MATH 202A APPLIED ALGEBRA I FALL 2021

Homework week 3

Due by 2359 on Sunday October 17 (hand in via Gradescope).

- **1.** Suppose V, W are a finite dimensional inner product spaces and $\phi: V \to W$ is a linear map. Show that if ϕ is injective then $\phi^* \circ \phi$ is injective (and hence an isomorphism).
- **2.** Prove that if V is a finite-dimensional inner product space, $\phi: V \to V$ is a normal operator and $\lambda, \mu \in F$ are scalars with $\lambda \neq \mu$ then $E(\lambda, \phi) \perp E(\mu, \phi)$ (i.e. these subspaces are orthogonal).
- 3. Suppose V is a finite-dimensional vector space, $\phi: V \to V$ is a diagonalizable linear map, and $U \subseteq V$ is a ϕ -invariant subspace.

Prove that the restriction $\phi|_U: U \to U$ is diagonalizable.

[Hint: the maps Φ_i from the proof of Proposition 3.1.7 might come in handy here.]

- **4.** Suppose V is a finite-dimensional vector space and $\phi, \psi \colon V \to V$ are two linear maps such that $\phi \circ \psi = \psi \circ \phi$ (i.e., the maps commute).
 - (a) For any $\lambda \in F$, prove that $E(\lambda, \phi)$ is ψ -invariant.
 - (b) Suppose that ϕ , ψ are diagonalizable. Prove that there is a basis B for V consisting of simultaneous eigenvectors of ϕ , ψ .

[Hint: remember Q3.]

- 5. Let V be a finite-dimensional inner product space, $\phi \colon V \to V$ a linear map and suppose $U \subseteq V$ is ϕ -invariant. Write $\psi \colon U \to U$ for the restriction $\phi|_U$.
 - (a) Give an example to show that ψ^* need not be the same thing as the restriction $\phi^*|_{U}$.
 - **(b)** Prove that, however, $\psi^* = P_U \circ (\phi^*|_U)$.
 - (c) Prove that if U is ϕ^* -invariant then $\psi^* = \phi^*|_U$.
- **6.** Let V, W be finite-dimensional inner product spaces, and let $\phi: V \to W$ and $\psi: V \to V$ be linear maps.
 - (a) Prove that, for any $\lambda \in F$, dim $E(\lambda, \psi) = \dim E(\overline{\lambda}, \psi^*)$.
 - **(b)** Prove that, for any $\lambda \in F$, $\lambda \neq 0$, dim $E(\lambda, \phi^* \circ \phi) = \dim E(\lambda, \phi \circ \phi^*)$.
 - (c) Determine the relationship between dim $E(0, \phi^* \circ \phi)$ and dim $E(0, \phi \circ \phi^*)$.
- 7. My office has three chairs, arranged in a row. Every hour, I roll a 4-sided die and move chairs, or not, according to the following rule:
 - if I'm in an end chair, I stay put if I roll a 1, 2 or 3 and move to the middle if I roll a 4;

• if I'm the middle chair, I move left on a 1 roll, stay put on a 2 or 3 roll and move right on a 4 roll.

So, if my probabilities of being in each chair one hour are (p_L, p_M, p_R) , then the probabilities for the next hour are given by

$$\phi(p_L,p_M,p_R) = \left(\frac{3}{4}p_L + \frac{1}{4}p_M, \frac{1}{4}p_L + \frac{1}{2}p_M + \frac{1}{4}p_R, \frac{1}{4}p_M + \frac{3}{4}p_R\right) \ .$$

I start in the left chair. Show that the probability I am in the left chair again after 1000 straight hours in my office is $1/3 + \varepsilon$ where $|\varepsilon| \le 2 \cdot (3/4)^{1000}$ (which is around $2.3 \cdot 10^{-125}$).