MATH 142B SPRING 2020 SECTION B00 (MANNERS)

Homework – week 2

Due by 2359 (11:59 PM) on Tuesday April 14. Hand in via Gradescope.

You may discuss these problems among yourselves, but your final submitted solutions must be written by you alone.

- **1.** For each of the following sequences of functions $f_n: X \to \mathbb{R}$, (i) find a function f such that $f_n \to f$ pointwise, and (ii) decide (with proof) whether $f_n \to f$ uniformly on X.
 - (a) $f_n = \frac{1}{1+x^{2n}}, X = [-2, 2].$
 - **(b)** $f_n = \frac{1}{1+x^{2n}}, X = [2,3].$
 - (c) $f_n = \frac{1}{1+x^{2n}}, X = (1,3).$
- **2.** Given an example of a sequence of continuous functions $f_n: [0,1] \to \mathbb{R}$ such that $f_n \to 0$ pointwise but f_n does not converge to 0 uniformly.
- **3.** Let $X \subseteq \mathbb{R}$ be a set, and $f_n \colon X \to \mathbb{R}$ a sequence of functions. Suppose f_n converges uniformly to some limit. Is f_n necessarily uniformly Cauchy? Give either a proof or a counterexample.
- 4. Consider the power series

$$\sum_{n=0}^{\infty} x^n / n!.$$

We have seen that this converges for every $x \in \mathbb{R}$. Does this converge uniformly on $X = \mathbb{R}$? Justify your answer.