MATH 202A APPLIED ALGEBRA I FALL 2021

Homework week 1

Due by 2359 on Sunday October 3 (hand in via Gradescope).

- Prove, using only the results from Section 1.2, that (i) any finitely-generated vector space has a (finite) basis, and (ii) any two bases of a finitely-generated vector space V have the same size.
 [Recall that we say a vector spaces is finitely-generated to mean that it has a finite spanning set.]
- 2. Suppose n is a positive integer and a collection of subsets $S_1, \ldots, S_k \subseteq \{1, \ldots, n\}$ (not necessarily distinct) are given. A set $I \subseteq \{1, \ldots, k\}$ is called *awesome* if it has the following property: for every $x \in \{1, \ldots, n\}$, the number

$$|\{i \in I \colon x \in S_i\}|$$

is even.

Prove that the number of awesome sets $I \subseteq \{1, \ldots, k\}$ is always a power of 2.

- Let V, W be vector spaces, U ⊆ V a subspace, and φ: V → W a linear map. Suppose also that ker φ ⊇ U.
 Prove that there exists a unique linear map ψ: V/U → W such that φ(v) = ψ(v+U) for all v ∈ V.
 Prove that ψ is injective if and only if U = ker φ.
- 4. Let V be a finite-dimensional vector space and $U \subseteq V$ a subspace. Suppose that u_1, \ldots, u_k are a basis for U, and v_1, \ldots, v_m are vectors in V such that $v_1 + U, \ldots, v_m + U$ is a basis for V/U. Prove that $u_1, \ldots, u_k, v_1, \ldots, v_m$ is a basis for V (and hence dim $V = \dim U + \dim(V/U)$).
- 5. Suppose V is a vector space over \mathbb{R} , that $w_1, w_2, w_3 \in V$ is a spanning set for V, and that u_1, u_2, u_3 are linearly independent where

$$u_1 = 4w_1 - 3w_3$$

$$u_2 = -w_1 + w_3$$

$$u_3 = w_1 + w_2 + w_3.$$

It is a consequence of Theorem 1.2.1 that u_1, u_2, u_3 spans V (since we can add 3-3=0 elements from w_1, w_2, w_3 to make it span). In particular, w_1, w_2, w_3 lie in span (u_1, u_2, u_3) , meaning there exist coefficients $a_{ij} \in \mathbb{R}$ such that $w_j = a_{j1}u_1 + a_{j2}u_2 + a_{j3}u_3$.

Our proofs are constructive: that is, we can—and will—find the coefficients a_{ij} explicitly by close inspection of the proof of Theorem 1.2.1 and its subsidiary lemmas.

This "expanded" proof is as follows. Set $B_0 = w_1, w_2, w_3$.

- Step 1: Consider the spanning list u_1, w_1, w_2, w_3 . It is linearly dependent (by Lemma 1.2.3, as B_0 spans). Using this dependence relation and Lemma 1.2.2, we discover that $w_3 \in \operatorname{span}(u_1, w_1, w_2)$ and $B_1 = u_1, w_1, w_2$ spans V.
- Step 2: Consider the spanning list u_2, u_1, w_1, w_2 . It is linearly dependent (by Lemma 1.2.3, as B_1 spans). Using this dependence relation and Lemma 1.2.2, we discover that $w_1 \in \text{span}(u_2, u_1)$ and $B_2 = u_2, u_1, w_2$ spans V.
- Step 3: Consider the spanning list u_3, u_2, u_1, w_2 . It is linearly dependent (by Lemma 1.2.3, as B_2 spans). Using this dependence relation and Lemma 1.2.2, we discover that $w_2 \in \text{span}(u_3, u_2, u_1)$ and $B_3 = u_3, u_2, u_1$ spans V.

Now, in each Step $i \ (1 \le i \le 3)$:—

- (a) find an explicit dependence relation in the length 4 list, and explicit coefficients in each of the statements after "we discover that" (i.e., respectively $w_3 \in \text{span}(u_1, w_1, w_2), w_1 \in \text{span}(u_2, u_1), w_2 \in \text{span}(u_3, u_2, u_1)$);
- (b) using your answers to (a), find explicit coefficients for each of the statements $u_1 \in \text{span}(B_i)$, $u_2 \in \text{span}(B_i)$, $u_3 \in \text{span}(B_i)$, and summarize your answers in a 3×3 matrix;
- (c) using your answers to (a), find explicit coefficients for each of the statements $w_1 \in \text{span}(B_i)$, $w_2 \in \text{span}(B_i)$, $w_3 \in \text{span}(B_i)$, and summarize your answers in a 3×3 matrix.

Note the similarity of this process with any other algorithms (Gaussian elimination / reducing to RREF / LU decomposition / etc.) with which you are familiar. [You need not write anything for this part.]