MATH 202A APPLIED ALGEBRA I FALL 2019

Homework week 7

Due by 2359 on Sunday November 14 (hand in via Gradescope).

1. Consider the space V of complex sequences $(a_0, a_1, a_2, ...)$ satisfying

$$a_n = r_1 a_{n-1} + r_2 a_{n-2} + \dots + r_d a_{n-d}$$

for all $n \ge d$, where $d \ge 1$ is an integer and $r_1, \ldots, r_d \in \mathbb{C}$ are fixed constants. We assume also that $r_d \ne 0$. You may also assume without proof that V is finite-dimensional and dim V = d. As in Problem Set 6 Q6, write $\phi: V \to V$ for the linear map

$$\phi(a_0, a_1, a_2, \dots) = (a_1, a_2, a_3, \dots)$$

and also write $\psi: V \to \mathbb{C}$ for the linear functional $\psi(v_0, v_1, v_2, ...) = v_0$. You may use without proof that $r_d \neq 0 \Rightarrow 0 \notin \operatorname{spec}(\phi)$.

(a) Suppose $v = (v_0, v_1, v_2, ...) \in G(\lambda, \phi)$. By considering the action of ϕ^m , or otherwise, prove that there exists constants c_0, \ldots, c_{k-1} where $k = \dim G(\lambda, \phi)$, such that

$$v_m = \psi(\phi^m(v)) = \sum_{i=0}^{k-1} c_i \binom{m}{i} \lambda^m$$

for all $m \ge 0$. (By convention, $\binom{n}{i} = 0$ if i > n.)

(b) Prove that the sequences $v^{\lambda,i} \in V$ for $\lambda \in \operatorname{spec}(\phi)$ and $0 \leq i < \dim G(\lambda, \phi)$, given by

$$v_n^{\lambda,i} = \binom{n}{i} \lambda^n,$$

form a basis for V.

[You should be careful to explain why these sequences are in V and are linearly independent, although you should not need to prove these things directly.]

2.(a) Suppose V is an inner product space with inner product $\langle -, - \rangle$ and associated norm $\|\cdot\|$. Prove that the *parallelogram law* holds for $\|\cdot\|$: that is, for all $v, w \in V$ we have

 $||v+w||^2 + ||v-w||^2 = 2||v||^2 + 2||w||^2.$

(b) Suppose V is a finite-dimensional real vector space and $\|\cdot\|$ is a norm on V obeying the parallelogram law: that is,

$$||v + w||^2 + ||v - w||^2 = 2||v||^2 + 2||w||^2$$

for all $v, w \in V$. Prove that there is an inner product $\langle -, - \rangle$ on V such that $||v|| = \sqrt{\langle v, v \rangle}$. [Hint: consider the quantity $\frac{1}{2} (||v + w||^2 - ||v||^2 - ||w||^2)$.] [Hint: it may be useful to prove the identity

$$||v + w||^{2} + ||v - w||^{2} - ||v' + w||^{2} - ||v' - w||^{2}$$
$$- ||v + w'||^{2} - ||v - w'||^{2} + ||v' + w'||^{2} + ||v' - w'||^{2} = 0$$

by applying the parallelogram law four times to (v, w), (v', w), (v, w') and (v', w'). This identity, with a suitable substitution of variables, should be what you need to prove linearity.]

(c) For every $n \ge 2$ and $1 \le p \le \infty$, $p \ne 2$, find vectors $v, w \in \mathbb{R}^n$ such that

$$||v+w||_p^2 + ||v-w||_p^2 \neq 2||v||_p^2 + 2||w||_p^2$$

[Hence, the $\|\cdot\|_p$ -norms do not secretly come from some exotic inner product.]

- (d*) Prove the same statement as (b) assuming now that V is a complex vector space. [Hint: it may now help to build an expression from the quantities $||v \pm w||^2$ and $||v \pm iw||^2$.]
- **3.** Let $V = \mathbb{R}^n$, and identify $V^* = \mathbb{R}^n$ in the usual way; i.e., a vector $(a_1, \ldots, a_n) \in \mathbb{R}^n$ corresponds to a linear map $\mathbb{R}^n \to \mathbb{R}$,

$$(x_1,\ldots,x_n)\mapsto a_1x_1+\cdots+a_nx_n.$$

For each of the norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_1$ on \mathbb{R}^n , determine carefully the value of the corresponding dual norms $\|(a_1,\ldots,a_n)\|_{\infty}^*$, $\|(a_1,\ldots,a_n)\|_1^*$ for all $(a_1,\ldots,a_n) \in \mathbb{R}^n \cong V^*$.

- **4.(a)** For every integer $n \ge 1$ and every pair of values p, q with $1 \le p \le q \le \infty$, find the largest contsant $c \in \mathbb{R}$ and the smallest constant $C \in \mathbb{R}$ such that $c \|x\|_p \le \|x\|_q \le C \|x\|_p$ for all $x \in \mathbb{C}^n$.
 - (b) If A is an $n \times n$ complex matrix, we interpret it as a linear map $\mathbb{C}^n \to \mathbb{C}^n$ in the usual way. We use the usual Euclidean norm $\|\cdot\|_2$ on \mathbb{C}^n . For every integer $n \ge 1$, find the largest contsant $c \in \mathbb{R}$ and the smallest constant $C \in \mathbb{R}$ such that

$$c\|A\|_{\mathrm{op}} \le \max_{1\le i,j\le n} |A_{ij}| \le C\|A\|_{\mathrm{op}}$$

holds for all matrices A.

[Specifically, $||A||_{op}$ is the smallest constant K such that $||Ax||_2 \leq K ||x||_2$ for all $x \in \mathbb{C}^n$.]

- 5. Let V be a finite-dimensional vector space.
 - (a) Suppose $\|\cdot\|$, $\|\cdot\|'$ are two norms on V such that $\|\cdot\| \le \|\cdot\|'$. Prove that $\|\cdot\|'^* \le \|\cdot\|^*$.
 - (b) If $\|\cdot\|$ is a norm on V and $\alpha \in \mathbb{R}_{>0}$ is a scalar, write $\alpha \|\cdot\|$ for the norm $v \mapsto \alpha \|v\|$. Prove that the dual norm to $\alpha \|\cdot\|$ is $(1/\alpha) \|\cdot\|^*$.