(Proper) coloring of a graph $=$ a way of coloring the vertices so that no two adjacent vertices have the same color.
\boldsymbol{k}-coloring $=$ a coloring that uses exactly k colors. (If a k-coloring of G exists, say that G is \boldsymbol{k}-colorable.)

Chromatic number $\chi(G)=$ smallest k so that G is k-colorable.

Warm-up: find $X(G)$

Special case with an "easy/nice" order for greedy alg:

Def G is d-degenerate if every subgraph of G has a vtx of degree $\leq d$.

$$
\delta \leq d \leq \Delta
$$

Idea: order utes so few edges "looking back" Strategy put low-deg utes a end of ordering.

Prop (6.4.1) If G is d-degenerate, $X(G) \leq d+1$.
ie., G is $(d+1)$-colorable
Pf define ordering $v_{1}, v_{2}, \ldots, v_{n}$ of $v t \times s$ of G recursively:

Let v_{n} be a vex of degree $\leq d$ (exists $b / c G$ is d-degenerate).

subgroph of G
Delete v_{n}. $G-v_{n}$ also has ≥ 1 vex of degree $\leq d$. Choose one, call it v_{n-1}.

Recurse, till no utes remaining. Now, greedily
 color G in the order $v_{1}, v_{2}, \ldots, v_{n}$. By construction, each v_{i} has $\leq d$ nbs among $v_{1}, v_{2}, \ldots, v_{i-1}$. So if we have $d+1$ colors, when it's time to color v_{i}, there's ≥ 1 color available. $\Rightarrow \leqslant d+1$ colors used total.

Brooks' Tho Let G be a connected graph with max degree \triangle. If G is not a complete graph or an odd cycle, then:

$$
\chi(G) \leq \Delta .
$$

Pf of Brooks' Thu Today + next time.

Easy case $\Delta \leq 2$. Then,
Can check: the only connected graphs with $\Delta \leq 2$ are paths, cycles, or isolated $v t+s$ s.

In all cases $X(G) \leq \Delta$, unless G is a complete graph or an odd cycle.

Harder case $\Delta \geqslant 3$.

Let G be a connected graph with max degree $\Delta \geqslant 3$ that is not a complete graph (i.e., \uparrow
rod cycle has $\triangle=2$, $\left.G \neq K_{\Delta+1}\right)$.
so not an option)
Want to show: $X(G) \leq \Delta$.

Idea do greedy coloring, try to save just a little: remember, greedy coloring always uses $\leq \Delta+1$ colors, so we only need to reduce by one!

Lie., pick $1^{\text {st }}$ available color at each step
Strategy Do greedy coloring on some vtx order $v_{1}, v_{2}, \ldots, v_{(N)}$. "Dream ordering" would be:

$$
|v(G)|=n
$$

so that each v_{i} has $\leq \Delta-1$ neighbors among $v_{1}, v_{2}, \ldots, v_{i-1}$ ("backward nbrs").

Then at step i, there is $\geqslant 1$ available color (from among Δ colors) that can be used for v_{i}.

Surprisingly, this "dream order" is almost possible!

Lemma (For any connected graph G n vtxs, and any $v \in V(G)$, there is a $v+x$ ordering $v_{1}, v_{2}, \ldots, v_{n}=v$ so that v_{i} has $\leq d_{G}\left(v_{i}\right)-1$ nbrs among v_{1}, \ldots, v_{i-1}, for all i except $i=n$.

Pf idea Do BFS (or DFS) order, with v as the root, then reverse the ordering,

Every vex v_{i} other than the root has $\geqslant 1$ "ancestor" in the tree.
 $\Rightarrow v_{i}$ has $\geqslant 1 \mathrm{nbr}$ later in the ordering, i.e. in v_{i+1}, \ldots, v_{n}.
$\Rightarrow v_{i}$ has $\leq d_{G}\left(v_{i}\right)$-1 ubrs in $v_{1}, v_{2}, \ldots, v_{i-1}$.

But what to do about root vex?

If there is a $v t x \quad v \in V(G)$ with degree $\leqslant \Delta-1$, apply lemma , then do greedy coloring \Rightarrow uses $\leq \Delta$ colors.

But if every vtx has degree Δ, we're out of luck "Need to "save a color" some other way for last vtx v.

Still haven't used the assumption that $G \neq K_{\Delta+1}$!

Take any vtx v, has degree Δ. Since $G \neq K_{\Delta+1}$, v must have a "missing edge" u,w in its nbhd. (if every two nbs of v were adjacent, get $K_{\Delta+1}$.)

Trick apply Lemma * to G-u-w using v as the root.

Then put u,w at the beginning, and greedily color.

- Since u,w not adjacent, both colored with $1^{\text {st }}$ color.
- For each subsequent vt before v, $\leq \Delta-1$ nbrs earlier in ordering, $\Rightarrow \geq 1$ color available.
- And for v, Δ ubrs, but $\leq \Delta-l$ colors used on nbrs of v (since u, w have same color) $\Rightarrow \geqslant 1$ color available.
\Rightarrow colored G with $\leq \Delta$ colors! II

1. Not quite done though! There was a subtle flaw in this argument. Can you spot it?

To apply Lemma to G-u-w (i.e. to build BFS tree), need $G-n-w$ connected!

What if $G-n-w$ is disconnected?
Then G is made of nearly disconnected "chunks". Maybe we can color the chunks separately, then fuse the colorings @ u and w ?

Feels like a divide \& conquer algorithm! \Rightarrow use induction

This is what well do next time!

