## MATH 202A <br> APPLIED ALGEBRA I

FALL 2021

## Homework week 2

Due by 2359 on Sunday October 10 (hand in via Gradescope).

1. For each of the following, determine whether it is an inner product on $\mathbb{R}^{2}$.
(a) $\left\langle(x, y),\left(x^{\prime}, y^{\prime}\right)\right\rangle=x x^{\prime}-y y^{\prime}$.
(b) $\left\langle(x, y),\left(x^{\prime}, y^{\prime}\right)\right\rangle=x x^{\prime}+x y^{\prime}+y x^{\prime}+2 y y^{\prime}$.
(c) $\left\langle(x, y),\left(x^{\prime}, y^{\prime}\right)\right\rangle=x x^{\prime}+x y^{\prime}+y x^{\prime}+y y^{\prime}$.
2. Let $V$ be a finite dimensional inner product space, with inner product $\langle-,-\rangle$ as usual.
(a) Suppose $\phi: V \rightarrow V$ a linear map. Define a new operation $\langle-,-\rangle_{1}: V \times V \rightarrow F$ by

$$
\langle v, w\rangle_{1}=\langle\phi(v), \phi(w)\rangle
$$

Show that if $\phi$ is invertible then this is an inner product on $V$.
(b) In the set-up of (a), show that if $\phi$ is not invertible then $\langle-,-\rangle_{1}$ is not an inner product.
(c) Conversely, suppose $\langle-,-\rangle_{2}$ is yet another inner product on $V$. Show that there is an invertible linear map $\psi: V \rightarrow V$ such that

$$
\langle v, w\rangle_{2}=\langle\psi(v), \psi(w)\rangle
$$

3. Consider the vectors

$$
\begin{aligned}
& v_{1}=(1.1,1.1,1.1,1.1) \\
& v_{2}=(3.3,3.3,1.1,1.1) \\
& v_{3}=(6.6,4.4,2.2,0) \\
& v_{4}=(10,5.4,3.2,-1.0)
\end{aligned}
$$

in $\mathbb{R}^{4}$, which carries the usual dot product.
You may assume that

$$
\left(\begin{array}{cccc}
1.1 & 3.3 & 6.6 & 10 \\
1.1 & 3.3 & 4.4 & 5.4 \\
1.1 & 1.1 & 2.2 & 3.2 \\
1.1 & 1.1 & 0 & -1.0
\end{array}\right)=\left(\begin{array}{cccc}
0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & -0.5 & -0.5 \\
0.5 & -0.5 & 0.5 & -0.5 \\
0.5 & -0.5 & -0.5 & 0.5
\end{array}\right)\left(\begin{array}{cccc}
2.2 & 4.4 & 6.6 & 8.8 \\
0 & 2.2 & 4.4 & 6.6 \\
0 & 0 & 2.2 & 4.4 \\
0 & 0 & 0 & 0.2
\end{array}\right)
$$

Show that there exist coefficients $a_{1}, a_{2}, a_{3} \in \mathbb{R}$ such that

$$
\left\|v_{4}-a_{1} v_{1}-a_{2} v_{2}-a_{3} v_{3}\right\| \leq 0.2
$$

[Please tell me if you spot a mistake in these numbers.]
4. Let $\mathcal{P}_{\leq 4}$ denote the vector space of real-valued polynomials of degree $\leq 4$ :

$$
\mathcal{P}_{\leq 4}=\left\{p(X)=a_{0}+a_{1} X+\cdots+a_{4} X^{4}: a_{0}, \ldots, a_{4} \in \mathbb{R}\right\}
$$

You may use without proof that $B=1, X, X^{2}, \ldots, X^{4}$ and $B^{\prime}=1,1+X,(1+X)^{2}, \ldots,(1+X)^{4}$ are two basis for $\mathcal{P}_{\leq 4}$, and that

$$
\phi: p(X) \mapsto \frac{d p}{d X}
$$

and

$$
\psi: p \mapsto(X \mapsto p(X+1))
$$

are linear maps $\mathcal{P}_{\leq 4} \rightarrow \mathcal{P}_{\leq 4}$. (So e.g. $\psi(3+4 X)=3+4(X+1)=7+4 X$.)
Write down:
(a) $\mathcal{M}(\phi, B, B)$;
(b) $\mathcal{M}(\psi, B, B)$;
(c) $\mathcal{M}\left(\mathrm{id}, B^{\prime}, B\right)$;
(d) $\mathcal{M}\left(\mathrm{id}, B, B^{\prime}\right)$;
(e) $\mathcal{M}\left(\phi, B, B^{\prime}\right)$.

For a subspace $U \subseteq V$, write

$$
U^{\perp}=\left\{\phi \in V^{*}: \phi(u)=0 \forall u \in U\right\} \subseteq V^{*}
$$

Similarly, if $W \subseteq V^{*}$, write

$$
W^{\perp}=\{u \in V: \phi(u)=0 \forall \phi \in W\} \subseteq V
$$

5. Prove that if $V$ is finite-dimensional (and so we can identify $V$ with $V^{* *}$ ) then $\left(U^{\perp}\right)^{\perp}=U$.
6. Let $V$ and $W$ be vector spaces, let $f: V \rightarrow W$ be a linear map, and let $f^{*}: W^{*} \rightarrow V^{*}$ be the dual map.
(a) Prove that $\operatorname{ker}\left(f^{*}\right)=(\operatorname{im} f)^{\perp}$.

Now assume that $V, W$ are finite-dimensional (and so we can identify $V$ with $V^{* *}$ and $W$ with $\left.W^{* *}\right)$.
(b) Prove that $f^{* *}=f$.
(c) Prove that $\left(\operatorname{im}\left(f^{*}\right)\right)^{\perp}=\operatorname{ker} f$.
(d) Prove that $\left(\operatorname{ker}\left(f^{*}\right)\right)^{\perp}=\operatorname{im} f$.
(e) Prove that $\operatorname{im}\left(f^{*}\right)=(\operatorname{ker} f)^{\perp}$.

