MATH 202A

APPLIED ALGEBRA I

FALL 2021

Homework week 5

Due by 2359 on Sunday 31st October (hand in via Gradescope).
Given an linear map ϕ between finite dimensional inner product spaces, we write $\sigma_{1}(\phi)$ for the largest singular value of ϕ.

1. If V is a finite-dimensional inner product space and $\phi: V \rightarrow V$ is a normal map with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Prove that the singular values of ϕ are $\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n}\right|$.
2. Let U, V, W be finite-dimensional inner product spaces and $\phi: U \rightarrow V, \psi: V \rightarrow W$ linear maps, show that $\sigma_{1}(\psi \circ \phi) \leq \sigma_{1}(\psi) \sigma_{1}(\phi)$.
3. (a) Let V be a finite dimensional inner product space and $\phi: V \rightarrow V$ a linear map. For any positive integer k, prove that $\sigma_{1}\left(\phi^{k}\right) \leq \sigma_{1}(\phi)^{k}$. Prove that if ϕ is normal then $\sigma_{1}\left(\phi^{k}\right)=\sigma_{1}(\phi)^{k}$.
(b) Consider $V=\mathbb{C}^{2}$ and $\phi(x, y)=(x+(3 / 2) y, y)$. Prove that $\sigma_{1}(\phi)^{1000}=2^{1000}$ but $\sigma_{1}\left(\phi^{1000}\right) \leq$ $1500+\frac{1}{1500}$.
4. My office has three chairs, arranged in a row. ${ }^{1}$ Every hour, I receive an instruction by email from the university authorities. If the instruction says "FLIP", I roll a fair 2-sided die and accordingly move to one of the chairs I am not currently sitting in, with probability $1 / 2$ each.
If the instruction says "FLOP", I roll a fair 4 -sided die and move chairs, or not, based on the rule given in Pset 3 Q7.
So, if my probabilities of being in each chair one hour are $\left(p_{L}, p_{M}, p_{R}\right)$, then the probabilities for the next hour are given by

$$
\psi\left(p_{L}, p_{M}, p_{R}\right)=\left(\frac{1}{2} p_{M}+\frac{1}{2} p_{R}, \frac{1}{2} p_{L}+\frac{1}{2} p_{R}, \frac{1}{2} p_{L}+\frac{1}{2} p_{M}\right)
$$

if the instruction is "FLIP", and

$$
\phi\left(p_{L}, p_{M}, p_{R}\right)=\left(\frac{3}{4} p_{L}+\frac{1}{4} p_{M}, \frac{1}{4} p_{L}+\frac{1}{2} p_{M}+\frac{1}{4} p_{R}, \frac{1}{4} p_{M}+\frac{3}{4} p_{R}\right)
$$

if the instruction is "FLOP".
The university authorities are a law unto themselves, and their instructions are unpredictable, arbitrary and follow no discernible pattern, deterministic or random. In particular you may not assume that FLIP and FLOP occur according to any particular random rule.
I start in the left chair. Show that the probability I am in the left chair again after 1000 straight hours in my office is $1 / 3+\varepsilon$ where $|\varepsilon| \leq 2 \cdot(3 / 4)^{1000}$ (which is around $2.3 \cdot 10^{-125}$).
[Hint: it might help to consider Q1, Q2 and the subspace $\{1,1,1\}^{\perp}$.]

[^0]
[^0]: ${ }^{1}$ The chairs in my office are not actually arranged in a row; there is not enough space. For the purposes of this question, suppose hypothetically that they are.

