MATH 202A
 APPLIED ALGEBRA I

FALL 2021

Homework week 1

Due by 2359 on Sunday October 3 (hand in via Gradescope).

1. Prove, using only the results from Section 1.2, that (i) any finitely-generated vector space has a (finite) basis, and (ii) any two bases of a finitely-generated vector space V have the same size.
[Recall that we say a vector spaces is finitely-generated to mean that it has a finite spanning set.]
2. Suppose n is a positive integer and a collection of subsets $S_{1}, \ldots, S_{k} \subseteq\{1, \ldots, n\}$ (not necessarily distinct) are given. A set $I \subseteq\{1, \ldots, k\}$ is called awesome if it has the following property: for every $x \in\{1, \ldots, n\}$, the number

$$
\left|\left\{i \in I: x \in S_{i}\right\}\right|
$$

is even.
Prove that the number of awesome sets $I \subseteq\{1, \ldots, k\}$ is always a power of 2 .
3. Let V, W be vector spaces, $U \subseteq V$ a subspace, and $\phi: V \rightarrow W$ a linear map. Suppose also that $\operatorname{ker} \phi \supseteq U$.
Prove that there exists a unique linear map $\psi: V / U \rightarrow W$ such that $\phi(v)=\psi(v+U)$ for all $v \in V$. Prove that ψ is injective if and only if $U=\operatorname{ker} \phi$.
4. Let V be a finite-dimensional vector space and $U \subseteq V$ a subspace. Suppose that u_{1}, \ldots, u_{k} are a basis for U, and v_{1}, \ldots, v_{m} are vectors in V such that $v_{1}+U, \ldots, v_{m}+U$ is a basis for V / U.
Prove that $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{m}$ is a basis for V (and hence $\operatorname{dim} V=\operatorname{dim} U+\operatorname{dim}(V / U)$).
5. Suppose V is a vector space over \mathbb{R}, that $w_{1}, w_{2}, w_{3} \in V$ is a spanning set for V, and that u_{1}, u_{2}, u_{3} are linearly independent where

$$
\begin{aligned}
& u_{1}=4 w_{1}-3 w_{3} \\
& u_{2}=-w_{1}+w_{3} \\
& u_{3}=w_{1}+w_{2}+w_{3} .
\end{aligned}
$$

It is a consequence of Theorem 1.2 .1 that u_{1}, u_{2}, u_{3} spans V (since we can add $3-3=0$ elements from w_{1}, w_{2}, w_{3} to make it span). In particular, w_{1}, w_{2}, w_{3} lie in $\operatorname{span}\left(u_{1}, u_{2}, u_{3}\right)$, meaning there exist coefficients $a_{i j} \in \mathbb{R}$ such that $w_{j}=a_{j 1} u_{1}+a_{j 2} u_{2}+a_{j 3} u_{3}$.
Our proofs are constructive: that is, we can-and will-find the coefficients $a_{i j}$ explicitly by close inspection of the proof of Theorem 1.2.1 and its subsidiary lemmas.
This "expanded" proof is as follows. Set $B_{0}=w_{1}, w_{2}, w_{3}$.

Step 1: Consider the spanning list $u_{1}, w_{1}, w_{2}, w_{3}$. It is linearly dependent (by Lemma 1.2.3, as B_{0} spans). Using this dependence relation and Lemma 1.2.2, we discover that $w_{3} \in \operatorname{span}\left(u_{1}, w_{1}, w_{2}\right)$ and $B_{1}=u_{1}, w_{1}, w_{2}$ spans V.
Step 2: Consider the spanning list $u_{2}, u_{1}, w_{1}, w_{2}$. It is linearly dependent (by Lemma 1.2.3, as B_{1} spans). Using this dependence relation and Lemma 1.2.2, we discover that $w_{1} \in \operatorname{span}\left(u_{2}, u_{1}\right)$ and $B_{2}=u_{2}, u_{1}, w_{2}$ spans V.
Step 3: Consider the spanning list $u_{3}, u_{2}, u_{1}, w_{2}$. It is linearly dependent (by Lemma 1.2.3, as B_{2} spans). Using this dependence relation and Lemma 1.2.2, we discover that $w_{2} \in \operatorname{span}\left(u_{3}, u_{2}, u_{1}\right)$ and $B_{3}=u_{3}, u_{2}, u_{1}$ spans V.
Now, in each Step $i(1 \leq i \leq 3)$:-
(a) find an explicit dependence relation in the length 4 list, and explicit coefficients in each of the statements after "we discover that" (i.e., respectively $w_{3} \in \operatorname{span}\left(u_{1}, w_{1}, w_{2}\right), w_{1} \in \operatorname{span}\left(u_{2}, u_{1}\right)$, $\left.w_{2} \in \operatorname{span}\left(u_{3}, u_{2}, u_{1}\right)\right) ;$
(b) using your answers to (a), find explicit coefficients for each of the statements $u_{1} \in \operatorname{span}\left(B_{i}\right)$, $u_{2} \in \operatorname{span}\left(B_{i}\right), u_{3} \in \operatorname{span}\left(B_{i}\right)$, and summarize your answers in a 3×3 matrix;
(c) using your answers to (a), find explicit coefficients for each of the statements $w_{1} \in \operatorname{span}\left(B_{i}\right)$, $w_{2} \in \operatorname{span}\left(B_{i}\right), w_{3} \in \operatorname{span}\left(B_{i}\right)$, and summarize your answers in a 3×3 matrix.
Note the similarity of this process with any other algorithms (Gaussian elimination / reducing to RREF / LU decomposition / etc.) with which you are familiar. [You need not write anything for this part.]

