MATH 202A

APPLIED ALGEBRA I

FALL 2021

Homework week 8

Due by $23: 59$ on Sunday 21st November (hand in via Gradescope).
For two norms $\|\cdot\|,\|\cdot\|^{\prime}$ on the same vector space V, we write $\|\cdot\| \leq\|\cdot\|^{\prime}$ to mean $\|v\| \leq\|v\|^{\prime}$ for all $v \in V$.

Throughout, you may use any form on the Hahn-Banach theorem that has been stated in lectures (or a form of the Hahn-Banach theorem that has not been stated in lectures, if you want, provided it does not trivialize the problem).

1. Let V, W be finite-dimensional normed spaces, with the norms denoted $\|\cdot\|_{V},\|\cdot\|_{W}$. Consider the dual vector spaces V^{*}, W^{*} as normed spaces with the norms $\|\cdot\|_{V}^{*},\|\cdot\|_{W}^{*}$ respectively.
Also, suppose $\phi: V \rightarrow W$ is a linear map and $\phi^{*}: W^{*} \rightarrow V^{*}$ is the dual map.
(a) Prove the operator norm bound $\left\|\phi^{*}\right\|_{W^{*} \rightarrow V^{*}} \leq\|\phi\|_{V \rightarrow W}$.
(b) Prove that $\left\|\phi^{*}\right\|_{W^{*} \rightarrow V^{*}}=\|\phi\|_{V \rightarrow W}$.
[Hint: stating part (a) before part (b) is a hint.]
(c) Reflect on the relationship between your proof of Pset 4 Q3 on the one hand, and (a) here together with Example 5.3.1 on the other hand. [You do not need to write anything for this part.]
2. Let V be a finite-dimensional vector space and $\|\cdot\|,\|\cdot\|^{\prime}$ two norms on V. Consider the following functions $V \rightarrow \mathbb{R}$:-

$$
\begin{aligned}
& v \mapsto\|v\|+\|v\|^{\prime} \\
& v \mapsto \max \left(\|v\|,\|v\|^{\prime}\right) \\
& v \mapsto \inf _{\substack{x, y \in \\
x+y=v}}\left(\|x\|+\|y\|^{\prime}\right) \\
& v \mapsto \inf _{\substack{x, y V \\
x+y=v}} \max \left(\|x\|,\|y\|^{\prime}\right) .
\end{aligned}
$$

We denote there respectively by $\|\cdot\|+\|\cdot\|^{\prime}, \max \left(\|\cdot\|,\|\cdot\|^{\prime}\right)$, coplus $\left(\|\cdot\|,\|\cdot\|^{\prime}\right)$ and $\operatorname{comax}\left(\|\cdot\|,\|\cdot\|^{\prime}\right)$. Note these last two are non-standard notation.
(a) Very briefly, verify that these are all norms on V.
(b) Prove (directly, using the definitions) that

$$
\left(\|\cdot\|+\|\cdot\|^{\prime}\right)^{*} \leq \operatorname{comax}\left(\|\cdot\|^{*},\|\cdot\|^{\prime *}\right)
$$

and

$$
\left(\max \left(\|\cdot\|,\|\cdot\|^{\prime}\right)\right)^{*} \leq \operatorname{coplus}\left(\|\cdot\|^{*},\|\cdot\|^{\prime *}\right)
$$

(c) Prove (directly, using the definitions) that $\operatorname{coplus}\left(\|\cdot\|,\|\cdot\|^{\prime}\right) \leq\|\cdot\|$ and $\operatorname{coplus}\left(\|\cdot\|,\|\cdot\|^{\prime}\right) \leq\|\cdot\|^{\prime}$.
(d) Prove that $\left(\operatorname{comax}\left(\|\cdot\|,\|\cdot\|^{\prime}\right)\right)^{*} \geq\|\cdot\|^{*}+\|\cdot\|^{\prime *}$.
[Hint: Given $\phi \in V^{*}$, by definition you are trying to find $v \in V$ such that $|\phi(v)|$ is large but $\|v\|_{\text {comax }}$ is small. Note this is the same as trying to find $x, y \in V$ with $|\phi(x+y)|$ large but $\max \left(\|x\|,\|y\|^{\prime}\right)$ small. You can do this directly from the definitions of $\|\phi\|^{*}$ and $\|\phi\|^{\prime *}$.]
(e) Prove that in fact equality holds in (b).
[Hint: now you shouldn't have to do more work.]
3. Consider the vector space \mathbb{C}^{n} with the usual ℓ^{p}-norms.
(a) Prove that $\|\cdot\|_{2} \leq \frac{1}{2}\|\cdot\|_{4 / 3}+\frac{1}{2}\|\cdot\|_{4}$.
[Here we use the notation developed in previous questions.]
(b) Let $x \in \mathbb{C}^{n}$ be a vector with $\|x\|_{2} \leq 1$. Prove that there is a decomposition $x=y+z$ where $y, z \in \mathbb{C}^{n}$ satisfy $\|y\|_{4 / 3} \leq 1 / 2$ and $\|z\|_{4} \leq 1 / 2$.
[Note: you could give a direct proof of this statement, i.e. by finding an explicit formula for y_{i} and z_{i}, using calculus or otherwise. This is strongly discouraged. You should attempt to obtain this fact "for free" from (a), by leveraging the results from the rest of the pset.]
4. Let $V=\mathbb{R}^{n}$ with the usual inner product and $\|\cdot\|_{p}$-norms, and let $U \subseteq V$ be some subspace. For $v \in V$, define

$$
f(v)=\inf _{u \in U}\|u+v\|_{1}
$$

and

$$
g(v)=\sup _{\substack{w \in U^{\perp} \\\|w\|_{\infty} \leq 1}}\langle v, w\rangle
$$

(a) Prove directly that $f(v) \geq g(v)$ for all $v \in V$.
(b) Prove that $\left.f\right|_{U^{\perp}}$ and $\left.g\right|_{U^{\perp}}$ are norms on U^{\perp}.
(c) Prove the following statement: for all $w \in U^{\perp}$ there exists $\phi \in U^{\perp}$ such that $|\langle w, \phi\rangle| \geq\|w\|_{\infty} f(\phi)$. [Hint: take the fact that $\|\cdot\|_{1},\|\cdot\|_{\infty}$ are dual norms, and apply it to w to construct a suitable ϕ.]
(d) Hence, or otherwise, prove that $f=g$.
[Note: in this case, it is useful to reflect on how hard it is to prove (d) without the Hahn-Banach theorem.]

