(Proper) coloring of a graph = a way of coloring the vertices so that no two adjacent vertices have the <u>same</u> color.

k-coloring = a coloring that uses exactly k colors. (If a k-coloring of G exists, say that G is k-colorable.)

Chromatic number $\chi(G)$ = smallest k so that G is k-colorable.

Warm-up: find X(G)

an "easy/nice" order for greedy alg: Special case with

Def G is d-degenerate ;f every <u>subgraph</u> of G has a vtx of degree $\leq d$. *S ≤ d ≤ ∆*

I dea: order vtxs so few edges "looking back" Strategy put low-deg vtxs a end of ordering.

Prop (6.4.1) If G is d-degenerate, 2(G)=d+1. s.e., G is (d+1)-colorable

Pf define ordering VI, V2,..., Vn of vtxs of Grecursively: Let v, be a vtx of degree ≤d (exists b/c G is d-degenerate). Ed edges G-Vn Vn subgraph of G Delete vn. G-vn also has zl vtx of degree 5 d. Choose one, call it Vn-1. Recurse, till no vtxs remaining. Now, greedily color G m the order color G m the order v1, v2,..., vn. By construction, each vi has Ed nors among vi, v2, ..., Vi-1. So if we have d+1 colors, when it's time to color vi, there's ≥ 1 color available. =) ≤ d+1 colors used total.

<u>Brooks' Thm</u> Let G be a connected graph with max degree Δ . If G is not a complete graph or an odd cycle, then: $\chi(G) \leq \Delta$. Pf of Brooks' Thm Today + next time. <u>Easy case</u> $\Delta \leq 2$. Then,

Can check: the only connected graphs with $\Delta \leq 2$ are paths, cycles, or isolated vtxs.

Harder case $\Delta \ge 3$.

Let G be a connected graph with max degree $\Delta \ge 3$ that is not a complete graph (i.e., 1 (odd cycle has $\Delta = 2$, so not an option) G \neq K_{\Delta+1}.

Want to show: $\chi(G) \leq \Delta$.

<u>Idea</u> do greedy coloring, try to save <u>just a little</u>: remember, greedy coloring <u>always</u> uses $\leq \Delta + 1$ colors, so we only need to reduce by one!

so that each v_i has $\leq \Delta - 1$ neighbors among v_1, v_2, \dots, v_{i-1} ("backword nbrs").

Then at step i, there is
$$\ge 1$$
 available color
(from among \triangle colors) that can be used for v_i .

Lemma For any connected graph G n vtxs, and any $v \in V(G)$, there is a vtx ordering $v_1, v_2, ..., v_n = v$ so that v_i has $\leq d_G(v_i) - 1$ nbrs among $v_1, ..., v_{i-1}$, for all i except i = n.

Pfidea Do BFS (or DFS) order, with v as the root, then reverse the ordering, to get $v_1, v_2,$ \cdots $\sqrt{n-1}$ $\sqrt{n} = \sqrt{n}$ 2nd vtx last vtx added to tree added to Every vtx v: other than the root

has ≥ 1 "ancestor" in the tree. => V_i has ≥ 1 nbr later in the ordering, i.e. in $V_{i+1}, ..., V_n$.

=> V_i has $\leq d_G(v_i) - ($ ubrs in V_1, V_2, \dots, V_{i-1} .

But what to do about root vtx?

But if every vtx has degree Δ , we're out of luck " Need to "save a color" some other way for last vtx v.

Still haven't used the assumption that $G \neq K_{S+1}$!

Take any vtx v, has degree Δ . Since $G \neq K_{\Delta+1}$, v must have a "missing edge " u,w in its nbhd. (if every two nbrs of v were adjacent, get $K_{\Delta+1}$.)

Then put u, w at the <u>beginning</u>, and greedily color.

- Since u, w not adjacent, both colored with 1st color.
- For each subsequent vtx before $v, \leq \Delta 1$ nbrs earlier in ordering, $\Longrightarrow \geq 1$ color o ailable.
- And for v, Δ nbrs, but $\leq \Delta 1$ colors used on nbrs of v (since u, whave <u>same</u> color) $\Rightarrow \geq 1$ color available.
 - ⇒ colored G with < △ colors! "

A Not quite done though! There was a subtle flaw in this argument. Can you spot it?

What if G-n-w is disconnected? Then G is made of nearly disconnected "chunks". Maybe we can color the chunks separately, then fuse the colorings @ n and w?

Feels like a divide & conquer algorithm! => use induction

This is what we'll do next time!