MATH 202A

APPLIED ALGEBRA I

FALL 2019

Homework week 7

Due by 2359 on Sunday November 14 (hand in via Gradescope).

1. Consider the space V of complex sequences $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ satisfying

$$
a_{n}=r_{1} a_{n-1}+r_{2} a_{n-2}+\cdots+r_{d} a_{n-d}
$$

for all $n \geq d$, where $d \geq 1$ is an integer and $r_{1}, \ldots, r_{d} \in \mathbb{C}$ are fixed constants. We assume also that $r_{d} \neq 0$. You may also assume without proof that V is finite-dimensional and $\operatorname{dim} V=d$.
As in Problem Set 6 Q6, write $\phi: V \rightarrow V$ for the linear map

$$
\phi\left(a_{0}, a_{1}, a_{2}, \ldots\right)=\left(a_{1}, a_{2}, a_{3}, \ldots\right)
$$

and also write $\psi: V \rightarrow \mathbb{C}$ for the linear functional $\psi\left(v_{0}, v_{1}, v_{2}, \ldots\right)=v_{0}$. You may use without proof that $r_{d} \neq 0 \Rightarrow 0 \notin \operatorname{spec}(\phi)$.
(a) Suppose $v=\left(v_{0}, v_{1}, v_{2}, \ldots\right) \in G(\lambda, \phi)$. By considering the action of ϕ^{m}, or otherwise, prove that there exists constants c_{0}, \ldots, c_{k-1} where $k=\operatorname{dim} G(\lambda, \phi)$, such that

$$
v_{m}=\psi\left(\phi^{m}(v)\right)=\sum_{i=0}^{k-1} c_{i}\binom{m}{i} \lambda^{m}
$$

for all $m \geq 0$. (By convention, $\binom{n}{i}=0$ if $i>n$.)
(b) Prove that the sequences $v^{\lambda, i} \in V$ for $\lambda \in \operatorname{spec}(\phi)$ and $0 \leq i<\operatorname{dim} G(\lambda, \phi)$, given by

$$
v_{n}^{\lambda, i}=\binom{n}{i} \lambda^{n}
$$

form a basis for V.
[You should be careful to explain why these sequences are in V and are linearly independent, although you should not need to prove these things directly.]
2.(a) Suppose V is an inner product space with inner product $\langle-,-\rangle$ and associated norm $\|\cdot\|$. Prove that the parallelogram law holds for $\|\cdot\|$: that is, for all $v, w \in V$ we have

$$
\|v+w\|^{2}+\|v-w\|^{2}=2\|v\|^{2}+2\|w\|^{2}
$$

(b) Suppose V is a finite-dimensional real vector space and $\|\cdot\|$ is a norm on V obeying the parallelogram law: that is,

$$
\|v+w\|^{2}+\|v-w\|^{2}=2\|v\|^{2}+2\|w\|^{2}
$$

for all $v, w \in V$. Prove that there is an inner product $\langle-,-\rangle$ on V such that $\|v\|=\sqrt{\langle v, v\rangle}$.
[Hint: consider the quantity $\frac{1}{2}\left(\|v+w\|^{2}-\|v\|^{2}-\|w\|^{2}\right)$.]
[Hint: it may be useful to prove the identity

$$
\begin{gathered}
\|v+w\|^{2}+\|v-w\|^{2}-\left\|v^{\prime}+w\right\|^{2}-\left\|v^{\prime}-w\right\|^{2} \\
-\left\|v+w^{\prime}\right\|^{2}-\left\|v-w^{\prime}\right\|^{2}+\left\|v^{\prime}+w^{\prime}\right\|^{2}+\left\|v^{\prime}-w^{\prime}\right\|^{2}=0
\end{gathered}
$$

by applying the parallelogram law four times to $(v, w),\left(v^{\prime}, w\right),\left(v, w^{\prime}\right)$ and $\left(v^{\prime}, w^{\prime}\right)$. This identity, with a suitable substitution of variables, should be what you need to prove linearity.]
(c) For every $n \geq 2$ and $1 \leq p \leq \infty, p \neq 2$, find vectors $v, w \in \mathbb{R}^{n}$ such that

$$
\|v+w\|_{p}^{2}+\|v-w\|_{p}^{2} \neq 2\|v\|_{p}^{2}+2\|w\|_{p}^{2}
$$

[Hence, the $\|\cdot\|_{p}$-norms do not secretly come from some exotic inner product.]
(d^{*}) Prove the same statement as (b) assuming now that V is a complex vector space.
[Hint: it may now help to build an expression from the quantities $\|v \pm w\|^{2}$ and $\|v \pm i w\|^{2}$.]
3. Let $V=\mathbb{R}^{n}$, and identify $V^{*}=\mathbb{R}^{n}$ in the usual way; i.e., a vector $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$ corresponds to a linear map $\mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
\left(x_{1}, \ldots, x_{n}\right) \mapsto a_{1} x_{1}+\cdots+a_{n} x_{n}
$$

For each of the norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_{1}$ on \mathbb{R}^{n}, determine carefully the value of the corresponding dual norms $\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|_{\infty}^{*},\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|_{1}^{*}$ for all $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n} \cong V^{*}$.
4. (a) For every integer $n \geq 1$ and every pair of values p, q with $1 \leq p \leq q \leq \infty$, find the largest contsant $c \in \mathbb{R}$ and the smallest constant $C \in \mathbb{R}$ such that $c\|x\|_{p} \leq\|x\|_{q} \leq C\|x\|_{p}$ for all $x \in \mathbb{C}^{n}$.
(b) If A is an $n \times n$ complex matrix, we interpret it as a linear map $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ in the usual way. We use the usual Euclidean norm $\|\cdot\|_{2}$ on \mathbb{C}^{n}. For every integer $n \geq 1$, find the largest contsant $c \in \mathbb{R}$ and the smallest constant $C \in \mathbb{R}$ such that

$$
c\|A\|_{\mathrm{op}} \leq \max _{1 \leq i, j \leq n}\left|A_{i j}\right| \leq C\|A\|_{\mathrm{op}}
$$

holds for all matrices A.
[Specifically, $\|A\|_{\text {op }}$ is the smallest constant K such that $\|A x\|_{2} \leq K\|x\|_{2}$ for all $x \in \mathbb{C}^{n}$.]
5. Let V be a finite-dimensional vector space.
(a) Suppose $\|\cdot\|,\|\cdot\|^{\prime}$ are two norms on V such that $\|\cdot\| \leq\|\cdot\|^{\prime}$. Prove that $\|\cdot\|^{\prime *} \leq\|\cdot\|^{*}$.
(b) If $\|\cdot\|$ is a norm on V and $\alpha \in \mathbb{R}_{>0}$ is a scalar, write $\alpha\|\cdot\|$ for the norm $v \mapsto \alpha\|v\|$. Prove that the dual norm to $\alpha\|\cdot\|$ is $(1 / \alpha)\|\cdot\|^{*}$.

