Distance $d_{G}(u, v)$ between two vertices u, v in a graph G $=$ length of the shortest path between u and v.

Diameter $\operatorname{diam}(G)$ of a connected graph G $=$ maximum distance between any two vertices in G.

Radius $\operatorname{rad}(G)$ of a connected graph G $=\underline{\text { smallest number } r}$ so that every vertex in G is at distance $\leq r$ from some (particular) vertex in G.

Find the diameter \& radius of each graph:

Q Is the diameter of a graph double the radius?
"Six degrees of separation is the idea that all people are six or fewer social connections away from each other." (Wikipedia)

What does this say for the graph G where vertices = people, and edges $=$ "social connections" (e.g., friendships btw 2 people)?

