MATH 202A

APPLIED ALGEBRA I

FALL 2021

Homework week 6

Due by 2359 on Sunday 7th November (hand in via Gradescope).

1. Let V be a finite-dimensional vector space over a field F and $\phi: V \rightarrow V$ a linear map.
(a) Prove that if ϕ has an eigenvalue $\lambda \neq 0$ then ϕ is not nilpotent.
(b) Prove that, if $F=\mathbb{C}$ and $\operatorname{spec}(\phi)=\{0\}$ then ϕ is nilpotent. [For this question, do not use Jordan Normal Form itself, though you may use facts that go into it.]
(c) If $F=\mathbb{R}$ and $V=\mathbb{R}^{3}$, find an example of a map $\phi \operatorname{such}$ that $\operatorname{spec}(\phi)=\{0\}$ but ϕ is not nilpotent.
2. Let V be a finite-dimensional vector space and $\phi: V \rightarrow V$ a linear map.

Consider the subspaces

$$
\{0\} \subseteq \operatorname{ker} \phi \subseteq \operatorname{ker}\left(\phi^{2}\right) \subseteq \ldots
$$

(a) Prove that if $\operatorname{ker}\left(\phi^{k}\right)=\operatorname{ker}\left(\phi^{k+1}\right)$, then in fact $\operatorname{ker} \phi^{\ell}=\operatorname{ker} \phi^{\ell+1}$ for all $\ell \geq k$.
(b) Suppose ϕ is nilpotent. Prove that $\phi^{r}=0$ holds for some $r \leq \operatorname{dim} V$. [Do not use the structure theorem of nilpotent maps to answer this part.]
3. Let V be a finite dimensional vector space and $\phi: V \rightarrow V$ a linear map. Suppose $v \in V, v \neq 0$, and suppose that for some non-negative integer $m \geq 0$ we have

$$
\phi^{m}(v) \neq 0
$$

but

$$
\phi^{m+1}(v)=0 .
$$

Show that $v, \phi(v), \ldots, \phi^{m}(v)$ are linearly independent.
4. Suppose V is a finite-dimensional vector space and $\phi: V \rightarrow V$ is nilpotent. Suppose $n=\operatorname{dim} V$ and $n_{1}, \ldots, n_{m} \geq 1$ are integers such that $n_{1}+\cdots+n_{m}=n$ and there is a basis $B=\left(v_{i, j}\right)_{i \in[m], j \in\left[n_{i}\right]}$ for V such that

$$
\phi\left(v_{i, j}\right)= \begin{cases}v_{i, j-1} & : j>1 \\ 0 & : j=1\end{cases}
$$

as guaranteed by the structure theorem for nilpotent maps.
(a) For $k \geq 1$, prove that

$$
\operatorname{dim} \operatorname{ker}\left(\phi^{k}\right)=\sum_{i=1}^{m} \min \left(k, n_{i}\right) .
$$

(b) Hence, or otherwise, show that for $\ell \geq 1$:

$$
\left|\left\{i: 1 \leq i \leq m, n_{i}=\ell\right\}\right|=2 \operatorname{dim} \operatorname{ker}\left(\phi^{\ell}\right)-\operatorname{dim} \operatorname{ker}\left(\phi^{\ell+1}\right)-\operatorname{dim} \operatorname{ker}\left(\phi^{\ell-1}\right)
$$

where by convention $\phi^{0}=\operatorname{id}_{V}$.
[This establishes uniqueness in the structure theorem for nilpotent maps: the number of blocks of each size is determined by values that clearly only depend on ϕ. If you like, use this to deduce uniqueness for the number and sizes of blocks in Jordan Normal Form.]
5. (a) Let V be finite dimensional and let $\psi: V \rightarrow V$ be a nilpotent map, where $\psi^{k}=0$. Write $\phi=\psi+\lambda$ id for some $\lambda \in F$. Show that for any integer $m \geq 0$,

$$
\phi^{m}=\sum_{r=0}^{\min (k-1, m)} \lambda^{m-r}\binom{m}{r} \psi^{r}
$$

(b) For any integer $m \geq 0$, compute the matrix J_{k}^{m}. Using (a), or otherwise, also compute $J(k, \lambda)^{m}$. Here

$$
J_{k}=\left(\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & & & & & \\
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right), \quad J(k, \lambda)=\left(\begin{array}{cccccc}
\lambda & 1 & 0 & \cdots & 0 & 0 \\
0 & \lambda & 1 & \cdots & 0 & 0 \\
\vdots & & & & & \\
0 & 0 & 0 & \cdots & \lambda & 1 \\
0 & 0 & 0 & \cdots & 0 & \lambda
\end{array}\right)
$$

are $k \times k$ matrices.
6. Consider the vector space of infinite complex sequences $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$. Let V denote the subspace that satisfy the homogeneous recursion relation

$$
a_{n}=6 a_{n-1}-12 a_{n-2}+8 a_{n-3}
$$

for all $n \geq 3$. [You need not verify that this is a subspace.] Also let $\phi: V \rightarrow V$ denote the "infinite left shift" map

$$
\phi\left(a_{0}, a_{1}, a_{2}, \ldots\right)=\left(a_{1}, a_{2}, a_{3}, \ldots\right)
$$

You should satisfy yourself that this latter sequence is indeed in V, but do not need to write anything.
(a) Prove that the linear map $\psi: V \rightarrow \mathbb{C}^{3}, \psi\left(a_{0}, a_{1}, a_{2}, \ldots\right)=\left(a_{0}, a_{1}, a_{2}\right)$ is an isomorphism, and write down a matrix for ϕ with respect to the basis $B=\psi^{-1}\left(e_{1}\right), \psi^{-1}\left(e_{2}\right), \psi^{-1}\left(e_{3}\right)$ where e_{1}, e_{2}, e_{3} is the standard basis for \mathbb{C}^{3}.
(b) Hence, or otherwise, compute $\operatorname{spec}(\phi)$, and deduce that $\phi-2 \mathrm{id}_{V}$ is nilpotent.
(c) Using Q4(i), or otherwise, and noting that a_{n} is the first entry of $\phi^{n}\left(a_{0}, a_{1}, \ldots\right)$, find a closed-form formula for a_{n} in terms of a_{0}, a_{1}, a_{2}.

