �′(s).
Recall that the curvature is

(s) ∶= �dT
ds
� .

If we don’t have an explicit arclength parametrization, we can take derivatives with respect to t.

Recall the formulas
dT

ds

= N

dN

ds

= −T +⌧B
dB

ds

= −⌧N.

Using the chain rule, we obtain

dT

dt

= dT

ds

ds

dt

= ds

dt
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dt

= dN
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ds

dt

= −ds

dt

T +⌧ ds

dt

B

dB

dt

= dB

ds

ds

dt

= −⌧ ds

dt

N.

First note that

 = �dT
ds
� = 1

⌫(t) �dTdt � .
Computing ↵′(t),↵′′(t) and ↵′′(t) we obtain:

 = �↵′ × ↵′′�
⌫3

, B = ↵′ × ↵′′�↵′ × ↵′′�
and we also obtain N as

N = B × T
and ⌧ as

⌧ = N ′ ⋅B
⌫

or

⌧ = (↵′ × ↵′′) ⋅ ↵′′′
2⌫6

= (↵′ × ↵′′) ⋅ ↵′′′�↵′ × ↵′′�2
since ⌫3 = �↵′ × ↵′′�.



Definition 1.7. The involute of a plane curve ↵(t) is given by

I(t) = ↵(t) − s(t) ↵′(t)�↵′(t)� = ↵(t) − s(t)T (t)
and that the evolute of a plane curve is given by

E(t) = ↵(t) + N(t)
(t) .

These two operations are “inverses” to each other.

1.5. The Fundamental theorem (1.5.17).

Theorem 1.8. Given smooth functions (s) > 0 and ⌧(s) on an interval I ⊂ R, there exists a

regular arclength parametrized curve ↵ ∶ I → R such that  is its curvature and ⌧ its torsion. Such

a curve is unique up to a rigid motion (i.e. a combination of a rotation and a translation) of R3.

1.6. Green’s theorem and the isoperimetric inequality. A smooth curve ↵ ∶ [a, b] → R2 is

closed if ↵(n)(a) = ↵(n)(b) for all n ≥ 0. Closed curves often represents periodic orbits of physical

systems. A closed curve is simple if it does not cross itself, in other words, ↵ is one-to-one on [a, b).
Theorem 1.9. (The isoperimetric inequality) Let C be a simple closed curve of length L, bounding

a region of area A. Then

L2 ≥ 4⇡A
with equality exactly when C is a circle.

For the proof we use the formula

A = � b

a

x(t)y′(t)dt = −� a

b

y(t)x′(t)dt.
If the curve can be divided into the union of the graphs of two functions f and g, then

A = � x2

x1

g(x)dx−� x2

x1

f(x)dx = −� t1

t2

y(t)x′(t)dt−� b

t1

y(t)x′(t)dt−� t2

a

y(t)x′(t)dt = � b

a

y(t)x′(t)dt.
Integration by parts yields the second formula:

� b

a

y(t)x′(t)dt = [−y(t)x(t)]b
a

+� b

a

x(t)y′(t)dt.
Or one can use



Theorem 1.10. (Green’s theorem) Let P and Q be smooth functions on a simply connected region

(i.e., a region without holes) R of the plane with boundary a simple closed curve C. Then

�
R

�@P
@y
+ @Q
@x
�dxdy = �

C

(Pdx −Qdy).
1.7. Surfaces in R3

. Surfaces in R3 are unions of images of C∞ (partials with respect to the two

variables to any order exist) maps

' ∶D �→ R3

where D is an open (meaning D does not contain its boundary) domain in R2, usually an open

rectangle ]a, b[×]c, d[ or an open disc �(x, y)−P � < r. If u and v are the coordinates on D, we write

'(u, v) = (x(u, v), y(u, v), z(u, v)) and define

'
u

∶= �@x
@u

,
@y

@u
,
@z

@u
� , '

v

∶= �@x
@v

,
@y

@v
,
@z

@v
� .

A map ' is called regular if the derivatives '
u

,'
v

are linearly independent everywhere on D, i.e.,

the cross-product '
u

×'
v

is everywhere nonzero. The vector '
u

×'
v

is a normal to the surface and

we can obtain a unit normal by dividing by its length.

We can usually make D smaller so that the map ' is one-to-one and regular. Such a map ' is

then called a coordinate chart or patch for the surface. For such a map ' there exists an inverse

(defined on the image of '). If we have two coordinate charts ' and  we can form the composition

 −1 ○' ∶D �→ R2.

A surface is called smooth if for all coordinate charts ', , the composition  −1 ○' is smooth. The

composition  −1 ○' is a change of coordinates.

A set of coordinate charts covering S is usually called an atlas.

1.8. Graphs (or Monge patches). '(u, v) = (u, v, f(u, v)) for a function of two variables f .

Always a coordinate patch if f is smooth.

1.9. The implicit function theorem. When is an implicit equation f(x, y, z) = c a surface? If

we could solve for z, we would be able to write z = g(x, y). Then on the surface,

df = @f
@x

dx + @f
@y

dy + @f
@z

dz = 0
and

dz = −�
@f

@x

dx + @f

@y

dy�
@f

@z

.



Theorem 1.11. (The implicit function theorem) Near any point (a, b, c) satisfying f(x, y, z) = c

and @f

@z

≠ 0, z can be written as a smooth function of x and y whose partials are

@z

@x
= −@f

@x

@f

@z

,
@z

@y
= −@f

@y

@f

@z

.

c is called a regular value of f , if no point satisfies f(x, y, z) = c, @f
@x

= @f

@y

= @f

@z

= 0.
1.10. Spheres. x2 + y2 + z2 = 1. Upper, lower, left, right hemispheres... z =�x2 + y2 etc.

Spherical coordinates: !(✓,�) = R(sin� cos ✓, sin� sin ✓, cos�).
Geographical coordinates: u = ✓, v = ⇡�2 − �.
Compute the derivatives and the unit normal. What points on the sphere do we miss? Are these

coordinate patches? How should we define the domains D?

1.11. Surfaces of revolution. Regular curve ↵(u) = (g(u), h(u),0). Rotate about the x-axis:

'(u, v) = (g(u), h(u) cos v, h(u) sin v).
How should we define D?

1.12. Ruled surfaces. A surface is ruled if it has a parametrization

w(u, v) = ↵(u) + v�(u)
where ↵ and � are two curves. This may not be a coordinate patch, we might have to remove some

points to get coordinate patches. Each time we fix u, we get a line in S.

Examples:

Cones: w = P + v� where P is fixed (all the lines go through one point).

Saddles: z = xy (doubly ruled).

Hyperboloid of one sheet: x2 + y2 − z2 = 1 (doubly ruled, see exercises in the book).

1.13. The geometry of surfaces. Curves have tangent lines, surfaces have tangent planes. There

are 3 equivalent ways of looking at the tangent spaces of a surface:

(1) The tangent plane to S at the point (a, b, c) is the union of all the tangent lines to curves

in S through (a, b, c).
(2) The tangent plane is the plane through (a, b, c) spanned by the vectors '

u

,'
v

in a coordinate

chart ' near (a, b, c).
(3) The tangent plane is the plane through (a, b, c) with normal vector '

u

×'
v

.



The first one is not so easy to compute with useful for geometric arguments and it is nice because

it shows that the tangent plane is independent of the choice of chart.

A curve defined on an interval I = [a, b] lies on a surface S if the map ↵ ∶ I → R3 factors through

S. In other words, ↵ ∶ I → S ⊂ R3. The datum of a curve in S is equivalent to the data of two

smooth maps u(t), v(t) ∶ I → R such that ↵(t) = '(u(t), v(t)). (See Lemma 2.1.3)

Recall that the equation of a plane can be written using the dot product:

N ⋅ (Q − P ) = 0
where N is a normal vector to the plane, P is a fixed point on the plane and Q is a variable point

on the plane.

We define the unit normal vector

U ∶= '
u

×'
v�'

u

×'
v

� .
Definition 1.12. A surface is orientable if it has a consistent normal vector defined everywhere

on it. Single coordinate patches are always orientable. Problems might occur when we have to use

more than one patch: we need to be able to glue the normals from one patch to the other.

Essentially, the surface is orientable if, when we are moving on any loop (simple closed curve),

then the normal at the starting point is equal to the normal at the ending point.

Example:: The Möbius strip is not orientable. First patch
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From now on we assume that our surfaces are orientable.

Definition 1.13. The shape operator S for a surface M is defined as

S
p

(V ) = −∇
V

U

at a point p ∈M where ∇
V

U is the directional derivative of U in the direction of V . In other words,

if U = (f, g, h) and V = (a, b, c), then
∇

V

U = (∇
V

f,∇
V

g,∇
V

h) = �a@f
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+ b@f

@y
+ c@f

@z
, a
@g
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+ b@g
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+ c@g
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+ b@h

@y
+ c@h

@z
� .



Theorem 1.14. (Lemma 2.2.10) S
p

is a linear transformation from T
p

M to itself.

Note that if M is contained in a plane, then U is constant and all its derivatives are 0. We say

that S is path connected, if for any two points p, q ∈ S, there exists a curve ↵ ∶ [0,1]→ S such that

↵(0) = p and ↵(1) = q. Conversely
Theorem 1.15. Assume M is path connected. If S

p

= 0 at every point of M , then M is contained

in a plane.

Example: The sphere of radius R: '(u, v) = R(cosu cos v, sinu cos v, sin v). S
p

(V ) = −V

R

for all

V .

1.14. The linear algebra of surfaces. The computation of the shape operator doesn’t always

give us geometric information about the surface, i.e., its shape (see the example of the saddle,

homework 2.2.16). However, there are other things we can do with the shape operator that do give

us information about the shape of the surface. Review a few notions from linear algebra:

Matrix of a linear transformation on a basis.

Eigenvalues and eigenvectors. Matrix on a basis of eigenvectors and diagonalization.

Determinant and Trace in terms of eigenvalues.

Definition 1.16. We say that a linear operator T is symmetric if, for any vectors v and w, T (v)⋅w =
v ⋅ T (w).
Definition 1.17. (reminder) A basis is orthonormal if it consists of orthogonal (perpendicular)

unit vectors.

Exercise 2.3.4: With respect to an orthonormal basis, the matrix of a symmetric operator is

symmetric.

Theorem 1.18. (2.3.5) We have

S('
u

) ⋅ '
u

= '
uu

⋅U, S('
u

) ⋅ '
v

= '
uv

⋅U = S('
v

) ⋅ '
u

, S('
v

) ⋅ '
v

= '
vv

⋅U.
In particular, the shape operator is symmetric.

The shape operator S
p

contains information about the acceleration/curvature of curves in M

through p.



Lemma 1.19. (2.4.1) For any curve ↵(t) in M ,

↵′′ ⋅U = S(↵′) ⋅ ↵′.
The scalar product ↵′′ ⋅ U is the part of the acceleration due to the bending of M . The above

formula shows that it only depends on the tangent vector to the curve. If the curve has unit speed,

it only depends on the tangent direction to the curve.

If ↵ has unit speed and ↵′ is an eigenvector of S
p

, then

S
p

(↵′) = �↵′
and

� = �↵′ ⋅ ↵′ = S
p

(↵′) ⋅ ↵′ = ↵′′ ⋅U.
Definition 1.20. Given a unit vector u in the tangent space T

p

M , the (normal) curvature of M

in the direction of u is

k(u) ∶= S
p

(u) ⋅ u.
This is the curvature of the curve P ∩M where P is the plane through p and parallel to U(p) and
u (see below and 2.4.3 in the book).

The (real) eigenvalues k
1

, k
2

of S
p

are the principal curvatures of M at p. The corresponding unit

(orthogonal) eigenvectors u

1

, u
2

are the principal directions.

The determinant K ∶= k
1

k
2

is the Gaussian curvature at p.

Half the trace H ∶= 1

2

(k
1

+ k
2

) is the mean curvature at p.

A point where k
1

= k
2

is umbilic: S
p

= k
1

id and every direction is principal.

Note that S, k
1

, k
2

,H change sign under a change of orientation but not K.

The normal curvature is the normal component of acceleration: by the Frenet formulas, for a unit

speed curve

k(↵′) = S
p

(↵′) ⋅ ↵′ = ↵′′ ⋅U = N ⋅U =  cos ✓
where ✓ is the angle between the surface normal and the curve normal (draw a picture).

Proposition 1.21. (2.4.3) Let u be a unit vector and P the plane through p and parallel to U(p)
and u. Let � be the unit speed curve formed by P ∩M with �(0) = p. Then

k(u) = ±
�

(0).


